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ABSTRACT Bird sounds recognition is of great significance in bird protection. With appropriate sound
classification, research can automatically predict the quality of life in the area. Nowadays, the deep learning
model is used to classify bird sound data with high classification accuracy. However, the generalization
ability of most existing bird sound recognition models is poor, and the complicated algorithm is applied
to extract bird sound features. To address these problems, a large data set containing 264 kinds of birds is
constructed in this paper to enhance the generalization ability of the model, and then a lightweight bird
sound recognition model is proposed to build a lightweight feature extraction and recognition network
with MobileNetV3 as the backbone. By adjusting the depthwise separable convolution in the model,
the recognition ability of the model is improved. A multi-scale feature fusion structure is designed, and
the Pyramid Split Attention (PSA) module is added to the multi-scale feature fusion structure to improve the
adaptability of the network to scale extraction of spatial information and channel information. To improve
the refinement ability of the model towards the global information, the channel attention mechanism and
ordinary convolution are introduced into Bneck module which makes the Bneck module become the Bnecks
module. The experimental results show that the accuracy of Top-1 and Top-5 of the model in identifying
264 kinds of birds on the self-built data set is 95.12% and 100%, which are higher than that of MobileNetV 1,
MobileNetV2, MobileNetV3 respectively. Although the accuracy is lower than ResNet50, the number of
parameters and floating-point operations (FLOPs) of the model is only 2.6M and 127M respectively. The
accuracy is only reduced by 2.25% while saving costs.

INDEX TERMS Attention mechanism, bird sound recognition, deep learning, lightweight, multi-scale
feature fusion.

I. INTRODUCTION

More than 10,000 species of birds are found in almost
every environment, from unspoiled rainforests to suburbs
and even cities [1], [2]. Nowadays bird species all over the
world are extinct to varying degrees. For example, Hawaii,
as the extinction capital of the world, has lost 68% of bird
species, which may destroy the entire food chain and thus
the ecological environment of Hawaii. Using population mo-
nitoring, researchers can understand how local birds respond
to changes in the environment and conservation efforts. Being
able to monitor bird movements in real-time is the first step
in this work [3].
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At present, many professionals begin to observe birds for
a long time to conserve their species [4]. However, most of
the monitoring tasks are manual by professionals. As birds
fly fast and are difficult to observe, and when they live
on land, they are easily frightened by human activities and
cannot be recorded by the camera quickly. Therefore, using
image recognition to recognize birds in real-time is both
difficult and expensive [5]. What’s more, many birds are
isolated in inaccessible high-altitude habitats. Due to the
difficulties in physical monitoring, more and more profes-
sionals generally recognize the bird species by hearing [6]
and recording. This method, called bioacoustics monitoring,
can provide a passive and cost-effective strategy for the study
of endangered bird populations. Nevertheless, if a manual
surveillance program is performed, this monitoring process is
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time-consuming and laborious, and real-time monitoring of
birds in areas such as ecological protection zones can’t be
carried out.

Most people in related fields tend to use Internet of things
devices to remotely online monitor bird populations. Since
most of the bird protection habitats are in the wild, it is
difficult for the online monitoring system to transmit the
sound of birds back to the server for data processing, recog-
nition and feedback under good network conditions. If the
off-line monitoring is carried out in the bird reserve, the
low-cost embedded equipment cannot carry the high com-
plexity sound feature extraction algorithm and high-precision
sound recognition algorithm. Therefore, aiming at this point,
this paper wants to design a lightweight bird voice recognition
algorithm, which can not only achieve high accuracy by using
simple and single features, but also make the model small
enough to run in low-cost embedded devices.

A. PRIOR WORK

There is a lot of work for bird sound recognition. In the tradi-
tional field of machine learning, Ramirez et al. [7] used Mel
frequency cepstral coefficients (MFCC) and inverted Mel
frequency cepstral coefficients (IMFCC) as sound features to
recognize the sound of birds and found that IMFCC achieved
better recognition accuracy. Lucio et al. [8] adopted the
method of multi-feature fusion and fused the sound features
with three texture feature operators: local binary, Gabor filter-
ing, and local phase quantization. Finally, the support vector
machine was used to obtain 77.65% accuracy in 46 kinds of
birds. Salamon et al. [9] generated a feature dictionary from
logarithmic scale Mel spectrum species and achieved 93.96%
accuracy in 43 species of birds using the support vector
machine (SVM). Pahuja et al. [10] generated a statistically
evaluated short-term Fourier trans-form spectrogram-based
feature matrix as characterization of vocalization patterns
of bird species, and attain enhanced recognition accuracy
(96.1%) using a multi-layer perceptron artificial neural net-
work. In the above machine learning model, classifier algo-
rithms are often relatively simple and easy to implement,
but in order to improve the accuracy of classifiers, most
experts and scholars will use complex feature fusion extrac-
tion algorithms. Although these feature extraction algorithms
do effectively improve the classi-fication accuracy, due to
their high complexity, the cost of implementation is often
high.

In recent years, deep convolution neural network has made
great progress in sound recognition and other aspects [11],
[12], [13]. Zhang et al. [14] used short time Fourier transform
(STFT) and other methods to convert birds sound into the
spectrum and used convolutional neural network to clas-
sify bird sounds. Different from using a simple convolu-
tional neural network, Sankupellay e al. [15] used 50 layers
residual neural network (Resnet50) to classify the time spec-
trum of bird sounds. Huang et al. [16] used densely con-
nected networks (Densenet) to extract time spectrum features
and classify them, which improved the classification effect.
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To further improve the recognition accuracy. Sheng et al. [17]
used 1-dimensional CNN-LSTM, 2-dimensional vgg-style,
and 3-dimensional densenet121 model as feature extractors to
extract advanced features, and then used a shallow classifier
to recognize 43 kinds of bird sounds, achieving a balanced
accuracy of 93.89%. The methodology [18] deviates from the
existing approaches by integrating transfer learning. Using
such as ResNet50, DenseNet201, InceptionV3, Xception, and
EfficientNet can effectively extract and recognize the audio
signals from different bird species with significant prediction
accuracy. In the above deep learning model, the complex
feature ex-traction algorithm is replaced by various deeper
and high-precision models with many parameters, but this
also faces the same problem. A large number of parameters
will reduce the computing speed of the device, and complex
model pairs cannot be applied to low-cost CPU. It is still
unrealistic to run the models in low-cost embedded devices.

In addition, although most of the studies on bird sound
recognition have achieved high recognition accuracy, the
amount of data set used in the research is small [17], [18],
[19], [20], [21], [34], [35], [36], [37]. Most studies are limited
to identifying a single bird species, and the number of bird
species in the data set used is only 20 to 30 (in the following,
this paper will list some comparative data), so the proposed
model does not have generalization ability.

Therefore, in order to apply the recognition model to
low-cost embedded devices to realize offline real-time bird
popu-lation monitoring, it is necessary to improve the
generaliza-tion ability of the model, reduce the complex-
ity of feature extraction algorithm and design a lightweight
model.

B. CONTRIBUTION

In order that overcoming the above shortcomings, this paper
first collects a large number of bird sound data and constructs
a data set of 264 kinds of birds. Then, a single Mel spec-
trum is used as the sound data feature. Finally, a lightweight
recognition model is designed to recognize the bird sound
feature map, and the classification result is obtained. The
contributions of the paper can be summarized as follows:

1) Built a huge bird data set: In this paper, a large data set
containing 264 species of birds is constructed, which
can effectively improve the generalization ability of the
model;

2) Lightweight bird recognition model based on improved
MobileNet design: This paper designs a light-weight
bird sound recognition model to improve the accu-
racy of bird sound recognition. The multi-scale feature
fusion structure is proposed, and then a PSA (pyramid
split attention) module is added to the multi-scale fea-
ture fusion structure to enhance the adapt-ability of the
network to scale extraction of spatial information and
channel information. The Bnecks block is designed,
and the channel attention mechanism and ordinary
convolution are introduced to improve the refinement
ability of the model to the global information;
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FIGURE 1. Bird audio signal feature extraction process.

3) Simple bird sound feature extraction process:
By extracting the Mel spectrogram and stacking it as
a three-dimensional feature into the recognition model,
a better recognition result can be obtained.

The organization of the remainder of this study is as
follows:

In Section 2, the related work is shown. Then section 3
explains how to construct the bird sound recognition model.
In Section 4, the ablation experimental results, the compari-
son of results between different models and the comparison of
the result between the scheme proposed in this paper and the
previous are given. Finally, Section 5 concludes the research.

Il. RELATED WORK

A. DATA SET CONSTRUCTION

The bird sound data used in this paper comes from various
bird recognition competitions of Kaggle [23], [24], [25] and
some bird sounds in rural areas of Baguazhou Qixia, District,
Nanjing City, Jiangsu Province, China. The collected bird
sound data are sorted and labeled respectively. There are
264 bird categories. Table 1 shows bird sounds in the data set
and the number of audio clips contained in this paper. Due to

TABLE 1. Data information for each category of the dataset.

atego atego! Data .
%ufngbg CNzrgnery Volume Duration(s)
0 aldfly 102 15
1 ameavo 87 37
2 bkpwar 100 20
3 blujay 100 20
4 brebla 100 20
5 eargre 68 20
6 fiespa 132 20
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the large amount of data, we only listed a s bird sound data
information.

B. DATA PREPROCESSING

The data source, data format and the sampling rate of the
different bird sound data in the data set constructed in this
paper are different, so before extracting features of the bird
sound, corresponding pre-treatment is needed to eliminate
the differences of input data in data source, data format, and
sampling rate. In addition, the duration of each bird sound
segment in the dataset constructed in this paper is different,
but overall, the duration of each sample data is more than
10 seconds, therefore this paper intercepts the sample data
at 5 seconds interval so that the duration of each sample data
is the same. To eliminate the effect of the amplitude differ-
ence in bird audio data on model training, this paper stan-
dardizes min-max for each intercepted bird sample data as
follows:

S(n); — min{s(n)}

S(n)y = max{s(n)} — min{s(n)}

e))

S(n); denotes the input signal after normalization at t-time,
s(n); presents the original input signal at x-time, min{-},
max{-} are the minimum and maximum values respectively.
In order to verify the influence of standardized data on the
experimental results, this paper will prove it in the ablation
experiment in Section 4.

C. FEATURE EXTRACTION

Different from human voice recognition, bird sound rec-
ognition in this paper focuses more on the characteristics of
bird sound than the content of bird sound. In order to simplify
the complexity of the feature fusion algorithm and reduce the
computational load of the model, the Mel spectrum, which is
widely used in speech recognition systems, is selected as the
feature of the bird audio signal. The process of extracting the
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feature is shown in Figure 1. The Mel spectrum of the bird
audio signal obtained in this paper is defined as follows:

N-1

feature(m) = Z E(k)H,, (k) )

k=0
Here feature(m) is the corresponding energy characteristic
of the Mth Mel filter, E(k) is the signal energy spectrum,
H,,(k) is the response of the Meier filter, and N is the length
of the FFT. The feature is fused on the channel dimension to
get a 3-D feature map. Furthermore, the difference between
the standardized data and the original data are compared by
calculating the feature extraction time, as shown in Figure 2.
The result shows that under the same machine, stan-
dardization can speed up the speed of feature extraction.
Figure 3 appear that the standardized data is more distinctive
while non-standardized data is a noisy, featureless signal.

Comparison of the time required for feature extraction
before and after standardization

600

s00 1

w i |

B Standardized data|
} Original data

8

100 -

Time required for feature extraction{min)

ol
R7-5800h 17-11800H

Different CPU models

17-12700K

FIGURE 2. Comparison of time required for feature extraction between
standardized and original data by different types of CPU.

FIGURE 3. Comparison of the feature map of standardized and with that
of original data. (a) Feature map of standardized data; (b) Feature map of
original data.

lll. MODULE CONSTRUCTION

For purpose of making the deep learning model can be rapidly
deployed and run on the mobile terminal, Howard ez al. [26]
proposed the depthwise separable convolution (DSC) for
mobile devices. Compared with the traditionnal convolution
neural network, DSC can improve the training speed of the

85192

model, reduce the parameters, calculation of the model and
also can infer at a faster speed at the moving terminal. The
DSC consists of a depthwise(DW) convolution and a point-
wise(PW) convolution, in which the DW convolution works
as shown in Figure 4(a) and the PW convolution as shown
in Figure 4(b).

DW convolution performs convolution operations on the
input images in their respective channels, and the output
feature map has the same number of channels as the input
images. It can effectively obtain the channel information of
the input image, but cannot use the feature information of
different channels at the same position. To address this point,
PW convolution is required to spatially combine the feature
maps output by the DW convolution, expand the output chan-
nel, and extract spatial information. The combination of DW
convolution and PW convolution results in a DSC that takes
only one-T of the traditional convolution, as follows:

1 1 1

T_N+D%( x 100% 3)
where N is the number of output channels of the convolution
operation, and D is the size of the input image (it is assumed
that the size of the input image is Dg x Dg).

Although DSC can reduce the number of parameters and
computations, the sequential combination of the DW convo-
lution and the PW convolution limits its feature extraction
capabilities. Due to the initial module of the feature data is
always transmitted in low-dimensional form, and DW con-
volution cannot expand the output channel. This will result
in the loss of the original features. Not only that, the ReLU
activation function is usually used after DW convolution to
introduce nonlinearity and speed up training.

For traditional images, because an image has rich fea-
tures, these disadvantages can be overcome by relying on
rich features. However, for bird sound spectrogram features,
low-dimensional data will lose a large number of features
after passing through the activation function ReLU, resulting
in the collapse of low-dimensional data. Therefore, if the
PW convolution is performed first and the DW convolution is
followed, the low-dimensional feature data can be converted
into high-dimensional data by PW convolution, so that a large
amount of spatial information will be stored in the feature
map, and then the feature information of each channel can
be extracted by DW convolution using the high-dimensional
features after the PW convolution. Through the above adjust-
ment, the bird sound recognition model proposed in this paper
can speed up the inferring time and improve the accuracy at
the same time.

In order to extract features in low dimensions to the greatest
extent, this paper redesigns the activation function used by the
DSC, and adopts the Mish function with a smoother gradient,
which is defined as follows:

f(x) = x tanh(In(1 + €)) )

Through the above methods, the improved DSC can
enhance the extraction of low-dimensional features without
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(a)

(b)

FIGURE 4. Process of depthwise separable convolution. (a) The process of depthwise convolution; (b) The process of pointwise convolution.

introducing too many parameters and calculations, so as to
speed up the training and inferring time of the model.

A. MODEL OVERALL DESIGN ARCHITECTURE

The backbone part of the lightweight model designed in this
paper refers to MobileNetV3-Small [27]. This paper has ad-
justed and improved the problems existing in MobileNetV3-
Small and the situation of the actual data from data set in this
paper. The overall model architecture is shown in Figure 5 and
Table 2. The lightweight model consists of one Inception
block, two Bnecks blocks and 17 Bneck blocks stacked
together. Data is extracted in the form of high dimension in
the backbone and transferred between blocks in the form of
low dimension.

exgjoaug
exghjoaug
exghjoaug
exghjoaug
exgjoaug
XeWwyos

w| | @
=] =
[0} (0]
o (¢}
= x
K
>(.2) w
S|

FIGURE 5. Lightweight model network architecture.

TABLE 2. Overall architecture of The lightweight model (c is the output
channel, n represents the quantity, s represents the number of stride,
SE represents whether to use Squeeze-and-Excitation module and
activate represents the activation function used).

Input Operator c n s SE activate
216°%3 Inception 64 1 1 — ReLU
108°x64 Bnecks 32 1 1 SE RelLU
108°%32 Bnecks 32 1 1 SE ReLU
108732 Bneck 16 1 1 — Mish
108°x16 Bneck 24 2 2 — Mish
54°x24 Bneck 32 3 2 — H-swish
27°x32 Bneck 64 4 1 — H-swish
27°x64 Bneck 96 3 2 SE H-swish
14°x96 Bneck 160 3 2 SE H-swish
7°x160 Bneck 320 1 1 — H-swish
7°x320 Con2d Ix1 1280 1 1 — —
7°x1280  Avgpool 7x7 — 1 — — —
1°x1280 Conv2d 264 1 1 — —

B. MULTI-SCALE FEATURE FUSION STRUCTURE DESIGN
In order to enhance the feature extraction of sound data.
This paper is inspired by the fact that neurons can
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process and collect muti-scale spatial information at the
same state due to the different sizes of receptive fields
when stimulating the human brain. While avoiding the intro-
duction of too many parameters and computations [28],
so it is only improved in the initial module of the net-
work architecture, and the improved multi-scale feature
fusion structure in this paper - Inception block [29] is
added. The improved Inception block architecture is shown
in Figure 6.

Filter
concatenation

1x1, conv 1x1, conv

PSA Module PSA Module
I 3x3, conv ] | 5x5, conv |

FIGURE 6. Multi-scale feature fusion structure.

In the initial stage of the model, the features of input data
are rich, so it is necessary to design a multi-scale feature
fusion structure to fully extract the features of the original
data. In this paper, two parallel branches are used for data
feature extraction. The two parallel branches are 3 x 3
and 5 x 5 multiscale feature extraction. After the multi-
scale feature extraction of each branch, the PSA (Pyramid
Split Attention, PSA) module [30] is introduced, which can
fully capture the spatial information of different scales to
enrich the feature space, establish a long-distance spatial
attention dependence mechanism and extract channel features
of different scales, and the model architecture is shown in
Figure 7. The 3 x 3 convolution is used to extract the subtle
features of the original sound data, and the 5 x 5 convolution
is used to extract the overall characteristics of the original
sound data. Considering the amount of computation and the
introduction of the PSA module, it does not use larger and
more convolution kernels for the initial feature extraction
operation.
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FIGURE 7. PSA module architecture.

C. NETWORK BACKBONE DESIGN

In order to reduce the number of parameters and com-
putations, this paper reduces the number of backbone layers
of MobileNetV3, and the kernel size of the depthwise con-
volution is 3 x 3. Referring to the reverse residual structure
proposed by MobileNetV2 [31]. On this basis, this paper
proposes two block structures—Bneck and Bnecks block.
The Bneck block structure is shown in Figure 8, which draws
on the residual connection idea of ResNet [32], and designs
the structure of the reverse residual. The 1 x 1 convolution is
used

[ Conv 1x1,H-swish |

| Conv 1x1,H-swish |

Dwise 3x3, H-
swish

Dwise 3x3, H-
swish

Conv 1x1, Linear I | Conv 1x1, Linear |

Stride=2
Bneck

(a) (b)

Stride=1
Bneck

FIGURE 8. Two structures of Bneck. (a) The structure with the stride of 1;
(b) The structure with the stride of 2.

The Bnecks block adds the channel attention mechanism
on the basis of the Bneck block, and at the same time replaces
the DSC in the Bneck block with ordinary convolution and
introduces a residual structure, as shown in Figure 9. In order
to avoid ordinary convolution causing a surge of computa-
tions and parameters, this paper has tried many experiments
and found that only adding a small number of Bnecks blocks
after the initial Inception block can improve the effectiveness
of the model, and the computation and parameters of the
model will not be significantly improved.
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FIGURE 9. Structure of Bnecks where SE modules are used.

When the data is sent into the model, the input end of
the model has the most abundant data. A large amount of
thinning data exists at the bottom of the model. If the global
information cannot be extracted at the input end, the classifi-
cation accuracy of the model cannot be improved. Referring
to the design idea of EfficientNet [28] and the attention
mechanism [39], the Bnecks module is added after the multi-
scale feature extraction module of the model. The attention
mechanism can enhance the extraction of different channel
information in data, while common convolution integrates
the channel weights learned by the attention mechanism
to extract global information emphatically and effectively.
So that in the Bnecks block, the irrelevant information in
the global information will be removed and the effective
information will be retained to the maximum extent, so that
the model can refine the global information to the maximum
extent, thus improving the refinement ability of the model to
the global information.

IV. RESULT

A. EXPERIMENTAL ENVIRONMENT

The feature extraction of the data is completed in the
environment based on python3.9, the model recognition
and classification part are completed in the environment
based on python3.9 and pytochl.8, the hardware configu-
ration is 5GHz Intel i7 12700K processor, 32GB 3200Mhz
DDR4 memory, Nvidia GeForce RTX3070 and Nvidia
GeForce RTX3070Ti graphics cards. The total number of
birds Mel spectrogram samples after feature extraction is
229164, 183690 samples are selected as the training set and
45924 samples are used as the test set. In the experiment, the
learning rate is set to 0.025, and the batch size is which is set
is 32, the epoch is set to 300, the model optimizer is Stochastic
Gradient Descent (SGD, Stochastic Gradient Descent), the
loss function uses the cross-entropy loss function, and the
learning rate descent strategy uses Cosine Annealing [33].

B. ALGORITHM COMPARISON AND ANALYSIS

In order to verify that each improvement point of the proposed
model contributes to the improvement of model performance,
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FIGURE 10. Schematic diagram of the training results of the model proposed in this paper. (a) The loss curve in the training set and test set;

(b) The accuracy curve of the training set and test set.

this paper has conducted a series of ablation experiments.
In the ablation experiments, the TOP-1 accuracy of the recog-
nition model on the test set is used as the benchmark. Abla-
tion experiments include whether to use multi-scale feature
fusion module, whether to use Bnecks module with atten-
tion mechanism, whether the depth separable convolution is
adjusted as described in Section 3 and whether to carry out
standardization. The results of the ablation experiments are
shown in Table 3.

TABLE 3. Comparison of ablation experimental results (1 represents
whether multi-scale feature fusion is carried out, 2 represents whether
there is Bnecks module, 3 represents whether the DSC can be adjusted
for separable convolution, and 4 indicates whether standardization is
carried out).

Compared 1 2 3 4 Acc/% Weﬁhm/ FL&PS/
1 — v v v 91.22% 2.4M 100M
2 v — v v 94.78% 2.3M 113M
3 v v — v 84.62% 2.0M 96M
4 v v v — 45.64% 2.6M 127M

This paper v v v v 95.12% 2.6M 127M

C. ALGORITHM COMPARISON AND ANALYSIS

At present, there are a large number of types of deep learning
models proposed at home and abroad. In order to show the
effectiveness of the model in this paper, the current clas-
sic deep learning models such as ResNet, DenseNet, VGG,
etc. and lightweight deep learning models MobileNet, Shuf-
fleNet, EfficientNet and other models are selected respec-
tively. Using the above models to train the data set built in
this paper, record the test set accuracy and training loss of
different models, and compare with the model proposed in
this paper.
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Figure 10 shows the performance of the training set and test
set of the model in this paper. The convergence speed of the
model is fast. The model converges when it approaches 200.
The accuracy of the model is high, which can reach 100% in
the training set and 95.12% in the test set. The model has good
learning ability. The loss of the model on the training set is
close to 0, and the loss on the test set is about 0.2. Therefore,
the overall performance of the model proposed in this paper
is better.

As shown in Figure 11, it is the training result curve of
each model on the bird audio feature map data set, where
epoch is the iteration period of training, ACC is the accuracy
of the test set, and Loss is the training loss. As can be seen
from Figurell (a), the training loss of the model proposed
in this paper decreases more quickly than other previous
models, and the most convergent value is close to 0, indicating
that the model has a fast-learning ability and can learn the
key characteristics of bird sound data more quickly. At the
same time, it can be concluded from Figure 11 (b), that the
model presented in this paper also has a good classification
accuracy. Although the model proposed in this paper adopts
a lightweight architecture, it still achieves good results, the
training effect is close to ResNet50, it converges faster than
ResNet50 in the training process, and the accuracy rate is
better than that of MobileNet and ShuffleNet.

In this paper, the statistical results of different models are
tabulated, as shown in Table 4.

Table 4 shows the classification effect of different models
on bird sound data. The model proposed in this paper is
improved based on MobileNet V3, the accuracy rate of the
model is 2.94% higher than that of MobileNet V3, and the
amount of network parameters is not significantly improved
compared to MobileNetV3. The main reasons are as follows:

1. MobileNetV3, as the latest lightweight model, has a
strong recognition ability itself, and the reverse residual
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FIGURE 11. Schematic diagram of some model training results including this article. (a) The loss drop curve during the training process of some
models including this paper; (b) Accuracy curve during training of some models including this paper.

TABLE 4. Comparison of the effects of each model. Top-1 Accuracy refers
to how well the top-ranked category matches the actual results. Top-5
Accuracy refers to how accurately the top five categories contain actual

TABLE 5. Model classification accuracy under different snr.

results. SNR TOP1-ACC  TOP5-ACC
No noise 95.12% 100%
Model TOPI-ACC  TOP5-ACC  Weights(M)  FLOPS(M) 30dB 95.03% 100%
This paper 95.12% 100% 2.6M 127M 40dB 95.07% 100%
MobileNetV1 90.15% 98.17% 13M 150M 50dB 94.47% 100%
MobileNetV2 94.21% 100% 22M 141M
MobileNetV3 92.18% 100% 2.4M 44M
ShuffleNetV1 93.72% 100% 13M 131M .
ShuffleNetV?2 39.76% 97 83% 1M 138M TABLE 6. Model comparison of two hardware platforms.
ResNet50 97.37% 100% 25.6M 4186M
VGG16 86.74% 97.32% 15M 313M Device TOPI-ACC TOP5-ACC  Time(ms) Price($)
Jetson Nano 94.82% 100% 472ms $150
Jetson TX2 95.01% 100% 86ms $1000

it builds and the H-swish activation function are more
conducive to model training and feature extraction;

2. This paper refers to the backbone network of
MobileNet V3, but also reduces the number of back-
bone layers, and adds a multi-scale feature fusion struc-
ture and Bnecks structure, although the added structure
introduces a large number of parameters, because the
number of layers is reduced and the added structure
only acts on the initial stage of the model, the parameter
quantity does not change significantly;

3. The multi-scale feature fusion structure introduced by
the model is aimed at the fusion of multi-scale features.
In the fusion process, the PSA module is added to
enhance the spatial and channel information fusion of
the model. These improvements enhance the spatial and
channel information fusion of the model so that the
important channel information and spatial information
are retained, and the unimportant information is sup-
pressed at the same time;

4. This model introduces Bnecks into the module. In early
feature enrichment phase of the model, ordinary
con-volution is used instead of DSC, which can
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preserve the rich features and transfer them to sub-
sequent modules to improve the final recognition
accuracy.

Then, in order to verify the robustness of the model,
this paper adds white noise with SNR (Signal-Noise Ratio)
of 30dB, 40dB and 50dB to the original data respectively.
Then these noise mixed data are extracted according to the
above processing scheme, and recognized with the proposed
model. Surprisingly, when the signal-to-noise ratio is 30 dB
and 40 dB respectively, the accuracy of model classification
hardly changes. When the SNR is 50 dB, the accuracy of
the model also decreases by only 0.7%. It is certain that in
the process of model training, model proposed in this paper
has mastered the key features of bird sound data, and even
adding noise signals will not interfere with the classifica-
tion ability of the model. The comparison results are shown
in Table 5.

In addition, this paper builds the model on the Jetson TX?2
and Jetson Nano platforms. The cost of the former is about
$1000 and the latter is about $150. By comparing the effects
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TABLE 7. Performance comparative with the proposed method and other bird sound classification methods.

Study Classes Number Method Performance
Kiiciiktopcu et al. [34] 21 MFCCs, minimum distance classifier Accuracy: 72%
Zhang et al. [35] 5 k-nearest neighbor, decision tree, and multi-layer perceptron Accuracy: 85.3%
Albornoz et al. [36] 25 Linear discriminant analysis, decision tree, and SVM Accuracy: 90%
Janc“ovic” et al. [37] 30 Estimation of frequency tracks Accuracy: 70%
Xie and Zhu[38] 14 CNN F1-Score: 95.95%
This paper 264 Mel spectrogram with min-max standardization and Lightweight model Accuracy: 95.12%

of the models on the two platforms, it is found that there are
great differences in the reasoning time of the models on the
two platforms, but the accuracy of classification is almost the
same. As shown in Table 6. This shows that it is feasible to
apply the model to the hardware platform, but the low-cost
hardware platform still has the problem of long reasoning
time. This is the direction we will continue to study in the
future.

Finally, this paper compares the proposed method with
other bird sound classification methods, as shown in Table 7.
As demonstrated in Table 7, the proposed model obtained
a high accuracy while classifying more bird sound classes.
It can be seen that the scheme proposed in this paper has a
great improvement compared with others’ schemes. Firstly,
there are many birds in the data set of this paper. Secondly,
the features selected in this paper are single, and the feature
extraction algorithm is simple. Finally, the model designed
in this paper is lightweight enough and the classification
accuracy is obviously high.

V. CONCLUSION
In this paper, a lightweight bird song recognition algorithm
model is proposed. The classification accuracy of this model
can reach 95.12%. Compared with other lightweight net-
works, the model proposed in this paper has a higher recogni-
tion rate. Compared with other depth models, the accuracy of
the model of this paper is slightly different, and the number
of parameters and computations is reduced. From the analysis
of ablation experiments, it can be seen that the improvement
proposed in this paper can improve the accuracy of model
classification and make the model have a good generalization
ability.
The future work of this paper includes:
1. Applying the model to embedded devices to realize
real-time bird monitoring in nature reserves;
2. Collecting more bird sound data and constructing large
bird datasets;
3. Simplifying birds Sound feature extraction, reducing
the steps and processes of feature extraction.
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