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ABSTRACT Facial expression recognition (FER) is an extremely challenging task under unconstrained
conditions. Especially, variant head poses degrade the performance dramatically due to the large variations
in appearance of facial expressions. To address this problem, we propose a local attention network (LAN),
which adaptively captures the important facial regions according to pose variations. The LAN emphasizes on
more attentive regions while suppressing the regions not differentiated between classes. To find out attentive
regions, we propose a simple yet efficient coarse-level attention guidance map annotation method in an
unsupervised manner. The guidance map includes attention values for regions based on whether features
are deformed by facial poses. Further, the attentive regional features obtained by our LAN and original
global features are combined for pose-invariant FER. We validate our method on a controlled multiview
dataset, KDEF, three popular in-the-wild datasets, RAF-DB, FERPlus, and AffectNet, and their subsets that
contain images under pose variation conditions. Extensive experiments show that our LAN largely improves
the performance of FER under pose variations. Our method also performs favorably against the previous
methods.

INDEX TERMS Facial expression recognition, pose robust, local attention, guidance map.

I. INTRODUCTION
Facial expression is important for human-human communi-
cation as it naturally conveys emotional states and intentions.
Automatic facial expression recognition (FER) is crucial
in its applications across various fields such as service
robots, intelligent educational systems, patient monitoring,
and driver fatigue awareness. Recent significant progress on
FER has been achievedwith deep neural networks (DNN) and
large-scale datasets in the wild.

The FER datasets in the wild have several challenges
such as pose variation, illumination variation, occlusions, and
motion blur. Pose variation often occurs in real-world because
of either head movements or variable camera position. There-
fore, it is one of the major obstacles in FER because it
leads to significant changes in facial appearance. As shown
in Figure 1, different expressions under variant head poses
may also result in problems such as small intra-class sim-
ilarities and large inter-class similarities [37], [41]. Facial
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expressions from the same class may have considerable dif-
ferences while expressions from different classes may have
similar appearances. These problems occur more often on
low-quality images or micro-expressions, which are com-
mon in the wild facial images. Generally, training with these
ambiguous samples may lead to over-fitting or divergence of
the model, resulting in poor FER performance.

Earlier works primarily address these problems by training
a model to learn features from multiple views [5], [29],
or by extracting features robust to pose variations [28], [44],
[36], [43]. Region-based facial features have been success-
fully employed to handle pose variations [36], [43], [44].
Features are extracted from grid regions [44], regions around
landmark points [43], or fixed positions such as top-left,
top-right, and center-down [36]. Few attempts [36], [44]
have been made to improve the region-based approach by
concentrating on more important regions with an attention
mechanism. However, it is not easy to capture pose-robust
facial regions in real-world scenes.

In this work, we propose the Local Attention Net-
work (LAN) to adaptively capture the important facial regions
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FIGURE 1. Sample images from RAF-DB, FERPlus and AffectNet. Pose variation is one of key issues for FER in the wild.

according to the pose variations. Our method emphasizes
on more attentive regions while suppressing the regions not
differentiated between different classes. Such amethodmaxi-
mizes intra-class similarity and minimizes inter-class similar-
ity. Given a batch of images, a backbone convolutional neural
networks (CNN) extracts the global facial features. Then
the LAN learns its attention map comprising importance
weights for facial regions in the input feature map. It captures
the important facial regions, especially for pose-robust FER.
To determine the region importance, we propose an unsuper-
vised coarse-level attention guidancemap annotationmethod.
We apply a clustering algorithm in the neural feature space
and determine the attentive cluster based on the sample dis-
tributions. Further, the global facial feature and re-weighted
attentive local feature are combined for classification of facial
expressions.

The main contributions of this paper can be summarized as
follows:
• We propose the Local Attention Network (LAN) to
learn the importance of facial regions for pose-invariant
FER. LAN produces an attention map, which consists
of attention weights at the pixel-level of a feature map,
highlighting more attentive regions while suppressing
the common regions to differentiate classes. The atten-
tion map is then used to generate the attentive regional
features by combining global features.

• We present a simple yet efficient method for generat-
ing the attention guidance map annotation. Our method
learns whether features are common or attentive by
applying a clustering algorithm in the neural feature
space. This coarse-level annotation enables a simple but
efficient method to discover attentive regions for facial
images under pose variation conditions.

• We extensively validate our method on a controlled mul-
tiview FER, real-world FER, and pose variation datasets.

Our method improves the previous methods on KDEF,
RAF-DB, FERPlus, and AffectNet datasets.

The rest of the paper is organized as follows: Section II
discusses the related work. Section III introduces the pro-
posed FER model based on LAN, and then describes our
attention guidance map annotation method and loss func-
tion. Section IV describes the experiments on FER and
pose variation datasets. Finally, Section V concludes the
paper.

II. RELATED WORK
In this section, we mainly present methods that are related to
FER, FER under variant poses, and attention mechanism.

A. FACIAL EXPRESSION RECOGNITION
Generally, a FER system primarily comprises three stages:
face detection, feature extraction, and expression recognition.
In the first stage, faces are located and further aligned in com-
plex scenes using face detectors like MTCNN [42] and Reti-
naFace [4]. Features are then extracted from the facial images
to capture the facial appearance and geometry changes caused
by facial expressions. Earlier works have mainly used the
texture-based local features such as SIFT [44], HOG [8],
Histograms of LBP [45], Gabor wavelet coefficients [19],
and geometry-based global features based on the landmark
points around the eyes, mouth, and noses [29], [30]. Recent
works mainly use the features that are learned from DNN.
Tang [32] and Kahou et al. [15] won the ICML2013 FER and
EmotiW2013 challenge, respectively, using deep CNN for
feature extraction. Liu et al. [20] learn hierarchical features
by constructing a deep CNN architecture based on multiple
facial action units. The extracted features are fed into a super-
vised classifier such as support vector machines (SVMs),
softmax, and logistic regression to train those expression
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categories. Although the recent works based on CNN show
the progress on FER, they still struggle under pose variations.

B. FER UNDER REAL-WORLD VARIANT POSES
Unlike FER based on frontal view facial images, analyzing
non-frontal facial images is challenging because there are
several issues involving inaccurate non-frontal face align-
ment based on inaccurate facial landmarks, face occlu-
sions, and facial appearance changes. Several attempts [13]
have been made to address this challenging issue by using
pose-robust features [5], [7], [22], [28], [43], [44], pose
normalization [29], [33], [40], or pose-specific classifica-
tion [14], [23]. Rudovic et al. [29] propose the Coupled
Scaled Gaussian Process Regression (CSGPR) model for
geometric head pose normalization for head-pose invariant
FER. Eleftheriadis et al. [5] design a discriminative shared
Gaussian process latent variable model (DS-GPLVM) for
learning discriminative shared manifolds of facial expres-
sions from multiple views. Zheng [44] adopts a region-based
approach for facial feature extraction, and describes the rela-
tionship between the facial features of different facial views,
and synthesizes the features of multiple facial views through
kernel reduced-rank regression model for pose aware FER.

Recent DNNs have been also successfully applied in pose-
invariant FER. Fasel [7] find that a CNN is robust to face pose
and scale variations. Rifai et al. [28] proposes a multi-scale
contractive convolutional network that learns a hierarchy of
features to handle the pose variations. Zheng [44] proposes
a group sparse reduced-rank regression (GSRRR) model to
describe the relationship between the multi-view facial fea-
ture vectors and the corresponding expression class label
vectors. The group sparsity of GSRRR automatically selects
the optimal sub-regions of a face that contribute most to the
expression recognition. Zhang et al. [43] propose to use a
feature matrix consisting of the feature vectors extracted from
a set of landmark points as input data of a DNN for view-
invariant FER. Zhang et al. [41] propose a learning model for
simultaneous facial image synthesis and pose-invariant FER
by disentangling the expression and pose based on generative
adversarial network (GAN). Wang et al. [36] aggregate and
embed a varied number of region features extracted by a CNN
into a compact representation and capture the importance of
facial parts for pose robust FER. Liu et al. [23] propose a
multi-channel pose-aware CNN to obtain a high-level fusion
feature representation for different views and scales in a hier-
archical way. PhaNet [22] introduces a pose-adaptive hier-
archical attention network that discovers the most relevant
regions to the facial expression.

C. ATTENTION MECHANISM
Attention mechanism mimics cognitive attention, enhanc-
ing the important parts of the data and ignoring the other
parts. It is initially emerged from improvement over the
encoder-decoder based neural machine translation system
in natural language processing (NLP). Now, it is success-
fully used in a variety of machine learning models such as

machine translation, computer vision, and speech processing.
Mnih et al. [26] introduce a visual attention model based
on recurrent neural network (RNN) for image classification
tasks and demonstrate that the model outperforms a CNN.
Wang et al. [34] propose an anchor-level attention that high-
lights features from the face region and relieves the false
positives for occluded face detection. Yang et al. [38] use an
attentionmechanism to aggregate the features of video frames
with a set of content-adaptive weights and produce a com-
pact representation for robust face recognition in the wild.
Wang et al. [36] propose amodel comprising a feature extrac-
tion module, a self-attention module, and a relation attention
module to capture the important facial regions. Liu et al. [22]
use an attention mechanism in hierarchical scales to discover
the most relevant regions to the facial expression and learn
pose-invariant representations.

III. METHODOLOGY
In this section, we first present an overview of the proposed
method for pose-invariant FER. We then describe the local
attention network module and attention guidance map anno-
tation module in detail. We finally present the loss function.

A. OVERVIEW
The overview of our method is shown in Figure 2. The pro-
posed FERmodel is consists of two modules. The local atten-
tion network module extracts a map employing importance
of each region in the feature map. It highlights more attentive
facial parts and suppresses the general facial parts not differ-
entiated between classes. The map is obtained based on the
attention guidance map through a binary cross-entropy loss
(BCE-Loss). The attention guidance map annotation mod-
ule generates the guidance map for attentive facial regions
regarding pose variations. Attentive clusters are calculated
by clustering regional features in the feature maps from
face images in the training set. Given the attentive clusters,
the attention guidance map is easily obtained by assigning
the attentive or general cluster to each facial region. Subse-
quently, the original and attentive features are combined for
obtaining global and local attentive features for accurate FER.

B. LOCAL ATTENTION NETWORK MODULE
The inputs to the local attention network (LAN) module
are the multichannel features from a CNN backbone network
and the outputs are the local attentive features. The LAN
module is constructed by four 3 × 3 convolutional layers
followed by a sigmoid layer, as shown in Figure 2. We denote
input features as Fo ∈ [H ×W × C], where H and W
are the resolution and the C is the depth. They are passed
through LAN module to produce the local attention map
Fm ∈ [H ×W × 1]. In our experiments, H and W are set
to 7, and C is set to 512.
The attention map Fm is a pixel-wise map employing atten-

tive information at pixel-level. It modulates the multichannel
features Fo of facial images to obtain re-weighted attentive
features Fa ∈ [H ×W × C]. We achieve this by applying
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FIGURE 2. The overall architecture of the proposed method. First, input facial image goes through a backbone network for deep feature extraction. Given
attentive clusters, the feature is then used to generate the guidance map for attentive regions and extract the attention map. The global CNN feature and
local attention feature are combined by concatenation. The classification of expressions is performed through cross-entropy loss (CE-Loss) and binary
cross-entropy loss (BCE-Loss). GAP denotes global average pooling, and FC denotes a fully-connected network.

the element-wise multiplication of every feature channel in
Fo with Fm to generate Fa as:

Fa = Fo � Fm (1)

Fa is fed into a global average pooling (GAP) layer to
obtain a feature vector fa with size of C . The original mul-
tichannel feature Fo is also fed into a GAP layer to obtain a
feature vector fo with size ofC . The element-wise summation
operation is further used to combine fo and fa as:

f = fo ⊕ fa (2)

where f represents the final features for the classification
of facial expressions. These features contain global infor-
mation from Fo and local attentive information from Fa
simultaneously.

We conduct visualization of the proposed method through
class activation mapping (CAM) [46] to compare the per-
formance of our local attention network module with the
baseline CNN backbone. Figure 3 shows the visual compar-
isons for input features Fo, re-weighted attentive features Fa
by our LAN, and our final features f . The first row shows
that the global facial regions near the mouth and nose are

primarily activated by the CNN backbone network. From the
middle row, we observe that our LAN captures local facial
regions, such as ‘‘lip corner’’ and ‘‘wrinkles’’ compared to
Fo. By combining both features, our final features become
more discriminative than the input features as shown in the
last row.

C. ATTENTION GUIDANCE MAP ANNOTATION MODULE
Training of attention maps for face images requires supervi-
sion indicating more important and attentive facial parts for
FER in the form of dense pixel-wise segmentation. However,
this is a tedious process, and the images are difficult to anno-
tate owing to their inter-class ambiguity, especially for facial
images with extreme pose variability. Another approach for
learning attention maps is to design loss functions [36] that
encourage the network to obtain more weights for attentive
regions. However, designing such delicate loss functions is
difficult without any constraint on the weights of regions.

Inspired by the observation that features are deformed by
pose variations [41], we design a straightforward method to
generate the attention guidance map based on facial poses.
As it is challenging to infer an accurate facial pose, we instead
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FIGURE 3. Visual comparison of class activation mapping (CAM) among input features Fo, re-weighted attentive features Fa
by our local attention module, and our final features f . Note that our local attention module captures local facial regions
and our final features become more discriminative by combining global and local features.

extract whether the features are deformed according to the
pose in an unsupervised manner. We denote all face images
in the training set as I1, I2, . . . , IN . For each face image In,
we first extract the feature map Fno ∈ [H ×W × C] using
a CNN backbone network. f np ∈ RC is the feature vector at
position p on the 2D lattice P of the feature map Fno . For each
position p, we perform a clustering on all feature vectors f 1p ,
f 2p , . . . , f

N
p of feature maps of training face images. Let K

be the number of clusters; πkp be the kth (k = 1, 2, · · · ,K )
cluster at position p of the feature map; µkp be the center of
the cluster πkp , as defined in Eq. (3).

µkp =
1∣∣∣πkp ∣∣∣

∑
fp∈πkp

fp (3)

where the cluster center µkp at position p is calculated by
averaging feature vectors fp at position p of the feature maps.
We apply K-means clustering in the neural feature space

and use 2 as the number of clustersK . In other words, we con-
sider two types of features: one is general features for facial
expressions and the other is the features deformed by the
facial poses. We assume that CNN features are mostly robust
but some features are severely distorted owing to severe pose
variations. We determine whether features are deformed or
not by the pose variations based on clustering in the neural
feature space.

In case of K = 2, we have two clusters π1
p and π2

p
at each position p. Between two clusters, we consider the
number of samples of each cluster in order to determine the
attentive cluster. In other words, we assume that majority of
samples have more general features while a few of them have

more attentive and discriminative features deformed by pose
variations. Therefore, we consider the cluster including fewer
samples as the attentive cluster. For two clusters π1

p and π2
p ,

we count the number of samples and then define an attentive
cluster πap as follows:{

πap = π
1
p if

∣∣∣π1
p

∣∣∣ < ∣∣∣π2
p

∣∣∣ ,
πap = π

2
p otherwise,

(4)

Our annotation method generates the attention guidance
map based on the selected attentive cluster. We assign labels
for each position p on the 2D lattice P of the output attention
map. Given an input feature map, each feature fp at position
p is assigned to its nearest cluster based on the Euclidean
distance. If fp is assigned to the attentive cluster, we set its
label as one, otherwise, we set its label as zero.

Note that we call the resulting map as the attention guid-
ance map because we directly do not use the map as Fm.
We exploit the map as a guidance to automatically extract
the attention map Fm through the model as mentioned in
Section III-B. Since the attention guidance map is not a
ground-truth for attentive facial regions, we use it as a refer-
ence to find which facial regions should be focused for FER.
To prevent the excessive consideration for attention guidance
map, we reduce its impact by setting the weight in the loss
function as mentioned in Section III-D.

D. LOSS FUNCTION
We present our loss function for the proposed network. The
overall loss formulation L is:

L = LCE + αLmap (5)
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where LCE (y, y′) is the CE-Loss between the network output
y′ and the true class label y. Lmap is the loss of the proposed
local attention module, formulated as a per-pixel BCE-Loss:

Lmap = BCELoss(Fm(x, y),F ′m(x, y)) (6)

whereF ′m(x, y) are the predictions produced by local attention
module and Fm(x, y) represents the attention guidance map
obtained by feature clustering as described in Section III-C.
As mentioned in Section III-C, we reduce the impact of the
attention guidance map to produce the local attention map by
setting the weight α less than 1. Therefore, we set α = 0.5 by
default.

IV. EXPERIMENTS
In this section, we demonstrate the experimental results of our
method on the four public datasets and the robustness of our
method under pose variations on the pose variation datasets.
We then conduct ablation studies to show the effectiveness of
our method.

A. DATASETS
To evaluate our method, we conduct extensive experiments
on a controlled multiview FER dataset, KDEF, three pop-
ular in-the-wild FER datasets, RAF-DB [16], FERPlus [2],
AffectNet [27], and three pose variation datasets, Pose-RAF-
DB, Pose-FERPlus, Pose-AffectNet [36].

1) KDEF [24]
The Karolinska Directed Emotional Faces (KDEF) dataset is
a multi-view facial image dataset that contains 4,900 images
from 70 individuals with seven basic facial expressions (neu-
tral, happiness, surprise, sadness, anger, disgust, fear). Each
expression is captured from 5 different angles (−90◦: full left
profile, −45◦: half left profile, 0◦: straight, +45◦: half right
profile, +90◦: full right profile).

2) RAF-DB [16]
The RAF-DB dataset contains 30,000 facial images with
basic or compound expressions annotated by 40 trained
human coders. Same as the most previous works, seven basic
expressions are used together with 12,271 images for training
and 3,068 images for testing.

3) FERPLUS [2]
The FERPlus dataset is extended from FER2013 [37] which
is introduced in the ICML 2013 Challenges. It is a large-scale
dataset collected by the Google search engine. It consists of
28,709 training images, 3,589 validation images and 3,589
test images. Contempt is included with seven expressions
which makes eight expressions in this dataset.

4) AFFECTNET [27]
The AffectNet dataset contains about 450,000 images that
are manually annotated with eight expression labels as FER-
Plus. It has an imbalanced training set, a balanced validation

TABLE 1. Comparison on the KDEF dataset.

set, an imbalanced test set. We use the validation set for
measurement.

5) POSE VARIATION DATASET [36]
To evaluate the performance of FERmodels under pose varia-
tion conditions, [36] built three subsets, Pose-RAF-DB, Pose-
FERPlus, and Pose-AffectNet. Pose-RAF-DB contains 1,248
and 558 images with an angle larger than 30 and 45 degrees
respectively, Pose-FERPlus contains 1,171 and 634 images
with an angle larger than 30 and 45 degrees respectively, and
Pose-AffectNet contains 1,949 and 985 images with an angle
larger than 30 and 45 degrees respectively.

B. IMPLEMENTATION DETAILS
In all the experiments, face regions are detected and aligned
by RetinaFace [4] and then resized to 224 × 224. For the
backbone CNN, we use ResNet-18 [10] that is pre-trained
on the MS-Celeb-1M face recognition dataset [9]. The orig-
inal facial features are extracted from its last pooling layer.
The input to our LAN is extracted from the layer before
(Conv5_x) the last pooling layer.

The whole network is jointly optimized with CE-Loss and
BCE-Loss. The ratio of the two losses is empirically set
at 2:1, and its influence is evaluated in the ablation study
of experiments. On all datasets, parameters are optimized
via SGD optimizer with an initial learning rate of 0.1 and a
mini-batch size of 64.

C. EVALUATION ON A CONTROLLED MULTIVIEW FER
DATASET
In order to show that the proposed method is robust to the
head pose variation, we compare our method on a multiview
FER dataset.

1) COMPARISON ON KDEF
We compare the proposed method with previous methods on
KDEF dataset in Table 1. The results are achieved by 10-fold
cross-validation on the dataset. TLCNN [47] proposes two
automatic selection schemes on high-level feature maps of
CNN on generic images for FER. RBFNN [25] proposes
a method to concatenate spatial pyramid Zernike moments
based shape features and Law’s texture features. Compared to
pose-aware methods such as PhaNet [22], MPCNN [23], and
DML-Net [21], our method largely improves FER accuracy.
Overall, our method outperforms these previous methods
with 95.39%.
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TABLE 2. Comparison on the RAF-DB dataset.

TABLE 3. Comparison on the FERPlus dataset.

D. EVALUATION ON IN-THE-WILD FER DATASETS
In this section, we compare the proposed method to sev-
eral previous methods on RAF-DB, FERPlus, and AffectNet
datasets.

1) COMPARISON ON RAF-DB
We compare our method to several methods on the RAF-DB
dataset in Table 2. DLP-CNN [16] improves the discrim-
inability of features by maximizing the inter-class scatters
and retaining the locality closeness. IPA2LT [39] introduces
the latent ground-truth for learning with inconsistent anno-
tations across different FER datasets. Separate-Loss [17]
proposes the separate loss that consists of intra-class loss
and inter-class loss to learn discriminative features. pACNN
and gACNN [18] leverages patch-based and global-local-
based networks. RAN [36] proposes a region attention net-
work that learns attention weights for each facial region.
LDL-ALSG [3] proposes the label distribution learning on
auxiliary label space graphs to address the annotation incon-
sistency and improve the FER performance. DDA-Loss [6]
presents discriminant distribution-agnostic loss to increase
feature discriminability in the embedding space and solve the
class imbalance problem. SCN [35] proposes self-attention
and relabeling mechanisms to suppress the uncertainties of
FER annotations. As shown in Table 2, our method out-
performs these previous methods with 87.09% on RAF-DB
dataset.

2) COMPARISON ON FERPLUS
For FERPlus dataset, we also compare our method to sev-
eral methods, as shown in Table 3. PLD [2] uses proba-
bilistic label drawing to obtain label distribution and train

TABLE 4. Comparison on the AffectNet dataset. + Oversampling is used
since affectnet is imbalanced.

TABLE 5. Comparison on the pose variation dataset.

a FER model. ResNet+VGG [12] uses linear SVM with
concatenated features of ResNet-18 and VGG-16 models.
SeNet50 [1] improves the performance using squeeze-and-
excitation architecture [11] based on ResNet-50 for FER.
Compared with our method, we achieve a comparable result
of 88.45% using a network shallower than SeNet50.

3) COMPARISON ON AFFECTNET
Table 4 shows the comparison on AffectNet dataset. As the
training set of AffectNet dataset is imbalanced, [27] applies
up-sampling and weighted-loss. ESR-9 [31] ensembles with
shared representations based on CNN to reduce the residual
generalization error. Our method outperforms these recent
methods with 60.88%.

E. EVALUATION UNDER POSE VARIATION
To evaluate the proposed method under pose variation
conditions, we conduct experiments on Pose-RAF-DB,
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FIGURE 4. The comparison of class activation mapping (CAM) between the baseline and our method. The images are from
the Pose-RAF-DB dataset.

Pose-FERPlus, and Pose-AffectNet. As shown in Table 5,
the performance of our method is superior on both datasets
comprising images with angles larger than 30 and 45 degrees.
On Pose-FERPlus and Pose-AffectNet, our method outper-
forms the baselines with a large gap. Compared to the RAN
method, the gains are 4.95% and 4.54% with pose larger
than 30 degree, and 4.91% and 4.90% with pose larger than
45 degree. Overall, these results demonstrate the robustness
of our method on variant pose FER datasets.

Figure 4 shows the visualization results of CAM between
the baseline and our method. We fine-tune ResNet-18 on the
FER datasets as a baseline. The images are obtained from
the Pose-RAF-DB dataset. We can observe that the baseline
mainly captures regions near the mouth and cheek. However,
several expressions such as Surprise, Anger, and Sadness
share a similar mouth. Cheek regions also cause confusion
because some samples from expressions such as Happiness,
Sadness,Anger have similar cheekwrinkles. Compared to the
baseline, our method captures more important local regions
to distinguish expressions from different classes. As shown

in Figure 4, our method exploits facial regions near lip corner,
eye corner, eyebrows, and facial wrinkles, which are more
critical clues to distinguish expressions.

We present the confusion matrices of our method on pose
variation datasets, as shown in Figure 5. On RAF-DB dataset,
we find that Fear is often misclassified to Surprise because
the two classes appear to have similar facial features, such as
‘‘opening a mouth’’ or ‘‘bigger eyes.’’ On FERPlus dataset,
Contempt is mostly misclassified to Neutral or Sadness.
This is because some samples of Contempt contain moderate
emotions or similar facial expressions to Sadness. Sadness
and Anger are also often misclassified to Neutral because
restrained expressions of Sadness or Anger are confusing to
Neutral. Similar to RAF-DB dataset, Fear is often misclas-
sified to Surprise on FERPlus dataset. On AffectNet dataset,
we find that Neutral is often misclassified to various classes
such as Sadness, Surprise, Anger, or Contempt because some
retrained or micro expressions of those classes cause confu-
sion. Overall, the above misclassification cases also occur in
AffectNet dataset.
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FIGURE 5. The confusion matrices of our method on pose variation test datasets.

In Figure 6, we provide examples correctly classified and
misclassified by our method from RAF-DB, FERPlus, and
AffectNet datasets. Generally, we find that micro-expression,
extreme facial poses, and confusing facial expressions are
misclassified.

F. ABLATION STUDY
We conduct ablation studies on the validation set of
AffectNet.

1) EVALUATION OF THE α
α is the ratio of considering Lmap loss. In other words, this
ratio controls the effect of the attention guidance map to
produce the local attention map. We evaluate the param-
eter α values of our loss function in Figure 7. We study
different ratios from 0 to 1.0 on AffectNet dataset. Our
default ratio that achieves the best performance is 0.5.
Small α value degrades the ability of our LAN since it
reflects less attentive features. Large α value leads to reduce
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FIGURE 6. Selected examples of FER results on pose variation datasets. P: predictions by our method, GT: ground truth. Red text denotes
misclassification.

ability of classification by over-consideration of the attention
map.

2) EVALUATION OF DIFFERENT FUSION SCHEMES
We also conduct experiment to evaluate different feature
fusion strategies to combine global and local features.
We consider three popular feature fusion methods, such as
feature concatenation, feature averaging, and feature addi-
tion. Table 6 shows the evaluation of different feature
fusion schemes on AffectNet dataset. Our feature addition

TABLE 6. Evaluation of different feature fusion schemes on AffectNet
dataset.

scheme achieves the best performance. For the rest of
the methods, feature concatenation is superior to feature
averaging.
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FIGURE 7. The evaluation of different α values on AffectNet dataset.

V. CONCLUSION
This paper presents a Local Attention Network (LAN) to
adaptively capture the important facial regions according
to the pose variations. LAN produces facial attention maps
using coarse-level feature clustering information. The result-
ing facial local attention maps modulate the facial features
by emphasizing on more attentive regions while suppressing
the regions deformed by pose variations. To determine the
region importance, we employ coarse-level pose information
as a guidance by clustering the features and selecting the
attentive cluster based on the sample distributions. Exten-
sive experiments on four public datasets show that our LAN
achieves previous results and can handle pose variations in
the real-world.

Although our results show the robustness of our model
under pose variations, our model still fails to images with
extreme poses. In the future work, we will extend our model
to be able to recognize for extreme facial poses. We will
also conduct a more extensive evaluation with a variety of
different facial angles and extreme facial poses.
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