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ABSTRACT Traffic sign recognition (TSR) technology allows the vehicle to recognize road signs through
a camera and use it for driving. For traffic safety, TSR is one of the core technologies constituting advanced
driver assistance systems (ADAS), and several researches have been studied. The advent of convolutional
neural networks (CNN5s) has opened up new possibilities in automotive environments, especially for ADAS.
However, deploying a real-time TSR application in resource-constrained ADAS is challenging because most
CNNss require high computing resources and memory usage. To address this problem, some works have been
studied to consider optimization in embedded platforms, but existing works used many hardware resources
or showed low computation performance. In this paper, we propose a low-cost CNN-based real-time TSR
hardware accelerator. Firstly, we extend a novel hardware-friendly quantization method to reduce compu-
tational complexity. The quantization method can reconstruct the CNN so that all operations, including the
skip connection path of residual blocks, use only integer arithmetic and reduce the computational overhead
by replacing the quantization affine mapping process with a shift operation. Secondly, the proposed hardware
accelerator applied two parallelization strategies to balance real-time inference and resource consumption.
In addition, we present a simple and effective hardware design scheme that handles the skip connection
path of residual blocks. This design scheme can optimize the dataflow of the skip connection path and
reduce additional internal memory usage. Experimental results show that the reconstructed fully integer-
based CNN only requires 24M integer operations (IOPs) and possesses a model size of 0.17MB. Compared
with the previous work, the proposed CNN model size was reduced by x 105, and the number of operations
was reduced by x58. In addition, the proposed CNN can achieve a TSR accuracy of 99.07%, which is
the highest accuracy among CNN-based TSR works implemented on embedded platforms. The proposed
hardware accelerator achieves a computation performance of 960 MOPS and a frame rate of 40 FPS
when implemented on a Xilinx ZC706 SoC. Consequently, this work improves by x11.87 and x36.7 on
computation performance and frame rate compared to the previous work.

INDEX TERMS Traffic sign recognition, CNN, quantization, accelerator, FPGA.

I. INTRODUCTION technology is being applied to various ADAS fields such
Recently, interest in advanced driver assistance sys- as pedestrian detection, lane recognition, and drowsy driver
tems (ADAS) has gradually increased. Computer vision detection. Among the technologies related to the advance-

ment of vehicles, traffic sign recognition (TSR) is the core

The associate editor coordinating the review of this manuscript and technology constituting ADAS. Accordingly, the demand for
approving it for publication was Mario Donato Marino . TSR is increasing, and many studies have been conducted.
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Convolutional neural networks (CNNs) have been applied
to various image processing tasks and showed excellent
performance. In the field of TSR, some works using CNN
have been devised [1], [2], [3], [4]. However, these works
focus only on improving performance in GPU environments
that require high computational and memory requirements.
Therefore, it is unsuitable for implementation in resource-
constrained automotive environments.

To address these problems, several studies considering
embedded environments have been reported [5], [6], [7], [8],
[9], [10]. Wong et al. [5] introduced an integrated design
strategy and optimization method at the micro-architecture
and macro-architecture levels to design CNNs with optimized
information density while meeting the embedded require-
ments. Novac ef al. [6] proposed a new framework for
end-to-end training, quantization, and deployment of CNNs.
The proposed framework quantizes and deploys CNNs onto
microcontrollers. Yao et al. [7] suggested a method to
increase CNN'’s parameter utilization and adopted four opti-
mization strategies to create a CNN topology suitable for
resource-constrained FPGA platforms. Maraoui et al. [8]
implemented a hardware accelerator using the high-level
synthesis (HLS) and the Xilinx PYNQ platform using a
customized overlay to build a fast and powerful embedded
application. Experimental results prove the effectiveness of
the prototype hardware in terms of execution time and cost.
Lechner et al. [9] proposed a method to reduce the com-
putation cost in the forward pass by implementing efficient
hardware acceleration using binary weights instead of com-
plex computations such as batch normalization and expo-
nential linear units. Liu er al. [10] reasonably divided the
functional modules of each part of the network and opti-
mized the loop design using the HLS to improve through-
put and recognition speed. Some works [7], [8], [10] were
implemented in a floating-point format that requires many
hardware resources. The other work [6] showed slow infer-
ence speed, and the prior work [9] exhibited low recognition
accuracy. Some studies [9], [10] used only ten classes for
TSR work. In summary, the existing CNN-based TSR works
implemented on embedded platforms are not optimized for
automotive environments that require real-time inference and
have constrained resources.

In this paper, we propose a low-cost fully integer-based
CNN accelerator for real-time TSR. The key contributions of
this paper are as follows:

o We extended a novel hardware-friendly quantization
method [14] and applied it to residual blocks (RBs). The
hardware-friendly quantization method can reconstruct
the CNN so that all operations, including a skip connec-
tion path of residual blocks, use only integer arithmetic.
Furthermore, it can replace all operations required in
the quantization affine mapping process with a shift
operation.

« We propose a low-cost fully integer-based CNN accel-
erator for real-time TSR in automotive environments.
The proposed hardware accelerator is applied two
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FIGURE 1. Fully integer-based convolutional layer.

parallelization strategies (kernel-wise and output chan-
nel parallelization) to balance real-time inference and
resource consumption. Furthermore, we present a simple
and effective hardware design scheme that handles the
skip connection path of residual blocks. This design
scheme, namely the internal memory skip connection
path, can optimize the dataflow of the skip connection
path and reduce additional internal memory usage.

o The inference speed of the proposed CNN accelera-
tor is 40 FPS, and the computation performance is
960 MOPS on Xilinx ZC706 SoC. This is the best result
compared to the other CNN-based TSR works imple-
mented on embedded platforms. In addition, we provide
analysis results on resource usage, computation perfor-
mance, and energy efficiency according to the number
of processing elements PEs) for FP32/INT8 hardware.

The rest of this paper is organized as follows. Section II
explains a hardware-friendly quantization method and fully
integer-based CNN. Section III presents the proposed TSR
hardware accelerator architecture. In Section IV, an analy-
sis of the proposed accelerator and comparison results with
other works are reported. Finally, we conclude this work
in Section V.

II. FULLY INTEGER-BASED CNN
In this section, a hardware-friendly quantization method and
fully integer-based CNN are described.

A. HARDWARE-FRIENDLY QUANTIZATION

Quantization enables efficient CNN inference by converting
a high-precision floating-point domain into a low-precision
fixed-point domain. Quantization can be classified into
quantization-aware training (QAT) and post-training quan-
tization (PTQ). QAT is a method of updating quantization
parameters during the fine-tuning process. PTQ is a method
to reduce the quantization error between floating-point and
fixed-point domains by calibrating quantization parameters
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FIGURE 2. Types of residual blocks used.

during inference. We chose the QAT method to minimize the
loss of accuracy. Two parameters (scale factor, zero point)
are added for quantization. The scale factor is a parameter
necessary to convert real range values into integer range
values, and the zero point is a parameter required to align
zeros in the two domains. Quantization parameters are trained
by adding quantizers to all layer’s activation, weight, and bias.
The quantizer mainly consists of four sub-processes (scale,
round, clip, dequantize). First, the scale process maps high-
precision floating-point domain value to low-precision fixed-
point domain value using the scale factor and the zero-point.
The affine mapping equation needed for the scale process is
as follows:

r=sf(q—zp) €]

where r is the high-precision floating-point domain value,
q is the low-precision fixed-point domain value, sf is the scale
factor, and zp is the zero point. Second, the round process
approximates real values to the nearest integer values. The
gradient discontinuity problem in the round process can be
solved using a straight-through estimator (STE). Third, the
clip process cuts values that exceed the bit-width set in the
quantization stage. Finally, the dequantize process converts
the low-precision fixed-point domain value back to the high-
precision floating-point domain value using the scale fac-
tor and the zero-point. To reduce the computation overhead
in the quantization affine mapping process, we introduced
LLTQ [14], a novel hardware-friendly quantization method.
The LLTQ method can eliminate addition operations by set-
ting all zp values to zero. In addition, LLTQ can replace
multiplication operations with shift operations by mapping sf
values to power-of-two values. Therefore, the affine mapping
process requires only a shift operation. The equation for
directly mapping the scale factor to the power of two terms in
the LLTQ method is as follows:

Zceil(logz (abs(a * q_level))

sf =

2
q_level 2)

where « is a trainable parameter for quantization, and g_level
is the maximum integer value that can be represented by

84628

Qu  : Unsigned quantizer | Qs | : Signed quantizer

Oui Qui
Conv; Conv,
> o Qui Oui
ReLU, ReLU, . . v '
| | | | Convs Conv; ID; Conv;
Qw2 Ouz ReLU, ReLU,
Conv, Conv, I I
ReLU, Q2 Qv
1 Conv, Conv,
G | |
Convs Os; Oss
Oss v v
ReLU; ReLU, ReLU,

(a) Type-A RB (b) Type-B RB (c) Type-C RB (d) Type-D RB

FIGURE 3. Residual blocks with quantizer.

the bit-width set during quantization (e.g., signed 8-bit data:
q_level = 128, unsigned 8-bit data: g_level = 255).

B. FULLY INTEGER-BASED CONVOLUTIONAL LAYER

A floating-point convolutional layer (CONV) can be recon-
structed as a fully integer-based CONV using the parameters
obtained in the quantization-aware training (QAT) process.
The reconstructed CONV is shown in Fig. 1. In Fig. 1, SC is
a block with an integer scaler and integer clipper. The inte-
ger scaler performs shift operation using scale factors. The
integer clipper adjusts the data range of the tensor according
to the quantization bit-width. For example, if the quantization
bit is 8-bit and the signed data has a value exceeding the range
of —128 to 127, it is adjusted so that it is positioned as the last
value (—128 or 127) of the data range. Since ICONV and SC
are composed of one layer, the boundary between the layers
becomes apparent, and the input/output becomes the same
bit-width. This method enables a more uniform hardware
design and allows various types of CNNs to be implemented
without changing many hardware modules. The quantization-
affected floating-point weight and bias parameters can be
converted to integer parameters using the following equation:

Wine = clip (round (Wﬁ, < Sy, R)) 3
Binr = clip (round (pr < Sp, R)) > (Sa1 + Sw — Sp)
4

where S, is an activation scale factor, S, is a bias scale factor,
Sy is a weight scale factor, and R is a quantization range.
Integer weight and bias parameters are converted before the
inference process. The entire operation process of the recon-
structed fully integer-based CONV is as follows:

My = clip (C > (Sa1 + Sy — Sa2) . R) . (5)

C. FULLY INTEGER-BASED RESIDUAL BLOCK

The skip connection path of RB introduced in ResNet [11]
alleviates the vanishing gradient problem and shows that a
deeper network can be designed. Inspired by [12], we con-
structed the four types of RBs shown in Fig. 2 to find the
RB with the best recognition accuracy in the embedded
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FIGURE 4. Fully integer-based Type-B residual block.

TSR environments. Type-A RB adds the skip path and the
main path data passed through the ReLU function (ReLU).
Type-B RB is a structure in which the ReLU of the main
path is moved after skip connection addition from Type-A
RB. Type-C RB sets the tensor size of the skip path to be the
same as the main path using a CONV and then performs skip
connection addition. Type-D RB is a structure in which the
CONV of the skip path is changed to an identity layer (ID)
[13] based on Type-C RB.

We extended the LLTQ [14] method and applied it to the
four RBs. RBs, including quantizers, are shown in Fig. 3.
Quantizers were inserted into the input port of the CONV
and the skip connection path of each RB. In the quantization
process, the type of quantizer used varies according to the
input sign of the quantizer. A shared quantizer can be used
if inputs from different paths have the same sign. In all four
RBs in Figure 3, the starting points of skip path and main
path are all unsigned values. This is because the data that has
passed through the ReLU is branched. Therefore, these data
can share an unsigned quantizer, and the shared quantizer is
used across the second CONV and skip path. The Type-A RB
uses only unsigned quantizers because all CONV inputs are
unsigned. The Type-B RB uses a signed quantizer because
the third CONV output of the main path is signed data. In the
Type-C RB, because all data for skip connection addition are
signed data, the signed quantizer can be shared and used.
The signed shared quantizer is depicted behind the skip path
CONYV and the second CONV of the main path in Fig. 3 (c).
The ID of the Type-D RB in Fig. 3 (d) does not need to add a
quantizer because there is no arithmetic operation.

As will be explained later, because the Type-B RB has the
best accuracy, only the integer skip connection path of the
Type-B RB among the four RBs will be described in this
paragraph. The fully integer-based Type-B RB is illustrated in
Fig. 4. In the floating-point version, skip connection addition
in RB simply adds the output of the two layers. However,
for integer skip connection addition, the scale of both paths
must be set equal to operate accurately. This process is called
path equal scaling, and the equation for the two paths used for
integer skip connection addition are described in (6) and (7):

F2,sk = (F2 < Sa2) > Sas4 (6)
M3 g = (M3 < Saa) > Sasa @)
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: Integer scaler : Integer scaler + Integer clipper

__________________________

where S,» and S,4 are the activation scale factors of the next
CONYV and S,,4 is the scale factor learned from the quantizer
located at the output side of the third CONV of the main path.
In the path equal scaling process, both paths (F2, M3) are
adjusted to the same scale using S, after canceling the effect
of the activation scale factor of the next layer. The addition of
the same scaled data can be seen in (8):

M3 4qa = Fo 5 + M3 g (8)

After skip connection addition, down-scaling is performed
according to the input scale of the next layer:

M3, g5 = clip (M3,ada < Sasa) > Sas, R) )]

Finally, after down-scaling, the integer skip connection addi-
tion is terminated.

Ill. HARDWARE IMPLEMENTATION

In this section, a low-cost fully integer-based CNN accelera-
tor architecture for real-time TSR in embedded environments
is introduced.

A. ARCHITECTURE OVERVIEW

The proposed TSR accelerator is implemented on a heteroge-
neous SoC and is demonstrated in Fig. 5. The host CPU con-
trols the CNN logic implemented on the FPGA using the AXI
Lite interface. The AXI interface is used for data exchange
between external memory and the accelerator. Input images,
parameters, and output values of each layer are stored in
external memory. The proposed accelerator is divided into the
internal memory module (IMM) and the processing module,
and the processing module is further divided into the main
processing module (MPM) and the sub processing module
(SPM). Each hardware component is illustrated in Fig. 6.

B. INTERNAL MEMORY MODULE

The IMM is divided into parameter memory (PRM) and
pixel memory (PXM). The PRM occupies the largest size
in the IMM and stores all the parameters of the layer in
which the operation is conducted. The PRM is partitioned
and allocated to each PE for efficient parallel MAC opera-
tions. There are two issues with implementing integer skip
connection addition. First, storing skip path data in internal
memory increases internal memory usage. Second, accessing
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the external memory to fetch the skip path data during oper-
ation in the processing module can be a bottleneck. To solve
these problems, integer skip connection addition was moved
from the processing module to the internal memory module.
The PXM illustrated in Fig. 6 (a) is a crucial component
for implementing the integer skip connection path of the
RB. In our design, the skip connection adder described in
Fig. 4 is implemented in PXM, not in SPM. In other words,
skip connection addition is not conducted on the SPM, which
is the output side of the current layer, but on the PXM, which
is the input side of the next layer. When the ctrl_skip signal is
received, both the Skip Path and the Main Path access external
memory and send the results of operations (6)-(9) to the FIFO
memory. Otherwise, external memory access is performed
only in the Main Path, and this data is sent to FIFO memory.
There is no need to add extra internal memories to store Skip
Path data because the skip connection adder is implemented
in PXM, not in SPM. Consequently, the internal memory skip
connection path design scheme can optimize the dataflow of
the skip connection path by eliminating the external memory
access of the processing module and enables a more uniform
hardware design.

C. PROCESSING MODULE

Fig. 6 (b) is the main processing module (MPM) that performs
MAC operations in the proposed TSR accelerator. One PE
consists of nine multipliers and nine adders, and the MPM
is a set of PEs. In order to minimize resource usage while
achieving real-time TSR, only two of the many parallelization
strategies were applied to the MPM. First, we introduced a
kernel-wise parallelization strategy to compute each kernel
in parallel. This strategy completely unrolls the computation
loop to perform the operations required for a 3 x 3 kernel
in one cycle. As shown in Fig. 6 (b), nine multipliers and an
adder tree are used for the MAC operation of one channel of
the input feature map. The MAC operation result is temporar-
ily stored in the buffer behind the adder tree. If the kernel size
of CONV is 1, only one of nine multipliers of MPM operates.
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In addition, the MAC operation result for other channels
of the input feature map is accumulated with the MAC
operation result calculated in the previous cycle using the
adder located right in front of the buffer. Second, we applied
an output channel parallelization strategy to perform MAC
operations of different filters simultaneously. This strategy
partially unrolls the filter loop of CONV according to the
number of PEs, so multiple PEs are implemented in the MPM.
The two parallelization strategies mentioned above have no
data dependency and can be implemented simply. It also
uses fewer hardware resources while effectively improving
computation performance than other parallelization strategy
combinations, making it appropriate real-time inference for
embedded environments. Fig. 6 (c) is the SPM that performs
the remaining operations except for MAC operations. SPM
consists of bias adder, relu function (ReLU), shifter, clipper
(CLP), and global average pooling (GAP) modules. To per-
form parallelized post-processing synchronized with MPM,
SPM was also partially unrolled according to the number of
PEs. The last layer receives the ctrl_last signal and uses the
GAP module instead of the CLP.

IV. EXPERIMENTAL RESULTS

In this section, the experimental settings and results are
described. All training and evaluation processes were per-
formed on a workstation equipped with Intel(R) Core(TM)
i9-10940X CPU @ 3.30GHz, 128 GB RAM, and an
NVIDIA GeForce RTX 3090 GPU. The Pytorch frame-
work was used for floating-point training, quantization, and
full integer-based inference. German traffic sign recognition
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benchmark (GTSRB) dataset [15] resized to 32 x 32 was
used for all training and inference processes. The proposed
accelerator was designed in Vivado 2019.2 tool using HLS.
The Xilinx ZC706 evaluation board was used for hardware
implementation and evaluation. For floating-point training,
hyper-parameters are set as follows: The Adam optimizer was
utilized as the training policy with the initial learning rate
set to le-3 and the weight decay set to le-5. The batch size
was set to 64, and the number of epochs was set to 100. For
quantization-aware training (QAT), hyper-parameters are set
as follows: The Adam optimizer was utilized as the training
policy with the initial learning rate set to 1e-3 for quantization
parameters and le-5 for weights and bias parameters. The
batch size was set to 32, and the number of epochs was
set to 50. Initialization of the quantization parameters was
used with the maximum value of the first batch of the first
epoch. Moreover, uniform quantizers are utilized to ensure
that the low-precision fixed-point domain values are spaced
uniformly, and per-tensor granularity is applied so that the
quantizer learns only one quantization parameter for each
tensor.

As shown in Table 1, all four CNNs repeated each RB
three times in common, and by setting the stride of the
first CONV of the RB to 2, the image size was reduced by
half every time it passed one RB. The 1 x 1 CONV with
43 channels and GAP was used as a classifier. In the network
configuration in Table 1, the superscript is the number of
filters in CONV. Type-A Net, Type-B Net, and Type-C Net
are composed of eleven CONVs, and the number of filters
in all CONVs inside RB is the same and increases by 16 in
the next RB. Since Type-D Net replaces CONV with ID, it is
composed of eight CONV, and the number of filters increases
by two times due to the characteristics of ID. To improve
performance and convergence stability, we placed a batch
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TABLE 1. The experiment results of the four types of CNN architectures
for TSR.

) Accuracy
Method Network Configuration
FP32 INTS
Type-A Net C'®-RA-RA*-RA*-CH-GAP™ 98.61° 98.46
Type-B Net C!6-RB*2-RB*-RB*-C*-GAP 99.14 99.07
Type-C Net C!6-RC32-RC*-RC*-CH-GAP 98.32 98.38
Type-D Net C!6-RD*2-RD*-RD'*-C*#-GAP 98.13 98.09

" The best two results are highlighted in red and blue colors, respectively.
** The superscript number is the number of filters in CONV.
C : Convolutional layer, GAP : Global average pooling layer.

normalization (BN) layer between the convolutional layer
and the activation function. To reduce the computational
overhead and memory usage caused by BN, we applied the
BN fusion method, which is fusing BN parameters with prior
CONV parameters before QAT. Fig. 7 shows the detailed
CNN architectures. Based on the results in Table 1, we
implemented Type-B Net, which shows the best accuracy in
hardware. Type-B Net passes two convolutional layers after
down-sampling in the main branch of the residual block.
Therefore, the information from more feature maps can be
extracted, so the accuracy is higher than Type-C and Type-D
Net. Type-B Net adds the ReLU function’s output and the
convolutional layer’s output. However, Type-A Net adds two
ReLU function’s output. Therefore, Type-B Net can pass the
information from the feature map about negative values to the
next layer, resulting in higher accuracy than Type-A Net.
Table 2 shows the hardware implementation results accord-
ing to the number of PEs for each precision of the proposed
TSR hardware. We removed the unused PS GPIO connection
and added the ““Post-Place Power Opt Design’ process in the
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TABLE 2. Hardware implementation results according to the number of PEs for each precision.

Precision FP32 INT8
#PE 1 2 4 8 1 2 4 8
LUT 8.8K 11.5K 17.3K 28.2K 5.9K 6.2K 6.4K 7.6K
F/F 14.8K 19.5K 28.8K 49.2K 59K 6.2K 6.3K 7.0K
BRAMI18K 61 69 82 88 18 23 25 47
DSP 54 101 195 383 13 24 40 76
PS Dynamic Power (W) 1.625 1.625 1.625 1.625 1.533 1.533 1.533 1.533
PL Dynamic Power (W) 1.121 1.431 2.187 3.182 0.225 0.234 0.257 0.441
Device Static Power (W) 0.239 0.239 0.239 0.239 0.208 0.208 0.208 0.208
Total Power (W) ™ 2.985 3.295 4.051 5.046 1.966 1.975 1.998 2.182
Frame Rate (FPS) 15.873 15.873 16.393 17.241 19.608 256417 40.000 40.000
CP (MOPS)" 380.952 380.952 393.432 413.784 470.592 615.384 960.000 960.000
EE (MOPS/W)" 127.622 115.615 97.120 82.002 239.365 311.587 480.480 439.963

" CP: Computation performance.

" EE: Energy efficiency.

" Total on-chip power consumption is estimated using the Xilinx power analyzer.
""" The best two results are highlighted in red and blue colors, respectively.

Vivado Implementation process to optimize power consump-
tion. Except for this, the default option of Vivado 2019.2 was
used for the synthesis, and the rest of the implementation
process. The power consumption was estimated using the Xil-
inx power analyzer. The computation performance (CP) and
the energy efficiency (EE) were calculated by the following
equation:

Total number of operations

(10)

execution time
where the total number of operations is the total amount of
computation in CNN, and the execution time is the inference
time of the CNN application implemented in hardware.
CP

Power consumption’

EE = an
where the power consumption represents the total on-chip
power consumption estimated using the Xilinx power
analyzer.

In hardware implemented with FP32, as the number of
PEs increases by two times, the resource usage increases
significantly, the CP hardly changes, and the EE decreases.
FP32-PE2 has no CP gain compared to FP32-PE1 because
the overhead of floating-point operations is greater than the
parallelization effect caused by the increase in the number
of PEs. In the case of INT8 implementation, resource usage
does not increase significantly even if the number of PEs
increases. Moreover, the CP reaches the maximum in PE4,
and the power consumption of PL increases by x 1.7 in PES,
resulting in lower EE than in PE4. INT8-PES has a faster
computation speed because of the large number of PEs, but
due to memory bandwidth limitations, the overall execution
time is measured to be the same as INT8-PE4.

To sum up, the INT8-PE4 hardware shows the best CP
and EE. Compared with FP32-PE4, the resource usage of
INT8-PE4 is reduced x2.7 for LUTSs, x4.6 for F/Fs, x3.3 for
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FIGURE 8. Demonstration of the proposed TSR accelerator.

BRAMs, and x4.9 for DSPs. In addition, the CP increased
by x2.52, and the EE increased by x4.95. Fig. 8 shows the
demonstration of the proposed TSR accelerator (INTS8-PE4).
We measured the power consumption of the FPGA board,
including all peripherals and the system fan, to provide
detailed information about the total system power consump-
tion. We applied a 12 V voltage to the FPGA board using the
power supply. The multimeter is connected to the ATX power
connector on the FPGA board to measure the maximum cur-
rent. The maximum current when running the proposed TSR
accelerator was measured to be about 0.579 A. Therefore,
the total system power of the FPGA board, including all
peripherals and the system fan, used in this work is 6.948 W
(0.579 A x 12 V), which mainly comes from the considerable
standby power of the Xilinx ZC706 evaluation board.
Although not described in Table 2, we implemented the
fully integer-based Type-B Net in PS (CortexA9) using only
software as a reference design. The reference design was
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TABLE 3. Comparison with other works.

Method [5] [61° [7] [8] [9] [10] This work
Platform (CPU) CortexA53 CortexM4F CortexA9 CortexA9 CortexA9 CortexA9 CortexA9
Platform (FPGA) N/A N/A XC72020 XC7Z020 XC7Z020 XC7Z020 XC7Z045
Image Size 48 32 32 N/A 32 32 32 32
Precision FP16 FP32 INTS FP32 FP32 WIA8™ FP32 INT8
Model Size (MB) 1.05 0.60 0.15 17.93 0.31 0.06 0.31 0.17
#OPs (M) 21 145 145 1406 9 10 4.6 24
#Classes 43 43 43 43 43 10 10 43
Accuracy (%) 98.90 97.00 97.00 98.10 N/A 96.56 98.41 99.07
Clock (MHz) 1200 48 48 N/A N/A 100 100 250
LUT N/A N/A N/A 43.2K 33.8K 30.4K N/A 6.4K
F/F N/A N/A N/A 36.8K 30.5K 24.7K N/A 6.3K
BRAM N/A N/A N/A 238 167 256 N/A 25
DSP N/A N/A N/A 220 120 0 N/A 40
Frame Rate (FPS) 31.07 1.09 4.13 N/A 3333 36.00 17.58 40.00
CP (MOPS)™ 652.38 157.44  599.17 N/A 300.00 361.01 80.87 960.00
Power Consumption (W) 3.00 0.016 0.016 N/A N/A N/A N/A 6.95""

" The inference time, accuracy and power consumption were used the CNN implemented with 64 filters on the Nucleo-L452RE-P platform.

™ Weight: 1-bit, Activation: 8-bit.
*** CP: Computation performance.

""" This value represents the total power consumption of the FPGA board including all peripherals. The estimated total on-chip power consumption is 1.998 W.

built on the C+4 compiler using the synthesizable HLS
code to implement the hardware accelerator. Moreover, the
reference design can be considered as INT8-PEQ (sequential
application) because the parallelization pragmas used in the
HLS tool, such as #pragma unroll and #pragma pipeline,
are commented out in the C++ compiler. The optimization
option is O3, and the operating clock of the CortexA9 pro-
cessor is 667 MHz. The estimated power consumption of PS
using the Xilinx power analyzer was 1.533W, and the frame
rate was measured at 2.68 FPS. In addition, the reference
design’s CP and EE are 64.343 MOPS and 41.971 MOPS/W,
respectively.

The comparison with previous works is summarized in
Table 3. [5] is implemented on ARM SoC, [6] is implemented
on ARM MCU, and [7], [8], [9], [10] are implemented on het-
erogeneous SoC. The accuracy of fully integer-based Type-B
Net is about 99.07 %. The accuracy of the proposed CNN
showed the highest accuracy compared to [5], [6], [7], [8],
[9], [10]. This work achieved the highest accuracy because the
proposed CNN did not fall into the local optimum in the
floating-point training process due to BN. To summarize
the proposed TSR accelerator (INT8-PE4) before comparing
it with previous works, the estimated total on-chip power
consumption is about 1.998W. The proportion of PS, PL, and
device static in the estimated total on-chip power consump-
tion are 76.73 %, 12.86 %, and 10.41 %, respectively. The
total system power of the FPGA board is about 6.948 W.
In addition, the frame rate and the CP of the proposed accel-
erator are 40 FPS and 960 MOPS, respectively.
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Our proposed TSR hardware accelerator showed the fastest
inference speed and computation performance. In addition,
our hardware uses less of all hardware resources than
[7] and [8]. Compared with [9], our design uses fewer hard-
ware resources except for DSPs. A direct comparison of the
proposed TSR accelerator’s power consumption and energy
efficiency with the previous works requires caution. This is
because the same metrics between different hardware may
not be suitable for direct comparison due to different plat-
forms and evaluation methodologies. Additionally, [7], [8],
[9], [10] implemented on a similar platform does not describe
power consumption. Therefore, we did not directly compare
power consumption and energy efficiency with other TSR
hardware implemented on different embedded platforms for a
fair comparison. However, we left the information on power
consumption in Table 3 to provide a reference indicator for
our proposed TSR accelerator.

V. CONCLUSION

In this paper, we proposed a low-cost CNN-based real-time
TSR accelerator optimized for embedded environments. Our
design was optimized at the software and hardware level.
In software, we extended a novel hardware-friendly quanti-
zation method and applied it to residual blocks. The quanti-
zation method can reconstruct the CNN so that all operations,
including the skip connection path of residual blocks, use
only integer arithmetic. In addition, computational overhead
can be reduced by replacing the quantization affine mapping
process with a shift operation.
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In hardware, two parallelization strategies were applied to
minimize hardware resource consumption while achieving
real-time TSR. Furthermore, a simple and effective hard-
ware design scheme that handles the skip connection path of
residual blocks is introduced to optimize the dataflow of the
skip connection path and reduce additional internal memory
usage. The proposed hardware accelerator is implemented on
a heterogeneous SoC, and it outperforms other TSR works
implemented on embedded platforms in terms of accuracy,
nference speed, and computation performance. This work
is fairly suitable for real-time TSR in resource-constrained
automotive environments.
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