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ABSTRACT This paper is concerned with optimizing the weights of the global minimum-variance
portfolio (GMVP) in high-dimensional settings where both observation and population dimensions grow at a
bounded ratio. Optimizing the GMVPweights is highly influenced by the data covariance matrix estimation.
In a high-dimensional setting, it is well known that the sample covariance matrix is not a proper estimator
of the true covariance matrix since it is not invertible when we have fewer observations than the data
dimension. Even with more observations, the sample covariance matrix may not be well-conditioned. This
paper determines the GMVP weights based on a regularized covariance matrix estimator to overcome the
abovementioned difficulties. Unlike other methods, the proper selection of the regularization parameter is
achieved by minimizing the mean squared error of an estimate of the noise vector that accounts for the
uncertainty in the data mean estimation. Using random-matrix-theory tools, we derive a consistent estimator
of the achievable mean squared error that allows us to find the optimal regularization parameter using a
simple line search. Simulation results demonstrate the effectiveness of the proposed method when the data
dimension is larger than, or of the same order of, the number of data samples.

INDEX TERMS Portfolio optimization, global minimum-variance portfolio, GMVP, random matrix theory,
RMT, consistent estimator.

I. INTRODUCTION
Decision-making regarding investment in the stock market
has become increasingly more complex because of the
dynamic nature of the stocks available to investors and the
advent of new unconventional and risky options [1]. Through-
out the years, the portfolio optimization problem has attracted
the attention of many signal-processing researchers due to
its close relationship to the field. The portfolio optimization
problem aims at achieving the maximum possible returns
with the least volatility percentage [2]. The Economist,
Harry Markowitz, introduced the modern portfolio theory,
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or mean-variance analysis (MVP), in [3]. Other portfolios,
such as the global MVP and the maximum sharp ratio portfo-
lio (MSRP) have been proposed as improvements to theMVP.
Portfolio optimization utilizes the available financial data to
reach conclusions regarding the allocation of wealth to each
of the available stocks. The most important measurement in
portfolio optimization is the data covariance matrix (CM).

CM estimation in the classical signal processing frame-
work relies on asymptotic statistics of some observations, n,
which is assumed to grow largely compared to the population
dimension, p, i.e., n/p → ∞ as n → ∞ [4]. However,
many practical applications, such as finance, bioinformatics
and data classification, require an estimate of the CM when
the data dimension is large compared to the sample size [5].
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In such cases, it is well known that the default estimator, i.e.,
the empirical sample covariance matrix (SCM), is usually ill-
conditioned, leading to poor performance.

In the case of p > n, the SCM is not invertible; whereas
for p < n, the SCM is invertible but might be ill-conditioned,
which substantially increases estimation errors. In other
words, for a large p, it is not practically guaranteed that
the number of observations is sufficient to develop a well-
conditioned CM estimator [6]. Such scenarios havemotivated
researchers to look into estimation problems in the high-
dimensional regime [4].

In scenarios with limited data, a regularized SCM (RSCM)
estimator of the following general form is widely used [5]:

6̂β,γ = β6̂ + γ Ip, (1)

where 6̂ is the SCM defined in (7) (further ahead), β,
γ ∈ R+ are the regularization, or shrinkage, parameters.
These parameters can be determined based onminimizing the
mean squared error (MSE), which results in oracle shrinkage
parameters, βo and γo, as follows [5], [6]:

(βo, γo) = argmin
β,γ>0

E
[∥∥6̂β,γ −6∥∥2F] , (2)

where ‖.‖F denotes the Frobenius matrix norm. The esti-
mation of (βo, γo) based on (2) depends on the true
CM, 6. To circumvent this issue, Ledoit and Wolf [6] pro-
posed a distribution-free consistent estimator of (βo, γo) in
high-dimensional settings. The work in [5] assumes that
the observations are from unspecified elliptically symmetric
distribution. The consistent estimator proposed in [7] uses
a hybrid CM estimator based on the Taylor’s M-estimator
and Ledoit-Wolf shrinkage estimator, which suits a global
minimum variance portfolio (GMVP) influenced by outliers.
A similar approach based on the M-estimator is proposed
in [8], considering n > p with fully automated selection of
the shrinkage parameters. The minimum variance portfolio
estimator in [9] is based on certain sparsity assumptions
imposed on the inverse of the CM. The work presented in [10]
proposes a different RSCM estimator by manipulating the
expression of the GMVP weights.

In this paper, we propose a single-parameter CM estimator.
Instead of minimizing the MSE, as in (2), we minimize the
MSE of the estimation of the sample noise vector. We utilize
RMT tools to obtain a consistent estimator of this MSE. The
value of the regularization parameter γ is selected as the one
that minimizes the estimated MSE. By choosing to minimize
the MSE of the noise vector’s estimation, we implicitly con-
sider the inaccuracy of estimating the true mean.

A. CONTRIBUTIONS OF THE PAPER
The contributions of this paper can be summarized as follows:

• We propose a regularized sample covariance matrix esti-
mator of the covariance matrix for the portfolio opti-
mization problem based on estimating a noise vector that
accounts for the uncertainty in estimating the true mean.

• Under the assumption of the double asymptotic regime,
we derive the asymptotic performance of theMSE of the
estimated vector.

• We derive a general consistent estimator of the MSE.
• We utilize the derived consistent MSE estimator to
optimally tune the regularization parameter associated
with the regularized sample covariancematrix estimator.
The application of the proposed estimator results in our
VB-MSE estimator.

B. NOTATIONS
Uppercase boldface letters denote matrices, while lowercase
boldface letters denote vectors. Scalars are denoted by normal
lowercase letters. The superscript notation, (.)T denotes the
transpose of a matrix or a vector, while E(.) denotes the
expectation operator, and tr[.] is the trace of a matrix. R, R+,
and C, respectively, denote real, positive-real, and complex
fields of dimension specified by a superscript. The variable z
denotes a complex variable. The notation a � b denotes that a
and b are asymptotically equivalent, i.e., |a−b|

a.s.
−→ 0, where

a.s. denotes almost-sure convergence. The l2 norm (of a vec-
tor), or the 2-induced norm (of a matrix) is denoted by ‖.‖2,
and the identity matrix of dimension n is denoted by In.

II. GLOBAL MINIMUM VARIANCE PORTFOLIO
We consider a time series comprising y1, y2 · · · , yL logarith-
mic returns of p financial assets over a certain investment
period. We assume that the elements of yt , (t = 1, 2, · · · ,L)
are independent and identically distributed (i.i.d.) and are
generated according to the following stochastic model [11]:

yt = µt +6
1
2
t xt , (3)

where µt ∈ Rn×1 and 6t ∈ Rp×p are the mean and the CM
of the asset returns over the investment period, and the only
information available about xt is that it is an i.i.d. random
noise vector of zero mean and identity CM. For simplicity,
we drop the subscript t from µt and 6t . For the investment
period of interest, we define w ∈ Rp as the asset holdings
vector, also known as the weight vector. The GMVP opti-
mally minimizes the portfolio variance under single-period
investment horizon, such that the weight vector is normalized
by the outstanding wealth [11], i.e.,

min
w∈Rp

wT6w subject to 1Tpw = 1, (4)

where 1p is a column vector of p 1’s. The solution of (4) can
be obtained by using the Lagrange-multipliers method, which
results in the optimum weights [7]:

wGMVP =
6−11p

1Tp6
−11p

. (5)

The CM in (5) is unknown and should be estimated. As stated
earlier, the SCM estimate does not perform well because it is
usually ill-conditioned; hence, we apply the RSCM estimator
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and (5) becomes

ŵGMVP =
6̂
−1
RSCM1p

1Tp 6̂
−1
RSCM1p

, (6)

where 6̂RSCM is the RSCM which can take the form of (1),
for example. In the following section, we develop a RSCM
estimator method and properly set the value of its regulariza-
tion parameter.

III. THE PROPOSED CONSISTENT VECTOR-BASED
MSE ESTIMATOR
The SCM, 6̂, and the sample mean, µ̂, can be estimated from
the n past return observations as follows:

6̂ =
1

n− 1

n∑
j=1

(yt−j − µ̂)(yt−j − µ̂)T , (7)

µ̂ =
1
n

n∑
j=1

yt−j. (8)

We notice that computing 6̂ using (7) involves evaluat-
ing the sample mean, not the true mean. This can worsen
performance, especially for a small number of observations.
Subtracting µ̂ from both sides of (3), we obtain

yt − µ̂ = (6̂
1
2 +1)xt + δ, (9)

where δ , µ − µ̂ and 1 = 6
1
2 − 6̂

1
2 . Eq. (9) can be

viewed as a linear model with bounded uncertainties in both
6

1
2 andµ [12]. We seek an estimate, x̂t that performs well for

any allowed perturbation (1, δ) by formulating the following
min-max problem [12]:

min
x̂t

max
1,δ

[
‖(6̂

1
2 +1)̂xt − (yt − µ̂− δ)‖2

]
. (10)

A unique solution can exist which takes the form [12]

x̂t = (6̂ + γ Ip)−16̂
1
2 (yt − µ̂). (11)

x̂t is a function of γ , which when properly set leads to the
best estimate of xt . It is easy to recognize that (6̂ + γ Ip)−1

can be used as an estimator of the CM inverse, i.e., 6̂−1RSCM =

6̂
−1
γ = (6̂ + γ Ip)−1. Such estimator is widely used

in the literature, e.g., [13], [14], [15], [16], [17], [18], [19],
[20], [21]; to name a few. The optimal value of γ that esti-
mates 6̂−1γ is the one that minimizes the MSE for estimat-
ing xt . That is

MSE(γ ) = E
[
‖xt − x̂t‖22

]
(12)

= E
[
‖xt − 6̂

−1
γ 6̂

1
2 (6

1
2 xt + δ)‖22

]
. (13)

We choose the optimal γo as follows:

γo = argminMSE(γ ). (14)

The choice of minimizing the MSE is reasonable because,
under certain conditions, the minimization problem in (4) and

the minimumMSE are equivalent [22], [23]. Unlike the other
methods, it is remarkable that the uncertainty in estimating
the mean is taken into account in (13). We expect the effect
of the uncertainty in the mean estimation to be high when
we have a limited number of observations. Also, unlike the
methods that are based on (2), when we search for the optimal
γ that minimizes (13), we actually estimate the inverse of the
CM rather than estimating the CM itself. This is important
because we use it in (6). We obtain the following normalized
(by n) expression of the MSE (see Appendix B):

MSE(γ ) =
p
n
+
n+ 1
n

E
[1
n
tr
[
66̂

(
6̂ + γ Ip

)−2]︸ ︷︷ ︸
A(γ )

]

−2E
[1
n
tr
[
6

1
2 6̂

1
2
(
6̂ + γ Ip

)−1]︸ ︷︷ ︸
B(γ )

]
. (15)

We observe that (15) is expressed in terms of the unknown
quantity, 6. In this case, using a direct plugin formula, i.e.,
substituting 6 with 6̂ results in

M̂SEplugin(γ ) =
p
n
+
n+ 1
n

E
[1
n
tr
[
6̂

2(
6̂ + γ Ip

)−2]]
−2E

[1
n
tr
[
6̂
(
6̂ + γ Ip

)−1]]
. (16)

However, the estimator in (16) is an inconsistent estimator
in the regime where n and p grow at constant rate [24].
To clarify, Fig. 1 plots an example of the derived MSE(γ )
(15) and the plugin estimation method (16) versus a wide
range values of γ . It is clear that using the plugin strategy
does not help obtain the minimum MSE suitably. Instead,
as the figure depicts, the plugin estimation method selects an
improper γ that corresponds to a high MSE.

As an alternative remedy, we seek a consistent estimator
of (15) by leveraging tools from RMT. To this end, we need
to first obtain an asymptotic expression of (15). To do so, the
following assumption should hold true.
Assumption 1: As p,n→∞, p/n→ c ∈ (0,∞).
Assumption 1 leads to the following theorem:
Theorem 1: Under Assumption 1, MSE(γ ) in (15) asymp-

totically converges to

MSE(γ ) �
p
n
+
n+ 1
n

.
1
n
(δ̃1 + γ δ̃′1)tr

[
62(δ̃16 + γ Ip)−2]

−
2
n
<

[
tr
[
6

1
2
(
δ̃26

1
2 − i
√
γ Ip

)−1]]
, (17)

where δ̃1 is the unique positive solution to the following
system of equations:

δ1 =
1
n
tr
[
6
(
δ̃16 + γ Ip

)−1]
,

δ̃1 =
1
n
tr
[
T
(
δ1T+ In

)−1]
,

(18)

where T = diag([1, 1, · · · , 1, 0]T ) ∈ Rn×n; hence, δ̃1 can be
written as follows:

δ̃1 =
1

1+ δ1
. (19)
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FIGURE 1. Different MSE curves versus the regularization parameter: the
derived formula of the MSE, Eq. (15), the plugin estimator, Eq. (16), the
asymptotic curve, Eq (17), and the consistent MSE Eq. (22). The results are
generated from Gaussian data that follows the model (3), with
p = n = 300, [6]i,j = 0.6|i−j | and µ = 1p.

Similarly, δ̃2 is obtained by solving
δ2 =

1
n
tr
[
6

1
2
(
δ̃26

1
2 − i
√
γ Ip

)−1]
,

δ̃2 =
1
n
tr
[
T
(
δ2T+ In

)−1]
.

(20)

and

δ̃2 =
1

1+ δ2
. (21)

Proof: see Appendix C.
Now, we are in a position to reveal the consistent

estimator of (15).
Theorem 2: Under Assumption 1, the consistent estimator

of (15) is given by (22)

M̂SE(γ ) �
p
n
− 2<(δ̂2)+

n+ 1
n

(1+ δ̂1)2

δ̂′1

.
[
( ˆ̃δ1 + γ

ˆ̃
δ′1)δ̂
′

1 −
1
n
tr
[
6̂
(
6̂ + γ Ip

)−2]]
, (22)

where δ̂1 and δ̂2 are the consistent estimators of δ1 and δ2,
respectively, and are given by

δ̂1 =

1
n tr
[
6̂
(
6̂ + γ Ip

)−1]
1− 1

n tr
[
6̂
(
6̂ + γ Ip

)−1] , (23)

δ̂2 =

1
n tr
[
6̂

1
2
(
6̂

1
2 − i
√
γ Ip

)−1]
1− 1

n tr
[
6̂

1
2
(
6̂

1
2 − i
√
γ Ip

)−1] . (24)

Proof: see Appendix D.
Back to Fig. 1, which compares the derived MSE with the

asymptotic formula (17) and the consistently estimated MSE
(22), it can be seen clearly that the consistent MSE is more
suitable for obtaining the value of γ that minimizes (15).
A closed-form solution for γ in (22) is infeasible, so we

rely on using a line search, where we search for γ that
minimizes (22) within a predefined range.

A. SUMMARY OF THE PROPOSED VB-MSE (VECTOR
BASED-MSE) METHOD FOR PORTFOLIO OPTIMIZATION

1) From the historical data estimate 6̂ using Eq. (7).
2) Find the regularization parameter value, γo, that mini-

mizes M̂SE(γ ) in (22) using a line search.
3) Use γo to compute 6̂−1γo = (6̂ + γoIp)−1.

4) Calculate ŵGMVP from (6) by using 6̂−1RSCM = 6̂
−1
γo

.

IV. PERFORMANCE EVALUATION
In this section, we present a simulation study to shed some
light on the performance of our proposed method. First,
we provide a simulation result that relates the proposed
approach to other loss functions that quantify the estimator.
Then, the convergence and time complexity of the proposed
VB-MSE method, along with other competitive methods,
is presented. Lastly, a simulation of the portfolio optimization
problem is considered using synthetic and real data.

A. THE PROPOSED VB-MSE CONSISTENT ESTIMATOR
AND QUANTIFYING THE ESTIMATOR
We relate our proposed estimator to other loss functions used
in quantifying the closeness of an estimate to the true covari-
ance matrix. Specifically, we use the minimum-variance and
the inverse-Frobenius loss functions. The minimum-variance
loss function is defined as [25]

LMV (6̂γ ,6) , tr
(
6̂
−1
γ 66̂

−1
γ

)
/p[

tr
(
6̂
−1
γ

)
/p
]2 − 1

tr
(
6−1

)
/p
. (25)

An important performance measure that involves this loss
function is the percentage relative improvement in average
loss (PRIAL) defined as

PRIALMV (6̂γ )
:=

E
[
LMV

(
6̂,6

)]
− E

[
LMV

(
6̂γ ,6

)]
E
[
LMV

(
6̂,6

)]
− E

[
LMV

(
6̂
∗
,6
)] × 100%, (26)

where 6̂∗ is the finite sample-optimal rotation-equivariant
estimator, which is the closest estimator to 6 according
to the minimum variance loss [25]. Based on the rotation-
equivariant assumption, the eigenvectors of 6̂∗ and the SCM,
6̂, are the same but their eigenvalues differ. All the methods
used in this paper, including ours, belong to this class of
estimators, i.e., rotation-equivariant estimators.We obtain the
eigenvalue decomposition of the SCM from

6̂ = UDUT . (27)

Then, the finite sample-optimal estimator is [25]

6̂
∗
= UD∗UT , (28)

where D∗ is the matrix of eigenvalues that minimizes the
minimum variance loss function; it is calculated as [25]

D∗ = UT6U. (29)
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FIGURE 2. The normalized proposed MSE (consistent) estimation and the
normalized inverse-Frobenius loss function (left y-axis) along with the
PRIAL (right y-axis) versus the regularization parameter. The value of γ
that minimizes the proposed consistent MSE estimator is shown
to (almost) coincide with the optima of the two other criteria (the
inverse-Frobenius loss and the PRIAL).

Note this finite-sample-optimal estimator is unattainable
because it requires the knowledge of the true covariance
matrix.

From the definition (26), PRIALMV (6̂) = 0%. This
means that the SCM represents a reference against which any
loss reduction is measured. Similarly, PRIALMV

(
6̂
∗
)
=

100% is the maximum amount of loss reduction that can
be achieved under the rotation-equivariant assumption. The
PRIAL estimates how much of the possibility for variance
reduction is captured by any other estimator [25].

The second loss function is the inverse-Frobenius loss
function defined as [25]

LIF
(
6̂γ ,6

)
= ‖6̂

−1
γ −6

−1
‖
2
F (30)

,
1
p
tr
[(
6̂
−1
γ −6

−1
)2]

(31)

In Fig. 2, we plot the proposed VB-MSE consistent esti-
mator (normalized) along with the inverse Frobenius loss
(normalized) and PRIAL versus the regularization parameter
value. As can be seen from the figure, the value of γ that min-
imizes the VB-MSE consistent estimator almost coincides
with the one that minimizes the inverse-Frobenius loss and
maximizes the PRIAL.

It is remarkable that although our proposed consistentMSE
estimator involves only estimated quantities, its performance
almost matches both the PRIAL and Frobenius that rely on
the true covariance matrix.

In the following subsections, we provide a Monte Carlo
simulation study of the VB-MSE estimator against other
estimators. The competitive methods are the elliptical estima-
tors ELL1-RSCM, ELL2-RSCM and ELL3-RSCM [5], [26],
the Ledoit-Wolf estimator, LW-RSCM [6], [26], and the
nonlinear estimator Quest 1 [27].

The results are generated from Gaussian data that follows
the model (3) with [6]i,j = 0.6|i−j|σ, (σ = 1 × 10−4).
We study convergence and time complexity.

FIGURE 3. Convergence of various methods as the matrix dimension and
the sample size grow large at a fixed ratio. The results are averaged
across 100 Monte Carlo simulations.

FIGURE 4. Computational speed of different estimators.

FIGURE 5. Out-of-sample method for portfolio optimization.

B. CONVERGENCE
We consider the convergence under the large-dimensional
asymptotic regime, where the data dimension, p, and the
number of observations, n, grow to infinity with a ratio p/n
that converges to some limit. In Fig. 3, we consider a ratio
p/n that converges to 1

2 . We plot the PRIAL measure of each
method versus p. It can be seen that the VB-MSE method
has the highest PRIAL when p = 10, 20, and 50. For p ≥
100, the nonlinear estimator Quest 1 wins the comparison.

86640 VOLUME 10, 2022



M. Mahadi et al.: Portfolio Optimization Using a Consistent Vector-Based MSE Estimation Approach

FIGURE 6. Annualized realized risk versus training window length using synthetic data generated from Gaussian distribution. (a) µ = 0, p = 200.
(b) µ 6= 0, p = 200. (c) Difference in the Frobenius loss, p = 200. (d) µ = 0, p = 300. (e) µ 6= 0, p = 300. (f) Difference in the Frobenius loss, p = 300.

This result agrees with a previous study [25], which shows
that the nonlinear estimators generally converge better than
the linear estimators.

C. TIME COMPLEXITY
All the presented methods require computing the SCM,
which is of complexity O(p2n). Both LW-RSCM and Ell2-
RSCM are computationally more efficient than Ell1-RSCM
as pointed in [5], especially for the high-dimension setup.
For the proposed method, we observe that implementing
the VB-MSE estimator according to the steps presented
in III-A requires computing (23), (24) and the last term
in (22), each of O(p3) complexity. Also, the line search
method used to obtain the regularization parameter in the
VB-MSE approach increases the time complexity. The non-
linear shrinkage estimator, Quest 1, requires a complexity of
O(p3) twice for extracting and recombining the eigenvalues
and eigenvectors [25].

We can enhance the speed of the VB-MSE by observing
that we can write

tr[(6̂(6̂ + γ Ip)−1] =
d∑
j=1

dj
dj + γ

, (32)

tr[(6̂
1
2 (6̂

1
2 − i
√
γ Ip)−1] =

d∑
j=1

√
dj√

dj − i
√
γ
, (33)

tr[(6̂(6̂ + γ Ip)−2] =
d∑
j=1

dj
(dj + γ )2

. (34)

The formulas in (32)–(34) can be used in (23), (24)
and (13). Note that we need the eigenvalue decomposition
(O(p3) complexity) one time.

We consider a runtime example using Matlab R2019a run-
ning on a 64-bit, Core(TM) i7-2600K 3.40GHzWindows PC.
The result is plotted in Fig. 4 which shows that the VB-MSE
method is faster than Quest 1, Ell1-RSCM and Ell3-RSCM
when 50 < p < 500.
We also consider a simulation example for a very high-

dimension scenario, p = 5000 and n = 10000, as shown
in Table 1. While our proposed method (VB-MSE) performs
slowly at this dimension, the PRIAL measure reveals a slight
improvement compared to the remaining methods. Quest 1
method is not feasible for implementation at very high
dimension [25].

TABLE 1. Monte Carlo simulations for p = 5000 and n = 10000.

D. PORTFOLIO OPTIMIZATION SIMULATION
USING SYNTHETIC DATA
This section simulates the portfolio optimization problem
using synthetic data generated from Gaussian distribution
with [6]i,j = 0.6|i−j|σ , (σ = 1 × 10−5). As conventionally
described in the financial literature, we implement the out-of-
sample strategy defined in terms of a rolling window method
(see [7]). At a particular day t , the training window for CM
estimation is formed from the previous n days, i.e., from
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FIGURE 7. Annualized realized risk versus training window length for different stock indices.

t − n to t − 1, to design the portfolio weights, ŵGMVP. The
portfolio returns in the following 20 days are computed based
on these weights. Next, the window is shifted 20 days forward
and the returns for another 20 days are computed. The same
procedure is repeated until the end of the data. Finally, the
realized risk is computed as the standard deviation of the
returns.

Fig. 5 illustrates an example of how to perform the out-
of-sample procedure. Assume that we aim to study the per-
formance of each method over a year (250 working days).
In Window 1, we perform the first iteration (i = 1) that we
train the first available 20 days (Day 1 – Day 20) and use the
following 20 days as test data (Day 21 – Day 40). The next
iteration in Window 1 (i = 2) considers Day 21 – Day 40
for the training phase and uses data of Day 41 – Day 60 for

testing, and so on. For Window 2, train data size is increased
to 40 in each iteration. For example, the first iteration (i =
1), train data is taken from Day 1 – Day 40 and test data
from Day 41 – Day 60. The second iteration (i = 2)
collects data of Day 21 – Day 60 for training, and data of
Day 61 – Day 80 for testing, etc. The subsequent windows
follow similarly.

Fig. 6 simulates the aforementioned out-of-sample proce-
dure considering two scenarios. The first scenario assumes
data in (3) has zero mean (µ = 0), and the second scenario
assumes µ 6= 0. These two scenarios are shown in Fig. 6 (a),
and Fig. 6 (b), respectively, with p = 200. As can be seen,
the proposed VB-MSE method noticeably outperforms all
the methods. The same observation can be reported when
p = 300 in Fig. 6 (d), and Fig. 6 (e).To study the effect of the
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presence of mean, we plot the difference in the Frobenius loss
between the two scenarios as shown in Fig. 6 (c) (p = 200)
and in Fig. 6 (f) (p = 300). Both figures reveal that the
difference is the smallest when using the VB-MSE method.
This result supports our previous claim that the proposed
method should perform well because it incorporates the error
in estimating the mean.

E. PORTFOLIO OPTIMIZATION SIMULATION
USING REAL DATA
The following list describes the data from different stock
market indices used in our evaluation:
• Standard and Poor’s 500 (S&P 500) index: This
index includes 500 companies. The net returns of
484 stocks (p = 484) are obtained for 784 working days
between 7 Jan. 2015 and 22 Dec. 2017.

• Standard and Poor’s 100 (S&P 100) index: The index
is a subset of the S&P 500 that comprises 100 stocks.
We consider two different periods to obtain the net
returns from different stocks [28]. The first period is
from 7 Jan. 2014 to 31 Dec. 2015 (501 trading days),
where we fetch data of 97 stocks (p = 97). The second
period is from 2 Jan., 2015 to 30 Dec. 2016 (504 trading
days) that contains net returns of 97 stocks (p = 97).

• NYSE Arca Major Market Index (XMI): This mar-
ket index is made up of 20 Blue Chip industrial
stocks of major U.S. corporations [29]. A full-length
time series containing 503 working days from 4 Jan.,
2016 to 29 Dec. 2017 is obtained for 19 stocks (p = 19).
The second period is from 10 Jan. 2014 to 31 Dec. 2015
(498 working days).

• Hang Seng Index (HSI): This market index comprises
50 stocks [30]. The returns of all the stocks (p = 50)
is obtained from 1 Jan. 2016 to 27 Dec. 2017
(491 trading days).

Fig. 7 shows the annualized realized risk of the afore-
mentioned market indices versus the number of training
samples. We compare the proposed vector-based method,
VB-MSE, against the elliptical estimators ELL1-RSCM,
ELL2-RSCM and ELL3-RSCM [5], [26], the Ledoit-Wolf
estimator, LW-RSCM [6], [26], the nonlinear estimator
Quest 1 [27].

Fig. 7 (a) plots the result of the S&P 100 index from 2 Jan.
2015 to 30 Dec. 2016. As can be seen from the figure, the
performance of the proposed VB-MSE method outperforms
all other the methods except at n = 80 and 100, where it is
slightly worse than Ell1-RSCM aand Ell3-RSCM. Similarly,
VB-MSE has a superior performance in Fig. 7 (b), which
plots the result from 7 Jan. 2014 to 31 Dec. 2015. However,
at n = 20 and 80 Ell1-RSCM and Ell3-RSCM perform
better. The realized risk for the HSI index is depicted in
Fig. 7 (c) from 1 Jan. 2016 – 27 Dec. 2017. The proposed
method has comparable performance to Quest 1, Ell1-RSCM
and Ell3-RSCM at n = 20, 40 and 60 but it outperforms all
the methods for 100 < n ≤ 340. The results of the XMI

index from 4 Jan. 2016 – 29 Dec. 2017 and from 10 Jan.
2014 – 31 Dec. 2015 are shown in Fig. 7 (d) and Fig. 7 (e),
respectively. Overall, in both figures, VB-MSE is the best
performing method. Finally, Fig. 7 (f) plots the realized risk
of the S&P 500 index from 10 Jan. 2015 – 31 Dec. 2017. The
figure shows clearly that the proposed method outperforms
the other methods when 200 ≤ n ≤ 400.
From Fig. 7 (a) – (f), we can conclude that, on average,

the proposed VB-MSE method compares favorably to all the
benchmark methods tested in this paper. The method is also
more consistent over the various datasets.

V. CONCLUSION
In this paper, we have proposed a regularized covariance
matrix estimator under high-dimensionality settings. Unlike
the competitive methods, the proposed method exploited a
linear model with bounded uncertainties in estimating the
true covariance matrix and the mean. Based on this model,
the estimation problem is reduced to minimizing the MSE of
the noise vector. The proposed method searches for the opti-
mal regularization parameter based on a consistent estimator
of the MSE of the estimated vector. Portfolio optimization
results from real financial data show that the proposedmethod
performs reasonably well and outperforms a host of bench-
mark methods.

APPENDIX A
MATHEMATICAL TOOLS
For convenience, we write Equation (3) in matrix form

Y = 6
1
2X+ µ 1n, (35)

where X = [x1x2 · · · xn] with xi ∼ N (0, Ip). We need to
express the SCM in (7) in an appropriate matrix form as well,
as follows:

6̂ =
1

n− 1
BBT , (36)

where B ∈ Rp×n. It can be immediately recognized from (7)
that B is

B = Y− µ̂1Tn . (37)

Also, we can easily verify that

µ̂ = µ+
1
n
Z1n, (38)

where Z , 6
1
2X. Finally, we perform the following opera-

tions to reach the model of 6̂ at the end:

6̂ =
1

n− 1

(
ZZT − Z

1n1
T
n

n
ZT
)

=
1

n− 1
Z
(
In −

1n1
T
n

n

)
ZT

=
1

n− 1
ZUTUTZT
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=
1

n− 1
6

1
2XUTUTXT6

1
2 (39)

=
1

n− 1
6

1
2 X̃TX̃T6

1
2 , (40)

where U and T are the matrices of eigenvalue vectors and

eigenvalues, respectively, of (In −
1n1

T
n

n
) obtained using

the eigenvalue decomposition. The Gaussian distribution is
invariant when multiplying by a unitary matrix; hence, X̃ has
the same distribution as X [14], [16].

The model (40) is a well-established model in is the
RMT literature. Based on this model, for z ∈ C − R+
and bounded 2 ∈ Rp×p the following relations, which
will be used throughout the derivations, hold true (under
Assumption 1) [11]:

tr
[
2
(
6̂ − zIp

)−1]
� tr

[
2
(
δ̃6 − zIp

)−1]
(41)

tr
[
26̂

(
6̂ − zIp

)−1]
� δ̃tr

[
2
(
δ̃6 − zIp

)−1]
(42)

tr
[
2
(
6̂ − zIp

)−2]
� tr

[
26

(
δ̃6 − zIp

)−2]
(43)

tr
[
26̂

(
6̂ − zIp

)−2]
� (δ̃ − zδ̃′)tr

[
26

(
δ̃6 − zIp

)−2]
.

(44)

APPENDIX B
DERIVING THE MSE FORMULA
The MSE in (15) can be easily obtained from expanding
(13) and computing the resulted terms. The first term results
from E[xtxTt ] = Ip. The second term is computed as
follows:

tr
[
E
[̂
xt x̂Tt

]]
= tr

[
E
[
6̂

1
2 6̂
−1
γ ỹt ỹTt 6̂

−1
γ 6̂

1
2

]]
. (45)

where ỹt , (yt − µ̂) =
(
6

1
2 xt + δ

)
. Using the fact that the

expectation and the trace are interchangeable and the cyclic
property of traces, we can write

tr
[
E
[̂
xt x̂Tt

]]
(46)

= tr
[
E
[
6̂
−1
γ 6̂6̂

−1
γ

(
6

1
2 xt + δ

) (
6

1
2 xt + δ

)T]]
. (47)

Also, using the eigenvalue decomposition of 6̂, it is easy to
prove that

6̂
−1
γ 6̂ =

(
6̂ + γ Ip

)−1
6̂ (48)

= 6̂
(
6̂ + γ Ip

)−1 (49)

= 6̂
1
2
(
6̂ + γ Ip

)−1
6̂

1
2 . (50)

Hence,

tr
[
E
[̂
xt x̂Tt

]]
(51)

= tr
[
E
[
6̂6̂
−2
γ

(
6

1
2 xt + δ

) (
6

1
2 xt + δ

)T]]
. (52)

Observing that xt , δ and 6̂ are independent, and δ ∼

N (0, 6n ), we obtain

tr
[
E
[̂
xt x̂Tt

]]
(53)

= tr
[
66̂

(
6̂ + γ Ip

)−2]
+

1
n
tr
[
66̂

(
6̂ + γ Ip

)−2] (54)

=
n+ 1
n

tr
[
66̂

(
6̂ + γ Ip

)−2]
. (55)

Finally, the third term is obtained from

tr
[
E
[̂
xtxTt

]]
(56)

= tr
[
E
[
6̂

1
2 6̂
−1
γ (y− µ̂)xTt

]]
(57)

= tr
[
E
[
6̂

1
2 6̂
−1
γ

(
6

1
2 xt + δ

)
xTt

]]
(58)

= tr
[
6

1
2 6̂

1
2 6̂
−1
γ

]
. (59)

APPENDIX C
PROOF OF THEOREM 1
E[A(γ )] in (15) can be directly obtained from (43) with
setting2 = 6 and z = −γ . The second term, B(γ ), resulted
from adding and subtracting i

√
γ Ip with factoring 6̂−1γ as

follows:

tr
[
6

1
2 6̂

1
2 6̂
−1
γ

]
= tr

{
6

1
2

[(
6̂

1
2 + i
√
γ Ip

)
− i
√
γ Ip

]
(60)

.

[(
6̂

1
2 + i
√
γ Ip

)(
6̂

1
2 − i
√
γ Ip

)]−1}
(61)

= tr

[
6

1
2

(
6̂

1
2 − i
√
γ Ip

)−1]
− i
√
γ tr

[
6

1
2 6̂
−1
γ

]
. (62)

We can further simplify (62) by noticing that the quantity on
the left-hand side is a real quantity, so this implies

=

[
tr

[
6

1
2

(
6̂

1
2 − i
√
γ Ip

)−1]]
=
√
γ tr

[
6

1
2 6̂
−1
γ

]
. (63)

Thus, we can express B(γ ) equivalently as

tr
[
6

1
2 6̂

1
2 6̂
−1
γ

]
=<

[
tr

[
6

1
2

(
6̂

1
2 − i
√
γ Ip

)−1]]
, (64)

so we can find E[B(γ )] easily from (41) with setting
2 = 6

1
2 , z = i

√
γ , and the third term in (17) resulted.

APPENDIX D
PROOF OF THEOREM 2
The MSE(γ ) expressed in (17) converges to a sum of deter-
ministic terms. To find a consistent estimator of (17), it is
sufficient to find a consistent estimator of each of these terms
(Theorem 3.2.6 in [31]).
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The consistent estimator, δ̂1, can be derived using (18) and
(19) in (42) ( with2 = Ip),

1
n
tr
[
6̂
(
6̂ + γ Ip

)−1]
�

δ1

1+ δ1
. (65)

The consistent estimator, δ̂1, in (23) (that satisfies δ̂ � δ)
results immediately after rearranging (65). The derivation of
δ̂2 follows similarly.

To derive the consistent estimator of φ ,
1
n

[
62(δ̃16 +

γ Ip
)−2] we differentiate δ1 to obtain

δ′1 =
9

1− φ(1+ δ1)−2
, (66)

where9 ,
1
n
tr[6(δ̃16+γ Ip)−2]. Hence, we can estimate φ

consistently, (i.e., φ̂ � φ) as

φ̂ =
δ̂′1 − 9̂

δ̂′1(1+ δ̂1)
−2
, (67)

where 9̂ is the consistent estimator of 9 can be estimated
from (44) when2 = Ip, z = −γ , as follows:

9̂ =

1
n
tr
[
6̂
(
6̂ + γ Ip

)−2]
( ˆ̃δ1 + γ

ˆ̃
δ′1)

. (68)

Substituting in (67), we can obtain the second term as

1
n

[
62(δ̃16 + γ Ip)−2]

�
(1+ δ̂1)2

δ̂′1

[
δ̂′1 −

1
n tr
[
6̂
(
6̂ + γ Ip

)−2]
( ˆ̃δ1 + γ

ˆ̃
δ′1)

]
. (69)
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