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ABSTRACT This article is about a criterion based on credibility complex fuzzy set (CCFS) to study
the prevailing substitution boxes (S-box) and learn their properties to find out their suitability in image
encryption applications. Also these criterion has its own properties which is discussed in detailed and on
the basis of these properties we have to find the best optimal results and decide the suitability of an S-box
to image encryption applications. S-box is the only components which produces the confusion in the every
block cipher in the formation of image encryption. So, for this first we have to convert the matrix having
color image using the nonlinear components and also using the proposed algebraic structure of credibility
complex fuzzy set to find the best S-box for image encryption based on its criterion. The analyses show that
the readings of GRAY S-box is very good for image data.

INDEX TERMS Fuzzy set, complex fuzzy set, fuzzy credibility numbers, Frank T-norm, S-Box.

I. INTRODUCTION
Multiple criteria group decision-making (MCGDM) issues
is that of decision making problems, In which we have to
find the best solution using various aggregation operators
having alternatives and some criteria. There are many prob-
lems which is face in the real stage but we have try to solve
these decision making problems using various aggregation
operators and methods. As normally the decision making
problems has unclear and uncertain data in the form of crisp
set and there is some issues which is not discussed and solved
by crisp set.

A. A BRIEF REVIEW ON THE DEVELOPMENT OF FUZZY SET
So to solve this type of issues Zadeh [1] define the gener-
alize form of classical set (crisp set) which is called fuzzy
set (FS) to deal with such kind of issues having uncertainties
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and uncertain information. After the detailed study of the
MCGDM problems we conclude that there are three aspects
(parts) which is in the case ofMCGDMproblems. 1) The first
part is that we have to represent the information and the types
of information. 2) The second part is that we have to collect
the data having alternatives and criteria. 3) The third part is
that we have to show the best alternatives of the MCGDM
problems using some define score or accuracy function. So by
using of basic properties and operational laws of FS the
Song et al. [2] introduced its work and their application to
real life problems. Merigó and Gil-Lafuente [3] explained the
generalized aggregation operators under FS information.

B. A BRIEF REVIEW ON THE DEVELOPMENT OF
INTUITIONISTIC FUZZY SET
After defining the concept of fuzzy set, which has one degree
called membership degree (MD) and that degree belong to
the close interval zero and one. So there are some problems
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which is not deal by the fuzzy set and it has a lack of infor-
mation. So to overcome this type of problems Atanassov [4]
define the concept of intuitionistic fuzzy set (IFS) having
two degrees called MD and non-membership degree (NMD)
and that degrees belong to the close interval zero and one
also having condition that their sum must belong to the close
interval zero and one. Thao et al. [5] explained the similarity
measure under IFS information and their application to real
life decision making problems.

C. A BRIEF REVIEW ON THE DEVELOPMENT OF FUZZY
CREDIBILITY SET
There are some problems using the fuzzy set and its gen-
eralize form which is discussed as above but there is some
problems in which the degree of accuracy or credibility is not
discussed by the previous ideas. So the Ye et al. [6] explained
these types of problems in detail and that idea is name as
fuzzy credibility set (FCS). As the fuzzy set is define as
the grading system but that grades is only the one grade.
After that the Atanassov explained the generalized form of
FS called intuitionistic fuzzy set (IFS) having two degrees
one is called membership degree and the other is called non-
membership degree (NMD) having the condition that the sum
of MD and NMD belong to the close interval zero and one.
Beside these all of the information is correct but lack of
some terms is not discussed which is the accuracy degree
or credibility degree. The generalize form of IFS is called
FCS but in the FCS we have also two degree one is called
MD and the other is called degree of accuracy or credibility.
Ye et al. [7] explained the series of aggregation operators
under cubic FCS and their application to DMs problems.

D. A BRIEF REVIEW ON THE DEVELOPMENT OF COMPLEX
FUZZY SET
The fuzzy set and its generalization only deal with uncertainty
in data, but didnot explain at a given phase of time. But
there are some problems in which there is a need of phase
term and amplitude, So to discuss the phase of time and
amplitude and membership degree range is exceed from real
subset to a unit disc of the complex plane Ramote et al. [8]
define a new set called complex fuzzy set (CFS). Further-
more the detailed about the CFS and its properties are dis-
cussed by Ramote et al. [9]. The correlation of CFS and
Pythagorean Fuzzy set are explained by Dick et al. [10].
A concise outline of the CFS and logic are presented by
Yazdanbakhsh and Dick [11]. Mehmood et al. [12] explained
the similarity measure under bipolar complex fuzzy infroma-
tion. Garge et al. [13] explained a series aggregation opera-
tors under complex q-Rung orthopair fuzzy information and
their application to DMs problems.

E. A BRIEF REVIEW ON THE DEVELOPMENT OF COMPLEX
INTUITIONISTIC FUZZY SET
After the description about CFS there are some problems
which is not solved by CFS because it contained more than
one degree and having two degrees called MD and NMD

which give us the idea of complex intuitionistic fuzzy set
(CIFS) and explained by Alkouri and Salleh [14]. The dis-
tance measure, relations and composition of any two CIFS
are discussed by Alkouri and Salleh [15]. The distance and
entropy measure for complex intuitionistic fuzzy soft set
are explained by Kumar and Bajaj [16]. In the solving of
decision making problems there is a need of aggregation
operators (Aops), So the Power AOps as well as the dis-
tance measure for the pair of CIFS are discussed by Rani
and Garg [17], [18]. Under CIFS information the correlation
measure was discussed by Garg and Rani [19]. Also Ali and
Smarandache [21] extended the theory of CFS to complex
neutrosophic sets.

F. A BRIEF REVIEW ON THE DEVELOPMENT OF FRANK
t-norm AND t-conorm
The Frank t-norm and t-conorm [22] are awide and adjustable
family of continuously triangular norms that are important
generalizations of the probabilistic and Lukasiewicz t-norm
and t-conorm. Because the Frank t-norm and t-conorm both
have a parameter, they are more adjustable in the information
fusion process and are more suited to modeling DMs issues.
Using Frank norms a series of power aggregation operators is
discussed by Mahnaz et al. [23] and their application to DMs
problems under CFS information. Yahya et al. [24] explained
a series of aggregation operators on the basis of Frank norms
and their application to DMs problems.

G. A BRIEF REVIEW ON THE DEVELOPMENT OF CoCoSo
METHOD
The aggregation operators is used in the decision making
problems which is basically a MCGDM problems and also
will helpful to collect all the data in the form of aggregated
data and give the final results. But the approach (methods) is
another way to find the best result but can used for multi cri-
teria decision making problems. Yazdani et al. [25] defined
the Combined compromise solution (CoCoSo) method and
their application toDMs problems.Using the CoCoSomethod
Qiyas et al. [26] discussed all the steps and their application
to DMs problems. Karasan et al. [27] explained all the steps
of CoCoSo method and their application to DMs problems.
Wen et al. [28] explored the CoCoSo method in hesitant
fuzzy linguistic environment. Wang et al. [29] discussed the
CoCoSo method and theri application to real life problems.

As in light of above literature reveiw, in this paper we
have discussed a series of aggregation operators on the basis
of Frank norms for MCGDM problems and also we have
discussed all the step for the CoCoSo method under complex
fuzzy credibility (CFCS) information. Also there are steps
in the MCGDM problems which are to represent the expert
informations, after that we have to aggregate all the expert
informations and lastly we have to apply the define score
function to the aggregated values to display the final results.
Also there are some novelty of this paper which is as follows.
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1) The basic set operational laws of CFCS are consider
and are extended to the operational laws of Frank norms for
CFCS.

2) Also the aggregation operators on the basis of extended
operational laws of Frank norms, we define the fuzzy credi-
bility Frank average and geometric aggregation operators.

3) The CoCoSo method is discussed under CFCS
information.

4) The S-box image encryption under various criteria is dis-
cussed in this paper and also to find the best image encryption.
we have applied all the develop work in this case of real life
decision making example.

H. MOTIVATION AND OBJECTIVE OF PROPOSED WORK
The concept of FS, IFS, FCS and CFCS has its own limitation
and their application to many real life decision problems.
The motivation of proposed model is given step by step
in the whole manuscript. Now, we discuss some important
objectives of this paper.

1) Some cases of the FS, IFS are failed in the real life
decision making problems, because all of these has discussed
only theMDandNMD.But here themain goal of this paper to
discussed the MD and degree of accuracy (credibility). which
mean that it provide more detailed about the membership
degree for any decision making (DMs) problems.

2) The second goal of our proposed model is that we
have discussed in detail about the MD and degree of cred-
ibility (accuracy). Which give us more detailed about the
correctness (accuracy) of the MD. For example, if we assign
(0.4, 0.7) and (0.5, 0.9) to any DMs problems, where the
membership degrees is 0.4 and 0.5 and degree of credibility is
0.7 and 0.9 respectively, which shows that (0.5, 0.9) is better
than (0.4, 0.7) because the degree of accuracy (credibility) of
the second MD is greater than the first MD.

3) Our third objective is to construct a strong relation-
ship between proposed models and MCGDM problems.
We develop two novel algorithms to deal with the uncer-
tainties in the data with multiple-attributes group decision
making problems. We use different score function and accu-
racy function for the ranking of alternatives in MCGDM.
It is interesting to note that both algorithms yield the same
result.

4) We may take the Frank t-norm and t-conorm, which we
will describe as the core operational laws, and create a series
of aggregation operators based on their Frank operational
laws, which will provide a high and broad range for decision
making issues. Another feature is that the Frank t-norm and
t-conorm are used to organize data in a certain format while
also assisting in the removal of ambiguity and vagueness in
operational laws.

5) The CoCoSo method a good way to find final results
for any MADM problems and also the aggregation operators
also help in the collection of experts information and after
applied a well defined score function we have to find the best
optimal results. So here we have discussed the aggregation

operators as well as the technique for the finding of best
optimal solutions.

6) The most significant purpose is to establish a solid con-
nection between the proposedmodel andMCGDMproblems.
Under the influence of the suggested model’s operator esti-
mate approaches, we offer novel operators for determining
MCGDM concerns. To illustrate the usefulness and effective-
ness of the desired solution, a useful example applicable to
select and study the S-box image encryption.

I. SETUP OF THE PAPER
The setup of our paper is that in the first section the introduc-
tion is presented and in the second and third section the oper-
ational laws and the proposed weighted average aggregation
operator and its properties is displayed. The proposed ordered
weighted average and hybrid weighted average aggregation
operators is discussed in the section four and five respectively.
In the section six and seven the algorithms and the real life
example is discussed in detailed. Lastly in the section eight
and nine we have talked about the comparison with other
methods and conclusion of our work is presented.

J. EXISTING DEFINITIONS
This section contained some definitions which is helpful in
the formation of newwork in this paper. These existing defini-
tions contained fuzzy set, intuitionistic fuzzy set, fuzzy cred-
ibility set, complex fuzzy set, complex intuitionistic fuzzy set
and their operational laws.

K. FUZZY SET [1]
Let X 6= φ. Then, the FS A in X is define and mathematically
we can write as. A = {〈x, aiA(x)〉 |x ∈ X}, where aiA(x) show
the degree of membership and also aiA(x) contain to the close
interval zero and one.

L. INTUITIONISTIC FUZZY SET [4]
Let X 6= φ. Then, the IFS A in X is define and mathematically
we can write as. A = {〈x, aiA(x), biA(x)〉 |x ∈ X}, where
aiA(x), biA(x) show the degree of membership and degree of
non-membership and also aiA(x), biA(x) contain to the close
interval zero and one and a condition that their sum must
belong to the close interval zero and one.

M. COMPLEX FUZZY SET [8]
LetX 6= φ. Then, the CFSA inX is define andmathematically
we can write as. A = {〈x, aiA(x)〉 |x ∈ X}, where aiA(x)
show the degree of membership that is basically a complex
membership degree and also aiA(x) contain in the unit circle
of a complex plane and is of the form z = aiA(x)ei2πuA(x),
where i =

√
−1 and aiA(x) belong to the close interval zero

and one, also the value of the ei2π is real valued function.

N. COMPLEX INTUITIONISTIC FUZZY SET [14]
Let X 6= φ. Then, the CIFS A in X is define and mathe-
matically we can write as. A = {〈x, aiA(x), bi (x)〉 |x ∈ X},
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where aiA(x), bi (x) show the degree of membership and
non-membership respectively that is basically a complex
membership and non-membership degrees and also aiA(x),
bi (x) contain in the unit circle of a complex plane and is of
the form z = aiA(x)ei2πaiA(x), where i =

√
−1 and aiA(x)

belong to the close interval zero and one, also the value of the
ei2π is real valued function.

O. FUZZY CREDIBILITY SET [6]
Let X 6= φ. Then, the FCS Ĩ is defined and mathematically
we can write as. Ĩ = {〈x, aiA (x) , biA (x)〉 |x ∈ X} , where
aiA (x) → [0, 1] , biA (x) → [0, 1] are the membership
function of x in Ĩ and the degree of credibility related to aiA (t)
respectively, Then the pair (x, aiA(x), biA(x)) are called fuzzy
credibility numbers (FCNs).

P. COMPLEX FUZZY CREDIBILITY SET
Let X 6= φ. Then, the CFCS A in X is define and math-
ematically we can write as. A = {

〈
x, aiA(x)ei2πaiA(x) ,

biA (x) ei2πbiA(x)
〉
|x ∈ X}, where aiA(x)ei2πaiA(x), biA (x)

ei2πbiA(x) show the complexmembership degree and degree of
credibility and also aiA(x)ei2πaiA(x), biA (x) ei2πbiA(x) contain
in the unit circle of a complex plane and is of the form
z = aiA(x)ei2πaiA(x), biA (x) ei2πbiA(x) where i =

√
−1 and

aiA(x)ei2πaiA(x), biA (x) ei2πbiA(x) belong to the close interval
zero and one.

Q. OPERATIONAL LAWS OF COMPLEX FUZZY
CREDIBILITY SET
Here the proposed properties of related CFCS, Let we have
two CFCNs si = (aiAei2πaiA(x), biAei2πbiA(x)) then we write as,
1) α1 ⊕∗ α2 = (a1ei2πa1 + a2ei2πa2 − a1ei2πa1a2ei2πa2 ,

b1ei2πb1 + b2ei2πb2 − b1ei2πb1b2ei2πb2 )
2) α1 ⊗∗ α2 = (a1ei2πa1a2ei2πa2 , b1ei2πb1b2ei2πb2 )
3) λα

∗

= (1− (1− aiei2πai )λ, bλi e
i2πbi ), for λ > 0.

4) α∗λ = ((aiei2πai )λ, 1− (1− biei2πbi )λ), for λ > 0.

R. SCORE FUNCTION FOR CFCNs
Let we have CFCNs which is denoted by si =

(aiAei2πaiA(x), biAei2πbiA(x)), Then the score function can be
defined as, S(si) = [aiei2πaiA(x)biei2πbiA(x) + (aiei2πaiA(x) +
biei2πbiA(x))/2]/2.

S. NEW SCORE FUNCTION FOR CoCoSo METHOD
Let we have CFCNs which is denoted by si =

(aiAei2πaiA(x), biAei2πbiA(x)), Then the new score function can
be defined as, S(si) = [aiei2πaiA(x) − biei2πbiA(x) + 1 +
eaie

i2πaiA(x)−bie
i2πbiA(x)−1

1+π ]. Where the degree of hesistancy is
define as follows, π =

√
1− ai − bi. S(si) ∈ [e−1, 2+ e]

T. OPERATIONAL LAWS OF COMPLEX FUZZY CREDIBILITY
NUMBERS
Here, we proposed some properties of related CFCNs. Let we
have two CFCNs then we write as,

1) α1 ⊕
∗ α2

=

(
u1ei2πu1 + u2ei2πu2 − u1ei2πu1u2ei2πu2 ,
c1ei2πυ1 + c2ei2πυ2 − c1ei2πυ1c2ei2πυ2

)
.

2) α1 ⊗∗ α2 = (u1ei2πu1u2ei2πu2 , c1ei2πυ1c2ei2πυ2 ).
3) λα

∗

= (1− (1− uiei2πui )λ, cλi e
i2πυi ), for λ > 0.

4) α∗λ = ((uiei2πui )λ, 1− (1− ciei2πυi )λ), for λ > 0.

II. FRANK AGGREGATION OPERATORS FOR COMPLEX
FUZZY CREDIBILITY NUMBERS
Using the basic operational laws of Frank t-norm and
t-conorm, we have define a series of aggregation operators
like weighted average aggregation operators, in which we
have to add the corresponding alternatives and criteria hav-
ing the corresponding weights. These aggregation operators
are namely complex credibility fuzzy weighted aggregation
operators which will helpful in the collections of more than
one decision matrix.

A. FRANK OPERATIONAL LAWS FOR COMPLEX FUZZY
CREDIBILITY SET
The properties and operational laws of Frank t-norm and
t-conorm are discussed in detailed which are addition, mul-
tiplication, scalar multiplication and some power scalar
multiplication. These properties are helpful to define a new
aggregation operators, where λ > 1.

1) α1 ⊕∗ α2 =



1− logλ
(
1+ (λ1−ai−1)wi

λ−1

)
e
i2π1−logλ

(
1+ (λ1−ai−1)wi

λ−1

)
,

logλ
(
1+ (λbi−1)wi

λ−1

)
e
i2π logλ

(
1+ (λbi−1)wi

λ−1

)


,

2) α1 ⊗∗ α2 =



logλ
(
1+ (λai−1)wi

λ−1

)
e
i2π logλ

(
1+ (λai−1)wi

λ−1

)
,

1− logλ

(
1+ (λ

1−bi
−1)wi

λ−1

)

e
i2π1−logλ

(
1+ (λ

1−bi
−1)wi

λ−1

)


,

3) λ.α∗1 =



1− logλ
(
1+ (λ1−ai−1)wi

(λ−1)wi−1

)
e
i2π1−logλ

(
1+ (λ1−ai−1)wi

(λ−1)wi−1

)
,

logλ
(
1+ (λbi−1)wi

(λ−1)wi−1

)
e
i2π logλ

(
1+ (λbi−1)wi

(λ−1)wi−1

)


,

4) α∗
λ

1 =



logλ
(
1+ (λai−1)wi

(λ−1)wi−1

)
e
i2π logλ

(
1+ (λai−1)wi

(λ−1)wi−1

)
,

1− logλ
(
1+ (λ1−bi−1)wi

(λ−1)wi−1

)
e
i2π1−logλ

(
1+ (λ1−bi−1)wi

(λ−1)wi−1

)


.
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III. COMPLEX FUZZY CREDIBILITY FRANK AVERAGING
AGGREGATION OPERATORS
Consider we have a mapping which is defined as αn → α,

then this mapping is said to be CFCFWA operator, and these
weighted aggregation operators is defined on the basis of
Frank norm having weight vector w = (w1,w2, . . . ,wn)T ,
with 6n

i=1wi = 1 and wi ∈ [0, 1].

CFCFWA(s1, s2, . . . , sn)

= ⊕
n
i=1sie

i2πwi
CFCFWA(s1, s2, . . . , sn)

=

{
⊕
n
i=1sie

i2πwi
}

=


1− logλ 1+5

n
i=1(λ

1−ai − 1)
ωi

e
i2π

(
1−logλ 1+5

n
i=1(λ

1−ai−1)
ωi
)
,

logλ 1+5
n
i=1(λ

bi − 1)
ωi e

i2π
(
logλ 1+5

n
i=1(λ

bi−1)
ωi
)
 .
(1)

In the next theorem we prove that the Equ. (1) is also a
CFCNs and the aggregated value of CFCNs ϑ = {si, i =
1, 2, . . . , n} is also a CFCNs.
Theorem 1: Let we have a family of CFCNs that is denoted

as ϑ = {si, i = 1, 2, . . . , n}, having weight vector like w =
(w1,w2, . . . ,wn)T . So, the aggregated values of the proposed
aggregation operators is still a CFCNs.

CFCFWA(s1, s2, . . . , sn)

=

{
⊕
n
i=1sie

i2πwi
}

=


1− logλ 1+5

n
i=1(λ

1−ai − 1)
ωi

e
i2π

(
1−logλ 1+5

n
i=1(λ

1−ai−1)
ωi
)
,

logλ 1+5
n
i=1(λ

bi − 1)
ωi

e
i2π

(
logλ 1+5

n
i=1(λ

bi−1)
ωi
)


Proof: Using mathematical induction we have to prove

the above theorem, using n = 2,

s1 + s2

=


1− logλ(λ

1−a1 − 1)
ω1 (λ1−a2 − 1)

ω2

e
i2π

(
1−logλ(λ

1−a1−1)
ω1 (λ1−a2−1)

ω2
)
,

logλ 1+ (λb1 − 1)
ω1 (λb2 − 1)

ω2

e
i2π

(
logλ(λ

b1−1)
ω1 (λb2−1)

ω2
)
.



=


1− logλ 1+5

n
i=1(λ

1−ai − 1)
ωi

e
i2π

(
1−logλ 1+5

n
i=1(λ

1−ai−1)
ωi
)
,

logλ 1+5
n
i=1(λ

bi − 1)
ωi

e
i2π

(
logλ 1+5

n
i=1(λ

bi−1)
ωi
)
.


Let n = k, then

CFCFWA(s1, s2)

=

{
⊕

2
i=1sie

i2πwi
}

=


1− logλ 1+5

k
i=1(λ

1−ak − 1)
ωi

e
i2π

(
1−logλ 1+5

k
i=1(λ

1−ak−1)
ωi
)
,

logλ 1+5
k
i=1(λ

bk − 1)
ωi

e
i2π

(
logλ 1+5

k
i=1(λ

bk−1)
ωi
)
.


Further, we check for n = k + 1, we have,

CFCFWA(s1, s2, . . . , sk+1)

=



1− logλ 1+5
k
i=1(λ

1−ak − 1)
ωi

e
i2π

(
1−logλ 1+5

k
i=1(λ

1−ak−1)
ωi
)
,

1− logλ 1+5
k+1
i=1 (λ

1−ak+1 − 1)
ωi

e
i2π

(
1−logλ 1+5

k+1
i=1 (λ

1−ak+1−1)
ωi
)
,

logλ 1+5
k
i=1(λ

bk − 1)
ωi

e
i2π

(
1−logλ 1+5

k
i=1(λ

bk−1)
ωi
)
,

logλ 1+5
k+1
i=1 (λ

bk+1 − 1)
ωi

e
i2π

(
logλ 1+5

k+1
i=1 (λ

bk+1−1)
ωi
)
.


The result is true for n = k + 1 and hence true for n ≥ 1.
Now, there are some basic properties which are discussed

in detailed for the proposed aggregation operators that is
idempotency, monotonicity and boundedness.

A. IDEMPOTENCY PROPERTY
Let we have a family of CFCNs that is denoted as ϑ =
{siei2π , i = 1, 2, . . . , n}, having weight vector like w =
(w1,w2, . . . ,wn)T . Then, we can write the idempotency
property as and can exists, but here we have a family of
CFCNs that is siei2π = sei2π = (uei2π , cei2π ) ∀i = 1, . . . , n.

CFCFWA(s1, s2, . . . , sn)ei2π = sei2π

B. BOUNDEDNESS PROPERTY
Let we have a family of CFCNs that is denoted as
ϑ = {siei2π , i = 1, 2, . . . , n}, having weight vec-
tor like w = (w1,w2, . . . ,wn)T . Then, we can write
the idempotency property as and can exists, but here we
have siei2π (i = 1, . . . , n)− is a family of CFCNs then a

set sminei2π =

(
min
i
uiei2π ,max

i
ciei2π

)
and smax =(

max
i
uiei2π ,min

i
ciei2π

)
are the maximum and minimum

CFCNs.

sminei2π ≤ CFCFWA(s1, s2, . . . , sn)ei2π ≤ smaxei2π

C. MONOTONICITY PROPERTY
Let we have a family of CFCNs that is denoted as
ϑ = {siei2π , i = 1, 2, . . . , n}, having weight vector
like w = (w1,w2, . . . ,wn)T . Then, we can write the
idempotency property as and can exists, but here we have
siei2π (i = 1, . . . , n) , s∗i e

i2π (i = 1, . . . , n) be the family of
CFCNs such that siei2π ≤ s∗i e

i2π ,

CFCFWA(s1, s2, . . . , sn)ei2π

≤ CFCFWA(s∗1, s
∗

2, . . . , s
∗
n)e

i2π
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Proof: We have a family of siei2π = sei2π = (uei2π ,
cei2π ) (i = 1, . . . , n). Then,

CFCFWA(s1, s2, . . . , sn)ei2π

=

〈
⊕
n
i=1sie

i2πwi
〉

=


1− logλ 1+5

n
i=1(λ

1−ai − 1)
ωi

e
i2π

(
1−logλ 1+5

n
i=1(λ

1−ai−1)
ωi
)
,

logλ 1+5
n
i=1(λ

bi − 1)
ωi

e
i2π

(
logλ 1+5

n
i=1(λ

bi−1)
ωi
)


For all i. Therefore,

=


1− logλ 1+5

n
i=1(λ

1−ai − 1)
ωi

e
i2π

(
1−logλ 1+5

n
i=1(λ

1−ai−1)
ωi
)
,

logλ 1+5
n
i=1(λ

bi − 1)
ωi

e
i2π

(
logλ 1+5

n
i=1(λ

bi−1)
ωi
)



=



1− (1− u)

n∑
k=1

pk

1− (1− ei2π (u))

n∑
k=1

pk

 ,(1− (1− c)

n∑
k=1

pk

(1− (1− ei2π (v)
) n∑
k=1

pk




=

(
1− (1− uei2π ), 1− (1− cei2π )

)
= (uei2π , cei2π ) = sei2π

Thus we have,

CFCFWA(s1, s2, . . . , sn)ei2π = sei2π

Wehave sminei2π , smaxei2π are themaximum andminimum
CFCNs, as sminei2π ≤ siei2π ≤ smaxei2π . Then,

⊕
n
i=1sminei2πwi ≤ ⊕ni=1sie

i2πwi ≤ ⊕ni=1wismaxei2π

is exist and now we have,

sminei2π ≤ ⊕ni=1sie
i2πwi ≤ smaxei2π

which implies that,

sminei2π ≤ CFCFWA(s1, s2, . . . , sn)ei2π ≤ smaxei2π

If we have a family of si ≤ s∗i ,⊕
n
i=1siwi ≤ ⊕

n
i=1s
∗
i w
∗
i .

Then,

CFCFWA(s1, s2, . . . , sn)ei2π

≤ CFCFWA(s∗1, s
∗

2, . . . , s
∗
n)e

i2π

Which is the required prove of the property.

IV. COMPLEX FUZZY CREDIBILITY FRANK ORDERED
AVERAGING AGGREGATION OPERATORS
Consider we have a mapping which is defined as αn → α,

then this mapping is said to be CFCFOWA operator, and
these weighted aggregation operators is defined on the basis
of Frank norms having following format having weight vec-
tor that is represented by w = (w1,w2, . . . ,wn)T , with
6n
i=1wi = 1 and wi ∈ [0, 1].

CFCFOWA(sσ1 , sσ2 , . . . , sσn )

= ⊕
n
i=1sσie

i2πwi.

CFCFOWA(s1, s2, . . . , sn)

=

{
⊕
n
i=1sσie

i2πwi
}

=


1− logλ 1+5

n
i=1(λ

1−aσi − 1)
ωi

e
i2π

(
1−logλ 1+5

n
i=1(λ

1−aσi−1)
ωi
)
,

logλ 1+5
n
i=1(λ

bσi − 1)
ωi

e
i2π

(
logλ 1+5

n
i=1(λ

bσi−1)
ωi
)

 , (2)

In the next theorem we prove that the equation (2) is also
a CFCNs and the aggregated value of CFCNs ϑ = {sσi , i =
1, 2, . . . , n} is also a CFCNs.
Theorem 2: Let we have a family of CFCNs that is denoted

as ϑ = {sσi , i = 1, 2, . . . , n}, having weight vector like w =
(w1,w2, . . . ,wn)T . So, the aggregated values of the proposed
aggregation operators is still a CFCNs.

CFCFOWA(s1, s2, . . . , sn)

=

{
⊕
n
i=1sσie

i2πwi
}

=


1− logλ 1+5

n
i=1(λ

1−aσi − 1)
ωi

e
i2π

(
1−logλ 1+5

n
i=1(λ

1−aσi−1)
ωi
)
,

logλ 1+5
n
i=1(λ

bσi − 1)
ωi

e
i2π

(
logλ 1+5

n
i=1(λ

bσi−1)
ωi
)

 .
Proof: The proof is obvious.

Now there are some basic properties which are discussed
in detailed for the proposed aggregation operators that is
idempotency, monotonicity and boundedness.

A. IDEMPOTENCY PROPERTY
Let we have a family of CFCNs that is denoted as ϑ =
{sσie

i2π , i = 1, 2, . . . , n}, having weight vector like w =
(w1,w2, . . . ,wn)T . Then, we can write the idempotency
property as and can exists, but here we have a family of
CFCNs that is sσie

i2π
= sσ ei2π = (uei2π , cei2π ) ∀i =

1, . . . , n.

CFCFOWA(sσ1 , sσ2 , . . . , sσn )e
i2π
= sσ ei2π

B. BOUNDEDNESS PROPERTY
Let we have a family of CFCNs that is denoted as
ϑ = {sσ iei2π , i = 1, 2, . . . , n}, having weight vec-
tor like w = (w1,w2, . . . ,wn)T . Then, we can write
the idempotency property as and can exists, but here we
have sσie

i2π (i = 1, . . . , n)− is a family of CFCNs then a
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set sσ minei2π =
(
min
i
uiei2π ,max

i
ciei2π

)
and sσ max =(

max
i
uiei2π ,min

i
ciei2π

)
are the maximum and minimum

CFCNs.

sσ minei2π ≤ CFCFOWA(sσ1 , sσ2 , . . . , sσn )e
i2π
≤ sσ maxei2π

C. MONOTONICITY PROPERTY
Let we have a family of CFCNs that is denoted as
ϑ = {sσie

i2π , i = 1, 2, . . . , n}, having weight vector
like w = (w1,w2, . . . ,wn)T . Then, we can write the
idempotency property as and can exists, but here we have
sσie

i2π (i = 1, . . . , n) , s∗σie
i2π (i = 1, . . . , n) be the family of

CFCNs such that sσie
i2π
≤ s∗σie

i2π

CFCFOWA(sσ1 , sσ2 , . . . , sσn )e
i2π

≤ CFCFOWA(s∗σ1 , s
∗
σ2
, . . . , s∗σn )e

i2π

Proof: The proof is obvious.

V. COMPLEX FUZZY CREDIBILITY FRANK HYBRID
AVERAGING AGGREGATION OPERATORS
Consider we have a mapping which is defined as αn → α,

then this mapping is said to be CFCFHWA operator, and
these weighted aggregation operators is defined on the basis
of Frank norms having following format having weight vec-
tor that is represented by w = (w1,w2, . . . ,wn)T , with
6n
i=1wi = 1 and wi ∈ [0, 1].

CFCFHWA(sσ1 , sσ2 , . . . , sσn )
′

= ⊕
n
i=1s

′

σi
ei2πwi.

CFCFHWA(s1, s2, . . . , sn)
′

(3)

=

{
⊕
n
i=1s

′

σi
ei2πwi

}

=



1− logλ 1+5
n
i=1(λ

1−a
′

σi − 1)
ωi

e
i2π

(
1−logλ 1+5

n
i=1(λ

1−a
′

σi−1)
ωi
)
,

logλ 1+5
n
i=1(λ

b
′

σi − 1)
ωi

e
i2π

(
logλ 1+5

n
i=1(λ

b
′

σi−1)
ωi
)


.

In the next theorem we prove that the equation (3) is also
a CFCNs and the aggregated value of CFCNs ϑ = {s

′

σi
, i =

1, 2, . . . , n} is also a CFCNs.
Theorem 3: Let we have a family of CFCNs that is denoted

as ϑ = {s
′

σi
, i = 1, 2, . . . , n}, having weight vector like w =

(w1,w2, . . . ,wn)T . So, the aggregated values of the proposed
aggregation operators is still a CFCNs.

CFCFHWA(s1, s2, . . . , sn)
′

=

{
⊕
n
i=1s

′

σi
ei2πwi

}

=



1− logλ 1+5
n
i=1(λ

1−a
′

σi − 1)
ωi

e
i2π

(
1−logλ 1+5

n
i=1(λ

1−a
′

σi−1)
ωi
)
,

logλ 1+5
n
i=1(λ

b
′

σi − 1)
ωi

e
i2π

(
logλ 1+5

n
i=1(λ

b
′

σi−1)
ωi
)



.

Proof: The proof is obvious.
Now there are some basic properties which are discussed

in detailed for the proposed aggregation operators that is
idempotency, monotonicity and boundedness.

A. IDEMPOTENCY PROPERTY
Let we have a family of CFCNs that is denoted as ϑ =
{s
′

σi
ei2π , i = 1, 2, . . . , n}, having weight vector like w =

(w1,w2, . . . ,wn)T . Then, we can write the idempotency
property as and can exists, but here we have a family of
CFCNs that is s

′

σi
ei2π = s

′

σ e
i2π
= (uei2π , cei2π ) ∀i =

1, . . . , n.

CFCFHWA(s
′

σ1
, s
′

σ2
, . . . , s

′

σn
)ei2π = s

′

σ e
i2π .

B. BOUNDEDNESS PROPERTY
Let we have a family of CFCNs that is denoted as
ϑ = {s

′

σi
ei2π , i = 1, 2, . . . , n}, having weight vec-

tor like w = (w1,w2, . . . ,wn)T . Then, we can write
the idempotency property as and can exists, but here we
have s

′

σi
ei2π (i = 1, . . . , n)− is a family of CFCNs then a

set s
′

σ mine
i2π
=

(
min
i
uiei2π ,max

i
ciei2π

)
and s

′

σ max =(
max
i
uiei2π ,min

i
ciei2π

)
are the maximum and minimum

CFCNs.

s
′

σ mine
i2π
≤CFCFHWA(s

′

σ1
, s
′

σ2
, . . . , s

′

σn
)ei2π ≤s

′

σ maxe
i2π

(4)

C. MONOTONICITY PROPERTY
Let we have a family of CFCNs that is denoted as
ϑ = {s

′

σi
ei2π , i = 1, 2, . . . , n}, having weight vector

like w = (w1,w2, . . . ,wn)T . Then, we can write the
idempotency property as and can exists, but here we have
s
′

σi
ei2π (i = 1, . . . , n) , s

′
∗
σi
ei2π (i = 1, . . . , n) be the family of

CFCNs such that s
′

σi
ei2π ≤ s

′
∗
σi
ei2π

CFCFHWA(s
′

σ1
, s
′

σ2
, . . . , s

′

σn
)ei2π

≤ CFCFHWA(s
′
∗
σ1
, s
′
∗
σ2
, . . . , s

′
∗
σn
)ei2π (5)

Proof: The proof is obvious.
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VI. DETAIL DESCRIPTION OF MCGDM PROBLEMS UNDER
COMPLEX FUZZY CREDIBILITY INFORMATION
In this section we have to discuss the detailed of our proposed
aggregation operators that is apply to the real life group
decision making problems and also will helpful to aggregate
the data in the form one collective information which will
be easy for finding the best optimal solution. So, these types
of MCGDM problems has alternatives, criteria and weight
vectors which is denoted by pi(i = 1, 2, . . . ,m), cj(j =
1, 2, . . . , n) and wi = (w1,w2, . . . ,wn). The the alternatives
is count for the things or objective of the given decision
making problems, the criteria is count for the properties or
objective of thing of the given decision making problems and
the weight vectors are used be the proposed aggregation oper-
ators. And the group decisionmatrix is denoted byD1,D2,D3
respectively.

Furthermore, the detailed of proposed algorithm is define
as follow which has some steps under the complex fuzzy
credibility information.

A. ALGORITHM-I
The algorithm-I is based on the proposed aggregation oper-
ator by apply on the MCGDM problems to find out the best
result. There are some step which will helpful in the finding
of best result.

Step-1. Represent the data in the form of decision matrix
having alternatives and criteria.

M = [wi(hkij)]m×n

D =

A1
A2
...

An


c1 c2 c3 · · · cm
hk11 hk12 hk13 · · · hk1m
hk21 hk22 hk23 · · · hk2m
...

...
...

. . .
...

hkn1 hkn2 hkn3 · · · hkmn


Step-2. Evaluate the aggregated decision matrix using the

proposed aggregation operators like as; CFCFWA,
CFCFOWA and CFCFHWA.

Step-3. Evaluate the score or accuracy function of the
aggregated decision matrix.

Step-4. Represent the final ranking result based on the
score or accuracy functions.

Step-5. The end.

B. ALGORITHM-II
The aggregation operators will helpful in the collection of
data which is collected by a group for a specific problems that
is normally taken as group data called MCGDM problems.
After that we have have apply our proposed method steps to
find the final results for the given problems.

But the algorithm-II is normally an approach or technique
that is used for that type of data which is collected by a
single information for a specific problems which is consider
as MCDMproblems. There are some steps which will helpful
in the finding of best result.

Step-1. Represent the data in the form of decision matrix
having alternatives and criteria.

M = [τ (k lij)]m×n

D =

A1
A2
...

An


c1 c2 c3 · · · cm
hk11 hk12 hk13 · · · hk1m
hk21 hk22 hk23 · · · hk2m
...

...
...

. . .
...

hkn1 hkn2 hkn3 · · · hknm


Step-2. Evaluate the aggregated decision matrix using the

proposed aggregation operators like as; CFCFWA,
CFCFOWA and CFCFHWA.

Step-3. Represent the normalized decision matrix.

[wi(hkij)]
′

m×n =

{
(ai, bi) = (ai, bi)c

(bi, ai)

}
. (6)

Step-4. Compute the score or accuracy function.

S(Ai) = aij − bij + 1+
eaij−bij

1+ πij
.

Step-5. Compute the Renyi entropy measure Rj.

Rj =
1

1− α
log

(
m∑
i=1

hkij

)
Step-6. Compute the objective weight wj.

wj =
1− Rj

n∑
i=1

(1− Rj)

Step-7. Determine the combined weight vector βj.

βj =
wjRj
n∑
j=1

wjRj

Step-8. Determine the total of the weighted comparability
sequence for every alternatives on Xi.

Xi =
n∑
j=1

wjabij

Step-9. Determine the whole of the power weight of com-
parability sequences of each for each alternatives
as Yi.

Yi =
n∑
j=1

(abij)wj

Step-10. Determine the whole aggregations which is as Yi.

Lia =
Yi + Xi

n∑
j=1

(Yi + Xi)
.

Lib =
Yi

mini Yi
+

Xi
mini Xi

.

Lic =
λYi + (1− λ)Xi

λmaxi Yi + (1− λ) maxi Yi
.
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Step-11. Compute the assessment values.

pi = (LiaLibLic)
1
3 +

Lia + Lib + Lic
3

Step-12. The end.

C. PROBLEM DESCRIPTION ABOUT S-BOX
There are some inputs and outputs which is used in the S-box
that is represented by c, d and consider as bits and c 6= d
respectively. If we assign some values to the c, d S-box will
give us various types of S-box, which can take the values as
in 2cd words in the form of c, d bits, when c = 8, d = 8 will
give us i.e c×d = 8×8 S-box. There are some special block
ciphers (AES, APA, Gray, Lui, Residue Prime and S8) which
is basically studied in this paper. Tran et al. [30] explained
the accuracy and application of a S-box to image encryption
application. If we assign various values to the inputs of any
type of S-box to check the encryption process and also to
check which types of S-box are best. So, to solve this type
of problem we have to develop a method to solve these types
of problems under complex fuzzy credibility information.

To study the pixel detailed and encryption steps of any
image, we may use the correlation information. The various
methods is used to find the best result in the image encryption
process, but here we develop some methods to find a best
and suitable ways of image encryption using various types
of S-box. So there are some methods like entropy analysis,
contrast analysis, homogeneity analysis, energy analysis and
mean of absolute deviation analysis are used to know about
the strength of image encryption. These analyses will provide
us a good results in the formation of image using various S-
box. Furthermore our aim is that we have to used various kind
of S-box to improve the image encryption under the various
analysis. we have to repattern the plain image and transform
it into the best way using S-box.

There are various stages in which a plain image is
encrypted and Finally, we didn’t say for these S-box through
these parameters to which one is better and suitable for image
encryption everyone has own quality and disquietly at dif-
ferent stages. So there are some vagueness and uncertainties
in this analyses. Now, we use the CoCoSo method under
complex credibility fuzzy set to find the suitable S-box for
an image encryption.

D. ALGORITHMS UNDER COMPLEX FUZZY CREDIBILITY
SET
Decision support systems are a precise class of computer-
based information systems that support your decision-making
activities. A decision support system analyzes data and pro-
vide interactive information support to professionals dur-
ing the decision-making process. Decision making implies
selection of the best decision from a set of possible options.
In some cases, this selection is based on past experience. Past
experience is used to analyze the situations and the choice
made in these situations.

Now, here we apply our proposed work to real life decision
making problems which is basically an image encryption.
The detailed of the alternatives and criteria is discussed as
under. Consider we have set of alternatives which are four
alternatives as pi = {p1, p2, p3, p4}, where p1 is for plain
image, p2 is for AES image, p3 is for Gray and p4 is for S8.
And the decision maker take the decision on the basis of four
criteria which is as follow. c1 is for energy of image, c2 is for
contrast of image, c3 is for average correlation of image and
c4 is for homogeneity of an image.

Now, to make a decision under credibility complex fuzzy
information, we have used the above aspects of criteria. Also
we have to find the suitable S-box. The four possible alterna-
tives are to be evaluated using the complex fuzzy credibility
information from the decision maker under the above four
criteria.

E. COMPUTATIONAL RESULT OF ALGORITHM-I
The computational results of our proposed algorithm-I is
that we have to find all the steps which is needful and also
to find the best results of the given problems using these
steps.

Step-1 Represent the data in the form of decision matrix
having alternatives and criteria which is denoted by
Table-1,Table-2 and Table-3.

TABLE 1. CFCNs information by D1.

TABLE 2. CFCNs information by D2.

Step -2 Compute the aggregated decision matrix which is
represented by Table-4, Table-5 and Table-6.
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TABLE 3. CFCNs information by D3.

TABLE 4. The aggregated matrix using proposed CFCFWA.

TABLE 5. The aggregated matrix using proposed CFCFOWA.

TABLE 6. The aggregated matrix using proposed CFCFHWA.

Step-3 Compute the score or accuracy function which are
denoted by Table-7. Also the final ranking result is
also shown in Table-7.

F. COMPUTATIONAL RESULT OF ALGORITHM-II
The computational results of our proposed algorithm-II is that
we have to find all the numerical values of the steps which is
needful and also to find the best results of the given problems
using these proposed steps.

Step-1 Represent the data in the form of decision matrix
which is as discussed in the algorithm-I and denoted
as Table-1, Table-2 and Table-3.

Step -2 Compute the aggregated matrix by using proposed
aggregation operators which is represented in the
Table-4, Table-5 and Table-6 in the algorithm-I.

TABLE 7. The ranking results of the suggested technique using
Algorithm -I.

Step-3 Normalize the decision matrix, but in this step we
does not normalized the data because the data is
in the form of benefit criteria and also the data is
uniform.

Step-4 Compute the overall score function of the aggre-
gated decisionmatrix. which is shown as in Table-8.

TABLE 8. The result of score function of the aggregated decision matrix.

Step-5 Compute the combined weight vector which is as
follows.

β1= 0.407973, β2=0.323473, β3=0.188152,

β4= 0.80399

Step-5 Compute the whole weighted comparability
sequences.

X1=0.449, X2=0.451, X3=0.540, X4=0.581

Step-7 Compute the power of weight comparability
sequences which is as follows.

Y1 = 3.28, Y2=3.26, Y3=3.38, Y4 = 3.49

Step-8 Compute the three aggregated values of all the
functions.

L1a = 2.40, L2a=2.41, L3a=2.53, L4a=2.63

L1a = 2, L2a = 2.00, L3a = 2.23, L4a = 2.35

L1a = 13.34, L2a = 13.29, L3a = 14.01,

L4a = 14.55

Step-9 Compute the assessment values which is denoted by
Table-9.
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TABLE 9. The ranking results of the suggested technique using
Algorithm -II.

G. SENSITIVITY ANALYSIS
To check the stability of our proposed method we have to
do sensitivity analysis, that is in the Frank norms and its
coefficient (parameter) of decision method is critical to the
ranking results. So we assign various values to the parameter
in the proposed aggregation operators from 1 to 15 to find the
various results and also to see the ranking results.

TABLE 10. The Ranking results for different values of λ.

As we can see from above Table-10, the ranking results is
same by assign different values to the parameter in the pro-
posed aggregation operators. If we put λ = 1 in the proposed
aggregation operator then the score values of the alternatives
are p1 = 0.130, p2 = 0.127, p3 = 0.345, p4 = 0.260.
So from here the best score values of p3 is best. If we put
λ = 3 in the proposed aggregation operator then the score
values of the alternatives are p1 = 0.128, p2 = 0.110, p3 =
0.254, p4 = 0.137. So from here the best score values of p3
is best. If we put λ = 5 in the proposed aggregation operator
then the score values of the alternatives are p1 = 0.124,
p2 = 0.118, p3 = 0.347, p4 = 0.286. So from here the best
score values of p3 is best. If we put λ = 6, 9, 11, 13 and
15 in the proposed aggregation operator then the score values
of the alternatives are p1 = 0.135, 0.123, 0.124, 0.160, 0.126
p2 = 0.122, 0.110, 0.104, 0.125, 0.113, p3 = 0.390, 0.390,
0.202, 0.278, 0.207, p4 = 0.298, 0.276, 0.186, 0.195, 0.164
respectively. So from here the best score values of p3 is best
among all the alternatives.

VII. COMPARISON AND DISCUSSION ANALYSIS
In this section we have to compare our proposed method
with other existing methods to check the validity of our
proposed work. So there are two ways of comparison which
is to compare with an aggregation operators wise and the
other is in the form of technique (approach) wise comparison.

But here we can compare our result as of two types namely
aggregation operators wise and method wise comparison.

A. EXISTING AGGREGATION OPERATORS
There are some work which is done in the field of aggre-
gation operators using various form of fuzzy data. But here
we have to compare with an intuitionistic weighted average
aggregation operators, intuitionistic ordered weighted aver-
age aggregation operators and intuitionistic hybrid weighted
average aggregation operators. Also with complex intuition-
istic weighted average aggregation operators, complex intu-
itionistic orderedweighted average aggregation operators and
complex intuitionistic hybrid weighted average aggregation
operators. And also we have compare our method with TOP-
SIS method under IFS information.

B. PROPOSED AGGREGATION OPERATORS
While the proposed aggregation operators is develop by
using the operational laws of Frank norms under complex
fuzzy information that is the complex fuzzy credibility Frank
weighted average aggregation operators, complex fuzzy cred-
ibility Frank ordered weighted average aggregation operators
and complex fuzzy credibility Frank hybrid weighted average
aggregation operators.

C. COMPARISON WITH IFWA
In this section the comparison of our proposed method with
existing is discussed in detailed. This comparison analysis is
a types of aggregation wise comparison in which we have to
check the accuracy of our proposed aggregation operators.

D. EXISTING AGGREGATION OPERATORS
In the existing aggregation operators the data is in the form
of intuitionistic fuzzy numbers (IFNs) and series of aggre-
gation operators is defined on the intuitionistic fuzzy opera-
tional laws. The series of aggregation operators is a type of
IFWA [32], IFOWA and IFHWA. So by comparing our results
with this result is same.

E. RESULT OF COMPARISON
The result of comparison is that the ranking result will be
different because the develop work discussed the phase term
as well as the amplitude term for any information. While as
in case of intuitionistic fuzzy information the data is in the
real valued fuzzy data which can only explain the phase term
for the membership degree. So that is why the new proposed
work is more generalized and more accurate than the existing
methods.

F. COMPARISON WITH CIFWA
In this section the comparison of our proposed method with
existing is discussed in detailed. This comparison analysis
is a types of aggregation wise comparison in which we
have to check the accuracy of our proposed aggregation
operators.
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TABLE 11. The result of comparison with IFWA.

G. EXISTING AGGREGATION OPERATORS
In the existing aggregation operators the data is in the form of
complex intuitionistic fuzzy numbers (CIFNs) and series of
aggregation operators is defined on the complex intuitionistic
fuzzy operational laws. The series of aggregation operators
is a type of CIFWA [31], CIFOWA and CIFHWA. So by
comparing our results with this result is same as our develop
results.

H. RESULT OF COMPARISON
The result of comparison is that the ranking result will be
same as our develop work. because the proposed work and
existing work discussed the phase term as well as amplitude
term for any decision making problems. The result of com-
parison is discussed as follows,

TABLE 12. The result of comparison with CIFWA.

I. COMPARISON WITH TOPSIS METHOD UNDER IFS
INFORMATION
In this section we have compare our result which obtained
through CoCoSo method with the existing TOPSIS method.
Furthermore we see that the result obtained is same and
accurate to the develop work.

J. EXISTING TOPSIS METHOD UNDER IFS INFORMATION
In the existing method, the data is in the form of IFS infor-
mation and also there are some steps which is defined for
the TOPSIS method [33]. So we have compare our develop
method to check the accuracy.

Now in the existing method we have taken the data is in
the form of CFCS information and we have discussed all the
steps for the CoCoSomethod. The method is also used for the
ranking of any decision making problems. So by comparing
our result with the existing results, we get the same results.
The comparison results are discussed as follows,

K. RESULT OF COMPARISON
The result of comparison is that the ranking result will be
same as our develop work. The result of comparison is dis-
cussed as follows,

TABLE 13. The result of comparison with TOPSIS method.

TABLE 14. The overall result of comparison analysis with other existing
methods.

The Table-14 show the overall comparison results,
in which we have compare our develop work with the existing
work. In this Table-14, we can see that there are also two way
of comparison in which the first way is the existing aggrega-
tion operators and the other way is the existing method. In the
two way of comparison the result is same.

L. RESULT AND DISCUSSION
In this paper we have discussed the Frank norm operational
laws, After that we have develop as series of aggregation
operators like CFCFWA, CFCFOWA and CFCFHWA. Then,
we explained and prove all the basic properties for the
develop aggregation operators. In the next section we have
develop two algorithms which is named as algorithm-I and
algorithm-II. In the algorithm-I we have discussed all the
steps andwhich is based on the develop aggregation operators
and lastly we have to applied our proposed score function to
display the final best optimal results. Also in the algorithm-II
we have explained all the steps of CoCoSo method which
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is also helpful in the best optimal solution for any decision
making problems. In lastly we have applied these two algo-
rithms to a real life decision making problems which is a
S-box image encryption, in which we get the best results.

M. LIMITATIONS AND DESCRIPTION OF OUR PROPOSED
WORK
As this paper we have discussed a series aggregation opera-
tors like CFCFWA, CFCFOWA and CFCFHWA aggregation
operators and its basic properties were explained in the form
of theorem. The aggregation operator helps in the collection
of expert information and there a Frank norms which can
explain the flexibility on the basis of various parameters, the
various cases of paremeter values which is change in the
proposed aggregation operators and that provide the same
best results.

This paper does not discussed the multi criteria decision
making, nor does consider different experts weight. So we
will extend this process for multi criteria decision making in
future work and make it practical.

VIII. CONCLUSION AND FUTURE WORK
The practical application of complex fuzzy credibility num-
bers is studied in the various field of computer science and
many other field. Decision making process is a small class
of computer based knowledge that support your decision
making activities. A decision support systems analyzes data
and give interactive knowledge support to professionals dur-
ing the decision-making process. With comparison to other
analysis the result of complex fuzzy credibility numbers is
accurate. So in this paper we have used the develop aggrega-
tion operators to collect the decision expert information under
CFCS information and also to find a suitable S-box transfor-
mation in the image encryption process. Basically an S-box
is very important component in a block cipher cryptosystem
which have the responsibility to induce confusion in the data.
So there is a need to find the confusion capability of different
S-box for image encryption application and also which box is
best among others. In this paper we have analyzed prevailing
S-box and come to know that GRAY S-box have very good
readings. Our study will start a new direction in the field
of decision support systems and cryptosystems. In future we
will focus some other types of S-box transformation based on
other criterion.
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