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ABSTRACT With the intensification of the global energy crisis, the production costs of manufacturing com-
panies have increased significantly. To reduce the production energy consumption and costs in mixed-model
assembly lines while improving efficiency and workstation satisfaction, novel line-integrated supermarkets
and mobile robots are introduced. Considering the split delivery caused by workstation satisfaction and
the mobile robot’s energy limitation, a multiobjective mathematical model of mobile robot scheduling in a
mixed-model assembly line with a fuzzy time window is presented with the goal of maximizing workstation
satisfaction while minimizing energy consumption. On this basis, according to the problem’s characteristics,
a nondominated sorting genetic algorithm II with variable neighborhood search (VNSGA-II) is developed
that constructs the initial solution using a heuristic method, improves crossover operation, and performs
neighborhood search using three operators: exchange, insertion, and 2-opt to improve the solution’s quality.
Finally, two numerical experiments are used to validate the model and algorithm. The results demonstrate
that: 1) The scheduling model for mobile robots in a mixed-model assembly line that allows for spilt delivery
and uses a normal fuzzy membership function to characterize workstation satisfaction is more in line with
production practice. 2) The VNSGA-II algorithm can quickly establish a reasonable scheduling scheme for
mobile robots in a mixed-model assembly line, and provide managers with a basis for making scientific
decisions. Compared to MOPSO and NSGA-II, workstation satisfaction has improved by 0.91% and 1.12%,
respectively, and mobile robots’ energy consumption has decreased by 12.53% and 13.66%, respectively.

INDEX TERMS Energy consumption, fuzzy time window, mobile robot, nondominated sorting genetic
algorithm II with variable neighborhood search, workstation satisfaction.

I. INTRODUCTION
Under the strain of the energy crisis, manufacturing enter-
prises face enormous economic and environmental chal-
lenges. The industrial sector consumes half of the world’s
transmitted energy and is responsible for one-third of carbon
dioxide emissions, resulting in severe environmental pol-
lution [1]. According to the World Energy Outlook 2021,
emerging markets and developing economies’ emissions will

The associate editor coordinating the review of this manuscript and
approving it for publication was Shaohua Wan.

increase by more than 5Gt by 2050, with the largest increases
in industry and transportation [2]. As a result, investigating
energy-saving mechanisms to reduce energy consumption is
critical for lowering energy costs and promoting environmen-
tally friendly manufacturing [3], [4], [5].

Currently, the manufacturing process’s energy consump-
tion is being reduced primarily at the machine, prod-
uct design, and production management levels [6]. Due
to the high investment required, small and medium-sized
enterprises are unable to design energy-efficient machines at
the machine level or develop energy-efficient products at the
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product design level. As a result, an increasing number of
scholars are studying energy consumption reduction in manu-
facturing processes at the productionmanagement level. Flow
shop and job shop are two common types of production lines.
The focus of research has shifted to energy-saving production
based on these two production lines. The factors influencing
production energy consumption and cost efficiency, such as
carbon emission policy [7], worker flexibility [8], [9], time-
of-use tariffs [1], and machine failure [10], have been incor-
porated into the study.

As a necessary production component, part feeding con-
sumes a significant amount of energy and incurs high costs.
With the rapid advancement of manufacturing intelligence
and the widespread use of robots CoBots [11] and CreBots of
Sigloch, a German logistics company, an increasing number
of manufacturing companies are replacing traditional tow
trains and multiple-load carriers [12] with mobile robots
to increase part feeding efficiency and reduce energy con-
sumption. Currently, the mobile robot is capable of safe
obstacle avoidance, path planning, and other functions. How-
ever, the mobile robot’s various task orders will receive
distinct scheduling schemes, resulting in disparate energy
consumption and workstation satisfaction, impacting produc-
tion efficiency and economic benefits. Reasonable scheduling
of mobile robots and reducing energy consumption while
improving workstation satisfaction have become a new chal-
lenge for enterprises [13], [14].

Thus, considering the split delivery of parts caused by
workstation satisfaction and robot energy constraints in actual
production, this study develops a multiobjective optimization
mathematical model to determine the scheduling scheme for
mobile robots in a manner that maximizes workstation satis-
faction while minimizing mobile robot energy consumption.
Following that, a nondominated sorting genetic algorithm II
with variable neighborhood search (VNSGA-II) is proposed,
which improves the generation of the initial solution and the
crossover operation and tailors three neighborhood search
operators, exchange, insertion, and 2-opt according to the
problem’s characteristics to improve the algorithm’s solution
quality.

The remainder of the paper is organized as follows. A lit-
erature review of the studies on workstation satisfaction and
scheduling of mobile robots in the mixed-model assembly
line and part feeding time windows is presented in Section 2.
A description of the problem and a multiobjective opti-
mization mathematical model are provided in Section 3.
Section 4 introduces VNSGA-II in detail. In Section 5, the
model and the algorithm are verified through a small case and
a group of experiments. Finally, Section 6 concludes the paper
and presents some future research directions.

II. LITERATURE REVIEW
A. RESEARCH ON WORKSTATION SATISFACTION
The degree to which a workstation is satisfied with the time it
takes for a part to arrive (i.e., workstation satisfaction) can
reflect the accuracy of part feeding and service level [15].

As a result, scholars have included workstation satisfaction
in their research. Liu et al. proposed a dynamic joint dis-
tribution strategy to address the issue of parts distribution
being inefficient and inaccurate. A mathematical model of
part feeding under the constraints of fuzzy time windows
was established with the goal of minimizing the cost of
single product distribution and maximizing workstation sat-
isfaction [16]. Liu et al. established a part feeding model
with the shortest distribution route as the optimization goal.
They constrained the part feeding time by setting a minimum
workstation satisfaction threshold to account for the variety
of part types and uncertainty in arrival time [17]. Zhang
and Chen considered the variety of part requirements and
the uncertainty associated with time in a remanufacturing
assembly station when proposing a method for optimizing the
part feeding route using a fuzzy time window. The authors
thoroughly considered part classification requirements and
subsequent assembly costs in remanufacturing warehouses.
They developed an optimization model for the route of the
part feeding in the presence of a balanced production line.
This optimization model was constrained by workstation sat-
isfaction and aimed to reduce distribution costs to a minimum
[18]. Yan et al. proposed a method for optimizing the distri-
bution route of a complex mechanical assembly shop based
on a fuzzy soft time window, considering the part demand
time change caused by production beat fluctuation in actual
complex mechanical assembly production. The method was
based on the ‘‘workstation-centered’’ mode of part feeding.
It used a fuzzy membership function to characterize the
workstation’s satisfaction with the part arrival time. On this
basis, an optimization model for part feeding routes with a
fuzzy soft time window was developed with the constraints
of average workstation satisfaction on part arrival time and
the objective of minimizing distribution cost [19]. Using the
digital workshop as a case study, Zhang et al. proposed a
multistation mixed distribution scheme with fuzzy appoint-
ment times by defining the objective function, including
workstation satisfaction, tooling similarity, and the number
of distribution vehicles, to achieve the digital workshop’s
accurate distribution [20].

B. RESEARCH ON SCHEDULING OF MOBILE ROBOT
In recent years, scholars have focused their attention on the
scheduling of mobile robots. Nouri et al. considered the path
planning problem for multiple workshop robots and proposed
a neighborhood-based genetic algorithm for optimizing job
completion time [21]. Zhou et al. studied the kitting distri-
bution problem in an automobile mixed-model assembly line
under a robot-operator picking environment and constructed
an improved quantum-inspired ant colony optimization algo-
rithm based on an improved quantum rotation gate update
mechanism and a nonoptimal individual optimization strat-
egy to optimize the number of labors, robots, and tour period
[22]. Shen et al. decomposed the logistics task, investigated
robot scheduling by considering the cost of the path and
the cost of waiting time and verified the effectiveness of
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intelligent scheduling [23]. Allowing the robot to split and
transfer distributed components, Zhou and Xu developed a
multistage adaptive search algorithm to schedule the mobile
robot to minimize input and energy consumption costs while
ensuring efficient and punctual feeding [24]. By introducing
a new mutation operator, Tuncer and Yildirim proposed an
improved genetic algorithm for solving the global optimiza-
tion problem of multirobot scheduling in dynamic environ-
ments [25]. Panchu et al. used a genetic algorithm to solve
the minimum task completion time problem of robots [26].
Ren et al. used the workshop handling robot as the research
object and solved the path optimization problem by consider-
ing the time window in the scenario of part feeding and fin-
ished product recovery [27]. Li et al. analyzed the operation
of the ‘‘goods to people’’ picking system in the context of
e-commerce. They developed a bilevel programming model
for robot quantity configuration, robot scheduling, and robot
task assignment [28].

Scholars have incorporated the concept of energy conser-
vation into their research onmobile robot scheduling. Consid-
ering the characteristics of the asymmetric traveling salesman
problem, Dang et al. chose the part feeding order of a single
robot with the goal of minimizing robot energy consumption
[29]. Zhou and Fei investigated the problem of the cooper-
ative scheduling of multiple robots. They demonstrated the
benefits of cooperative scheduling by utilizing the clustering
heuristic and an adaptive large neighborhood search algo-
rithm, with the goal of minimizing the number of robots and
lowering energy consumption costs [30]. Bielsen et al. inves-
tigated the material handling scheduling problem for a single
mobile robot in a pervasive manufacturing system with the
goal of minimizing handling distance and thus energy con-
sumption [31]. Quan and He used the constraint condition of
completing tasks according to the production process as well
as the system duration, the maximum consumption of a single
robot, and the aggregate consumption of multiple robots to
develop a mathematical model of multirobot task allocation
and scheduling optimization. The authors solved the problem
iteratively using the clone selection algorithm and introduced
an affinity function to dynamically change the clonal, muta-
tion, and selection parameters, which increased computa-
tional efficiency [32]. Pan et al. proposed a flexible material
distribution strategy centered on the mobile robot to address
the issues of low picking efficiency and high distribution
costs associated with traditional pull part feeding in assembly
workshops. A model of cooperative distribution scheduling
with multiple objectives and multiple robots was proposed
with the objectives of minimizing completion time, delay
time, load, and energy consumption. The authors proposed
a nondominated sorting genetic algorithm II (NSGA-II) and
designed the algorithm process, coding method, and genetic
operator in conjunction with the model’s characteristics [33].

C. RESEARCH ON THE TIME WINDOW OF PART FEEDING
Due to the strict requirements for part feeding times in mixed-
model production [34], [35], many scholars use timewindows

to constrain part feeding times to ensure that parts arrive on
time [36]. Ma andWang used convex fuzzy numbers to repre-
sent the fuzzy time window. They constructed a multiobjec-
tive mathematical programmingmodel under the condition of
fuzzy workstation reservation time to address the part feeding
problem under various uncertain factors in the manufacturing
process [37]. Considering the just-in-time distribution of auto
parts,Wang et al. proposedmodeling the cyclic and batch dis-
tribution of each supplier’s parts tomaximize vehicle capacity
and establish a vehicle scheduling optimization model with
a dynamic supply time window [38]. Jiang et al. analyzed
the complexity and uncertainty inherent in the manufacturing
workshop environment and determined the optimal part dis-
tribution interval. The authors then constructed an optimiza-
tion model using the optimal distribution interval as the time
window with the goal of minimizing the distribution cost and
maximizing the full load rate while meeting the constraints
of part demand time, line inventory volume, and distribution
route [39]. Lagos et al. investigated the simultaneous pickup,
delivery, and time window routing problem for vehicles.
A particle swarm optimization algorithm was proposed to
minimize the total distance of the path while also meeting
the delivery and pickup needs of customers [40]. Ramos et al.
investigated the multipass production, inventory, distribution,
and routing problem with time windows (MPIDRPTW) and
proposed an accurate graph-based arc flow formulation to
solve MPIDRPTW [41]. Zhu and Wu proposed an improved
mathematical model for minimizing the total cost of trans-
portation and inventory under a hard time window constraint.
This model allowed to split the supplier’s collection demand
and distribution. However, the hard time window constraint is
excessively strict and does not correspond to actual produc-
tion [42]. Wu et al. organically integrated material loading
constraints with assembly workshop distribution path plan-
ning to address the integrated scheduling problem of part
feeding in an electric tool assembly workshop. Using the
assembly line’s dynamic demand time window information,
the authors develop a vehicle routing optimal configuration
model that considers soft time window and optimal loading
constraints to meet the dual objective of distribution timeli-
ness and cost optimization [43]. To balance the contradictory
relationship between cost andmeeting customer demand time
window (satisfaction), Xu et al. developed a joint optimiza-
tion model for picking and distribution with demand splitting
under the constraint of a soft time window to minimize the
sum of picking cost, split demand cost, distribution cost, and
time penalty cost. However, the impact of vehicles arriving
after the time window’s upper limit on customer satisfaction
is not considered enough [44].

Due to production fluctuations, the relationship between
part arrival time and workstation satisfaction cannot be accu-
rately represented by soft and hard time windows. Further-
more, the existing literature is largely focused on optimizing
a single objective, such as cost or energy consumption. There
are few publications on optimizing both energy consumption
and workstation satisfaction with part arrival times. This
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FIGURE 1. The part feeding system using the line-integrated supermarket and mobile robot.

paper represents workstation satisfaction using the normal
fuzzy membership function of the part arrival time. Consider-
ing the split delivery caused by workstation satisfaction and
the mobile robot’s energy limitation, a multiobjective opti-
mization model for scheduling the mobile robot in the mixed-
model assembly line is established under the constraint of
the normal fuzzy time window to maximize workstation
satisfaction and minimize the mobile robot’s energy con-
sumption. Simultaneously, a VNSGA-II is proposed, which
employs a heuristic algorithm to generate initial solutions,
improves crossover operations, and designs three operators
of exchange, insertion, and 2-opt acting on the same chro-
mosome substring and different chromosome substrings to
achieve neighborhood search and thus improve the solution’s
quality.

III. PROBLEM DESCRIPTION AND MATHEMATICAL
MODEL
A. PROBLEM DESCRIPTION
Figure 1 shows the part feeding system using the line-
integrated supermarket and mobile robot. The supermarket
for storing and picking parts is integrated into the mixed-
model assembly line [45], [46]. Bins are used to storing the
components necessary for assembly, with each bin containing
a single type of component. The mobile robot is in charge of
the bin’s distribution. When a delivery task is assigned, the
mobile robot moves to the shelf containing the components to
be distributed, selects the components required for assembly,
and places them in the corresponding bin. Once all delivery
tasks have been completed, the mobile robot returns to the
charging area to await the next delivery task.

B. MATHEMATICAL MODEL
1) MODEL ASSUMPTIONS
To effectively describe the research problem, this studymakes
the following assumptions:

• The parts can meet the needs of the mixed-model assem-
bly line, and out-of-stock is not allowed.

• Each workstation only uses one kind of part, and the
delivery task of one workstation is completed by one
mobile robot as much as possible. When one mobile
robot cannot complete the task, another mobile robot can
be assigned to cooperate to complete the delivery task.

• The delivery task of the workstation will not end until
all the parts required by the workstation are delivered.

• All mobile robots start from the charging area and return
to the charging area after completing the delivery task.

2) ENERGY CONSUMPTION CALCULATION OF THE MOBILE
ROBOT
The mobile robot’s energy consumption is primarily deter-
mined by its driving distance and total weight [47]. Many
researchers have developed various energy consumption
models to determine the relationship between energy con-
sumption, driving distance, and the total weight of the mobile
robot. The specific energy consumption [48] is used in this
paper to calculate the mobile robot’s energy consumption.
Assuming that the energy consumption E of the mobile robot
is linear with the driving distance d and the total weight of
the mobile robot 9, the energy consumption E of the mobile
robot can be expressed as:

E = εd9 = εd (ϕ + τ) (1)

where ε is the specific energy consumption of the mobile
robot, which represents the total energy consumed by the
mobile robot per unit mass and per unit distance, which can be
measured by experiments [49], [50]. The total weight of the
mobile robot 9 includes the self-weight of the mobile robot
ϕ and the weight of the loaded part τ .

3) NORMAL FUZZY TIME WINDOW
The fuzzy time window is determined through fuzzy quan-
tification of the effect of the time the part arrives at the
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workstation on the degree of satisfaction. The fuzzy time
window is represented by a fuzzy number [51], defined
by the membership function as a normal convex fuzzy set.
Compared to triangular and trapezoidal fuzzy numbers, nor-
mal fuzzy numbers have a membership degree that is more
consistent with workstation satisfaction [52]. Therefore, this
paper defines the satisfaction of workstation i as the fuzzy
membership function of the time when the part arrives at
workstation i. The closer the time Ti when all parts required
by workstation i arrive at the workstation is to the expected
time, the higher workstation satisfaction. [ET ,LE] are the
lower and upper limits of the part arrival time that can be
accepted by workstation i, respectively. To improve the dis-
tribution service level of manufacturing enterprises, set the
minimum workstation satisfaction θ and the part arrival time
window of workstation i is

[
et ′, lt ′

]
, as shown in Figure 2.

FIGURE 2. Part feeding time window.

Establish a mathematical model of part arrival time satis-
faction based on normal fuzzy numbers:

µ (Ti) = exp
(
− (Ti − µi)2

/
σ 2
i

)
(2)

where Ti is the time when all parts required by workstation
i arrive at the workstation, µ (Ti) is the membership degree
of Ti, µ (Ti) ∈ [0, 1]. µi is the mean of Ti, that is, the
expected time for the part to arrive at the workstation, µi =
(ET + LT )

/
2. σi is the variance of Ti, σi = (LT − ET )

/
6.

When Ti = µi, the maximum satisfaction is 1. When Ti ∈[
et ′, lt ′

]
, µ (Ti) ≥ θ .

4) MATHEMATICAL MODELING
According to the above description and assumption, the
parameters are defined.
V = A ∪ S, A is the charging area, represented by 0, S =
{1, 2, · · · , n} is the set of workstations, V = {0, 1, 2, · · · , n},
i, j ∈ V . L = {1, 2, · · · , h} is the set of mobile robots, w ∈ L,
other parameters are defined in Table 1.

TABLE 1. Parameters.

TABLE 2. Variables.

The following variables are defined in Table 2.
Establish a mathematical model.

max f1 =
1
n

n∑
i=1

µ (Ti) =
1
n

n∑
i=1

exp
(
− (Ti − µi)2

/
σ 2
i

)
(3)

Ti = max {(tiw + uiw + qiw · γ ) · yiw,

(tiw′ + uiw′ + qiw′ · γ ) · yiw′},

∀i ∈ S; w,w′ ∈ L; w 6= w′ (4)

min f2 =
V∑
i=1

V∑
j=1

h∑
w=1

ε·d ij · (ϕ + pi · ξi) · x ijw (5)

where equations (3) and (5) represent objective functions, and
equation (4) expresses Ti in the objective function (3).

Subject to:

µ (Ti) ≥ θ, ∀i ∈ S (6)

tjw =
(
tiw + uiw + qiw · γ +

dij
π

)
· xijw,

∀i ∈ S; j ∈ V ; w ∈ L (7)

uiw = max
{
0, et ′ − t iw

}
, ∀i ∈ S; w ∈ L (8)

h∑
w=1

yiw ≥ 1, ∀i ∈ S (9)

0 <
V∑
i=1

V∑
j=1

ε · d ij · (ϕ + pi · ξi) · x ijw ≤ Q

∀w ∈ L (10)
h∑

w=1

qiw · yiw = pi, ∀i ∈ S (11)
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n∑
j=1

x0jw = 1, ∀w ∈ L (12)

n∑
i=1

xi0w = 1, ∀w ∈ L (13)

n∑
i=0

xijw −
n∑
i=0

xjiw = 0, ∀j ∈ S; w ∈ L (14)

tiw ≥ 0, ∀i ∈ S; w ∈ L (15)

qiw ≥ 0, ∀i ∈ S; w ∈ L (16)

xijw ∈ {0, 1} , ∀i, j ∈ S; w ∈ L (17)

yiw ∈ {0, 1} , ∀i ∈ S; w ∈ L (18)

The model’s objective functions (3) and (5) represent
maximum workstation satisfaction and minimize the mobile
robot’s total energy consumption, respectively. Due to the
equal importance of each workstation, maximumworkstation
satisfaction is expressed in terms of maximizing average
workstation satisfaction [53]. Constraint (6) represents the
minimum service level constraint to ensure that the satisfac-
tion of each workstation is not less than θ . Constraint (7) is
the time when the mobile robot arrives at workstation j from
i. Constraint (8) represents the waiting time. Constraint (9)
specifies that each workstation’s delivery task is completed
by at least one mobile robot. Constraint (10) is the energy
constraint that the mobile robot must adhere to complete
the delivery task. Constraint (11) specifies that the number
of parts delivered by the mobile robot must be sufficient to
meet the workstation’s requirements. Constraints (12)–(13)
indicate that the mobile robot begins and ends its delivery
task in the charging area. Constraint (14) represents the
workstation’s in-out balance. Constraints (15)–(18) denote
the variables’ domain.

IV. VNSGA-II
Scholars have used a variety of multiobjective evolution-
ary algorithms to obtain the Pareto optimal solution set for
the multiobjective optimization problem [54], [55], [56].
NSGA-II is the most widely used evolutionary algorithm.
In comparison to the nondominated sorting genetic algorithm
(NSGA), NSGA-II incorporates an elite strategy, a hierarchi-
cal fast nondominated sorting method, and a crowding degree
comparison operator, which expands the sampling space,
reduces the algorithm’s complexity, and eliminates the need
to formulate shared parameters manually [57]. To further
improve the NSGA-II algorithm’s solution quality and con-
sider the characteristics of mobile robot scheduling problems
in a mixed-model assembly line, the VNSGA-II algorithm is
designed. Its flow is depicted in Figure 3.

A. CODING
Natural number coding is more concise, intuitive, and read-
able than 0-1 coding. As a result, this paper employs a
natural number sequence as the chromosome coding format.
Figure 4 illustrates the chromosome coding, with 0 denoting

the charging area of the mobile robot, 1-6 denoting the work-
station, and three mobile robots provide delivery services for
six workstations. Specifically, the mobile robotw1 starts from
charging area 0, provides delivery services for workstations 2,
4, and 5, and then returns to the charging area, forming deliv-
ery route 1, that is, chromosome substring 1. Mobile robot
w2 starts from charging area 0, provides delivery services for
workstations 3 and 4, and then returns to the charging area to
form delivery route 2, and so on. A mobile robot scheduling
scheme is formed until all the distribution tasks have been
completed.

The advantages of this chromosome coding are as follows:
• Each chromosome can clearly indicate the station and

its sequence of delivery by the mobile robot.
• The arrival time of parts can be calculated according

to constraint (7), and whether the workstation satisfac-
tion constraint is satisfied can be judged according to
constraint (5).

• The number of parts delivered by eachmobile robot can
be easily calculated, so as to judge whether the energy
consumption constraint of the mobile robot is exceeded
according to constraint (10).

B. INITIAL SOLUTION GENERATION
A better initial solution can speed up the algorithm’s search
for a solution. As a result, this paper employs a heuristic
algorithm to arrive at the initial solution. The following are
the specific steps:
Step 1: Generate a set all_station of all workstations with

delivery requirements and a set need_station of part demand
quantity of each workstation.
Step 2: Insert 0 at the head of the delivery route δk .
Step 3: Generate a workstation set allowk . Put the work-

stations starting from the station at the end of the delivery
route δk and meeting the workstation satisfaction and energy
consumption into the set allowk .
Step 4: Randomly select a workstation i from allowk , put

workstation i at the end of the delivery route δk , and calcu-
late whether the delivery quantity meets the requirements of
workstation i under the constraints of workstation satisfaction
and energy consumption of the mobile robot. If the demand
is met, delete the workstation i in all_station and update the
need_station, otherwise, split the quantity of parts required
byworkstation i, calculate the unmet requirements and update
need_station.
Step 5: Repeat Step3-4 until allowk is empty, insert 0 at the

end of δk , and the delivery route (i.e., chromosome substring)
is generated.
Step 6: Repeat Step2-5 until all_station is empty, connect

all delivery routes end to end, one of the two adjacent 0 is
deleted, and the initial solution is generated.

C. GENETIC OPERATION
1) CROSSOVER OPERATION
Due to the structural characteristics of the solution to the
scheduling problem for the mobile robot in the mixed-model
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FIGURE 3. Flow of the VNSGA-II.

FIGURE 4. Chromosome coding.

assembly line, if the traditional crossover method is used,
the chromosome’s excellent substrings will be destroyed.
When the two parent chromosomes are identical, the con-
ventional operation is impossible. As a result, the conven-
tional crossover operation is enhanced. To protect the existing
excellent substring, the crossover process places the substring
to be exchanged at the head of the offspring chromosome
rather than directly copying it to the exchange position. The
following are the steps involved in the crossover operation:
Step 1: Calculate the number of substrings L1 and L2 of

two parent individuals F1 and F2 conforming to the crossover
probability of Pc, and randomly generate two natural num-
bers rn1 and rn2 in [1,L1] and [1,L2] respectively to locate
the excellent substrings ft1 and ft2, as shown in Figure 5 (a).

Step 2: Delete the substrings ft1, ft2 and all 0 codes in
the parental individuals F1 and F2, and retain one of the
remaining repeated codes to generate chromosome fragments
F ′1 and F

′

2, as shown in Figure 5(b).
Step 3: Calculate the number of the i-th nonzero code

contained in ft1 in F ′1, denoted as Numi. If Numi = 0,
it means that the demand of the workstation can be met after
this delivery, then delete the code of the workstation from F′2
and complete the missing code. If Numi 6= 0, complete the
missing code. The newly generated chromosome segment is
denoted asF ′′1 . The code in ft2 is the same operation, as shown
in Figure 5 (c).
Step 4: Under the constraints of workstation satisfaction

and energy consumption of themobile robot, the workstations
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FIGURE 5. Crossover operation.

in F ′′1 and F ′′2 are reassigned to the mobile robot to generate
new substrings Tl1 and Tl2. Insert Tl1 and Tl2 into ft2 and

ft1, respectively, to form offspring individuals G1 and G2,
as shown in Figure 5 (d).
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FIGURE 6. Mutation operator.

2) MUTATION OPERATOR
Calculate the number of nonzero codes Num in the parent
individual F that conforms to the mutation probability Pb.
Two different natural numbers rn1 and rn2 are randomly
generated from [1,Num], and the codes of rn1 and rn2 are
exchanged to generate a new offspring individual G. The
mutation operation is shown in Figure 6.

3) ELITE RETENTION STRATEGIES
According to NSGA-II’s mechanism, the championship
method is used to select chromosomes based on sorting
results and the degree of crowding. The parent and off-
spring populations are combined following the selection of
the offspring population. A certain number of individuals
are selected to form the new generation of offspring popu-
lations based on the degree of fast nondominated sorting and
crowding.

D. VARIABLE NEIGHBORHOOD SEARCH
Since it is common for the genetic algorithm to fall into
a local optimal solution, the variable neighborhood search
strategy is used to solve this problem. Specifically, a local
optimal solution is obtained by searching the solution space
beginning in the smallest neighborhood. Then, the next local
optimal solution is obtained by starting the search from the
smallest neighborhood again after systematically altering the
neighborhood’s structure based on the previous local optimal
solution. The flow of variable neighborhood search algorithm
is shown in Figure 7.

Three operators are used for variable neighborhood search,
depending on the characteristics of the problem: exchange,
insertion, and 2-opt [58]. At the same time, the three operators
are considered to operate on the same substring and distinct
substrings of the chromosome.
Define 1: Feasible exchange. Randomly select two differ-

ent codes on the same or different substrings of the chromo-
some for exchange. The exchange is feasible if the newly
generated solution is feasible following the exchange. The
exchange procedure is depicted in Figure 8.
Define 2: Feasible insertion. Randomly select a code in the

chromosome. A new solution is still feasible if the code is
deleted from its current location and then inserted into the
same or a different substring. This type of insertion is referred

to as feasible insertion. Figure 9 illustrates the insertion oper-
ation.
Define 3: Feasible 2-opt. Randomly select two nonadjacent

codes in the same substring or different substrings of the
chromosome, then flip the codes between the two codes. If the
new solution is feasible, the 2-opt operation is called feasible
2-opt, and the 2-opt operation is shown in Figure 10.

During variable neighborhood search, it should be noted
that due to the change in the distribution workstations’ order,
it is necessary to determine whether the generated solution
is feasible. When determining the feasibility of a solution,
it is necessary to consider the constraints of workstation
satisfaction, the energy consumption of mobile robots, and
workstation demand concurrently.

V. NUMERICAL EXPERIMENTS
The current experimental studies distinguish two experi-
ments: Experiment 1, which verifies the feasibility of the
VNSGA-II, and Experiment 2, which verifies the algorithm’s
performance across six different problem scales.

A. EXPERIMENT 1: THE FEASIBILITY OF THE VNSGA-II
A mixed-model assembly line in an automobile plant’s
assembly shop has ten workstations. Each workstation is
labeled 1, 2, . . . , 10, and the mobile robot’s charging area is
labeled 0, the mobile robot’s velocity is 30m/min, and the
picking time for unit parts is 0.15min. Table 3 shows the
distance between the mobile robot’s charging area and each
workstation.

The number of parts demanded for each workstation, the
weight of unit parts, and the demand time window are shown
in Table 4.

Regarding the parameters that significantly affect the algo-
rithm’s performance, this study employs the control variable
method to determine the parameter’s value through multiple
test experiments. Initial population size N = 200; maximum
evolution times Gen = 100; exchange probability Pc = 0.7;
mutation probability Pb = 0.05.
The algorithms in this paper were encoded in MATLAB

R2016a and executed on a personal computer with Intel(R)
Core (TM) i3-1115G4 CPU 3.00GHz and 8GB RAM. When
θ is 0.8, the scheduling scheme corresponding to several
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FIGURE 7. The flow of variable neighborhood search algorithm.

FIGURE 8. Exchange operation.

representative points on the Pareto optimal frontier is shown
in Table 5.

As shown in Table 5, as workstation satisfaction increases,
the energy consumption required to complete the deliv-
ery task increases as well. In actual production, the enter-
prise’s manager can locate a satisfactory solution on the

Pareto optimal frontier based on various preference values.
Table 6 details the time of part arrival at the workstation of
the above three schemes.

According to Tables 5 and 6, an increase in workstation
satisfaction results in increased energy consumption. How-
ever, the satisfaction of the three schemes is greater than
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FIGURE 9. Insertion operation.

FIGURE 10. 2-opt operation.

TABLE 3. Distance between the charging area and each workstation.

87 percent, and the time of part arrival at the workstation
meets the time constraint when θ is 0.8, demonstrating the
algorithm’s feasibility.

TABLE 4. Experiment data.

B. EXPERIMENT 2: RELATIVE PERFORMANCE OF THE
VNSGA-II
To further validate the algorithm’s performance, the
VNSGA-II proposed in this paper is compared and analyzed

84748 VOLUME 10, 2022



X. Ma, X. Zhou: Research on the Scheduling of Mobile Robots in Mixed-Model Assembly Lines

TABLE 5. The scheduling results.

TABLE 6. Time of parts arrival at the workstation.

with the classical NSGA-II algorithm and multiobjective par-
ticle swarm optimization algorithm (MOPSO). The NSGA-II
algorithm [59], [60] is often used to solve the multiobjective
workshop scheduling problem. As a multiobjective optimiza-
tion algorithm based on the Pareto optimal solution, it serves
as a common benchmark for performance comparison of
multiobjective optimization algorithms. The MOPSO algo-
rithm has also been applied to various optimization fields,
such as production workshop scheduling [61], and has the
characteristics of simplicity and versatility. Based on the
size of the problem, six groups of samples are set as test
objects, and each group is run 20 times. The differences in
the three algorithms in solving quality and operation time are
compared. The experimental results are presented in Table 7.

Table 7 demonstrates that the results obtained with
VNSGA-II are superior to the other two algorithms. When
the problem is small-sized (Samples 1-3), the results of the
three algorithms have little difference, the workstation satis-
faction is more than 85 percent, and the energy consumption
is controlled within 5000. As the problem’s scale grows,
the number of workstations requiring part delivery increases,
as does the number of mobile robots used and the number of
parts distributed, all of which contribute to a rapid increase
in energy consumption. Because the VNSGA-II employs a
heuristic algorithm to generate a high-quality initial solution
and a variable neighborhood search strategy to broaden the
search range of the solution space, the VNSGA-II’s qual-
ity is enhanced. Compared to MOPSP and NSGA-II, the

FIGURE 11. Scheduling scheme.

workstation satisfaction of VNSGA-II is increased by 0.91%
and 1.12%, while the energy consumption is reduced by
12.53% and 13.66%, respectively.
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TABLE 7. Experimental results.

TABLE 8. Algorithm evaluation metrics.

In addition, the quality of the Pareto optimal solutions
obtained by the three algorithms is quantitatively compared
using two performance evaluation metrics: C-metric and
inverted generational distance (IGD).

1) C-METRIC

C (A,B) =
|{b ∈ B | ∃a ∈ A : a dominates b}|

|B|
(19)

where A and B are two different Pareto optimal solution sets,
|B| represents the number of optimal solutions in solution
set B, and C (A,B) represents the proportion of solutions in
B dominated by at least one solution in A to the number of
solutions in B.

2) IGD

IGD
(
P,P∗

)
=

∑
x∈P∗ minyεPdis (x, y)

|P∗|
(20)

where P∗ represents the true Pareto optimal solution set and
|P∗| is the number of solutions. In this paper, all algorithms
are executed multiple times to obtain the solution set, which
is then compared using nondominated sorting. The ultimate
optimal solution is represented as |P∗|. P is the optimal
solution set obtained by an algorithm, dis (x, y) represents
the Euclidean distance between any two solutions x and y.
The smaller the IGD value, the better the performance of the
algorithm.

Based on the above examples, optimization algo-
rithms, and algorithm performance evaluation metrics, the
performance evaluation results of MOPSO, NSGA-II, and
VNSGA-II algorithms are shown in Table 8.

As shown in Table 8, VNSGA-II has the largest C-metric
and the smallest IGD in all calculation examples. This indi-
cates that VNSGA-II has the best performance in both per-
formance evaluation metrics when compared to the other two
algorithms. These prove the diversity and convergence of
VNSGA-II.

The scheduling schemes for the MOPSO, NSGA-II,
and VNSGA-II for the first sample are depicted in
Figures 11 (a), (b), and (c). As illustrated in the figure, the
time required to complete all delivery tasks is approximately
the same, and all take less than 32min. However, it is clear
from Figure 11 (a) that the fourth mobile robot reaches work-
station 12 at 17.09min after completing the delivery task for
workstation 4. After picking up the parts required by work-
station 12, the workstation’s part demand time has not yet
been met. As indicated by the dotted line in Figure 11 (a), the
waiting time of 1.24min is generated. This waiting time is also
shown in Figure 11(b), where the seventh mobile robot gener-
ates the waiting time of 3.09min at workstation 13. The deliv-
ery tasks assigned to seven mobile robots in Figure 11 (c)
are reasonably distributed, the time intervals are short, and
there is no downtime. As a result, VNSGA-II is capable of
scheduling the mobile robots and arranging the distribution
route in such a way that it meets the demand and satisfaction
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of each workstation’s part, demonstrating the algorithm’s
effectiveness.

FIGURE 12. Comparison of running time.

The algorithm running time is depicted in Figure 12. Due
to the addition of the heuristic algorithm and variable neigh-
borhood search strategy to the VNSGA-II, the running time
of VNSGA-II is longer than the other two algorithms. When
the problem is small-sized, the running times of the three
algorithms are similar, and both are lower than 50s. When
the size of the problem increases, the running time of the
VNSGA-II is increased significantly. However, the average
running time of the six groups of samples only increases by
13.63s and 6.49s, respectively, which is within the acceptable
range.

VI. CONCLUSION
To address the scheduling problem of mobile robots in
a mixed-model assembly line, a multiobjective schedul-
ing mathematical model for mobile robots in a mixed-
model assembly line under the constraint of the normal
fuzzy time window is established, and the VNSGA-II algo-
rithm is designed. The scheduling model considers split
delivery of workstations and sets the maximum work-
station satisfaction and minimum energy consumption as
optimization objectives. The VNSGA-II designed according
to the characteristics of the problem can generate multi-
ple Pareto nondominated solutions. Enterprise managers can
make decisions based on their preference for workstation
satisfaction and the energy consumption of mobile robots.

The following are the paper’s major conclusions: (1) The
scheduling model proposed in this paper not only consid-
ers the actual situation of parts splitting caused by part
arrival time and mobile robot energy constraints, but also
uses the normal fuzzy membership function to character-
ize the workstation’s satisfaction with the arrival time of

the parts, making the research on the scheduling of mobile
robots in mixed-model assembly line closer to the produc-
tion practice. (2) Numerical experiments validate the fea-
sibility and effectiveness of VNSGA-II. The results indi-
cate that VNSGA-II can rapidly obtain multiple high-quality
mobile robot scheduling schemes, increasing workstation
satisfaction, reducing the mobile robot’s energy consump-
tion, and assisting enterprise managers in making deci-
sions. The algorithm proposed in this article is shown
to be an efficient algorithm for solving the scheduling
problem for mobile robots in a mixed-model assembly
line.

This paper assumes that the quantity of parts required for
all workstations is known, and the researchers can refine the
optimization model further by considering uncertain demand.
Additionally, the researchers can design other genetic oper-
ations or novel metaheuristic algorithms to address the
scheduling problem for mobile robots in a mixed-model
assembly line.
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