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ABSTRACT The effects of carbon incorporation on the thermal stability of the interfacial TiO2 layer and
the electrical characteristics of Ti/TiO2/n-Ge contacts were investigated. The improved thermal stability and
contact characteristics of Ti/TiO2/n-Ge contacts were characterized in terms of Schottky barrier height (SBH)
and specific contact resistivity (ρc) using the Schottky diode and circular transmission line model (CTLM).
The values of SBH and ρc increased after the rapid thermal annealing (RTA) above 550 ◦C. The current
density–bias voltage (J − V ) curves of the Schottky diode showed a change of contact characteristics from
Ohmic-like behavior to rectifying. This thermal instability was mainly caused by the decomposition of
the interfacial TiO2 layer after high-temperature annealing. The structural degradation was confirmed by
transmission electron microscopy (TEM) and electron energy loss spectroscopy (EELS) analyses. When
carbon ions were incorporated into the interfacial TiO2 layer, the SBH and ρc values showed relatively
stable characteristics as the RTA temperature increased up to 600 ◦C. The EELS mapping showed that the
diffusion of oxygen from the interfacial TiO2 layer was effectively suppressed thanks to the incorporation
of carbon. Thus, the carbon incorporation can improve the thermal stability of the interfacial TiO2 layer and
the metal–insulator–semiconductor contact characteristics for Ge-based device applications.

INDEX TERMS Germanium, metal−insulator−semiconductor, thermal stability, Schottky barrier height,
Fermi-level pinning, contact resistivity.

I. INTRODUCTION
Germanium (Ge) has been introduced as a promising replace-
ment for silicon (Si) as a channel material in future com-
plementary metal–oxide–semiconductor (CMOS) devices
owing to its high carrier mobility and high compatibility with
the advanced Si device fabrication technology [1], [2], [3].
However, the formation of source and drain (S/D) con-
tact with a low contact resistance is a major bottleneck in
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the commercialization of Ge-based devices. This is mainly
attributed to the solid solubility and diffusivity issues of
n-type dopants in Ge and the Fermi-level pinning (FLP)
effect [4], [5], [6]. The FLP effect originates from the metal-
induced gap states (MIGS) in the vicinity of a metal/Ge
interface. Because it causes near the valence band (Ev) of Ge,
it increases Schottky barrier height (SBH) to above 0.5 eV
regardless of the metal work function [7], [8], [9].

In recent years, metal–insulator–semiconductor (MIS)
contact has been proposed to mitigate the FLP effect.
As an ultrathin insulator is inserted between metal and
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semiconductor as an interfacial layer, the penetration of the
electron wave function from a metal into a semiconductor
could be reduced; this suppresses the FLP effect [10], [11].
Among several high-k dielectrics, titanium dioxide (TiO2) is
a promising candidate as an interfacial layer of MIS contact
because of its negligible conduction band offset (CBO) on
an n-Ge (100) substrate and its relatively high conductivity,
which contributes to the low tunneling resistance of MIS
contacts [12], [13], [14]. However, considering that the high
thermal budget process after the formation of S/D contact
such as conventional back-end-of-line (BEOL) processes, the
thermal stability of MIS contacts in the n-Ge device must
be guaranteed above 400 ◦C to achieve the low S/D contact
resistance.

Several manners have been reported to improve the thermal
stability of MIS contacts, for instance, nitrogen plasma treat-
ment and hydrogen annealing [15], [16], [17]. Also, carbon
implantation (C-imp) has been utilized to achieve low specific
contact resistivity (ρc) values and to improve the thermal
stability of alloyingmetal–semiconductor (MS) contacts such
as silicide and germanide. Besides, C-imp could enhance
dopant segregation and reduce FLP in Ti/Ge contacts [18].

In this work, we investigated the effects of carbon incorpo-
ration on the thermal stability of the interfacial TiO2 layer of
MIS contact and the electrical characteristics of Ti/TiO2/n-Ge
contacts at thermal annealing temperatures of 450–600 ◦C.
The structural characterization of the interfacial TiO2 layer
was analyzed using transmission electron microscopy (TEM)
and electron energy loss spectroscopy (EELS). Schottky
diodes and a circular transmission line model (CTLM) were
used to characterize the contact characteristics and thermal
stability of Ti/TiO2/n-Ge contacts with carbon incorporated
TiO2 layer.

II. EXPERIMENTAL METHODS
Schottky diodes and CTLM test structures were fabricated on
n-type Ge substrate to analyze the contact characteristics of
Ti/TiO2/n-Ge such as SBH and ρc, respectively. The detailed
fabrication flow has been described as follows: moderately
doped n-type 4-inch Ge (100) wafers (∼1018 cm−3) were
used as starting materials. The wafers were cleaned with
acetone and rinsed with deionized (D.I.) water. And then,
the wafers were dipped in 2% diluted hydrofluoric acid
(dHF, HF: H2O = 1:50 ml: ml) in order to remove native
oxides and rinsed with D.I. water. First, a 100-nm-thick SiO2
layer was deposited using plasma-enhanced chemical vapor
deposition (PECVD) to isolate the contact holes where the
pressure, RF power, and temperature were 8 mTorr, 600W,
and 300 ◦C. Subsequently, the Schottky diode and CTLM test
structure were patterned using photolithography for micron
patterns and an i-line stepper for the sub-micron patterns,
respectively. Sequentially, the patterned PECVD oxide was
etched using a dry etcher, and the interfacial TiO2 layers
were deposited using atomic layer deposition (ALD) to create
an MIS structure. The precursors for the ALD TiO2 layer
were tetrakis(dimethylamido)titanium (TDMA-Ti) and H2O.

The atomic deposition of TiO2 layers was performed with
50 cycles at 200 ◦C atmospheres to form a 2-nm-thick layer.
Next, carbon ions were implanted into the interfacial TiO2

layer in order to form a diffusion barrier of oxygen ions and
to amorphize the surface using an ion implanter (Nissin Ion,
Impheat). And the ion implantation condition is as follows:
An implantation dose of 1015 cm−2, implantation energy of
10 keV, and a tilt angle of 7◦. The optimal ion implanta-
tion condition has been established considering the series
resistances of Ti/TiO2/n-Ge contacts. Then, Ti (5 nm)/TiN
(5 nm) layers were deposited using a DC sputtering system.
Thereafter, heat treatment was carried out in N2 ambient for
60 s at 450–600 ◦C using RTA.

After the fabrication of Schottky diodes and CTLM
test structures, the electrical characteristics were ana-
lyzed using Keithley 4200-SCS. The current density–bias
voltage (J − V ) curves of Schottky diodes were mea-
sured, and the values of SBH were calculated using the
current-temperature (I-T) method. Also, the ρc values of
Ti/TiO2/n-Ge contacts were extracted using the transfer
length
method (TLM).

Preparing the specimens for the TEM and EELS anal-
yses was performed using a dual-beam focused ion beam
(Dual-FIB) with Ga+ ion beammilling and thinning at 30 kV
acceleration voltage. Then, conventional TEM images and
EELSmaps of Ti/TiO2/n-Ge contacts with andwithout C-imp
were obtained using a JEOL JEM 2200FS with an image
Cs-corrector.

III. RESULTS AND DISCUSSION
Fig. 1 shows the reverse current density (JOFF ), which is mea-
sured under bias condition: V = −2.0V, of the Ti/TiO2/n-Ge
Schottky diode with and without C-imp as a function of the
annealing temperature. The insets show the J−V characteris-
tics of Ti/TiO2/n-Ge diode with and without C-imp. The JOFF
values with and without C-imp after RTA at 450 ◦C show an
Ohmic behavior due to alleviation of FLP by inserting the
interfacial TiO2 layer. However, as the annealing temperature
increases, JOFF without C-imp decreases significantly, but
the JOFF with C-imp was almost consistent. In other words,
the Ti/TiO2/n-Ge Schottky diode with C-imp shows sta-
ble Ohmic characteristics after high-temperature annealing.
On the other hand, the Ti/TiO2/n-Ge Schottky diode without
C-imp shows the non-linear characteristic, which is attributed
to the poor thermal stability of TiO2 mainly due to the out-
diffusion of oxygen [19], [20], [21].

The SBH values have been extracted from the current–
temperature (I-T) curves of Ti/TiO2/n-Ge Schottky diodes
with and without C-imp for 27–105 ◦C. The I-V relationship
for fabricated Schottky diodes is represented by [22]

I = AA∗e−q∅B/kT
(
eqV/nkT − 1

)
= Is

(
eqV/nkT − 1

)
(1)

where Is is the saturation current, A is the diode area, A∗ =
4πqk2m∗/h3 = 120 (m∗/m) A/cm2-K2 is Richardson’s con-
stant, 8B is the barrier height, and n is the ideality factor.
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FIGURE 1. JOFF of Ti/TiO2/n-Ge contacts (a) without and (b) with C-imp
after RTA at 450–600 ◦C for 60 s in N2 ambient. Inset: corresponding J-V
curves at various RTA temperatures.

For V�kT/q, equation (1) can be written as follows:

ln
(
I/T 2

)
= ln

(
AA∗

)
− q (∅B − V/n) /kT (2)
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n
−
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q
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)]
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(3)

The barrier height is calculated from the slope
(d

[
ln

(
I/T 2

)]
/d (1/T )) using bandgap energy (Eg) of

0.66 and an electron affinity (χ ) of 4.0 eV for Ge at 300 K.
Fig. 2 shows the calculated SBH of Ti/TiO2/n-Ge after

RTA.Without C-imp, the SBH is constant at∼ 0.35 eV below
500 ◦C. Above 550 ◦C, the SBH increases and enters into
the FLP regime. Such SBH degradation is attributed to the
decomposition of the TiO2 interlayer at the MS interfaces.
With C-imp, the SBH is constant up to 600 ◦C. This suggests

FIGURE 2. SBH of the Ti/TiO2/n-Ge contacts without (black rectangle)
and with (red circle) C-imp after RTA at 450–600 ◦C.

FIGURE 3. Cross-sectional TEM images of the Ti/TiO2/n-Ge contacts
without and with C-imp after RTA at (a) 450 and (b) 600 ◦C, and (c) the
corresponding EELS maps for oxygen after RTA at 600 ◦C.

that FLP is suppressed in the MIS structure even after RTA
temperatures above 550 ◦C.
Cross-sectional TEM images and EELSmaps were used to

understand the effect of the RTA temperature on the J–V and
SBH behaviors. After RTA at 450 ◦C, there is no deformation
of TiO2 layer irrespective of C-imp, as shown in Fig. 3(a).
However, after RTA at 600 ◦C, the TiO2 layer without C-imp
becomes faint because of decomposition. This can be sup-
pressed with C-imp, as shown in Fig. 3(b). Fig. 3(c) shows
the EELS maps of oxygen for the Ti/TiO2/n-Ge structures.
The bright regions represent the areas with abundant oxygen.
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FIGURE 4. ρc of Ti/TiO2/n-Ge contacts without (black curve) and with
(red curve) C-imp as a function of RTA temperature.

The TiO2 layer in Ti/TiO2/n-Gewithout C-imp is thicker than
that in Ti/TiO2/n-Ge with C-imp. This indicates that C-imp
effectively reduces the out-diffusion of oxygen from the TiO2
layer up to an RTA temperature of 600 ◦C.
Fig. 4 shows the ρc values obtained using the CTLM test

structure versus the RTA temperature. At 600 ◦C, the ρc value
of the sample without C-imp is similar to that of the Ti/n-Ge
MS contact. This suggests that the TiO2 layer collapses and
the MIS structure changes to an MS-like structure. The ρc
value of the Ti/TiO2/n-Ge contact with C-imp is constant
(∼ 1.3 × 10−4�·cm2) up to 600 ◦C.
Thus, carbon incorporation effectively improves the ther-

mal stability of the TiO2 layer, thereby enhancing the electri-
cal characteristics of the Ti/TiO2/n-Ge contact.

IV. CONCLUSION
We experimentally demonstrated the effects of carbon incor-
poration on the electrical characteristics and thermal stabil-
ity of the TiO2 interfacial layer for Ti/TiO2/n-Ge contacts.
The MIS contact degraded at an RTA temperature above
550 ◦C. This degradation was caused by the deformation
of TiO2, which was confirmed through TEM images and
EELS maps. Carbon incorporation effectively improved the
thermal stability of TiO2 with RTA. With C-imp, the SBH
and ρc were relatively constant up to an RTA temperature
of 600 ◦C. Thus, carbon incorporation effectively improves
the thermal stability of MIS contacts, which can help develop
high-performance Ge-based devices.
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