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ABSTRACT This paper studies the containment control of multiple airships with multiple leaders disturbed
by second-order moment processes. Firstly, the stochastic airship system is introduced by modeling in the
mixed coordinate system. Then by combining backstepping method and graph theory, a new controller
with adjustable parameters is designed to ensure that all states of the closed-loop system are bounded in
probability, the mean-square of tracking errors between followers’ output and leaders’ output can be made
arbitrarily small. A simulation example is finally given, which illustrates the feasibility of the designed
control scheme.

INDEX TERMS Containment tracking control, multiple airships, second-order moment processes.

I. INTRODUCTION
With the wide application of airship in many fields, the
research on its control problem has attracted extensive atten-
tion. Reference [1] considers the modeling problem by intro-
ducing the physical principle of airship flight, and proposes
six degrees of freedom (6-DOF) airship dynamic equation.
Reference [2] designs the controller by using backstepping
method, analyzes by Lyapunov stability theorem, and gives
the nonlinear 6-DOF simulation results of airship model.
Nevertheless, [1], [2] only investigate the control problem for
airship without noise, and do not consider the control problem
for airship under stochastic disturbance.

Stochastic disturbance exists widely in engineering prac-
tice, so we further study the control problem for airship with
random disturbance, which is usually regarded as white noise
in [3] and [4]. Reference [5] points out that second-order
moment processes can more reasonably describe stochastic
disturbance for physical systems, which is more practical in
systems. Reference [6] designs a controller for the airship
model with second-order moment processes, then solves tra-
jectory tracking problem for airship.

For stochastic systems, [7], [8], [9], [10], [11], [12], [13],
[14], [15], [16] study the stochastic designs. They develop
two approaches of controller design based on Lyapunov

The associate editor coordinating the review of this manuscript and
approving it for publication was Qi Zhou.

functions to investigate stochastic control: quartic Lyapunov
functions are introduced in [9], [10], [11], and [12] introduces
the weighted quadratic Lyapunov functions. In addition, [13],
[14], [15] investigate the control problem of multi-agent sys-
tems (MASs), due to their widespread applications. Refer-
ence [13] considers the output-feedback tracking problem
for MASs and gives a new homogeneous domination design
scheme. Reference [16] solves the problem of cooperative
control for multiple nonlinear systems with second-order
moment processes. A common point of the above works is
that study the MASs have only one leader.

The consensus problem for MASs with multiple lead-
ers is called containment control [17]. Recently, [18] stud-
ies the distributed containment control problem for MASs
with multiple dynamic leaders, then analyzes its stability.
In [19], the containment problem of upper-triangularMASs is
investigated.

By the backstepping method, the containment problem
for multiple airships with multiple leaders disturbed by
second-order moment processes is studied. The contributions
related to this paper are as follows:

(1) We consider more general system models. It is worth
noting that most of the results on airships are only for single
agent systems, such as [6], [20], [21], and [22]. In this paper,
we consider multiple airships, which is more general than the
results in [6], [20], [21], and [22].
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(2) We propose new design and analysis methods. The
designs in [3] and [4] can only deal with white noise and
the method in [6] is only invalid for single-agent system.
In this paper, we propose a new design by constructing new
distributed coordinate transformations and developing a new
step by step distributed design. This design method can effec-
tively deal with white noise and the information interactions
between agents simultaneously.

The remainder of this paper can be organized as follows.
Section II gives some preliminaries. The problem is for-
mulated in Section III. In Section IV, the new controller
design and performance analysis are proposed to deal with
the containment problem. A simulation example is given in
Section V. The conclusion is introduced in Section VI.

II. PRELIMINARIES
Assumption 1: A stochastic process ξ (t) is Ft−adapted, it is
also piecewise continuous, such that

sup
t≥t0

E|ξ (t)|2 < K ,

where K > 0.
Definition 1 [23]: If |z(t)| satisfies the following formula

lim
c→∞

sup
t>t0

P{|z(t)| > c} = 0, (1)

then z(t) is bounded in probability.
The relationship among N followers is depicted by a

digraph G = (Vf , E,A) in this paper. Vf = {1, 2, · · · ,N }
is the set of nodes, the set of arcs is described by E ⊂
Vf × Vf , and A = (aij)n×n with nonnegative elements is
a weighted adjacency matrix. The set of neighbors of ver-
tex i can be described by Ni = {j ∈ V : (j, i) ∈ E, i 6= j}.
In addition, aij > 0 shows that node j can directly send
information to node i and aij = 0, otherwise. Define D =
diag(

∑
j∈N1

a1j,
∑

j∈N2
a2j, · · · ,

∑
j∈NN

aNj) is the degree
matrix. And the Laplacian of G can be set as L = D− A.
We study the MASs with N (N > 1) followers and K (K >

1) leaders, and we use a graph G = (V, E) to depict the
relationship, where V = Vf ∪ Vl , Vf = {1, 2, · · · ,N },
Vl = {1, 2, · · · ,K }, and the set of arcs is denoted by E ⊂
(Vf × Vf ∪ Vf × Vl). If for every node i in Vf , one can find a
node j in Vl , so there exists a path in G from node j to i, and it
shows that the set Vl is globally reachable in G. Define matrix
B = diag(

∑K
r=1 b1r , · · · ,

∑K
r=1 bNr ) is the leader adjacency

matrix related to G, where bir > 0 if node r ∈ Vl can directly
send information to node i ∈ Vf and bir = 0, otherwise.
Lemma 1 [18]: Denote H = L + B, and all eigenvalues of

H have positive real parts if and only if the set Vl is globally
reachable in G.

III. PROBLEM FORMULATION
Now, we describe the airship model.

As shown in [6], we establish the appropriate coordinate
system including the ERF and BRF to describe the airship’s
position, attitude and speed in Figure 1. We use q1 =
(x, y, z)T and q2 = (ψ, θ, ϕ)T to represent the position and

FIGURE 1. Depiction of airship.

attitude of airship, respectively. ψ is yaw angle, pitching
angle is described by θ , and ϕ is called roll angle. The
linear velocity and angular velocity of airship are depicted
by ν1 = (u, v, ω)T , ν2 = (p, q, r)T . The more information
about airship is introduced by [6].

Damping Kν and airflow ξ are considered in this paper,
so the equation of airship with 6-DOF is described as

q̇ = T (q)ν,

M ν̇ + C(ν)ν + Kν + G(q) = u+ ξ, (2)

where q = (qT1 , q
T
2 )
T , ν = (νT1 , ν

T
2 )

T , T (q)=diag{T1, T2(q)},
and

T1 =

 1 0 0
0 1 0
0 0 1

 ,
T2(q) =

 1 sinϕ tan θ cosϕ tan θ
0 cosϕ − sinϕ
0 sinϕ sec θ cosϕ sec θ

 ,
M =

(
mE +Ma mST (rc)
mS(rc) J + Ja

)
= MT ,

C(ν) =
(
0 −(mE +Ma)(S(rc)S(ν2))T

0 S(ν2)(J + Ja)

)
,

J =

 Jx −Jxy −Jxz
−Jyx Jy −Jyz
−Jzx −Jzy Jz

 ,

G(q) =


(Bf − mg) sin θ

−(Bf − mg) cos θ sinϕ
−(Bf − mg) cos θ cosϕ
−zgmg cos θ sinϕ

−zgmg sin θ − xgmg cos θ cosϕ
xgmg cos θ sinϕ

 .

T (q) is transformation matrix between ERF and BRF. m is
the mass of airship, the additional mass is depicted by Ma, J
is moment of inertia matrix, and Ja is additional inertia, the
airship’s center of gravity is rc = (xg, yg, zg)T , let C(v) be
Coriolis matrix in this paper. In addition, u = (F,N )T , the
external forces and external moments are described by F and
N , respectively. ξ is second-order moment process.
In this paper, we consider systems with K leaders and

N followers. The ith follower’s dynamic equation can be
depicted as

q̇i = Ti(qi)νi,

VOLUME 10, 2022 84057



C. Wang et al.: Containment Tracking Control of Multiple Airships With Noise

M ν̇i + Ci(νi)νi + Kνi + Gi(qi) = ui + ξi,

yi = qi, i = 1, · · · ,N , (3)

where qi = (qTi1, q
T
i2)

T
∈ R6, νi = (νTi1, ν

T
i2)

T
∈

R6, Ti(qi)=diag{Ti1,Ti2(qi)}, ξ1, · · · , ξi are second-order
moment processes, and ui ∈ R6, yi ∈ R6 are the input, output
of the ith follower, respectively. Let qi, νi, Ti(qi),Ci(νi),Gi(qi)
and q, ν, T (q), C(ν), G(q) have the similar definitions, so we
replace q, ν, T (q),C(ν),G(q) with qi, νi, Ti(qi),Ci(νi),Gi(qi),
for i = 1, · · · ,N .
As shown in [6], we need the following assumption on

airship.
Assumption 2:The attitude qi2 of airship satisfies |ψi| < π ,
|θi| <

π
2 , |ϕi| <

π
2 , it means that matrix Ti(qi) is always

invertible.

IV. CONTROLLER DESIGN AND PERFORMANCE
ANALYSIS
For system (3), the following assumptions are imposed.
Assumption 3: The leaders set Vl is globally reachable in

the directed topology G.
Assumption 4: The leaders’ output rs(t) and ṙs(t), s =

1, · · · ,K , are bounded, they are only available for the ith
follower satisfying s ∈ Ni, i = 1, · · · , N .
Remark 1: It is necessary to use Assumption 3 to study

containment problem of the MASs (3). If Assumption 3 not
holds, it means that all leaders are separated from some fol-
lowers, and they do not have information interactions, which
makes it impossible for those followers to track leaders.

In this section, the new controller is first developed for the
MASs (3), then the stability analysis is introduced.
Step 1: Define

ζi1 =

N∑
s=1

ais(yi − ys)+
K∑
j=1

bij(yi − rj), (4)

combining (3) and (4), we get

ζ̇i1 =

N∑
s=1

ais(Ti(qi)νi − Ts(qs)νs)

+

K∑
j=1

bij(Ti(qi)νi − ṙj)

= diTi(qi)νi −
N∑
s=1

aisTs(qs)νs −
K∑
j=1

bijṙj, (5)

where di =
∑N

s=1 ais +
∑K

j=1 bij.
Choosing Vi1 = (1/2)ζ Ti1ζi1, from (5) we can have

V̇i1 = ζ Ti1

(
diTi(qi)νi −

N∑
s=1

aisTs(qs)νs −
K∑
j=1

bijṙj

)
= diζ Ti1Ti(qi)(νi − αi)+ diζ

T
i1Ti(qi)αi

− ζ Ti1

N∑
s=1

aisTs(qs)(νs − αs)

− ζ Ti1

N∑
s=1

aisTs(qs)αs −
K∑
j=1

bijζ Ti1 ṙj. (6)

From Assumption 3, Lemma 1, it can be concluded that H is
invertible, we choose T1(q1)α1

...

TN (qN )αN

 = −(H−1 ⊗ I6)
 c11ζ11

...

cN1ζN1



+ (H−1 ⊗ I6)



∑K

j=1 b1j
...∑K

j=1 bNj

⊗ ṙj
 , (7)

which is equivalent to

diTi(qi)αi −
N∑
s=1

aisTs(qs)αs −
K∑
j=1

bijṙj = −ci1ζi1. (8)

By Assumption 3, we get di > 0, for i = 1, · · · ,N .
Then from Assumption 2 and (8), we have

αi = −T
−1
i (qi)

(
ci1
di
ζi1 −

∑K
j=1 bij
di

ṙj

)
+
T−1i (qi)

di

N∑
s=1

aisTs(qs)αs, i = 1, · · · ,N , (9)

substituting (9) into (6) yields
V̇i1 = −ci1ζ Ti1ζi1 + diζ

T
i1Ti(qi)(νi − αi)

− ζ Ti1

N∑
s=1

aisTs(qs)(νs − αs), (10)

where ci1 > 0 are parameters to be designed, for i =
1, · · · ,N .
Step 2: Introducing the coordinate transformation ζi2 =

νi − αi.
Let Vi = Vi1 + (1/2)ζ Ti2Mζi2, by (10) we have

V̇i = −ci1ζ Ti1ζi1 + diζ
T
i1Ti(qi)(νi − αi)

− ζ Ti1

N∑
s=1

aisTs(qs)(νs − αs)+ ζ Ti2ξi

+ ζ Ti2 (ui − Ci(νi)νi − Kνi − Gi(qi)−M α̇i). (11)

According to Young’s inequality, we get

diζ Ti1Ti(qi)(νi − αi)

≤
1
2
di|ζi1|2 +

1
2
di‖Ti(qi)‖2|ζi2|2,

ζ Ti1

N∑
s=1

aisTs(qs)(νs − αs)

≤
1
2

N∑
s=1

ais|ζi1|2 +
1
2

N∑
s=1

ais‖Ts(qs)‖2|ζs2|2,

ζ Ti2ξi ≤ ε|ζi2|
2
+

1
4ε
|ξi|

2, (12)

where ε > 0 is constant to be designed.
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From (11) and (12), we have

V̇i ≤ −
(
ci1 −

1
2
di +

1
2

N∑
s=1

ais

)
|ζi1|

2

+ ζ Ti2

(
ui − Ci(νi)νi − Kνi − Gi(qi)−M α̇i

+ εζi2 +
1
2
di‖Ti(qi)‖2ζi2

)
−

1
2

N∑
s=1

ais‖Ts(qs)‖2|ζs2|2 +
1
4ε
|ξi|

2. (13)

Denote V =
∑N

i=1 Vi, by (13) we get

V̇ ≤ −
N∑
i=1

(
ci1 −

1
2
di +

1
2

N∑
s=1

ais

)
|ζi1|

2

+

N∑
i=1

ζ Ti2

(
ui − Ci(νi)νi − Kνi − Gi(qi)

−M α̇i + εζi2 +
1
2
di‖Ti(qi)‖2ζi2

)
−

1
2

N∑
i=1

N∑
s=1

ais‖Ts(qs)‖2|ζs2|2 +
N
4ε
|ξi|

2

≤ −

N∑
i=1

(
ci1 −

1
2
di +

1
2

N∑
s=1

ais

)
|ζi1|

2

+

N∑
i=1

ζ Ti2

(
ui − Ci(νi)νi − Kνi − Gi(qi)

−M α̇i + εζi2 +
1
2
di‖Ti(qi)‖2ζi2

−
1
2

N∑
s=1

asi‖Ti(qi)‖2ζi2

)
+
N
4ε
|ξi|

2. (14)

Choosing the actual control law
ui = Ci(νi)νi + Kνi + Gi(qi)+M α̇i − εζi2

−
1
2
di‖Ti(qi)‖2ζi2 +

1
2

N∑
s=1

asi‖Ti(qi)‖2ζi2 − ci2ζi2,

(15)

such that

V̇ ≤ −
N∑
i=1

(
ci1 −

1
2
di +

1
2

N∑
s=1

ais

)
|ζi1|

2

−

N∑
i=1

ci2|ζi2|2 +
N
4ε
|ξi|

2, (16)

where ci2 > 0 are parameters to be designed, for
i = 1, · · · ,N .
By (16), we have

V̇ ≤ −c0V +
N
4ε
|ξi|

2, (17)

where c0 = min1≤i≤N {2ci1 − di +
∑N

s=1 ais, 2ci2}.

Remark 2: This paper investigates the control problem of
multiple airships. Unlike the design scheme of single airship
under second-order moment processes in [6], our new design
method handle the information interactions among agents
effectively, which is more practical in real applications.
Remark 3: Compared with the MASs with only one leader

in [16], this paper studies multiple airships systems with mul-
tiple leaders, it makes more difficult to consider the directed
graph, and the tracking signal is also more complex than [16].

Define

Bl =

 b11 · · · b1K
...

. . .
...

bN1 · · · bNK

 .
Lemma 2 [18]: Under Assumption 3, the ith element for

rc = H−1Blr is depicted by rci =
∑K

j=1 kijrj with nonnega-
tive constant kij, and it satisfies

∑K
j=1 kij = 1, i = 1, · · · ,N ,

where r = (r1, · · · , rK )T .
By Lemma 2, themain results can be obtained in this paper.
Theorem 1: Under Assumptions 1-4, for the MASs (3),

using the controller (15), with

ci1 >
1
2
di −

1
2

N∑
s=1

ais, ci2 > 0, (18)

we can obtain:
1) The closed-loop system has a globally unique solution

on [t0, ∞).
2) All the states of the closed-loop system are bounded in

probability.
3) For arbitrary positive constant ε, initial value q(t0) =

(qT1 (t0), · · · , q
T
N (t0))

T , ν(t0) = (νT1 (t0), · · · , ν
T
N (t0))

T , and
we can find nonnegative constants kij = 1(j = 1, · · · ,K )
satisfying

∑K
j=1 kij = 1, there exists a finite-time

T (q(t0), ν(t0), ε), leads to

E|yi(t)−
K∑
j=1

kijrj(t)|2 < ε, ∀t > T (q(t0), ν(t0), ε),

i = 1, · · · ,N .

In other words, the mean-square of tracking errors between
each follower’s output and the convex combination of all
leaders’ output can be made arbitrarily small.
Proof: Define ζ = (ζ T11, ζ

T
12, · · · , ζ

T
N1, ζ

T
N2)

T , and let

σl = inf{t ≥ t0 : |ζ (t)| ≥ l}, ∀l > 0.

By (17), implies that

EV (ζ (t ∧ σl))− V (ζ (t0))

≤ −c0E
∫ t∧σk

t0
V (ζ (s))ds+

N
4ε
E
∫ t

t0
|ξi(s)|2 ds. (19)

From V , Assumption 1 and (19), such that

EV (ζ (t ∧ σl)) ≤ V (ζ (t0))+
NK
4ε

(t − t0). (20)
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Then according to [24, Lemma 3] and (20), it can be con-
cluded that the existence of system’s solution on [t0, ∞)
holds ture. So the proof of conclusion 1) is given.

With (20) and Fatou Lemma in [16], such that

EV (ζ (t)) = E
(
lim
k

infV (ζ (t ∧ σl))
)

≤ lim
k

infE(V (ζ (t ∧ σl)))

≤ V (ζ (t0))+
NK
4ε

(t − t0)

< ∞,

it shows that

EV (ζ (t)) <∞. (21)

By (17), and (21), we obtain

V (ζ (t)) <∞, V̇ (ζ (t)) <∞, a.s.. (22)

According to Fubini’s theorem, and with (21), (22), we get∫ t

t1
EV̇ (ζ (s))ds = E

∫ t

t1
V̇ (ζ (s))ds

= EV (ζ (t))− EV (ζ (t1)),

Therefore, we can get

dEV (ζ (t))
dt

= E
dV (ζ (t))

dt
. (23)

Let γ (t) = EV (ζ (t)), by Assumption 1, (17), and(23),
we obtain

γ̇ (t) ≤ −c0γ +
N
4ε
E|ξi|2

≤ −c0γ +
N
4ε
K . (24)

By [16, Lemma 5], (24) is expressed by

γ (t) ≤ e−c0(t−t0)γ (t0)+
NK
4c0ε

(
1− e−c0(t−t0)

)
,

which yields

EV (ζ (t)) ≤ e−c0(t−t0)EV (ζ (t0))+
NK
4c0ε

(
1− e−c0(t−t0)

)
.

(25)

Now, we show conclusion 3).
Let ζ1 = (ζ T11, · · · , ζ

T
N1)

T . By (25), we have

E|ζ1|2 = E
(
|ζ11|

2
+ · · · + |ζN1|

2
)

≤ 2
(
e−c0(t−t0)EV (ζ (t0))

+
NK
4c0ε

(
1− e−c0(t−t0)

))
. (26)

From the definitions of ζ11, · · · , ζN1, it can be seen that

ζ1 =

( N∑
s=1

a1s(yT1 − y
T
s )+

K∑
j=1

b1j(yT1 − r
T
j ), · · · ,

N∑
s=1

aNs(yTN − y
T
s )+

K∑
j=1

bNj(yTN − r
T
j )
)T

=

(
d1yT1 −

N∑
s=1

a1syTs −
K∑
j=1

b1jrTj , · · · ,

dN yTN −
N∑
s=1

aNsyTs −
K∑
j=1

bNjrTj

)T
= (H ⊗ I6)y− (Bl ⊗ I6)r, (27)

where y = (yT1 , · · · , y
T
N )

T , r = (rT1 , · · · , r
T
K )

T .
From Assumption 3, Lemma 1, (26) and (27), we get

E|y− (H−1 ⊗ I6)(Bl ⊗ I6)r|2

≤ 2|H−1 ⊗ I6|2
(
e−c0(t−t0)EV (ζ (t0))

+
NK
4c0ε

(
1− e−c0(t−t0)

))
. (28)

From definitions of c0, ε, for arbitrary ε > 0 and qi(t0), νi(t0),
we select ci1, ci2 and ε appropriately, for i = 1, · · · ,N , and
we can get a finite-time T (q(t0), ν(t0), ε), it follows from (28)
that

E|y− (H−1 ⊗ I6)(Bl ⊗ I6)r|2 < ε,

∀t > T (q(t0), ν(t0), ε). (29)

Therefore, with (29), for i = 1, · · · ,N , we get

E|yi − rci|2 ≤ E|y− (H−1 ⊗ I6)(Bl ⊗ I6)r|2 < ε,

∀t > T (q(t0), ν(t0), ε).

According to Lemma 2, the conclusion 3) is given.
Next, conclusion 2) will be proved.
It follows from (25) that

EV (ζ (t)) ≤ EV (ζ (t0))+
NK
4c0ε

. (30)

Noticing

EV (ζ ) ≥
∫
|ζ |>c

V (ζ )P(dw)

≥ inf
|ζ |>c

V (ξi)P(|ζ | > c). (31)

Combining (30) and (31), such that

P(|ζ | > c) ≤
EV (ζ (t0))+ NK

4c0ε

inf
|ζ |>c

V (ζ )
. (32)

With V (ζ ) and (32), implies that

lim
c→∞

sup
t>t0

P(|ζ | > c) ≤ lim
c→∞

sup
t>t0

EV (ζ (t0))+ NK
4c0ε

inf
|ζ |>c

V (ζ )

= 0. (33)

From (33) and Definition 1, we can get that ζ is bounded
in probability. With (27) and Assumption 4, we obtain
the conclusion that yi = qi, is bounded in probability,
i = 1, · · · ,N .
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FIGURE 2. Communication topology Ḡ.

Noting that ζi1, ζi2, and qi are bounded in probability,
by ζi2 = νi − αi, we get the conclusion that νi, i = 1, · · · ,N
is bounded in probability. So we can get the conclusion 2).

Therefore, we have proved the Theorem 1.

V. SIMULINK EXAMPLE
We consider the MASs with three followers and two leaders
in this part, which is depicted in Figure 2.

The leaders’ outputs are given as

r1(t) = (2 sin t, sin t,
1
2
cos t, sin t, e−t ,

4
5
e−t )T ,

r2(t) = (
3
2
cos t,

1
2
sin t,

1
1+ t

, cos t, 2e−t ,
1
3
e−t )T .

From Figure 2, we have

L =

 0 0 0
−1 1 0
0 0 0

 , B =

 1 0 0
0 0 0
0 0 1

 .
From the definition of H , we have

H =

 1 0 0
−1 1 0
0 0 1

 , H−1 =

 1 0 0
1 1 0
0 0 1

 . (34)

By Lemma 2, we get

rc = (H−1 ⊗ I6)(Bl ⊗ I6)r =

 r1r1
r2

 . (35)

Define the output tracking errors as

e1j = y1 − rc1, e2j = y2 − rc2, e3j = y3 − rc3. (36)

In the simulation, choosing the parameters c11 = 1, c12 =
0.6, c21 = 0.5, c22 = 0.1, c31 = 1, c32 = 0.1, and ε = 0.4.
By setting the initial values q1(0) = (0.8, 1, 0.15, −
0.5, 0.5, 0.4)T , v1(0) = (1.2, 0.1, 0.3, 0.7, − 0.1, 0.1)T ,
q2(0) = (1.2, − 0.2, 0.35, 0.5, 0.4, 0.7)T , v2(0) =
(1, 0.3, 0.2, 0.5, 0.1, 0.05)T , q3(0) = (0.7, 0.3, −
0.1, 0.4, 0.3, 0.9)T , v3(0) = (0.8, 0.2, 0.2, 0.6, 0.2, −
0.3)T . We can see that Figures 3 and 4 show the responses
of the tracking errors and controllers, respectively. Fig-
ure 5 shows the trajectories of three followers and two leaders.
We can get Figure 3, which shows that |eij| < ε = 0.5,∀t >
T (ε) = 5s, i = 1, 2, 3; j = 1, 2, 3, 4, 5, 6. Thus, the
efficiency of controllers is proved.

FIGURE 3. Responses of tracking errors.

FIGURE 4. Responses of controllers.

FIGURE 5. Trajectories of three followers and two leaders.

VI. CONCLUSION
This paper solves the containment tracking control prob-
lem for multiple airships with multiple leaders disturbed
by second-order moment processes. By the backstepping
method, we propose the new controllers to prove that all states
of the closed-loop system are bounded in probability and the
mean-square of tracking errors achieve arbitrarily small.
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For future work, the containment problem for multiple air-
ships with second-order moment processes under switching
topologies can be considered. Another interesting work is
extending the results to fuzzy models in [25] and [26] or more
general stochastic systems in [27], [28], [29], and [30].
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