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ABSTRACT Recently, 3D object detection models have achieved very good performance under normal
weather conditions, with the SE-SSD model having produced the highest performance by exchanging
features between the teacher and student models. However, the performance of this model is significantly
reduced by adverse weather conditions. Therefore, instead of training the teacher and student models
simultaneously, we applied the knowledge distillation algorithm. In this algorithm, the teacher model is
trained first by normal input, and the studentmodel is then trainedwith distillation and student loss by adverse
weather condition input. Although recent research has focused on combining different types of sensor inputs
to enhance the original model’s performance in inclement weather, there are no studies that directly address
the problem of missing points for point clouds. Accordingly, we applied a probability estimation, which
includes a Deep Mixture of Factor Analyzers (DMFA) network and loss-convolution layer, to recover lost
points. We conducted a model evaluation in both fog and snow environments at three levels of density -
light, medium, and heavy - and compared the proposed model’s performance with that of two state-of-the-
art models: one with normal weather condition, and the other with harsh weather conditions. Consequently,
our proposed method was shown to significantly outperform the two existing models.

INDEX TERMS Autonomous vehicles, LiDAR, 3D object detection, adverse weather conditions, knowledge
distillation.

I. INTRODUCTION
Thanks to the rapid development of 3D sensing technology, a
3D scanner known as LiDAR (Light Detection and Ranging)
was designed to use light in the form of laser pulses to
measure range. LiDAR sensors can accurately measure their
distance from surrounding objects and provide rich geometric
information, including scale. Each LiDAR scan generates
a 3D point cloud, consisting of a graphical representation
of the surroundings, where each point contains information
regarding its Euclidean distance. This type of sensor can
provide long-range high-resolution detection, and works well
under varying lighting conditions. As self-driving technol-
ogy improves the safety of modern vehicles, makes driving
more accessible, and paves the way for fully autonomous
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vehicles, it relies heavily on precise sensor data, using sys-
tems of expensive sensors like LiDAR to ensure accurate
environmental awareness. One of the most important prob-
lems in the development of autonomous vehicles and driver
assistance systems is performance degradation in adverse
weather conditions, such as snow and fog. Because these
conditions impair human visibility, the proper functioning
of driver assistance systems becomes even more essential
for the driver. Unfortunately, adverse weather conditions also
negatively impact the performance of LiDAR sensors. Fig. 1
illustrates changes in the point cloud for foggy and snowy
weather compared to regular conditions. Accordingly, our
aim was to improve the accuracy of 3D object detection in
snowy and foggy weather conditions.

Leading the way in performance for 3D object detection
models [23], [24], [25] is the SE-SSD model [9], which uses
voxel-based representation. The SE-SSD model [9] includes
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FIGURE 1. Point cloud simulation in adverse weather conditions.

a student network, which plays a major role in 3D object
detection, and a teacher network, which transfers knowledge
to the student network. The input of the student network is
different from that of the teacher network. A shape-aware
data augmentation is applied to the point cloud to generate
an augmented dataset as input to the student. Although the
teacher and student models are trained simultaneously, the
latter are updated directly, whereas the former are updated
based on student parameters using the exponential moving
average (EMA) strategy. By incorporating a voxel-based
representation to complement the learning process between
teachers and students, SE-SSD [9] achieves optimal results
for 3D object detection under normal weather conditions.
However, this performance significantly degrades under
harsh weather, as the data augmentation methods employed
by the SE-SSD model [9] are ineffective due to loss of data
on the point cloud.

Our proposed method was designed to improve perfor-
mance of the SE-SSD model under foggy and snowy con-
ditions. Instead of training the teacher and student models
simultaneously with the same dataset, our model trains the
teacher model first, and subsequently trains the student model
with the student and distillation loss functions. In addition,
our knowledge distillation algorithm uses normal weather
input for the teacher network, and adverse weather input
for the student network. Furthermore, we designed a novel
strategy to recover the loss of points in the point cloud caused
by adverse weather.

Weather-related problems in 3D object detection have
been addressed by numerous studies. Typically, these

studies employ methods that fuse input sensors to avoid
environmental influences on the LiDAR sensor. The model
designed in [5] uses four input sensors: camera, LiDAR,
radar, and gated Near-Infrared (NIR) sensors. This scheme
is a single-shot model that employs measurement entropy
to adaptively fuse features. Specifically, the model han-
dles asymmetric measurement corruption in the four sen-
sor streams by an adaptive deep fusion architecture that
exchanges features in intertwined feature extractor blocks.
This adaptive deep fusion is steered by measured entropy,
which allows for the learning of models that can be general-
ized to adverse weather conditions. However, the use of mul-
tiple sensors is expensive, and the simultaneous processing of
data from all sensors requires a large amount of computation.
The Sparse LiDAR and Stereo Fusion (SLS-Fusion) [43]
model employs a late-fusion method between LiDAR sensors
and 2D cameras to generate a pseudo point cloud [26] for
3D object detection. Although this model works well under
normal weather conditions, its performance decreases signifi-
cantly in foggy conditions. Accordingly, the model was mod-
ified in a subsequent study [6] by implementing a specific
training strategy that uses both normal and foggy weather
datasets to achieve higher performance. The study further
points out that the late-fusion-based architecture can perform
well with a justifiable training strategy in foggy weather
conditions. The limitation of both studies is their failure to
address the direct problem caused by adverse weather.

Under adverse weather conditions, as the laser pulse tra-
verses the scattering medium, the total intensity is attenuated
exponentially with distance. This causes erroneous measure-
ments in the point cloud data, which arises from the reception
of back-scattered light from the fog or snow particles in the
air. Thus, the point cloud obtained in such conditions contains
objects with missing point data. Our proposed architecture
employs a probability estimation method to recover the lost
data points. Specifically, by combining a DMFA network
with a loss-convolution layer, our proposed model outper-
forms the models designed in [5] and [6].

Specifically, we make the following contributions:
• This study successfully used two different inputs for
the knowledge distillation algorithm with the purpose of
narrowing the performance gap between the student and
teacher models.

• By applying Deep Mixture of Factor Analyzers network
and loss-convolution, our model is the first to directly
resolve the loss of data in the point cloud under harsh
weather conditions.

• Our model’s results outperform those of the state-of-
the-art models at different density levels of simulated
weather. Even when the input data is changed, the per-
formance remains satisfactory.

II. RELATED WORK
Currently available 3D object detection methods generally
employ three methods of representing point clouds: pillar-
based method, point-based method, and voxel-based method.
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TABLE 1. Operational information and result comparison for LiDAR-based 3D Object Detectors in normal condition.

This section presents a brief review of existing 3D object
detection methods [37], [38], [39] based on point cloud data
for autonomous vehicles, as shown in Tab. 1.

A. VOXEL-BASED METHODS
Voxel-based methods [27], [28], [29] divide a point cloud
into evenly spaced 3D voxels, and transform a group of
points within each voxel into a unified feature representa-
tion through the voxel feature encoding (VFE) layer. This
enables interaction between points within a voxel by com-
bining point-wise features with a locally aggregated feature.
StackingmultipleVFE layers enables the learning of complex
features for characterizing local 3D object information.

Inspired by the capabilities of VoxelNet, [11] is a
single-stage detector that introduces the voxel feature extrac-
tion (VFE) layer. Fixed voxelization is used to voxelize the
LiDAR point cloud, with each non-zero voxel encoded with
a feature vector derived from the VFE module. To extract
high-dimensional characteristics from voxelized 3D data, a
3D backbone network with a 3D CNN encoder architecture
is used. The 3D feature map is then concatenated along
the Z axis to create a BEV (Bird’s Eye View) feature map,
which is then sent to a 2D backbone network for feature
extraction. The generated high-dimensional BEV featuremap
is then input into a Region Proposal Network (RPN) [33],
with anchors to generate probability scores and 3D bounding
box regression maps.

SECOND [14] (Sparsely Embedded Convolutional Detec-
tion) is a single-stage detector driven by the computing
efficiency of 3D spatially sparse submanifold convolutions.
It incorporates a novel type of angle loss regression, as well
as a data augmentation technique. Similarly to VoxelNet [11],
SECOND uses fixed voxelization to voxelize the LiDAR
point cloud, and extracts voxel features using the VFE mod-
ule. In the instance of yaw angle regression, SECOND [14]
uses a sine-error rather than radian-error loss to avoid the

huge loss in the cases of 0 and π radians, as the 3D bounding
box is comparable in both situations. The network predicts
a binary direction classifier to handle the direction problem
that results from sine-error loss.

The Confident IoU Aware Single Stage Detector
(CIA-SSD) [21] is an extension of SECOND [14] that
performs voxelization to a LiDAR point cloud by encod-
ing each voxel with the mean coordinates and reflection
intensity of points within it. The Spatial-Semantic Feature
Aggregation (SSFA) module is a 2D backbone network
that consists of two groups of 2D convolutions - one for
spatial characteristics and the other for semantic features -
to encode and learn high-dimensional features in BEV while
maintaining high spatial resolution. The two BEV feature
maps are merged at the end of the 2D backbone network
via an attentional fusion (AF) module. A classification score
is predicted using an Anchor-based RPN, 3D bounding box
regression, and direction classification score maps, as well as
an extra IoU confidence score map. The score map is used to
remedy classification confidence by increasing the influence
of high IoU confidence scores to compensate for the lack of
a 3D bounding box prediction refinement stage in two-
stage detectors. Finally, a unique distance-variant IoU
non-maximum suppression (IoU NMS) [34] algorithm is
used to filter the 3D bounding box proposals.

The Self-Ensembling Single Stage Object Detector
(SE-SSD) [9] was developed based on CIA-SSD [21] by
implementing the self-ensemble (SE) algorithm for the
teacher and student models. The training process was opti-
mized by the formulated consistency constraint to better align
predictions with the soft targets from the teacher predictions.
Furthermore, a new augmentation scheme was designed to
produce shape-aware augmented ground-truth objects for
the student model’s input. In addition, an orientation-aware
distance-IoU (ODIoU) loss was applied to supervise the
detector using hard targets from the augmented ground
truth.
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Because Voxel-based models have topped the recent rank-
ing of 3D object detection methods, our model was built upon
a Voxel-based model to attain optimal performance under
adverse weather circumstances.

B. PILLAR-BASED METHODS
The pillar-basedmethods [30], [31], [32] utilize PointNet [13]
to learn a representation of point clouds organized in vertical
columns (pillars). By learning features instead of relying on
fixed encoders, this method can leverage the full information
represented by the point cloud. Pillar-based methods exhibit
fast performance because all key operations can be formu-
lated as 2D convolutions, which are extremely efficient to
compute on a GPU.

PointPillars [12] is a single-stage detector, and the first
to utilize the concept of segmenting space in pillars for 3D
object detection in autonomous driving applications. The
LiDAR point cloud is segmented into pillars, and a maximum
number of points per pillar is selected. Each point is encoded
by a nine-dimensional vector consisting of its original loca-
tion [x, y, z], reflection intensity r , offset distance from the
pillar center [xp, yp], and distance from the arithmetic mean
of all points within the pillar [xc, yc, zc]. This vector is fed
through a simplified version of a VFE layer to extract the
pillar features. The result is a BEV feature map.

TANet [17], which stands for Triple Attention Network,
is a single-stage detector based on PointPillar [12] that uti-
lizes a triple attention module to extract voxel/pillar features.
In addition to being robust to noisy data, TANet employs
coarse-to-fine regression in its 2D backbone network to
improve localization accuracy without adding a significant
computational cost. The LiDARpoint cloud is segmented into
pillars, and two sequential triple attention (TA) modules com-
posed of point-, channel-, and voxel-wise attention groups are
used to extract the pillar feature. The excitation operation is
used to compute the point- and channel-wise feature vectors,
and fully-connected layers are used to compute the voxel-
wise feature. All three vectors are fused together to form the
TA feature vector. Consequently, TANet achieves competitive
results in 3D object detection.

C. POINT-BASED METHODS
The point-based methods [40], [41], [42] are unified methods
that directly take point clouds as input. The model then learns
to summarize an input point cloud by a sparse set of key
points, which roughly corresponds to the skeleton of objects
according to visualization. This method is highly robust to
small perturbations of input points, as well as corruption
through point insertion and deletion.

Inspired by advances in graph convolutional networks and
the research potential of using graph neural networks for 3D
object detection in LiDAR point clouds, Point-GNN [15] is
a single-stage detector that utilizes a graph-based approach
from start to end. The LiDAR point cloud is downsampled
to a fixed size through voxelization, and a graph is then
constructed with voxels used as vertices. Each vertex is

connected to its neighbors within a fixed radius. The initial
feature of each vertex is calculated through multi-layer per-
ceptrons (MLPs) [35] in a light version of PointNet [13], as in
PointPillars [12]. Unlike common Graph Neural Networks
(GNNs) [36], Point-GNN was redesigned to encode spatial
information along with learned high-dimensional features.
The GNNs execute for a fixed number of iterations, each
of which uses different MLPs. Thus, weights are not shared
between iterations. Subsequently, in an anchor-free approach,
two different MLPs are used: one for classification, and the
other for per-class 3D bounding box regression.

3DSSD [16], which stands for 3D Single Stage Detector,
is a single-stage detector that uses the natural, unstructured
form of a point cloud. The architecture of 3DSSD [16] is
designed to speed up the inference time of a point-based
detector by discarding the up-sampling layers of a seman-
tic PointNet++ [18] in the 3D backbone network, as well
as the second stage of 3D bounding box refinement.
This is achieved through a novel fusion sampling strategy
and specially designed 3D backbone network following a
PointNet++ [18] encoder architecture. The LiDAR point
cloud is sub-sampled to a fixed size through random sampling
to obtain a more compact representation. A 3D backbone
network Pointnet++ [18] encoder architecture is used to
extract a subset of points containing high-dimensional fea-
tures. Accordingly, a subset of points selected from Distance
Furthest Point Sampling (DFPS) and Feature Furthest Point
Sampling(FFPS) is received as output from the 3D backbone
network. 3DSSD [16] and Point-GNN [15] are based on
PointNet [13], which presents a novel deep net architecture
design suitable for consuming unordered point sets in 3D.
However, 3DSSD [16] yields higher performance.

III. METHODOLOGY
The proposed architecture is shown in this section. The sub-
section III-A shows the overall architecture. Our probability
estimation technique, which uses the DMFA network and loss
convolution layer, is described in the subsection III-B. The
loss functions of training teacher and student model are all
shown in the subsection III-C.

A. OVERALL ARCHITECTURE
Fig. 2 illustrates the overall architecture of our proposed
model, with a student model (above) and a teacher model
(below). We aimed to train a student model that works
well in harsh weather environments based on the distillation
of knowledge. Therefore, we used the weather simulation
LISA [2] for the point cloud as input to the student model.
Our idea is founded on the good detection of the teacher
model in normal conditions, through which the student model
will learn the knowledge distilled from the teacher model,
enabling it to perform well in adverse weather conditions.
To accomplish this, we first trained the teacher model in
normal conditions, and then trained the student model in
harsh weather conditions based on the prediction results of
the teacher model and the ground truth. Although the teacher
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FIGURE 2. Our LossDistillNet consists of two main processing paths. The first component is a pre-trained teacher model that takes a point cloud under
normal weather conditions as input. The second component is a student model, which is trained by student and distillation loss, with a simulated point
cloud in snowy and foggy conditions as input. The two models feature different architecture, as the student model includes a Deep Mixture of Factor
Analyzer (DMFA) network and a loss-convolution layer.

and student models feature different architectures, the object
detection principle is similar for both. After the teacher model
is pre-trained, our architecture consists of two processing
paths, starting from an input point cloud:

In the first path (blue arrows in Fig. 2), the pre-trained
teacher model predicts the input point cloud under normal
conditions. We used the teacher model’s predictions as input
for distillation loss to supervise the distillation process for the
student model.

In the second path (green arrows in Fig. 2), we used the
LISA adverse weather simulation to generate a new KITTI
dataset under harsh weather conditions. The new dataset was
used as input to the student model to make predictions. These
predictions served as inputs for both distillation and student
loss to supervise the student model while distilling knowl-
edge from the teacher model and learning from the ground
truth.
Architectures of the Teacher and Student Models:
The teacher model has identical architecture to the teacher

model in SE-SSD [9]. The model starts with a VoxelNet [11]
network, divides the point cloud into box cells, and then
uses voxel feature encoding (VFE) to encode into sparse
voxel features. Sparse convolution is used to learn informa-
tion about the z-axis and convert the sparse 3D voxels into
2D bird’s eye view (BEV) images. The sparse convolution
network (SpconvNet) consists of four blocks ({2, 2, 3, 3}
submanifold sparse convolution [19] layers), with a sparse
convolution layer [20] at the end. Next, we concatenate
the sparse 3D feature along z into a 2D dense feature for
feature extraction with the spatial-semantic feature aggrega-
tion (SSFA) and attentional fusion (AF) modules. We used a
single shot detector (SSD)-like [10] to build the SSFA and AF
architectures. Finally, three 1 × 1 convolutions are applied
for label classification, location regression, and direction
classification.

Similar to the teacher model, the student model has VFE,
SpconvNet, SSFA module, and AF module, as well as new
additional layers. The point cloud in harsh weather condi-
tions is susceptible to noise and loss of point objects, which
increases the disparity between input point cloud distributions
of the teacher and student models. This disparity affects the
efficiency of knowledge distillation [3], increasing the gap
between the twomodels’ performance. Therefore, we applied
a DMFA network [4] and a loss-convolution layer to the
student model to reduce this disparity.

B. DEEP MIXTURE OF FACTOR ANALYZERS NETWORK
AND LOSS-CONVOLUTION LAYER
As mentioned previously, point cloud objects in adverse
weather conditions experience point loss, making their detec-
tion very difficult and error-prone. To handle this disad-
vantage, we propose a new learning network that performs
well under adverse weather conditions. Our loss-convolution
method represents loss data by probability distributions.
We used a Gaussian density represented in the form of a Deep
Mixture of Factor Analyzers (DMFA) [4] to successfully
model image distributions. To model the probability distri-
bution of loss data, we combined the DMFA network with
an additional convolution layer responsible for transforming
random variables into numerical values.

A voxel feature map is denoted by v = (vo, vm) ∈ Rn,
where vo ∈ Rd represents voxel features with known values,
whereas vm ∈ Rn−d denotes absent values. The set of indices
with loss values in sample v is denoted J ⊂ {1, . . . , n}.
While conditional density pvm|vo is defined in (n−d)-th space,
we performed its natural expansion to the whole Rn space by
the following equation:

Pvm|vo (t) =

{
pvm|vo (tJ ′ ), if tJ ′ = vo.
0, otherwise.

(1)
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where tJ ′ denotes the restriction of t ∈ Rn to the observed
points J ′ = {1, . . . , n}\J .
The only component of the MFA is the factor analyzer

(FA), which has a Gaussian distribution with the covariance
matrix extended over low dimensional space, thus greatly
reducing the number of model parameters. A single factor
analyzer (FA) determined in Rn is described by the mean
vector µ ∈ Rn, and the covariance matrix 6 = AAT + D,
where An×l is the rank factor loading matrix consisting of
s vector a1, . . . , al ∈ Rn, such that s � n. D = Dn×n =
diag(d) is a diagonal matrix representing the noise regardless
of d ∈ Rn. Formally, FA is modeled as a random vector
defined by:

Fi = µi +
√
d � V +

s∑
j=1

Yj · aj, (2)

where V ∼ N (0, I ), Yj ∼ N (0, 1) are independent,
√
d denotes the element-wise square root of vector d , and

a�b refers to element-wise multiplication of vectors a and b.
We considered a random vector Fi with a DMFA distribu-

tionPF to represent a voxel featuremap v = (vo, vm). Let L be
a linear convolution operator that generates a random vector
L ∗Fi when applied to Fi. Then, the random vector L ∗Fi has
a factor analyzer distribution, with mean and variance given
by:

E[L ∗ Fi] = Lµi

V[L ∗ Fi] = diag(Ld)+
s∑
j=1

(Laj) · (Laj)T . (3)

Next, the activation function is applied to all coordinates
of the feature map generated by L ∗ Fi. Here, we ignored
the correlations between coordinates, and considered only
the diagonal elements of the covariance matrix. Consider
the 1-dimensional DMFA that represents the distribution of
L ∗ Fi on each coordinate of the feature map. Let P =∑k

i=1 piN (li, σ 2
i ) be the 1-dimensional Gaussian density. The

expected value of ReLU applied to a random variable of
density P is:

E[ReLU (P)]

=
1
2

k∑
i=1

pi
(
li +

σi

2
√
2π

exp(−
l2i
2σ 2

i

)+ li · erf (
li

σi
√
2
)
)
,

(4)

where erf (z) = 2
√
π

∫ z
0 exp(−t

2)dt is the error function.
Algorithm 1 summarizes the entire procedure of the DMFA

and loss-convolution layer. First, it estimates a distribution of
possible replacements for a voxel featuremap using aMixture
of Factor Analyzers network. Next, the loss-convolution layer
computes the expected value. The DMFA network is trained
using log-likelihood loss.

C. LOSS FUNCTION
Our model consists of two main loss functions, one for each
of the student and teacher models. We used the common

loss functions in object detection to train the teacher model.
The loss function for the teacher model consists of three
components: localization regression, label classification, and
direction classification. We used the Smooth-L1 loss func-
tion [10] L treg for the bounding box’s position and the angle
regression task:

L treg = SmoothL1(δtb),

δtb =

{
|bt − bgt |, if b ∈ {x, y, z,w, l, h}
| sin(bt − bgt )|, if b ∈ {r}

(5)

where {x, y, z}, {w, l, h}, and r denote the center position,
size, and orientation of the bounding box, respectively, sub-
script t denotes the teacher’s prediction, and subscript gt
denotes the ground truth. Focal loss [8] L tcls is applied to the
label classification task for the teacher model:

L tcls = −α(1− δ
t
c)
γ log(δtc),

δtc = |σ (ct )− σ (cgt )| (6)

where α and γ are the focal loss parameters. σ (ct ), and σ (cgt )
denote the sigmoid classification scores of the teacher’s pre-
diction and ground truth.

The softmax function is used to calculate direction classi-
fication loss L tdir . We use the following approach to create a
direction classification target: if the yaw rotation around the
z-axis of the ground truth value is higher than 0, the result
is positive; otherwise, it is negative. Accordingly, the loss
function for training of the teacher model is presented below:

Lteacher = wt1L
t
reg + L

t
cls + w

t
2L

t
dir , (7)

where wt1 and w
t
2 are the function’s hyper-parameters.

We divided the student model’s loss function into two
components: the component used for knowledge distillation
is called the distillation loss, whereas the component used
to minimize the gap between the model’s prediction and the
ground truth is called the student loss. For distillation loss,
we only used the teacher’s predictions with high confidence.
To filter out the confident predictions of the teacher model,
we calculated the IoU indices between teacher and student
pairs, and keep only those pairs whose IoU index is greater
than the threshold τI . The Smooth-L1 loss function LDreg is
calculated for localization distillation between the teacher
and student models as follows:

LDreg =
1
N ′

N∑
i=1

1(IoUi > τI )
∑
b

1
7
SmoothL1(δDb ),

δDb =

{
|bt − bs|, if b ∈ {x, y, z,w, l, h}
| sin(bt − bs)|, if b ∈ {r}

(8)

where the subscripts t and s refer to the teacher’s and student’s
predictions, respectively. IoUi denotes the maximum IoU
of the i-th student bounding box with all teacher bounding
boxes, and N and N ′ are the initial and final numbers of box
pairs, respectively. The cross-entropy and sigmoid loss func-
tion are then used to normalize the two predicted confidences
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Algorithm 1: Deep Mixture of Factor Analyzers and Loss-Convolution
INPUT:
v = (vo, vm)− a voxel feature map
OUTPUT:
ReLU(Lv) - transformation of v by DMFA and loss-convolution layer
DMFA and loss convolution layer:
Compute a density F =

∑k
i=1 piN (µi.ATi Ai + diag(di)), which is the output of DMFA network.

Compute a distribution L ∗ F =
∑k

i=1 piN (li.diag(σi)) with a linear convolution operator where:
li = Lµi
σi = Ld +

∑s
j=1(Laj)� (Laj)

Compute the expected ReLU activation of P =
∑k

i=1 piN (l ji , (σ
j
i )
2) on every value j using Eq. 4.

such that the deviation between the normalized values can be
kept within a small range.

LDcls = −
1
N ′

N∑
i=1

1(IoUi > τI )σ (
ct
T
) log(σ (

cs
T
)), (9)

where σ ( ctT ), σ (
cs
T ) denote the soft sigmoid classification

scores of the teacher’s and student’s predictions, and the
temperature parameter T is introduced to soften the output.
Student loss consists of three major components: localiza-

tion regression loss Lsreg, label classification loss Lscls, and

direction classification loss Lsdir . We utilized the same for-
mula as in teacher loss.

Lsreg = SmoothL1(δsb),

δsb =

{
|bs − bgt |, if b ∈ {x, y, z,w, l, h}
| sin(bs − bgt )|, if b ∈ {r}

(10)

Lscls = −α(1− δ
s
c)
γ log(δsc),

δsc = |σ (cs)− σ (cgt )| (11)

where subscript s denotes the student’s prediction.α and γ are
the focal loss parameters. Therefore, the overall loss function
for training the student model is presented below:

Lstudent = ws1L
s
reg + L

s
cls + w

s
2L

s
dir + µt (L

D
reg + L

D
cls), (12)

where ws1, w
s
2, and µt are hyper-parameters.

The parameters and hyper-parameters in the loss func-
tions for training the teacher and student models are shown
in Tab. 2. The value of the focal loss parameters α, γ
are referred from SECOND [14]. The value of the hyper-
parameterwt1,w

t
2,w

s
1,w

s
2, µt are taken fromSE-SSD [9]. The

temperature parameter T is referred from the model [7], and
the threshold τI is set by us.

IV. EXPERIMENTS
The experimental and parameter settings for our model are
presented in this section. The subsection IV-A shows the
creation of the synthetic dataset, which is used as the input
for our model. The process of training the teacher and student
models is shown in subsection IV-B.

TABLE 2. Parameters of the loss function.

A. SYNTHETIC DATASETS
In this section, we demonstrate the generation of a new
dataset in harsh weather conditions, including fog and snow.
We used the LISA simulator [2] and KITTI point cloud
data [1] under normal conditions to create new synthetic
datasets. The setting up parameters for LISA simulation is
shown in Tab. 3. KITTI-Fog are the point cloud simulation
datasets under fog conditions, whereas KITTI-Snow are those
under snow conditions. Because the regulation of fog and
snow density is important for our purposes, we classified the
harsh weather conditions into three levels - light, medium,
and heavy - as shown in Tab. 4. However, for the sake of con-
sistency the rate of snow and fog is fixed at each density level.
Specifically, the selected density scales for light, medium,
and heavy levels are 0.1, 0.8, and 1.5 millimeters per hour,
respectively. Finally, to accurately evaluate the effectiveness
of the proposed model, we generated a new dataset based on
the normal dataset KITTI [1] for each density level. Con-
sequently, we used six new synthetic datasets for the point
cloud in harsh weather conditions, each of which was divided
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into 3,712 training samples and 3,769 validation samples in
accordance with the standard protocol.

TABLE 3. Parameters for the LISA simulation.

TABLE 4. Level of simulated weather density.

The changes in point clouds according to density level
under snow and fog are shown in Figs. 4 and 5, respectively.
We composed these histograms from the point cloud data
shown in Fig. 3. We used the coordinate system available
from the KITTI dataset [1], where the origin is the location of
the LiDAR sensor, and the direction of the coordinate axes is
shown in Fig. 3(a). The horizontal axis represents the distance
from a point to the origin based on the x-axis of the point
cloud coordinate system, whereas the vertical axis shows the
number of points corresponding to the value on the horizontal
axis. The four graphs presented in each figure helped us track
the distribution of points at different levels based on distance
to the LiDAR sensor.

Fig. 3 illustrates the point cloud changes in fog and
snow conditions under three density levels. Based on
Figs. 4, 3(b), 3(d), and 3(f), it can be seen that in snowy
weather, noise points appear concentrated at a location near
the LiDAR sensor. In contrast, locations far from the sensor
exhibit large amounts of point loss compared to the point
cloud in normal weather conditions. As the rate of snowfall
increases, the number of noise points increases, and the point
cloud loses more data. This decreases the number of valid
representation points for objects, and thus detector perfor-
mance. As shown in Figs. 5, 3(c), 3(e), and 3(g), foggy
conditions also result in significant data point loss compared
to normal conditions. As the rate of fog increases, the point
cloud loses more data, which causes the same issues that are
present under snowy conditions. One problem that occurs
in both foggy and snowy weather is the loss of point data.
Points at different locations in the cloud randomly disap-
pear because the shielding in front of the sensor by fog
and snow causes reflections to be suppressed. Therefore,
we utilized a DMFA network and loss-convolution layer
to recover data points in both snowy and foggy weather
conditions.

FIGURE 3. Point cloud simulation in adverse weather conditions at
different levels of intensity.

FIGURE 4. Density levels of snow simulation.

B. IMPLEMENTATION DETAILS
Our task consists of three training stages: training the teacher
model, training the DMFA network, and training the student
model. In this section, we describe all three training phases
in detail.

1) TRAINING DETAILS OF THE TEACHER MODEL
The settings for the overall architecture of our teacher model
are those used in SE-SSD [9]. We trained the teacher model
with a batch size of 4 for 60 epochs. This training stage was
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TABLE 5. Comparison between our model and SE-SSD [9] in simulated snow conditions.

FIGURE 5. Density levels of fog simulation.

run on a NVIDIA GeForce GTX 3060 GPU with 12 GB
memory and on the Ubuntu operating system.

2) TRAINING DETAILS OF THE DMFA NETWROK
To apply DMFA architecture to the 3D point cloud, we set
it immediately after the sparse convolution block with the
goal of recovering loss data for the 2D BEV map. Therefore,
the architecture used for DFMA training includes the Voxel
encoder network, Sparse convolution, and DMFA layers.
Here, we only present detailed architecture for the DMFA
layer, as the settings for the remaining network layers are
identical to those in SECOND [14].

Due to the increased dimensionality of these datasets,
we used a fully convolutional variant of DMFA, which con-
sists of a fully convolutional feature extractor composed of
Convolution-ReLU-BatchNorm blocks, followed by a down-
sampling/upsampling convolution with a stride of 2. The
network returns three heads that predict (µ,A,D). Thus, the
extractor consists of the following layers:

[conv128]× 2, [conv256]× 2, [conv512]× 4,

[conv256]× 2, [conv128]× 2

We trained the DMFA for 100 epochs, with a batch size
of 4 and a learning rate of 3×10−3. The number of predicted
factor analyzers was l = 4. We note that a fully convo-
lutional DMFA trained by minimizing only the Negative
Log-likelihood (NLL) loss finds it difficult to find a good
mean vector µ of the returned density. We mitigated this by
supplying the NLL loss with the mean squared error (MSE)

loss for the first 10 training epochs. This training stage also
was run on a NVIDIA GeForce GTX 3060 GPU with 12 GB
memory and on the Ubuntu operating system.

3) TRAINING DETAILS OF THE STUDENT MODEL
For the student model, we used the ADAM optimizer with
a batch size of 4 for 60 epochs. We increased µt in Eq. (12)
from 0 to 1 in the first 15 epochs using the following sigmoid-
shaped function: e−5(1−x)

2
. This training stage also was run

on two NVIDIA GeForce GTX 3060 GPUs with 12 GB
memory of each and on the Ubuntu operating system.

V. RESULTS
A. EVALUATION METRICS
To estimate the performance of the 3D object detection task,
average precision (AP) was computed across 40 recall posi-
tion values between 0 and 1, as described in [22], using
an intersection over union (IoU) threshold of 0.7. According
to [1], predictions may be classified as Easy, Moderate, and
Hard, based on the bounding box size, occlusion level, and
truncation level. We evaluated only ‘‘Car’’ object predictions
because it was the most important and widely-occurring
object in the KITTI dataset.

B. COMPARISON WITH SE-SSD MODEL
In this section, we compared the 3D object detection per-
formance of our proposed model with that of SE-SSD [9].
Results are shown in Tabs. 5 and 6. Although SE-SSD [9]
yields the best performance under normal weather conditions,
its performance decreases under harsh weather conditions.
Therefore, the goal of our study was to improve 3D object
detection under adverse conditions. To prove that our pro-
posed model achieves that goal, this comparison was applied
for all density levels, as shown in Section IV.A. All of our
results outperform those of the SE-SSD [9] model, which
proves that the change in training strategy between teacher
and student, and the recovery of lost data, are effective for 3D
object detection in foggy and snowy weather conditions. The
application of the knowledge distillation algorithm improves
the student model’s learning capacity with respect to the
teacher model. Furthermore, the application of a probabilistic
estimation method helps the student model reconstruct part
of the data lost due to the influence of the harsh environment.
Fig. 6 illustrates a sample of car detection results, showing
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FIGURE 6. 3D Object detection in adverse weather conditions at different levels of intensity. 3D bounding boxes in green and orange denote
the ground truth and prediction for objects in the scene, respectively.

TABLE 6. Comparison between our model and SE-SSD [9] in simulated fog conditions.

3D predicted bounding boxes in all density levels of snowy
and foggy weather conditions.

C. COMPARISON WITH DEEP ENTROPY FUSION MODEL
Comparison results between the proposed model and Deep
Entropy Fusion [5] are shown in Tab. 7. Our proposed model
currently yields the optimal performance for 3D object detec-
tion in harsh weather conditions. Deep Entropy Fusion [5]
used the DENSE dataset as input, which includes data from

four sensors: camera, LiDAR, radar, and gated NIR sensors.
An adaptive deep fusion architecture was used to handle
asymmetric measurement corruptions between the four sen-
sors. For a fair comparison, we used the same dataset as input.
However, because our model uses only a LiDAR sensor,
results from the other three sensors were not considered.
Due to dataset limitations, Deep Entropy Fusion was only
evaluated in light fog, heavy fog, and snow conditions. Most
results from our model outperform those obtained by Deep
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TABLE 7. Comparison between our model and Deep Entropy Fusion model [5].

TABLE 8. Comparison between our model and SLS-Fusion model [6].

Entropy Fusion [5], with the exception of light fog levels
under Hard difficulty.

D. COMPARISON WITH SLS-FUSION MODEL
Tabs. 8 shows comparison results between the LossDistillNet
and SLS-Fusion models [6]. SLS-Fusion [6] exhibits superior
performance only in foggy weather conditions, as it uses a
different fog simulator from that used in our study. Further-
more, the designers of SLS-Fusion created a new dataset
based on theKITTI dataset [1], which includes point clouds in
normal weather conditions. The SLS-Fusion model [6] uses
data from LiDAR sensors and 2D cameras, and generates a
pseudo point cloud based on the late-fusion method between
cameras and LiDAR sensors. To ensure a fair comparison,
we employed the same fog simulation algorithm [5] that was
used by the SLS-Fusion model [6]. Because our model only
uses LiDAR sensor input, we only generated the synthetic
fog dataset for the point cloud. The comparison results in
Tab. 8 show that our model outperforms SLS-Fusion at all
three levels of fog density. In other words, our proposed
model retains optimal performance under a different weather
simulation method, even compared to a model that uses two
sensor inputs.

VI. CONCLUSION
Currently, few studies have been conducted for 3D object
detection in harsh weather conditions. Therefore, we used the
LISA algorithm [2] to generate new datasets in snow and fog
based on the available KITTI dataset [1]. Our proposal is the
first to focus on the task of reconstructing missing data on a
3D point cloud. We succeeded in reconstructing loss data for
the point cloud in both foggy and snowy weather by applying
a DMFA network and a loss-convolution layer. Furthermore,
by implementing the knowledge distillation algorithm [3]

we achieved results that are more competitive than those
produced by three existing models: SE-SSD [9], Deep mul-
timodal fusion [5], and SLS-Fusion [6]. Future studies will
combine 2D images with the 3D point cloud to reduce data
loss caused by harsh weather. Furthermore, there is potential
for further research on networks capable of reducing noise
and reconstructing loss data for point clouds in harsh weather
conditions.
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