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ABSTRACT Thermal errors have the largest contribution, as much as about 70%, to the machining
inaccuracy of computer-numerical-controlled (CNC) machining centers. The error compensation method so
far plays the most popular and effective way to minimize the thermal error. How to accurately and quickly
build an applicable thermal error model (TEM) is the kernel work of thermal error compensation. On the
basis of some comprehensive machine-learning schemes, past proposed TEMs had impressive merits for
dealing with the thermal error modeling of single-function (milling or turning cutting) machine tools with
only considering one set of thermal key points. These proposed modelling methodologies become worse
when applied to CNC compound milling-turning machining centers in actual cutting applications. This
paper proposes a two-mode integral TEM based on the Lasso and the random forest regression schemes
to quickly and accurately predict the thermal deformations of such a machine. The first mode is the thermal
error modeling for milling cutting conditions, and the second mode is that for turning cutting conditions.
For data reduction, two different sets of temperature key points, one for milling and the other for turning,
are obtained. Then, on the basis of the random forest regression scheme, we separately establish two TEMs
but concurrently use them to predict the tool-center-point deformations of both milling as well as turning
spindles. Further, we compare our proposed TEM with several frequently-used machine-learning-based
TEMs and the results show that our proposed TEM are the best among all, no matter in the modelling
experiment or in the test experiment. The proposed TEM has a maximum prediction error of 6.08 µmfor
milling cutting and that of 1.455 µm for turning cutting in the modeling experiment. By our proposed
two-mode integral TEM, the thermal error of a multi-function milling-turning machining center can be
accurately predicted and quickly compensated.

INDEX TERMS Thermal error model, thermal error compensation, CNC milling-turning machine tools,
Lasso regression, machining learning.

I. INTRODUCTION AND LITERATURE REVIEW
The accuracy of machine tools plays a crucial role in
modern precision manufacturing. An investigation revealed
that up to over 70% of the error on a computer-numerical-
controlled (CNC) machine is caused by the effect of thermal
deformation [1]. How to successfully suppress the thermal
deformation is an important work. Against this issue, various
methods including the avoidance of thermal displacement,
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control of heat transfer, and compensation of thermal error
have been developed [2], [3], [4]. In general, the aforemen-
tioned first two methods have already been fully considered
in the design stage for modern machine tools development.
The leftover method of thermal error compensation (TEC)
becomes the main stream for overcoming the thermal
deformation generated in machining. The TEC method is a
kind of indirect or software compensation scheme which is
based on the principle of a series of corrections computed by
a specific mathematical thermal-error model [5]. From the
detected continuous temperature signals of a machine tool,
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this model may correctly predict the thermal deformation at
the tool center point (TCP). Accordingly, correct mechanical
positions of TCP can be compensated by the machine’s con-
trol system during machining. Due to the cost-effectiveness
and ease of implementation, TEC method is the most widely
used scheme to reduce the thermal error of a CNC machine
during machining.

The manipulation procedure of indirect TEC includes the
following seven key steps:
(1) Select a target CNC machining center.
(2) Choose proper experimental machining conditions.
(3) Determine characteristic measurement points of tem-

perature.
(4) Perform experimental apparatus setup and measure.
(5) Collect and reduce data.
(6) Build and verify thermal error model (TEM) building

and verification.
(7) Test the proposed TEM with real-cutting conditions.
Overall, the above seven items significantly affect the

success or not for a TEC method and its actual applications.
Through decades of efforts on TEC investigations, lots of
excellent mathematic TEMs were proposed. In the early
stage, a linear and a modified linear regression model
were proposed to analyze the thermal error for simple
CNC vertical machining centers or lathes [6], [7], [8], [9].
However, to overcome the limitations of low accuracy and
bad robustness for the regression model, a grey system model
based on a first-order differential equation, such as GM(1, n),
was proposed [10]. Thereafter, for further enhancing the
prediction accuracy, a lot of mathematic schemes based
on machine learning, such as the adaptive network-based
fuzzy inference system [11], the ridge regression [12],
the fuzzy art map of artificial neural network [13], and
some statistics methods [14], were proposed to deal with
TEM building and characteristic temperature point selection
problems. During this period, a quite successful mapping
scheme of support vector regression (SVR) combined with
parameter-optimized methods (e.g. genetic algorithm) were
proposed [15]. Meanwhile, some data mining schemes were
used to capture the characteristic points of temperature and
reduce the measured data set in the thermal error modelling.
For example, Wang et al. [16] used the rough set theorem
to reduce the measured temperature data and found the
knowledge kernel for help establishing a precise TEM.
Recently, accompanied by prosperous developing of deep
learning neural network schemes, scholars begun to use the
convolution neural network scheme as the mapping function
of TEM [17], [3], [18], whose prediction ability is regarded
as better than the other aforementioned machine learning
schemes.

Despite the progress in building a precise TEM using
various mathematic models, there are other deterministic
factors needed to be considered first, which may affect
the accuracy and robustness of a TEM. As shown previ-
ously, there are seven items involved in building a TEM
for a CNC machine tool. Among the related parameters
contained in these steps, the machine type, experimental

cutting conditions, and measured data play the most crucial
roles. Different types of machine tools (three-axes or five-
axes, vertical or horizontal, and C-type or Column-type)
will lead to different selections of TEMs, because the
structure complexities markedly affect the thermal behavior
or thermal deformation of a machine tool. So far, studies
on the thermal deformation as well as TEM of five-axis or
milling-turning machine tools drawmuch attention due to the
challenge coming from structure complexity. Focusing on the
principle of thermal deformation for a complex CNC five-
axis machining center, Hong and Ibaraki [19] investigated
the thermal influence on error motions of rotary axes by
static R test. And, Martin et al. [5] used the transfer function
based on the concept of partial linearization to establish TCM
for a head-to-head type five-axis machine tool. Mares [20]
proposed a simple TEM to deal with the problem of thermal
error minimization of a turning-milling center. It is noticeable
that, for complicated machine tools, the built TEM should
be as accurate in the modelling but simple in engineering
applications as possible. These kind of issues are seldom
discussed. On the other hand, it is known that different
experimental cutting conditions significantly influence the
adoption of thereafter data handling schemes and TEM
selections [18]. Although we have some ISO standards of
thermal test conditions for checking the thermal deformation
of simple CNC machine tools, such as CNC lathes or milling
machines, it still lacks the specs. or standards of how to
establish an accurate TEM, especially for complicated five-
axis or milling-turning machine tools.

Concluding, there are three major problems unsolved
by existed thermal error modeling methods. First, for
a compound milling-turning machine, there coexists two
different types of thermal behaviors, one appears in the
milling operation and the other in the turning operation. This
matter severely blocks efforts to build an accurate TEM with
using only one general set of temperature key points. Second,
arbitrarily assigning experimental cutting conditions and
accordingly retrieving the measured data to build a TEM has
a great risk to cause fatal prediction error since the adopted
cutting conditions as well as the induced corresponding
thermal behaviors in a machine are usually different from
those happened in actual machining applications. Third,
there lacks a transparent, quick, and accurate TEM for
future error compensation on machine tools. In view of
the shortcomings of the existed TEMs, we propose a novel
two-mode integral thermal error modelling approach based
on a kernel machine learning scheme of the least absolute
shrinkage and selection operator (Lasso) regression to solve
the above three problems to promote the machining accuracy
of a milling-turning machining center. Beside, simulation
comparisons and validation experiments are carried out to
verify the proposed thermal error modelling approach.

II. EXPERIMENTS
We choose a vertical-type CNC milling-turning machining
center (shown in Fig. 1) as the target of TEC. This study
is focused on minimizing of thermally induced errors at
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the TCPs of milling and turning cuttings for this complex
machine tool. All experiments were performed on this
machine tool.

A. EXPERIMENTAL SETUP
The measurement units were primarily composed of tem-
perature probes and displacement sensors. According to the
potential rules of selecting temperature key points on a
machine tool suggested by Ruijun et al. [21], We stamp
a total of twelve PT-100 resistance thermometers (T1-T12)
on the thermal key points of the machine tool, which are
close to the main heat sources or capable of reflecting the
temperature change of machine, as listed in Table 1 and
shown in Fig.2. On the other hand, two non-contact eddy-
current displacement sensors (D1 andD2, resolution: 0.1µm,
Model KD-2300, produced by KAMAN Co. Ltd.) clutched
in the fixture are used to detect the spindle’s displacement
at TCP (represented by a test mandrel clamped at the leading
end of the milling spindle) in the Z1-direction (up and down).
And, another two eddy-current displacement sensors (D3 and
D4, samemodel as previous) and assembles are used to detect
the spindle’s displacement at TCP (represented by a test
mandrel clamped at the leading end of the turning spindle)
in the Z2-direction (up and down). The positions of the above
displacement sensors are listed in Table 1 and shown in Fig. 2.

B. EXPERIMENTAL CONDITIONS
A successful TEM is significantly affected by the adopted
experimental cutting conditions which cannot be set in
an arbitrary manner. They should be carefully set in the
way of reflecting cutting situations as real as possible.
Although there exist some ISO standards for testing a
machine’s final precision, the regulations about thermal
precision issues including TEMs or experimental cutting

FIGURE 1. Configuration of target CNC milling-turning machining center,
Model S5, made by Zheng Feng CNC Technology Co. LTD.

FIGURE 2. Temperature key points on target machine.

TABLE 1. Locations of temperature and displacement sensors.

conditions for TEM building still lack. Many scholars used
simple cutting paths (such as a zig-zag planar motion or
just turning without moving) or fixed rotational speed of
spindle as the experimental conditions. Thesemeasuresmight
not only induce improper temperature distributions and TCP
displacements, but also lead to wrong TEMs. Eventually, a
final bad compensation result appears in real-cutting tests.

In this study, we plan some off-line experimental cut-
ting conditions that may simulate the on-line real cutting
situations as close as possible. Two experimental cutting
conditions, one for TEM building and the other for TEM
verification, are planned as listed in Table 2 and 3,
respectively. These experimental cutting conditions are set in
the way of simulating real cutting conditions for making the
metal shell of a cell phone (shown in Fig. 3).

C. MEASUREMENT RESULTS
The temperature and displacement sensors are integrated into
one system so as to retrieve the temperature and deformation
reading synchronically. The measurement results of temper-
ature variations at different thermal key points are shown
in Fig. 4. It is found from Fig. 4(b) that the temperature of
machine may vary from the room temperature of 24◦C to
a maximum of 81◦C at thermal key point T2. Overall, the
temperatures at different thermal key points change markedly
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TABLE 2. Experimental CUTTING conditions for tem building.

TABLE 3. Experimental CUTTING conditions for tem testing.

FIGURE 3. Real cutting conditions for making the metal shell of a cell
phone.

with time. Meanwhile, the variation of the deformation with
time at the tip of the milling as well as the turning spindles in
the Z-axis direction are shown in Fig. 5. The thermal drift at
the tip of the milling spindle reaches a maximum of 78.2 µm
at about t=415 min. Similarly, the thermal drift at the tip of
the turning spindle reaches a maximum of 61.5 µm at about
t= 600 min.

III. TWO-MODE THERMAL ERROR MODELLING
We propose a two-goal and two-mode integral approach for
modelling the thermal error. Two goals of TEM are related
to the promotion of compensation performance in practical
applications. First, it is desired that the temperature key points

FIGURE 4. Temperature variations at thermal key points.

should be as less as possible for simple and easymanipulation
of TEC. Therefore, we use the Lasso regression method to
trim the redundant thermal key points. Second, in engineering
application, it is preferred to use an explicit regression model
rather than an implicit black-box model to deal with the
non-linear relationship between thermal displacements at
TCPs and temperatures at thermal key points. Therefore,
we employ some outstanding machine learning schemes,
such as the support vector regression and the random forest
scheme, to solve this kind of problem. On the other hand,
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FIGURE 5. Thermal drifts of milling and turning spindles in the Z-axis
direction.

two modes of TEM are proposed for accurately predicting the
thermal error of a compound CNCmachine tool that operates
under the milling-cutting or the turning-cutting condition,
or both conditions.

A. DATA REDUCTION
To optimally select and meanwhile reduce the thermal
key points, we adopt the Lasso regression to optimally
determine the weight coefficient for each thermal key point.
Meanwhile, we also calculate the weight coefficient using the
frequently-used ordinary least square (OLS) regression [22]
for comparison. A general linear regression model can be
expressed as

yi = β1xi1 + β2xi2 + . . .+ βjxij + βpxip + β0 + εi, (1)

where yi is the thermal displacement of the milling or turning
spindle, xij is the temperature at the thermal key point, βj is
the weight coefficient of xij, and εi is the error.

Conventionally, we use OLS regression to estimate βj.
However, OLS regression has several drawbacks, such as
the over-fitting problem and the limitation on dealing with
multicollinearity, which may undermine the generalizability
of the model. The multicollinearity of a linear regression
function can be measured by the condition number, defined
as:

lim
ε→0

sup
‖1x‖≤ε

‖1y‖
‖1x‖

, (2)

in which 1y means the change of the output value for the
linear regression function, and 1x is a small change in the
input parameter.

Therefore, we use the Lasso regression instead of OLS
regression, in which it can effectively and properly deal with
the multicollinearity problem. Lasso regression adopts the
loss function as

n∑
i=1

(yi −
xij∑
j

βj)2 + λ
p∑
j=1

∣∣βj∣∣, (3)

where λ is the amount of shrinkage. In Eq. (3), the first
term means the residual sum of squares and the second term
stands for the penalty function. Lasso regression shrinks the
input size of prediction model by minimizing the penalty
function using least squares method. By this manipulation,
the coefficient of unimportant features becomes zero and

the features with the corresponding non-zero coefficients are
considered as the selected features [23], [24].

Based on the measured data of temperature variations at
thermal key points and displacements of milling and turning
spindles at TCPs, we may obtain the influence of each
temperature at thermal key point on the thermal drifts of
spindles at TCPs via OLS and Lasso regression methods.

1) MILLING CUTTING CASE
For the deformation of themilling spindle, firstly the obtained
OLS regression result, expressed in terms of the weight
coefficient for each temperature at thermal key point, with
a mean-root-squared error of 0.942 and a condition number
of 6390, is shown in Fig. 6a. The condition number of a
linear regression function measures how much the output
value of the function can change for a small change in
the input parameter. Here, it is defined as the absolute
error of the output function divided by the absolute error
of Since the weight coefficient of T4 is only −0.22, very
small compared to the other eleven weight coefficients,
we deem that the influence of the temperature at T4 (X-axis
motor) is negligible. Besides, owing to the high value of
condition number in this case, which means there exists
strong multi-collinearity among temperature variables, this
method is apparently not suitable for estimating the weight
coefficient of temperature at thermal key point. Alternatively,
we adopt the Lasso regression method to overcome the multi-
collinearity problem. Now, we analyze the same problem as
previously stated. The obtained result (shown in Fig. 6b)
reveals that, scare influence occurs for temperatures at T4
(weight value: 0) and T7 (weight value: 0) where are the
thermal key points of cross beam and X-axis servo motor,
respectively. The temperatures at other key points: T2, T3,
T5, T6, T8, T9, T10, T11, and T12 are considered to be the
influential input variables for further TEM works.

2) TURNING CUTTING CASE
On the other hand, for the turning spindle, by using OLS
regression, we may obtain none of the temperature at the
thermal key point can be neglected (shown in Fig. 7a), but the
condition number is still as high as 6390, which means there
exists strong multi-collinearity among temperature variables
and we need other suitable scheme such as Lasso regression.
Through the calculation by Lasso regression scheme, we may
obtain a new set of weight coefficients for temperatures at
thermal key points, as shown in Fig 7b. It is seen that only
the temperatures at T2 and T11 with weight coefficients of
0.184 and 0.89, respectively need to be considered as the input
variables for further TEM.

B. THERMAL ERROR MODEL BUILDING AND
COMPARISON
In engineering applications, the less temperature key point,
the better practical TEC can be achieved. Since we have
already obtained nine influential temperature key points
with respect to the milling-spindle deformation and two
with respect to the turning-spindle deformation, as indicated
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FIGURE 6. Influence of temperature at thermal key points on
milling-spindle deformations using OLS regression.

previously. After that we need to build an accurate TEM with
suitable machine learning schemes to predict the deforma-
tions of the milling as well as the turning spindle. Recently,
SVR and deep-learning neural network (DNN) schemes,
known as good methods for dealing with highly non-linear
mapping problems, were frequently used in the thermal
error modeling problems of CNC machine tools [3], [18].
Therefore, to build a proper TEM of our complex milling-
turning machine tool, we adopt SVR, DNN, and an excellent
random forest (RF) methods to predict thermal deformations.
Followings are the manipulation details of the thermal error
modeling works using these schemes.

1) MODELLING VIA DNN
At the first stage, we carry out TEMvia DNNmethod. Details
of DNN can be found in [25].

In the case of predicting milling-spindle deformations,
we initially select the known nine influential temperatures
at thermal key points as the input variables and the
deformation of the milling spindle as the output variable.
Then, we construct a back-propagation DNN which has
five layers with sequentially 10, 8, 6, 4, and 1 neuron in

FIGURE 7. Influennce of temperatures at thermal key points on
turning-spindle deformations using Lasso regression.

respective layer (from the input (1st) layer to the output
(5th) layer), and using the rectified linear unit (ReLu) as
the activation function. Through calculations, we obtain a
convergence error of 0.004 after 10000 epochs of training.
The calculation results of measured and predicted thermal
deformations, and the error between them are shown in Fig. 8.
A maximum prediction error of 8.34 µm is obtained using
DNN scheme.

In the case of predicting turning-spindle deformations,
we select the known two influential temperatures at thermal
key points as the input variables and the deformation of the
turning spindle as the output variable. Then, we construct a
back-propagation DNN which has five layers with sequen-
tially 2, 2, 2, 2, and 1 neuron in respective layer (from the
input (1st) layer to the output (5th) layer), and using the
rectified linear unit (ReLu) as the activation function. And,
through calculations, we obtain a convergence error of 0.0049
after 10000 epochs of training. The calculation results of
measured and predicted thermal deformations, and the error
between them are shown in Fig. 9. A maximum prediction
error of 2.72 µm is obtained using DNN scheme.
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FIGURE 8. Thermal error prediction results by DNN with selected features
for the milling-spindle deformation.

2) MODELLING VIA SVR
SVR is a superior machine learning scheme developed by
Vapnik [26], whichwas successfully applied in different engi-
neering applications [27], [28], [25], including the thermal
error prediction problems for CNC machine tools [29]. The
SVR attempts to minimize the error based on the principle
of structural risk minimization (SRM). Generally speaking,
a linear-regression problem involves the determination of a
linear function

g( x) = w · x+ b (4)

that best interpolates the training data {(x1, y1), . . . , (xm, ym)}.
The goal of learning is to find a proper function that predicts
the actual y data as close as possible with a deviation of
ε. The task of SRM in SVR is to find a proper function
g(x) with ε as flat as possible, which can be determined
by minimizing the Euclidean norm |w|2. The minimization
problem is constructed as:

minimize
1
2
|w|2 + P

m∑
i=1

(δi + δ∗i ) (5)

subject to

{
yi − w · xi − b ≤ ε + δi
w · xi + b− yi ≤ ε + δ∗i

(6)

where P (P > 0) is the penalty factor that balances the
empirical risk and model flatness, δi and δ∗i means loose
variables. The SVR achieves these by mapping the training
patterns from the input space to a high-dimensional feature
space where the original data can be separated by a linear
function. The mapping function is expressed as

g(x) =
m∑
i=1

wiKi(xi, x)+ θ (7)

where w is the weight, K is the kernel mapping function, and
θ is the offset. Using different forms of the kernel function
will result in different regression deviations, depending on the
data characteristics. Here, we adopt the radial basis function

FIGURE 9. Thermal error prediction results by DNN with selected features
for the turning-spindle deformation.

FIGURE 10. Thermal error prediction results by SVR with selected feature
points for the milling-spindle deformation.

as the kernel

K (x, x ′) = exp(−
|x − xi|2

2γ 2 ) (8)

where γ is the width of the radial basis function. The
prediction accuracy of SVR model (Eq. (4) – (8)) is mainly
determined by two hyper-parameters: P and γ . In the follow-
ing thermal error modelling works using SVR, a frequently-
used grid search method for these two hyper-parameters is
adopted. The research range of P is set to (1,10, 20, . . . , 1000)
with spacing 10, respectively.

In the case of predicting milling-spindle deformations,
we use the measured data to train SVR model, in which the
5-fold cross validation is adopted. The modelling result is
shown in Fig. 10. We get an average accuracy of 97.3%. The
try-and-error obtained optimal γ, θ , and P values are 0.1,
−2.02 and 550, respectively. The maximum compensation
error between the predicted and the measured spindle
deformations is 8.98 µm which is a little bit larger than that
obtained via DNN scheme.

In the case of predicting turning-spindle deformations,
with the same SVR structure parameters and training settings
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as those in the previous case, we may get the modelling
results, as shown in Fig. 11. The obtained average accuracy
is 99.4%. The try-and-error obtained optimal γ, θ , and P
values are 0.2, −1.89 and 300, respectively. The maximum
prediction error between the predicted and the measured
spindle deformations is 4.79 µm which is larger than that
obtained via DNN scheme.

FIGURE 11. Thermal error prediction results by SVR with selected feature
points for the turning-spindle deformation.

3) MODELLING VIA RF REGRESSION
The RF regression is a popular machine-learning scheme
proposed by Breiman [27]. The RF scheme accumulates tree
predictors associated with various random vectors. In the
training process of RF regression, the overall output is
obtained by averaging the output values of all individual trees.
The learner bagging algorithm is used in RM regression for
training any single tree [28]. The bootstrap samples of the
training sets are repeatedly selected, and Gini impurity fits tb
trees in these samples.

The predicted values for unseen complexes are calculated
via following equation:

y =
1
B

B∑
b=1

tb(x), (9)

where y is the output and B is the tree number.
In the case of predicting milling-spindle deformations,

we set the related parameters in RF regression scheme as:
(1) the maximum tree depth: 15, and (2) the number of
features: 6. Based on the measured data, we may train RF and
get the result (shown in Fig. 12) as: (1) the average accuracy
using 5-fold cross validation: 94.1%, (2) the maximum
prediction error: 6.08 µm which is the best among all three
regression schemes (8.98 µm for SVR and 8.34 µm for
DNN) for predicting thermal deformations of the milling
spindle. In other words, for the deformation prediction of a
milling spindle in a CNC milling-turning machining center,
RF regression has the best prediction ability among all three
schemes.

FIGURE 12. Thermal error prediction results by RF with selected feature
points for the milling-spindle deformation.

FIGURE 13. Thermal error prediction results by RF regression with
selected feature points for the turning-spindle deformation.

On the other hand, in the case of predicting turning-spindle
deformations, we may similarly set the related parameters of
RF as: (1) the maximum tree depth: 10, and (2) the number
of features: 2. Based on the measured data, we train RF and
get the result (shown in Fig. 13) as: (1) the average accuracy
using 5-fold cross validation: 99.4%, (2) the maximum
compensation error: 1.455 µm which is the best among all
three regression schemes (4.79 µm for SVR and 2.72 µm
for DNN) for predicting thermal deformations of the turning
spindle. In other words, for the deformation prediction of a
turning spindle in a CNC milling-turning machining center,
RF regression has the best prediction ability among all three
schemes.

IV. COMPARISON DISCUSSION
For the sake of data reduction and well error compensation,
seeking less temperature key points and accordingly building
accurate prediction TEM have drawn much attention for the
recent decade. However, different machine structures and
internal mechanisms lead to different thermal behaviors at
TCPs. For our target of a multi-function milling-turning

85490 VOLUME 10, 2022



W. Lian et al.: Novel Two-Mode Integral Approach for Thermal Error Modeling in CNC Milling-Turning Machining Center

machine, it is obtained that different sets of thermal key
points exist in the milling-cutting deformation (T2, T3, T5,
T6, T8, T9, T10, T11, and T12) and in the turning-cutting
deformation (T2 and T11). This phenomenon is noteworthy
since past studies only report one set of thermal key points
with respect to only milling or turning deformation for the
target of a single-function machine. One set of thermal key
points is not sufficient nor adequate to describe the thermal
behaviors for a milling-turning machine tool.

A summary of comparisons between measured and
predicted results via various proposed schemes is listed in
Table 4. The rank order of average prediction accuracy
for different TEMs are: RF (94.9%), DNN (92.5%), and
SVR (90.4%). Apparently, the frequently-used SVR or DNN
scheme predicts not so well compared to RF regression
scheme in this study. On the basis of measured deformations
of the milling spindle, the average maximal residual error via
RF model (6.08 µm) has improvements of 32.3% better than
that by SVR model (8.98 µm) and 27% than that by DNN
(8.34 µm). On the other hand, for the turning spindle, the
predicted errors by RF model (1.46 µm) has improvements
of 69.6% better than that by SVR model (4.79 µm) and 27%
than that by DNN (2.72 µm). These facts indicate that the
prediction result via the TEM of Lasso-based RF regression
scheme are satisfactory.

TABLE 4. comparison between measured and predicted results via
various proposed schemes with selected feature points.

To further verify our proposed new TEM, we now perform
another experiment. The new test condition is arranged
as listed in Table 3 to simulate actual cutting conditions
for a similar metal work piece of the cell phone shown
in Fig. 1. We measure the temperature variations at two
thermal key points of T2 and T3 as well as the thermal
deformation of the turning spindle at TCP. The obtained
maximum measured thermal deformation is 53.6 µm. On the
basis of the measured temperatures, the maximum predictive
deformations via trained DNN, SVR, and RF schemes
are obtained as 54.978 µm, 58.489 µm, and 56.242 µm,
respectively. In other words, after compensation with our
proposedmodel, themaximum thermal error can be improved
by 95.07%, 90.87%, and 97.43% via DNN, SVR, and RF
models, respectively. The test results not only show that our
proposed Lasso-based RF model performs the best among
all three models, but also exhibits satisfactory prediction of
thermal deformations for the CNC milling-turning machine
tool.

V. CONCLUSION
In this study, we propose a two-mode integral TEM for well
predicting the thermal deformations at TCPs of the milling
as well as the turning spindles for a CNC compound milling-
turning machining center. Due to structural complexities of
the target machine, the traditional way of using only one set
of thermal key points to establish one TEM for this machine
that has simultaneously milling-cutting and turning-cutting
functions is no longer suitable. At the stage of data reduction,
we use Lasso regression to acquire two sets of thermal key
points according to different thermal behaviors induced by
milling-cutting and turning-cutting conditions. One set of T2,
T3, T5, T6, T8, T9, T10, T11, and T12 is obtained for the
milling-cutting condition, and the other set of T2 and T11
is obtained for the turning-cutting condition. At the stage of
TEM building, we compare and obtain that RF regression
model is the optimal TEM that has the best prediction
ability among frequently-used OLS regression, SVR, and
DNN models in the model building as well as the testing
experiments. Furthermore, the proposed integral Lasso-based
RF-TEM predicts well for the milling-spindle and the
turning-spindle TCP deformations with maximum prediction
errors of 1.455µmand 6.08µm, respectively. Recently, in the
marketplace, CNC compound milling-turning machine tools
are becoming hot in tool machinery. This paper provides an
explicit (not a black box) and accurate thermal error modeling
methodology to markedly reduce the thermal error induced
in machining for this type of complicated machine tool.
Moreover, this methodology may also be applied to solve
the thermal error modelling problems for other CNC multi-
function (multiple milling-cutting, multiple turning-cutting,
grinding, etc.) machine tools.
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