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ABSTRACT Recent natural language processing (NLP) techniques have accomplished high performance
on benchmark data sets, primarily due to the significant improvement in the performance of deep learning.
The advances in the research community have led to great enhancements in state-of-the-art production
systems for NLP tasks, such as virtual assistants, speech recognition, and sentiment analysis. However,
such NLP systems still often fail when tested with adversarial attacks. The initial lack of robustness exposed
troubling gaps in current models’ language understanding capabilities, creating problems when NLP systems
are deployed in real life. In this paper, we present a structured overview of NLP robustness research by
summarizing the literature in a systemic way across various dimensions. We then take a deep-dive into
the various dimensions of robustness, across techniques, metrics, embedding, and benchmarks. Finally, we
argue that robustness should be multi-dimensional, provide insights into current research, identify gaps in
the literature to suggest directions worth pursuing to address these gaps

INDEX TERMS Natural language processing, adversarial attacks, robustness.

I. INTRODUCTION
Over the last decade, machines talking and interacting with
humans in a human-like manner have become a reality. This
reality is seen in many human-facing and emerging applica-
tions, including smart assistants, intelligent search engines,
customer support, etc. Despite the significant differences
among those applications in their associated contexts, they
technically have one thing in common: they utilize an engine
that employs advances in natural language processing (NLP)
techniques, employing breakthroughs in deep machine learn-
ing (ML) and artificial intelligence (AI). As ML/AI continue
to revolutionize our lives, leveraging and harnessing their
power to understand natural languages, process and analyze
them, and draw meaning from such analyses are the main
promise that NLP applications aspire to deliver [1]. Techni-
cally, NLP today is a subarea of AI that allows machines read,
understand, and obtainmeanings from vast language artifacts.
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NLP’s key benefits lie at the heart of teaching computers
how to analyze large amounts of textual data. Although it
may seem like a new technology, with the emergence of
recent successful applications, NLP’s roots go back to the
early 1950s when NLP was first used for machine translation
(MT) [2]. With the technology wave we are experiencing
leading to innovation and disruptive applications, the amount
of text data being generated everyday grows exponentially.
This, in turn, created the need for powerful technologies,
such as NLP, for efficiently processing voluminous amounts
of data. NLP is being widely adopted by many industries to
provide meaningful interpretation for data and help solving
numerous challenges [3]. Moreover, NLP applications can
be seen in our everyday life, e.g., Google Translate, Google
Assistance, AmazonAlexa,Microsoft’s Cortana. In the finan-
cial industry, NLP is used in Prudential’s chat bot, Bank of
America’s Erica, among others. In the enterprise, NLP sys-
tems are widely adopted for the detection of spam, intrusions,
malware, etc. Machine learning techniques in general, and
NLP techniques by association, are prone to attacks. Those
attacks allow an adversary to target those techniques, as part
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of the aforementioned applications, to violate the applica-
tion objectives and guarantees [4]. For example, in smart
speakers applications, it has been shown that an adversary
use minimally-modified inputs to trigger wrong, and some-
times malicious, device activation through voice squatting
[5], [6], [7], [8]. Similarly, an adversary might attack an
NLP model that handles spam detection and fool it to make
false predictions leading to spam passing through mail filters
[9]. Malware authors might attack an NLP-based model to
fool an intrusion detection system and missclassify malware
as benign software [10]. Adversaries might even be more
tempted to attack NLP models making decisions on loans
in the finance industry with the incentive to fool a loan
application system to incorrectly qualify a customer for a loan
or vise-versa [11].

The research community has produced various studies
demonstrating that NLP models are vulnerable to adversarial
(machine learning) attacks, as NLP models are susceptible to
making incorrect predictions on adversarial examples [12].
This, in turn, has led to a growing body of research on
investigating and understanding the robustness of NLP tech-
niques against adversarial attacks. Broadly speaking, such
efforts in the literature are either focused on developing new
attacks or better training models to make models resistant
to such attacks (i.e., defenses) [13]. To sum up the research
efforts dedicated understanding robustness in the literature,
there are several research surveys that have addressed specific
aspects of NLP robustness, e.g., data augmentation [14],
search methods [15], pretrained models [16], and adversarial
attacks [17]. However, the literature lacks research studies
that provide a systematic overview of the state-of-the-art in
this space across a range of variables; applications, technique,
metrics, benchmark datasets, threat models, tasks, embedding
techniques, learning techniques, goals, defense mechanisms,
and performance.

Motivated by the lack of a pipeline-oriented view of the
2 literature in the domain of NLP robustness, we sample
and provide a systematic overview of the body of work done
thus far in this space addressing this problem, and the novel
aspect is a categorization that goes beyond what has been
done in the literature. The main objective of this effort is to
provide a road-map to the existing work, particularly over
the past few years, and the research gap that deserves further
attention through investigation.We note that most of the work
on NLP robustness in the past three years tackled the issue
from one angle and provides partial solutions rather than a
unified and comprehensive framework on how to fix weak-
nesses [18], [19], [20], [21], [22], [23], [24], [25], [26], [27],
[28]. Through this work, we wish to motivate the research
community to develop a comprehensive frameworks to eval-
uate NLP robustness, in a pipeline (i.e., as envisioned to be
deployed in a real application, tackling various use model
aspects and building blocks). In particular, such a framework
should enable analysis and probing to disclose NLP-models’
strengths and weaknesses and provide recommendations on
how to address weaknesses. Moreover, we envision that any

proposed solution should provide us the ability to visualize,
analyze, and extensively test NLP models for robustness by
utilizing state-of-the art tools, against a range of settings.

A. CONTRIBUTION
The main goal of this work is a fresh and deep look into the
recent work on NLP robustness. To this end, this work makes
the following contributions. (1) We introduce an enriched
taxonomy that covers a range of dimensions of significant
importance, driven from a pipeline of a broad range of NLP
application. (2) We provide a categorization of various recent
studies addressing NLP robustness, falling under the range
of studied variables; e.g., models, embedding techniques,
metrics, and techniques, among others. (3) We provide a
contrast between the different approaches and their strengths
and weaknesses. (4) We provide a road-map of the gaps left
by the existing literature and call for actions.

Overall, this work offers researchers the ability to seek
robustness from numerous aspects, e.g., choice of learning
technique/model, embedding technique, data sets, defense
mechanisms, and robustness metrics

B. ORGANIZATION
The rest of the paper is organized as follows. In section II,
we review the related work in the context of NLP robust-
ness (surveys). In section III, we present an overview of a
generic pipeline to guide our review. In section IV, we pro-
vide a detailed review of the robustness techniques explored
in the literature, which is the central theme of this work.
In section V, we discuss the various metrics used for assessing
robustness. In section VI, we highlight defence mechanisms
for NLP. In section VII, we discuss the impact of embedding
on robustness, while the impact of data set is covered in
section VIII. We conclude in section IX.

II. RELATED WORK
This paper is a survey in nature, and there has been several
surveys addressing robustness of NLP techniques, as men-
tioned earlier. However, those surveys are narrow in scope,
and address only a narrow aspect of the robustness spec-
trum. In particular, existing research surveys in the NLP
domain lack a comprehensive review of recent adversarial
attacks, benchmark datasets, embedding techniques, evalua-
tion metrics, and defense mechanisms that collectively con-
tribute to NLP robustness. Furthermore, the literature on NLP
robustness research lacks surveys that provide researchers
with perspectives and new trends in this emerging domain.
In this unique survey work, we develop a framework to
systematically review, categorize, summarize and integrate
the existing literature as well as expose research topics that
deserve further research. We aim to fill this void by providing
researchers with the knowledge and fresh conclusions nec-
essary to understand the NLP robustness research landscape
better and pursue emerging research areas. For the complete-
ness of treatment of the subject, we address those related
surveys in the following:
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FIGURE 1. A typical NLP pipeline, using the BERT embedding technique.

Feng et al. [14] conducted an extensive survey on data
augmentation for NLP robustness. They studied various data
augmentation techniques, including rule-based and model-
based techniques as strategies to robustify NLP models to
adversarial attacks. However, their work is limited in the
sense that it only addresses a narrow aspect of robustness.
Data augmentation is only part of several defense mecha-
nisms to robustify NLP systems. For instance, there is robust
data training and certifiable data training techniques, all of
which are defense mechanisms to achieve robustness.

Yoo et al. [15] presented review of search algorithms
for generating adversarial examples as a means to achieve
robustness. However, their work is limited in scope in that
it only focuses on adversarial examples as a means to seek
robustness. There are many other variables in the robustness
landscape such as embedding technique, robustness metrics,
and robustness techniques which were not covered under
their survey. Lin et al. [29] presented a research survey on
transformers which are pre-trained NLP models. The study is
centered around robustness from a model stand point where
learning models such as BERT and RoBERTa can contribute
to robustness. However, their work falls short in addressing
other aspects, e.g., defenses, attacks, and techniques.

In [17], Zhang et al. conducted a survey on adversarial
attacks as a means to evaluate robustness of NLP systems to
adversarial perturbations. However, their work is limited due
to the fact that robustness is multi-dimensional and adversar-
ial attacks are only one dimension of robustness. Robustness
entails numerous other elements such as defenses, metrics,
and embedding technique. To the best of our knowledge,
there is no comprehensive work in the literature that puts
together advances on understanding the robustness consid-
ering a pipeline that accounts for the important steps in
implementing an NLP system, which is our take in this work.

III. NLP: A GENERIC OVERVIEW
To simplify our presentation of the overview of the various
advances made over the past decade in the area of NLP

towards improving our understanding of robustness through
attacks and defenses, we highlight a system flowwith various
elements that are typical in NLP systems. We use those
elements to describe the different advances. In the subsequent
description, we envision the application of a natural language
model (used for natural language generation). At a high-level,
and is exemplified later in Figure 1, the typical NLP pipelines
consist of a preprocessing step that takes a raw language input
and prepares it for consumption by an NLP model through
the appropriate steps of mapping. Upon that initial step of
preprocessing and mapping, an embedding step is invoked to
transform the initial representation into an appropriate format
that can be consumed by the model. The model then runs,
initially in a training phase, to learn several parameters that
could be used for the language generation.

A. NLP ROBUSTNESS: TAXONOMY
In Figure 2, we demonstrate a brief taxonomy of the various
efforts presented in the literature on NLP and associated
robustness analysis across the associated pipeline, including
techniques, embedding, evaluationmetrics, evaluation bench-
marks (datasets), attack space (threat model and granularity),
and associated defense mechanisms.

Given the range of objectives that each paper tries to
address, there is a need to systematically understand them
by breaking them down into some normal form, based on
the pipeline we described here. As such, in the following
sections, we dive into efforts that have been dedicated on each
among those elements of the pipeline.

To make this survey more accessible, we compile the
acronyms used in the rest of this paper in Table 1

IV. ROBUSTNESS TECHNIQUES AND TOOLS
A. BACKGROUND
As we pointed out in section I, NLP models are being
increasingly deployed to handle many human-like tasks.
With the prevalence of NLP systems and their various
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FIGURE 2. A high-level overview of the various research efforts in the domain of robustness analysis across various elements of the NLP
pipeline, including techniques, embedding, metrics, benchmarks, attack model, and defense mechanisms

real-world applications, the need for building robust NLP
models becomes paramount because the consequences of
making false predictions can be detrimental and even life-
threatening in some cases (e.g., medical imaging diagnosis
systems). In reality, however, we have seen numerous exam-
ples of failed NLP models after deployment in the real-world
due to the lack of robustness. Some recent work has shown
that approximately two-thirds of real-world NLP systems
(e.g., essay grading NLP, Microsoft twitter NLP) fail after
deployment due to the lack of robustness [18]. As a case in
point, Amazon builtan NLP-based recruiting tool that was
deemed as a failure (and was eventually scraped) because
the NLP-powered model demonstrated bias against female
applicants [30].

To address these issues, the security and NLP communities
alike invested a significant amount of effort in developing
techniques and tools for testing and analyzing the robustness
of language processing techniques, embedding techniques
that would provide better robustness, metrics to assess the
performance, benchmarks to evaluate this robustness, attacks
to challenge the robustness, and the associated defense mech-
anisms. In the following, we sample and review efforts in each
of those directions, using the reference taxonomy in Figure 2.

B. ROBUSTNESS ANALYSIS AND TESTING TOOLS
As a result of the failure of various NLP systems, the research
community has conducted numerous studies on NLP robust-
ness, calling for extensive testing of NLP models before
deployment. For example, Rebeiro et al. [18] introduced
CheckList, a task-agnostic method for studying NLP models.
CheckList incorporates a matrix of general linguistic capabil-
ities and test types that allow for comprehensive test iteration.
The proposed approach works on both commercial as well as
research NLP models, and reveals model weaknesses even
after models’ internal testing, although stops short of provid-
ing solutions for the identified weaknesses.

Similarly, Goel et al. [25] identified challenges in evalu-
ating NLP systems. As a result, they introduced a solution
called Robustness Gym (RG), which is a simple yet exten-
sible evaluation toolkit. By realizing a common mean for

evaluation, RG enables NLP practitioners to compare various
results from various frameworks and to develop newmethods
using a built-in sets of abstractions. Moreover, RG offers a
unified NLP-model evaluation framework that allows thor-
ough and extensive analysis and test of NLP models. While
promising, the robustness framework does not seem to offer
insights into the full understanding of the behavior of NLP
models nor disclosing where the systems are actually failing
or performing well. It would seem both desired and perhaps
intuitive to extend the tool to localize the model failure and
provide reasons behind model degradation.

In [24], Rychalska et al. introduced WildNLP, a frame-
work for testing model stability in-situ. In WildNLP, text
corruptions, such as keyboard errors or misspelling occur, are
addressed. To this end, the authors compare the robustness
of models in four popular NLP tasks: QA, NLI, NER, and
SA. The authors do so by testing the performance of these
tasks on aspects introduced in the framework, and find that
the high performance of models does not guarantee sufficient
robustness, although recent embedding techniques can help
improve that. In order for us to improve the models robust-
ness, we need to incorporate several factors rather than just
simply using the adversarial attacks as a metric; e.g., the
underlying model properties, test data, appropriate metrics,
etc.

Datasets and their role in highlighting the performance of
various algorithms, as well as unveiling their robustness, have
been also examined. In [31], Hendrycks et al. systematically
examined and measured the out-of-distribution (OOD) gen-
eralization for seven NLP datasets. En route, they construct
a robustness benchmark that employs realistic distribution
shifts and measure the generalization of various models,
including Bag-of-Words (BoW) models, CNNs, and LSTMs.
Moreover, they show that the performance of pretrained trans-
formers’ decline is substantially smaller. The authors also
examined the factors that affect the robustness, and found that
larger models are not necessarily more robust than smaller
models, while more diverse pretraining data could improve
the robustness. The authors also use the generalization bench-
mark to train a model on the SST-2 [32] dataset and evaluate
on the IMDB [33] (both of which are popular benchmark
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TABLE 1. List of acronyms in alphabetical order.

datasets for the sentiment analysis task). They use BoW,
CNN, and LSTM-based models to predict a movie review’s
binary sentiment, and report the accuracy.

C. TECHNIQUES FOR ROBUSTIFYING NLP MODELS
A number of techniques have been proposed in the literature
for robustifying NLP models, including ensemble classifiers
with randomized smoothing, stochastic ensembles, interval
bound propagation, word recognition techniques, etc. In the
following, we review some of the most widely used robust-
ness techniques and where they are used. A summary of some
of those works is shown in Figure 3. Additionally, the reader
is referred to Figure 2 for additional context.

1) ENSEMBLE CLASSIFIERS WITH RANDOMIZED
SMOOTHING
One of the obvious caveats of relying on a single classifier
in NLP tasks is that a manipulation of the underlying input

space (feature) fed into this classifier would have a significant
impact on the output of the classifier. To cope with this issue,
ensemble classifiers are proposed in the machine learning
literature, where multiple classifiers (estimators) are built
independently and aggregated to obtain the final result of the
classifier. As such, and without losing generality, an ensem-
ble classifier is a classifier whose decision depends on the
combined outcome of decisions made by several individual
classifiers, and is a method for achieving a degree of robust-
ness in NLP models by reducing bias in the training data.

By the same token, robustness with the ensemble classifier
means that for any input x and class label y, a smoothed
classifier (g) will return a prediction g(x) which is most likely
the correct prediction [63]. As such, a model is said to be
robust at y if it can classify all inputs in the perturbation text
correctly [64]. Randomized smoothing, on the other hand,
is a method through which we can transform a classifier into
a new smoothed classifier that is robust in a given setting.
Randomized smoothing can provably certify the robustness
of NLP models against various adversarial attacks such as
word-substitution attacks [22]. For instance, Zhout et al.
proposed Dirichlet Neighborhood Ensemble (DNE), a ran-
domized smoothing method for training a robust model in
a way that mitigates substitution-based attacks [60]. Essen-
tially, DNE forms virtual sentences by sampling embedding
vectors for each word in an input sentence from using a
group of the word and its synonyms, and augments them with
the training data. This sampling, in turn, ensures robustness
against adversarial attacks without sacrificing the perfor-
mance. While the randomized smoothing technique greatly
enhanced classification accuracy against adversarial attacks,
this technique only applies to one task at a time. In other
words, if the technique was to be applied to another task, e.g.,
NLI, the robust training procedure would need to be restarted
from scratch. This, in turn, will incur a significant amount of
overhead [64].

2) STOCHASTIC ENSEMBLE WITH RANDOMIZED
SMOOTHING
Stochastic ensemble refers to a classifier with some random-
ness and uncertainty in the underlying model. NLP models,
in general, have a stochastic characteristic which (if under-
stood correctly) enables us to effectively characterize the
behavior of the NLP predictive models [19]. In [20], Ye et
al. proposed a certified robustness method based on a new
randomized smoothing technique that constructs a stochastic
ensemble by applying randomword substitutions on the input
sentences. Moreover, their method leverages the statistical
properties of the ensemble to provably certify robustness.
This method is simple and generalizable in the sense that it
does not depend on any structure and only requires black-box
queries of the model outputs. As such, their method can be
applied to any pre-trainedmodel (e.g., BERT) and granularity
(e.g., word-level, subword-level). Although robust training
has been proven to enhance the overall robustness of the
model against adversarial word-level perturbations, robust
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FIGURE 3. Comparison between various works from the literature, across techniques, whether a benchmark is utilized or not, the threat model
(White-box vs Black-Box), and study’s goal (Attack, Defense or Robustness).

training on a different model requires re-executing the train-
ing steps from scratch which is one of the key limitations of
certifiably robust training, and is an issue that this study fails
to reveal.

3) INTERVAL BOUND PROPAGATION
The Interval Bound Propagation (IBP) is a technique used
to build certifiably robust machine learning classifiers. IBP
essentially uses the interval arithmetic to define a loss to
minimize an upper bound on the maximal difference between
any pair of logits when the input is perturbed within any
norm-bounded ball [65]. IBP has been applied widely and
successfully in the vision domain to obtain robustness guar-
antees [65], [66], [67], [68], [69]. The key strength of IBP for
NLPmodels is that it can be used to process discrete perturba-
tions in addition to the continuous ones, which are used in the
computer vision domain [64]. It is our belief the robustness
cannot be understood in isolation of models obtained from
different datasets, irrespective of the metric. As such, one
obvious limitation of this line of work is that it did not use a
broad benchmark; e.g., GLUE, which includes six benchmark
datasets. Those datasets could have been possibly used to

further evaluate the classification accuracy and demonstrate
their robustness technique.

4) WORD RECOGNITION
Word recognition refers to an elementary process of lan-
guage, whereby written and verbalin various studies [50],
[70], [71], [72], [73], [74]. For example, Pruthi et al. pro-
posed using a word recognition model in front of the classi-
fier to combat adversarial spelling mistakes against a BERT
model used for sentiment analysis. They show that a single
adversarially-chosen character attack has lowered the accu-
racy from 90.3% to 45.8%, while their defense brings the
accuracy back up to 75%. This approach can be easily used to
robustify NLP models against adversarial spelling mistakes.
Moreover, the same appproach can be used for recognizing
words corrupted by random keyboard mistakes, thus defend-
ing NLP models against word perturbation attacks. What
is unique about this approach is that, unlike many other
studies which only study adversarial attacks on NLP models,
it demonstrates vulnerable state-of-the-art NLP model and
also proposes a robustness technique that contributes to pro-
tection against the same attacks. A study that combines both
attack and defense strategies is certainly plausible. On the
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other hand, a limitation of this approach is that it is unclear
if it transfers and generalizes to other network architectures
across various linguistic tasks. forms of words are converted
into linguistic tasks and representations. Word recognition as
a technique has been used

D. BREACHING SECURITY BY IMPROVING ATTACKS
MAdversarial attacks have been used in the literature to
evaluate robustness of NLP systems to real-world attacks.
As depicted in Figure 2, most researchworks tackle the adver-
sarial attack issue from either an attack-granularity angle
(character-level, word-level, and sentence-level attacks) or
from a threat model (white-box and black-box) angle.

Numerous research studies have extensively studied the
role of adversarial attacks in developing robust NLP mod-
els [35], [39], [54], [58]. For example, Cheng et al. [54] study
crafting AEs for seq2seq models whose inputs are discrete
text strings. To address the challenges caused by the discrete
input space, the authors propose a projected gradient method
combined with group lasso and gradient regularization in the
white-box threat model. To handle the large output space,
they design a new loss functions that works for deriving both
non-overlapping and targeted keyword attacks. The authors
achieve an average of 85% success rate with their adversarial
attacks on NLP models, however, they do not indicate what
attributed to the success of the attack: whether it is the poorly
designed seq2seq model or is it the dataset. Also, authors stop
short in offering any recommendations on how to increase the
robustness of seq2seq models against adversarial attacks.

From an attack granularity perspective, various studies
have been carried out using either a character-level, word-
level, or sentence-level attack [37], [38], [45], [53], [58], [59],
[75]. For example, Eger et al. [45] investigate the impact of
visual adversarial attacks (modification to text which can be
detected by visualizing) on character-, word-, and sentence-
level tasks. They show that both neural and non-neural mod-
els, in contrast to humans, are vulnerable to such attacks,
leading to a performance decrease of up to 82%. In the fol-
lowing subsection, we explore, in details, some of the attack
methods/techniques used in the NLP robustness literature:

1) ADVERSARIAL SPARSE CONVEX COMBINATION (ASCC)
Sparse convex combination refers to the method of repre-
senting the target output as a sparse convex combination
of the input text. Based on this definition, for any input x
and class label y, a trained NLP classification model maps
each input x to its class label y. Given a clean (unperturbed)
input x a targeted sparse adversarial attack aims for finding
a perturbation so that the perturbed input x’ is incorrectly
classified to a target class [21]. This attack method has been
used in numerous research studies [21], [70], [76], [77], [78],
[79], [80].

For example, in [21], Dong et al. introduced an Adversarial
Sparse Convex Combination (ASCC) method to model the
word substitution attack space and leverage a regularization
term to enforce perturbation towards an actual substitution.

In doing so, they align their modeling better with the discrete
textual space. Based on the ASCCmethod, they also generate
worst-case perturbations and incorporate adversarial training
for robustness. Their experiments show that ASCC-defense
outperforms the current state-of-the-art techniques in terms
of robustness on two prevailing NLP tasks, SA and NLI,
and address several attacks across several architectures.The
strength of this attack method is that it can be used to gener-
ate adversarial examples to robustify models and eventually
improve models’ prediction accuracy. On the other hand,
when robust accuracy on adversarial examples goes up, this
causes the clean accuracy (unperturbed standard test data) to
go down, a trade-off that should be considered when utilizing
this attack method [64].

2) POPULATION-BASED OPTIMIZATION FOR ADVERSARIAL
ATTACKS
A population-based optimization algorithm is a type of
genetic algorithm that aims to find perturbations which can
change a model’s prediction/classification [81], [82]. This
techniquemaintains a ‘‘population’’ of candidates’ inputs and
continuously perturbs and combines them [64]. On the other
hand, a black-box attack is a type of adversarial attack where
an adversary does not have access to the model’s internal
structure nor parameters. This attack technique has been used
in numerous research works [12], [39], [53], [83], [84], [85],
[86], [87], [88], [89].

Alzantot et al. [39] proposed a population-based opti-
mization algorithm to generate semantically and syntactically
similar AEs that can fool SA and textual entailment models
with high accuracy. Moreover, they demonstrate that more
than 90% of the successful SA AEs are classified to their
original label by 20 human annotators, and that the examples
are perceptibly quite similar.

While this attack technique concretely examines the vul-
nerability of NLP models to adversarial examples, it falls
short of proving whether the uncovered attack remains effec-
tive under various model architectures (transferability). For
instance, it is unknown if the attack success rate would remain
the same under the LSTM and Word-CNN models.

3) SPARSE PROJECTED GRADIENT DESCENT
The projected gradient descent method is a type of greedy
algorithm which has been applied broadly to machine learn-
ing models [36]. In this method, each element in the input
text is considered for substitution and the best perturbations
are selected from all possible perturbations and rerun until no
more perturbations are possible [15]. This attack method has
been utilized in several research works [15], [43], [90] with
various promising results. For example, Barham and Feizi
[43] introduced a sparse projected gradient descent (SPGD)
method for crafting interpretable AEs for text applications.
SPGD imposes a regularization constraint on input perturba-
tions by projecting them onto the directions to nearby word
embeddings with the highest similarity.
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The strength of this attack method is that the regulariza-
tion constraint ensures that perturbations move each word
embedding in an interpretable direction (i.e., towards another
nearby word embedding) while ensuring a high prediction
accuracy on different model architectures. A limitation of this
attackmethod is that it is implemented using only one dataset,
which is the IMDB. Ideally, robust NLP models should be
evaluated across various linguistic tasks on multiple datasets.
Research has shown that models should be tested using the
GLUE (Global Language Understanding Evaluation) bench-
markwhich includes nine datasets, six of which are for testing
classification accuracy [90].

4) PROBABILITY WEIGHTED WORD SALIENCY (PWWS)
PWWS is a greedy search method for generating adversarial
examples [91]. In this method, the goal is to rank words based
on some importance function. In a descending importance
order, each word is replaced with a candidate word until
we successfully perturb all words [15]. This technique has
been used in multiple studies addressing machine learning
robustness to adversarial attacks, including the studies in
[51], [92], [93], [94], and [95]. The way such a technique
is used in those studies is almost identical. For example,
Ren et al. [51] addressed the problem of AEs on text classi-
fication by generating AEs that maintain lexical and gram-
matical correctness, as well as semantic similarity. Based on
the synonyms substitution strategy, they introduce a word
replacement order determined by both the word saliency and
the classification probability, and propose a greedy PWWS
algorithm for text AEs. Their experiments on three datasets
using convolutional and LSTM based models show that their
approach reduces the classification accuracy and keeps a very
low word substitution rate. The strength of this technique is
that it exposes the vulnerabilities of NLP models to adversar-
ial examples via word replacement using an efficient greedy
algorithm. One limitation of this technique, however, is that
it does not consider the error analysis aspect of robustness.
In other words, the technique does not indicate which models
were correct on the original words/data but incorrect on the
perturbed words.

5) SWARM OPTIMIZATION ALGORITHM FOR ADVERSARIAL
ATTACKS
The Particle Swarm Optimization Algorithm is a search
al-gorithm used to generate adversarial examples [53]. In this
method, each member of the population is perturbed by cre-
ating all potential candidate obtained by replacing each input
and then sampling one input example, at each iteration. Using
this algorithm, we are able to find the best perturbed input
among all members of the population [15]. This attack tech-
nique has been used in multiple studies addressing machine
learning robustness to adversarial attacks in general, includ-
ing the studies in [12], [15], [53], [96], and [97]. The way
such a technique is used in those studies is almost identical;
e.g., Zang et al. [53] propose an attack model that incor-
porates a word substitution method [98] and particle swarm

optimization-based search algorithm for that purpose with a
significant success.

The strength of this method is its generalization to differ-
ent model architectures, such as BiLSTM and BERT, using
benchmark datasets. Moreover, this attack method achieves
higher attack success rates and crafts more high-quality AEs
in comparison to various baseline methods.

A key limitation of this attack method, however, is that it
does not take into account run-time of the PSO algorithm,
as the run-time is a critical factor for search algorithms in any
real-world deployment. Per [15], a key factor to consider for
those algorithms’ complexity is the length of the input text, as
well as the choice of the search algorithm. For instance, if the
input texts are short (e.g., a few sentences), a beam search
is an appropriate choice, since it can achieve a high success
rate without incurring the overhead. In such tasks, AEs must
be generated quickly, and a more efficient algorithm may be
preferred, even with a lower success rate.

6) METROPOLIS-HASTINGS SAMPLING FOR ADVERSARIAL
ATTACKS
The Metropolis Hastings (MH) Sampling is a Markov Chain
Monte Carlo (MCMC) algorithm for generating a sequence
of random samples from a probability distribution where
direct sampling is hard [59]. MH works by conducting a
random walk according to a Markov chain whose stationary
distribution is (the eventual distribution from which the chain
will sample). On each step of the MC, a new state is proposed
and either accepted or rejected according to a dynamically
calculated probability value, called the acceptance criteria
[78]. That is, in the long term, the data points from the MC
will look similar to the data points from [60], [59].

This attack technique has been used in multiple stud-
ies addressing machine learning robustness to adversarial
attacks, including [59], [99], [100], [101]. The way such a
technique is used in those studies is almost identical. For
example, Zhang et al. proposeMetropolis-Hastings Sampling
(MHS) to generate fluent adversarial examples for attacking
NLP models. The authors performMetropolis-Hastings sam-
pling which is designed with the guidance of gradients. The
strength of this method is that it outperforms the baseline
models on attacking capability. However, this methodwas not
tested under various model architectures as well as linguistic
tasks. Ideally, an attack technique should scale up to re-use
across numerous tasks (e.g., sentiment analysis and NLI) and
with various model architectures (e.g., RoBERTa, LSTM,
Attention-based, etc.).

V. ROBUSTNESS METRICS
The robustness of NLP models is a quality that has to be
measured with well-defined and relevant metrics in order to
gain an understanding of the level of NLP model’s resistance
against adversarial attacks. In general, metrics serve a dual
purpose in machine learning systems design: measuring their
performance in training and testing. Robustness metrics are
similar, in the sense that they are used for measuring and
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tracking the performance of the machine learning models
under adversarial settings. Based on the surveyed literature,
we found that different research works utilize different met-
rics for measuring robustness. A summary of some of those
works is shown in Figure 3, with the context highlighted in
Figure 2. In the following, we review some of those metrics.

A. ATTACK SUCCESS RATE
Attack success is one of the simplest and most widely utilized
metrics for evaluating the robustness of NLP models. The
attack success rate refers to the number of attempts that are
successfully normalized by the number of overall attempts
of an attack (e.g., number of valid adversarial examples that
both meet a predefined example condition on the size of
perturbation and the adversary’s objective; e.g., reducing the
confidence of a classifier below a given threshold, or chang-
ing the classification label of the example).

As a metric, the attack success rate has been utilized in
numerous research studies to determine the effectiveness of
adversarial attacks on NLP models [12], [15], [39], [115],
[116]. For instance, Alzantot et al. [39] measured the effec-
tiveness of their genetic algorithm-based adversarial attacks
using the attack success rate as a metric which eventually
indicates NLP model robustness to adversarial examples.

While the attack success rate is simple and easy to interpret
metric, its main disadvantage is that it ignores most, if not all,
quality characteristics of the resulting adversarial examples
that contributed to the success rate. For instance, as we will
see later, not all adversarial examples are considered of the
same quality, where some of them may be easily eliminated
or detected using simple heuristics while others are more
challenging to address using the same heuristics.

B. ERROR RATE
Error rate (also known as the robustness error) refers to the
number of times where an NLP model incorrectly classifies
an input text. The error rate is a metric which has been used
in numerous research studies to determine the robustness of
NLP models to adversarial attacks [117]. In contrast to the
attack success rate, the lower the error rate (misclassification
rate), the more robust the NLP model is against adversarial
attacks.

The error rate has been used asmetric in numerous research
studies, including [13], [37], [103], [104], [105]. For exam-
ple, Goodfellow et al. [13] found that several models, includ-
ing neural network-based models, consistently misclassify
AEs inputs formed by applying small but intentionally worst-
case perturbations to the input examples from a dataset.
In doing so, the perturbed input forces the model to output
an incorrect answer with high confidence. According to the
authors, adversarial examples are often misclassified by a
variety of classifiers with different architectures.

This metric is simple and easy to calculate in order to
evaluate the robustness of NLP models to adversarial attacks.
However, the error rate alone should not be the only metric
to evaluate the performance of machine learning models as

it does not take into account the intrinsic and often clear
differences between the examples contributing to the error
rate.

C. IBP BOUNDS TIGHTNESS
As highlighted in §IV-C3, IBP is a technique used to accom-
plish robustness. Researchers studied the tightness of IBP’s
upper and lower bounds as a metric to determine and for-
mally verify the degree of model robustness against adver-
sarial attacks [118]. A model achieves a provably-guaranteed
robustness against an attack if it cannot cross the boundary,
no matter how adversaries create adversarial examples [90].

The IBP tightness metric has been utilized in several
research works [27], [47], [109], [119]. For example, in [27],
Shi et al. used the IBP tightness to study the robustness
verification problem for transformers. In [47], Jia et al. used
the same metric to study certified robustness to word substi-
tutions and considered an exponentially large family of label-
preserving transformations where each word in the input text
can be swapped with a similar one. The advantage of using
the IBP tightness metric is that it can be used to evaluate
verifiable robustness of NLP models to word substitution
attacks. On the other hand, this metric alone should not be
used as an indication of the true certified robustness. Ideally,
other evaluation metrics should be used in conjunction with
IBP tightness, such as normal accuracy and training accuracy.

D. CLASSIFICATION ACCURACY
The classification accuracy is a simple extension of the
accuracy metric, and refers to NLP model’s ability to cor-
rectly classify input texts under different attack methods
(e.g., white-box and black-box attacks, or word-level and
character-level substitution attacks, among other settings)
[120].

The classification accuracy has been utilized by numer-
ous research works [34], [35], [40], [41], [45], [59], [103],
[105], [106]. For example, in [59], Zhang et al. used
the classification accuracy metric to evaluate their pro-
posed Metropolis-Hastings Sampling Algorithm (MHA) and
demonstrated thatMHAunder classification accuracy outper-
forms the baseline model on attacking capability.

Similar to other accuracy measures, this metric is easy
to calculate and interpret, providing an ideal mean for eas-
ily comparing different algorithms. However, on the down-
side, this metric is agnostic to the quality of the individual
examples contributing to the classification accuracy. As high-
lighted in §IV-C3, IBP is a technique used to accomplish
robustness. Researchers studied the tightness of IBP’s upper
and lower bounds as ametric to determine and formally verify
the degree of model robustness against adversarial attacks
[118]. A model achieves a provably-guaranteed robustness
against an attack if it cannot cross the boundary, no matter
how adversaries create adversarial examples [90].

The IBP tightness metric has been utilized in several
research works [27], [47], [109], [119]. For example, in [27],
Shi et al. used the IBP tightness to study the robustness
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FIGURE 4. A listing of Robustness metrics.

verification problem for transformers. In [47], Jia et al. used
the same metric to study certified robustness to word substi-
tutions and considered an exponentially large family of label-
preserving transformations where each word in the input text
can be swapped with a similar one. The advantage of using
the IBP tightness metric is that it can be used to evaluate
verifiable robustness of NLP models to word substitution
attacks. On the other hand, this metric alone should not be
used as an indication of the true certified robustness. Ideally,
other evaluation metrics should be used in conjunction with
IBP tightness, such as normal accuracy and training accuracy.

E. DIVERSITY
Diversity implies that examples from training data of one
class are as differentiable as possible from training data of
another class to promote invariance in training data [47].

The diversity metric has been utilized by numerous
research studies [26], [43], [44], [111], [120] to measure
the classification accuracy of NLP models as part of the
robustness to adversarial attacks. For example, in [111], Zhu
et al. propose a new adversarial training algorithm called
FreeLB, which provides a higher invariance in the embedding

space by perturbing input words to minimize the resulting
adversarial risk on the input text. For validation, they apply
their approach to transformer-based models in both NLU and
reasoning tasks. Their experiments show that, when applied
only to the fine tuning stage, their approach is able to improve
the overall test score of BERT-based model from 78.3% to
79.4%, and RoBERTa-largemodel from 88.5% to 88.8%. The
authors, however, stop short in explaining how to measure
the run-time of their algorithm because the performance and
accuracy of search algorithms sometimes become a trade-off
issue. There are many search algorithms in the literature such
as genetic algorithm, particle swarm optimization, greedy
search, among other. Most of these algorithms have been
thoroughly studied and could have been considered for this
research as well [15].

One strength of the diversity metric is that it supports a
qualitative notion across NLP domains making it suited for
evaluating model in ways that are not exhibited in any of the
prior metrics. Moreover, this metric allows us to understand
how theNLPmodels generalize in predicting validation target
features. However, it is unclear how this metric can be used
to measure diversity via precision and recall.
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F. FAIRNESS
Fairness in the context of machine learning, and NLP in
particular, refers to the fair representation of data points for
a particular language understanding task. This metric also
aims to ensure that the NLP models do not make erroneous
assumptions to produce prejudice results. As a case in point,
Amazon’s job candidate NLP-based system was deemed to
have prejudice against female applicants because the NLP
model did not have a fair representation for female applicants’
resumes (i.e., it was not trained with enough female resumes).

The fairness metric has been utilized by various stud-
ies [108], [109], [113], [114], [121] to evaluate the degree of
NLP robustness and ensure that large models are fair. Sharma
et al. [113] presented a simple data augmentation technique
that selectively adds a subset of synthetic points in order to
meet a fairness criterion without compromising the accuracy.
Experiments are performed on three datasets where they have
shown that their method outperforms prior methods to lessen
bias while maintaining the accuracy.

This metric can help reduce and control algorithmic biases
and increase how fairlymodels perform in the real-world. The
weakness of this metric is that it is coarse-grained, and cannot
easily detect or even differentiate between the unintended
biases that may exist in NLP models. Furthermore, it should
not be the onlymeasure to determine that whether algorithmic
biases are completely removed from models or not.

G. INSIGHTS AND OPEN DIRECTIONS
It is clear that the metrics utilized in the literature for mea-
suring the performance and robustness of NLP models are
diverse. This diversity of metrics is necessitated by the vari-
ety of shortcomings that some of those metrics have, pre-
cluding their use in broad set of applications. Some others
are advocated for their simplicity and ease of interpretation.
In general, NLP models have to be evaluated to determine
their robustness to adversarial attacks, where differentmetrics
may prove more practical than others. The robustness can
be evaluated by computing the upper and lower bounds of
IBP, for instance. The upper bound can be minimized using
the back-propagation approach. The lower bound can be
achieved using IBP to measure certified accuracy [78], [122].

Our analysis of the surveyed work shows that NLP models
are more robust to adversarial attacks (e.g., word substitution
attacks) when trained with robust training (i.e., the IBP)
as opposed to normally-trained models which fared poorly
(classification accuracy of 36.0%) under the same adversarial
attacks [78]. An interesting area of research in this context
is whether models trained with data augmentation would be
more robust to attacks than robustly trained models. Another
recommendation is to explore and experiment with clean ver-
sus robust accuracy metrics. We observed that robust training
fared well (classification accuracy of up to 87%) against
adversarially perturbed words [78], but we do not know if this
robustnesswould cause any increase or drop in clean accuracy
(accuracy on clean/unperturbed words).

Overall, our exploration of the metrics space calls for work
in various directions to fill various gaps. (1) While there
is a significant initial work on the understanding of bias in
the broad NLP community, the metrics developed so far are
limited in many ways, and there is a need for developing tech-
niques for assessing fairness and removing biases in data to
evaluate how NLP models would perform when deployed to
the real-wold. Namely, it would be interesting andworthwhile
to extend the existing notions and metrics to techniques that
address the existence of residual and unintended biases in
datasets. (2) Diversity is understood in terms of the accuracy
as a target metric, and it would be worthwhile to extend
the diversity metrics to concretely evaluate models using the
precision and recall as potential factors. (3) There seems to
be a gap and need for techniques to allow the integration and
use of IBP tightness metric in conjunction with other metrics
such as training accuracy and normal accuracy.

VI. DEFENSE MECHANISMS
Neural NLP systems must learn the fragile predictability
of natural languages in order to address the generalization
flaws of NLP systems [64]. We have already seen how NLP
models trained with standard data are vulnerable to adver-
sarial attacks [39]. To address those vulnerabilities, a range
of techniques have been studied in the literature, including
robustness through data augmentation, adversarial training,
and multitask learning. We note that the literature has several
surveys that address each individual technique, which we
refer the reader to, although we highlight the high-level ideas
of each of those techniques and exemplify the techniques
by some sample works for the completeness in treating the
subject.

A. DATA AUGMENTATION
In the computer vision domain, data augmentation and robust
training, as defense mechanisms, have been proven to robus-
tify neural models to adversarial perturbation [36], [123].
Inspired by those developments in the vision field, NLP
researchers have considered adversarial training, data aug-
mentation, and robust training as defense mechanisms to
robustify NLPmodels (as depicted in Figure 2). For example,
Zeng et al. [19] proposed a certifiably robust defense by
randomly masking a certain words from the input to defend
against both word substitution based attacks and character-
level perturbations. The authors claim that they can certify
the classifications of over 50% texts to any perturbation of
5 words on AGNEWS dataset, and 2 words in the SST-2
dataset (dataset-dependent). The interested reader could find
more details in the comprehensive survey on data augmenta-
tion techniques, their advantages, and disadvantages in [14].

B. ADVERSARIAL TRAINING
There has been also a significant body of work on the use
of adversarial training in defending against attacks on NLP
models and systems. It is noted that such attacks are not
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limited to this application domain, and are prevalent to most
learning-based systems.

Given the sufficiency of the prior surveywork, and the pace
of progress in this domainwith respect to the NLPmodels and
applications, the interested reader might refer to the survey of
Chakraborty et al. for more related works [124].

C. MULTI-TASK LEARNING
Multi-Task Learning (MTL) is a learning technique that
enables researchers to share useful information or represen-
tations between and among related machine learning tasks.
This technique is so popular that it has been adopted by
researchers and practitioners across many domains including
computer vision, speech recognition, and NLP tasks [125].
The benefit of sharing information from related tasks offers
the ability to generalize deep learningmodelsmore efficiently
on the original task. The MTL technique has been utilized
in numerous research studies including [126], [127], [128],
[129] and the way this technique is used in those works is
very similar. For example, in [126], Tu et al. proposed to
use multi-task learning (MTL) to improve generalization as a
form of robustness in NLPmodels. The authors experimented
on NLI and paraphrase identification to show that MTL
leads to significant performance gains. The authors demon-
strated the importance of data augmentation and diversity for
addressing spurious correlations challenges. The study was
carried out on NLI and paraphrase identification (PI).

D. INSIGHTS AND OPEN DIRECTIONS
We observe that data augmentation, adversarial training,
multi-task learning, and robust training all have a positive
impact on the classification accuracy of NLP models thereby
contributing to robustness. We have also noticed from ana-
lyzing the literature that robust training outperforms both
adversarial training as well as data augmentation when it
comes to robustness to adversarial attacks [78].

Overall, our exploration of the defense mechanisms space
calls for work in various directions to fill various gaps. (1)
While there is a significant initial work on the utilization
of adversarial training in the broad NLP community. The
adversarial techniques available so far are limited in many
ways, and there is a need for developing techniques that
evaluate NLP models’ robustness beyond deployment to the
real-world. Namely, it would be interesting and worthwhile
to quantify the impact of adversarial training on rapidly
evolving language models as such models will be exposed
to unsean data after deployment. (2) There seems to be
a gap and the need for robust training techniques to test
model robustness across various models because most of
the research works in this context conduct robust training
under a certain model architecture (e.g., BERT, Glove, etc.).
To achieve robustness to adversarial attacks, an NLP model
must be evaluated using more than one architecture on var-
ious datasets. For instance, in a sentiment analysis task,
an NLP model should be evaluated using embeddings such
as BoW, GloVe, Word2Vec, and RoBERTa on benchmark

datasets from GLUE. (3) Although data augmentation has
proven to increase model prediction accuracy, it has not been
thoroughly examined to see its long-term impact on model
performance. Because language models shift and drift after
deployment to the real-work, it is paramount to develop tech-
niques for reevaluating the impact of data augmentation on
the long-run. Additionally, most of the research studies that
leverage randomized smoothing with IBP, fail to consider the
run time aspect, which is the overhead incurred during com-
putation. We wish to motivate the NLP research community
to consider the above gaps as future research directions.

VII. EMBEDDING TECHNIQUES
Several embedding techniques have been utilized in the lit-
erature for representing text and natural language entities (in
Figure 2). The choice of thosemodels is influenced by various
factors, including their fitness to the studied applications, per-
formance, and robustness. In the following, we review some
of those embeddings and where they are used. A summary
and contrast of some of those works are shown in Figure 5.

A. REPRESENTATION TECHNIQUES
1) BAG OF WORDS
The bag-of-words model, or BoW for short, is a technique
used for extracting features from raw data for use in NLP
models [132]. Moreover, this technique is considered as a
popular text embedding technique widely used for text clas-
sification tasks such as sentiment analysis. In the BoW tech-
nique, the input text is represented as the bag of its words
without regard to word order or grammar.

The BoW embedding method has been implemented by
numerous research studies [40], [60], [64], [75], [106] to
achieve robustness for NLP tasks such a sentiment analysis
and spam filtering. For example, in [40], Geiger et al. pro-
posed a method for generating semantically challenging NLI
data sets using the popular BoW embedding technique and
showed that a range of NLI neural models (especially models
based on the BoW embedding technique) invariably learn
sub-optimal solutions and fail to encode crucial information.
The authors concluded that certain NLP models are not fit
for certain NLP tasks due to inherent weaknesses in their
underlying architecture (hence the implementation of BoW).

The strengths of the BoW technique are that: (1) it is easy to
implement. (2) it offers flexibility and ability of customizing
it to the specific task, text data type, and structure. However,
on the downside, and because BoW ignores words ordering,
it will lead to ignoring the context, which negatively impacts
word meanings (semantics). The fact that word meaning and
context are ignored by BoW, is a significant limitation of the
model’s linguistic capabilities.

2) WORD2VEC
Word2Vec is an model used to transform words into vectors.
This is achieved by representing text into a numerical format
that deep neural networks can understand [133]. This step is

VOLUME 10, 2022 86049



M. Omar et al.: Robust NLP: Recent Advances, Challenges, and Future Directions

FIGURE 5. Representative Literature Work with Various Embedding Techniques.

necessary to help NLP models understand text in the form
of numbers. Word2vec (if provided with sufficient data and
context) has the capability to make highly accurate predic-
tions for tasks such as sentiment analysis (i.e., by classifying
reviews with high certainty) and topic modeling.

The Word2Vec technique has been utilized by numerous
research studies including [31], [103], [130], [131] to reveal a
model’s weaknesses by showing a lower classification accu-
racy score. For instance, in [131], Wallace et al. introduced
triggers as a new form of universal adversarial perturbation
and used Word2Vec to evaluate the robustness of NLP mod-
els to adversarial attacks. The authors proposed a gradient
guided search over tokens to finds trigger sequences that
successfully lead to the target prediction. Their experiments
utilized Word2Vec embedding technique and demonstrated
a sharp decrease in accuracy of certain NLP models. The
benefit of utilizing the Word2Vec representation technique is
that it is simple and intuitive. Moreover, the way it is imple-
mented enables the Word2Vec to easily learn how words
are represented in classification tasks. Another advantage of
this technique is that it does not require huge preprocessing,
and hence less memory, because the model accepts data in
an online manner. On the downside, this technique suffers

from its inability to deal with out-of-vocabulary words, since
Word2Vec model is unable to interpret unseen words. More-
over, this technique does not scale to other languages because
it would require new embedding metrics.

3) GLOVE
Global Vector for word representation is another represen-
tative learning technique which is a reformulation of the
Word2vec optimization algorithm [134]. In this method,
words are represented as vectors to create word co-occurrence
matrices [135]. The core concept in this method is to deter-
mine the frequency of word occurrence in the co-occurrence
matrix.

The GloVe learning technique has been utilized by numer-
ous research studies [24], [31], [39], [42], [51] to study the
impact of word learning representation on robustness. For
instance, in [24], Rychalska et al. introduced WildNLP, a
framework for studying model stability with text corruptions,
e.g., keyboard errors and misspelling. In their pursuit, the
authors use the GloVe embedding technique as a baseline
to evaluate NLP robustness. One advantage of this learning
technique is that it considers the frequency of co-occurrences
(also refereed to as global statistics) crucial to building word
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embeddings. Thus word re-occurrences is directly tied to
word vectors.

Because GloVe is considered a count-based model,
it potentially requires more computational power for more
processing, a major draw-back of this technique.

4) ELMO
Embedding from Language Models, or ELMO, is a word
embedding technique for transforming a sequence of words
into a sequence of vectors. In this approach, the input data is
represented as character-level tokens and the output is word-
level embeddings [136]. We note that this learning technique
differs from the previously mentioned learning techniques
in that it computes vectors for an entire sentence instead of
assigning a vector for each word embedding. This means that
the same word can be assigned to different word vectors if
the context is different. This is where the difference between
ELMO and other traditional embedding techniques (e.g.,
GloVe, and Word2vec) come into play. ELMO has been suc-
cessfully utilized in numerous works, including [49], [103],
[116], [131], to accomplish high classification accuracy in the
context of robustness for many NLP linguistic tasks including
text classification and question-answering.

One advantage of ELMO is that it can handle the out-
of-distribution issue because of its ability to use character
embeddings to represent word embeddings. However, on the
downside, ELMO requires huge computation time to realize
the word vectors [137], a limitation we may overcome by
pre-computing the vectors offline.

5) FASTEXT
This technique is an extension of the Word2Vec method:
instead of transforming each word from the input text into
a vector as output, this method represents each word as an
n-gram of characters for the output. Fastext can be used
to reveal a model’s ‘‘blind spots’’ in the context of robust-
ness and has been utilized for such purpose by numer-
ous research studies [107], [138], [139], [140], [141]. For
instance, in [107], Ribeiro et al. conducted a study to find
bugs in NLP models based on Fastext and presented a seman-
tically equivalent adversaries and semantic-preserving pertur-
bations, defined as perturbations that produce changes in the
model’s predictions. The authors implemented their method
using several NLP tasks; QA and SA.

The benefit of using the Fastext learning technique is that it
employs a simple and efficient baseline for sentence classifi-
cation and uses N-gram features to reduce computation time
and enhance efficiency. However, it might take a longer time
to train a Fastext model because of the fact it uses N-gram
features which could be greater than the number of words.
This means that Fastext embedding is fit for only a certain
linguistic tasks such as classification tasks.

B. INSIGHTS AND OPEN DIRECTORIES
It is evident that representation learning techniques utilized in
the literature for evaluating NLP models are diverse. Impres-

sive results on a certain learning technique should not imply
that a given NLP model will perform equally well when
deployed in the real-world. Overall, our exploration of those
techniques calls for work in various directions to fill various
gaps. (1) While there is a significant initial work on the
utilization of various embedding techniques in the broad NLP
community, the current research works fall short in using
the same embedding technique/model (e.g., Fastext, BERT)
across various linguistics tasks. (2) To harness the full power
and potential of an embedding technique, there is a need for
developing learning techniques, e.g., it would be interesting
andworthwhile to build an encoding layer (within themodel’s
architecture) that can enforce resistance to perturbations. (3)
There seems to be a gap in exploring the reuse of encoding
across various linguistics tasks for robustness, which has the
potential to improve classification accuracy.

VIII. ROBUSTNESS VIA BENCHMARK DATASETS
NLP systems have performed remarkably on a wide spectrum
of linguistic tasks due, in large, to the emergence of deep
neural networks and unsupervised pre-training [142]. Stan-
dard benchmark datasets have accomplished excellent results
across many NLP tasks. For example, the SQuAD dataset has
95.4% F-1 score which outperforms human accuracy [143].

As tempting as it may be to believe how well NLP models
perform on standard datasets generally, often these models
are actually solving the ‘‘dataset problem’’ rather than solv-
ing the underlying task with sufficient generalizations. For
instance, in [143], a BERT model is trained on the SQuAD
dataset and achieved an impressive 86.5% F-1 score.We note,
however, that these results are chiefly because the model
is tested on a data that is created in the same way as the
training data, following the same distribution and patterns.
This, in turn, provides a false-sense of confidence in NLP
model performance that may generalize for OOD samples.
On the flip side, when the samemodel was tested on TriviaQA
dataset (which is created in the same format as the SQuAD
dataset), the F-1 score dropped to 35.6%.

It is important to understand the data utilized in validating
and evaluating a task to reach conclusions on generalization.
One such best practice to achieve this goal is to challenge
the model with OOD samples. For instance, one approach
to show this practice is by exposing the model to a training
set, and not to samples from within the distribution of the
testing set. One possible benefit of examining models with
such settings is that surface cues can be identified to show
limitations of models, as pointed out in a previous section,
where gaps could be addressed by using techniques that can
help with robustness and generalization, e.g., data augmenta-
tion techniques [14].

Another approach to extend the generalization of models
and improve the robustness to weak forms of attacks is to
utilize widely-accepted and standard benchmark dataset: the
fact that those datasets are standard imply that they went
through rigorous evaluation for representation and sound-
ness of collection. For instance, GLUE (General Language

VOLUME 10, 2022 86051



M. Omar et al.: Robust NLP: Recent Advances, Challenges, and Future Directions

Understanding Evaluation), depicted in Figure 2, is one
of evaluation tools, which is a collection of nine bench-
mark datasets. GLUE is designed for analyzing and effec-
tively evaluating NLP systems on three linguistic tasks,
classification (benchmark datasets: SST-2 and CoLA), para-
phrasing (benchmark datasets: MRPC, STS-B, and QQP),
and inference (benchmark datasets: MNLI, WNLI, QNLI,
and RTE) [142].

While benchmarks are an excellent way to improve the
robustness and examine the generalization of models through
well-vetted data, their main purpose is to mitigate bias
and address spurious correlations, which we review in the
following,

A. DATASET BIAS
One of the benefits of utilizing rich benchmarks is addressing
the explicit bias. Dataset bias in NLP refers to a form of error
in which certain elements (i.e., variables or attributes) of a
dataset are more heavily represented than others [144], this
skewing the resulting NLP model recognizing such bias and
affecting its operation against a more diverse data distribu-
tion. In other words, the biased dataset does not accurately
reflect a model’s true use case in the real-world, resulting
in analytical errors and misleading classification accuracy
levels.

The issue of dataset bias in NLP has been studied exten-
sively in numerous research works [44], [46], [144], [145].
The way those research works examine data bias varies
depending on the task and domain. For example, in [46], He et
al. argued that NLI tasks are susceptible to learning dataset
bias via surface cues; superficial cues that are associated with
the label on a particular dataset. They investigated a recently
proposed approach, called FLite [146]. FLite adversarially
filters dataset biases to mitigate the prevalent overestimation
and overfitting of data in models. The authors demonstrate
that FLite significantly reduces themeasurable dataset biases,
where models trained on the filtered datasets yielded better
generalization to OOD tasks. However, their study stops short
of extending its applicability to other language tasks, e.g.,
sentiment analysis, spam detection.

Clark et al. [44] argued that NLP models suffer from gen-
eralization and OOD issues due to biases in training datasets.
Their study showed that the prior knowledge of this biases
will enable training a model to be more robust to domain
shift. The study demonstrated through experiments on several
datasets with out-of-domain test sets huge robustness gains.

Finally, Schiller et al. [61] introduced a stance detection
benchmark, called StD, to add and evaluate adversarial attack
sets for NLP tasks. Their study demonstrated that the exis-
tence of biases inherited from multiple datasets by design
leads to lack of robustness against adversarial examples.
The authors stressed the need to focus on robustness and
de-biasing strategies in multi-task learning approaches. How-
ever, the study did not offer recommendations on the applica-
bility of this approach to other NLP tasks such as sentiment
analysis, NLI, and question answering models.

B. SPURIOUS CORRELATION
NLP models are generally prone to learning surface cues
from training data which leads to the phenomena ‘‘Spu-
rious correlation’’. Spurious correlations fool NLP mod-
els into making wrong predictions because models tend
to rely on simple shortcuts rather than relying on the
actual, typically complex, relationships in making such
predictions.

The spurious correlation issue has been examined exten-
sively in numerous research studies including the works in
[52], [57], [147], [148], [149]. The way those research works
tackle this issue varies greatly, depending on the linguistic
task. For example, in [52], Yaghoobzadeh et al. presented
a novel approach to design more robust NLP models and
address the spurious correlation issue systematically. Their
framework is based on example forgetting, where they find
minority examples without any knowledge of the correlations
present in the dataset. They tested their technique using three
NLP taks (NLI, paraphrase identification, and fact verifica-
tion) and showed consistent robustness gains. However, the
study stops short of discussing other strategies to address
the harm of spurious correlations such as data diversity and
invariance. Kaushik et al. [49] studied whether NLP models
pick up spurious patterns (e.g., if they are taking short-cuts
instead of learning about the dataset when making predic-
tions). They discovered that BERT and BiLSTM models
trained on original data fail to make correct predictions,
while performing remarkably better when trained on com-
bined datasets (counterfactually-revised counterparts). They
have shown the results to generalize for multiple tasks; i.e.,
sentiment analysis and NLI. In their pursuit, the authors used
humans in the loop to provide labels (predictions) and to
intervene upon the data which may not be realistic given
large datasets in the real-world. The study, however, did not
offer any insights on how their models would perform on
challenging adversarial datasets where spurious correlations
do not necessarily hold. Wang et al. [57] examined the effect
of spurious correlation on the accuracy and robustness of
text classifiers using a BERT model. They argue that NLP
models are prone to learning surface cues during training,
which may cause models to make incorrect predictions. They
conducted studies using sentiment analysis NLP tasks. The
study suggests feature engineering strategies to accomplish
robustness, although it stops shorts of offering any insights
on the transferibility and generalization of their approach to
other architectures, e.g., CNN.

C. INSIGHTS AND OPEN DIRECTORIES
It is clear that rich benchmark datasets utilized in the liter-
ature for evaluating NLP models are diverse but inconsis-
tent. Impressive results on benchmark datasets should not
imply that a given NLP model will perform remarkably when
deployed in the real-world. Research has shown that models
are susceptible to solving the dataset rather than solving the
underlying language understanding task [48].
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Overall, our exploration of the benchmark datasets space
calls for work in various directions to fill various gaps. (1)
While there is a significant initial work on the utilization
of benchmark datasets that are free of bias in the broad
NLP community, the datasets available so far are limited in
many ways, and there is a need for developing techniques
for identifying and removing biases in data to evaluate how
NLPmodels would performwhen deployed to the real-world.
Namely, it would be interesting and worthwhile to extend the
existing notions and benchmarks to techniques that address
the existence of spurious correlation in datasets. (2) Using
the same dataset for both training and testing might provide
a false-sense of a model’s robustness and accuracy. It would
be interesting and worthwhile to test NLP models on various
datasets by adopting the super GLUE, which is a successor
of GLUE, a more challenging suite of datasets for various
linguistic tasks. (3) There seems to be a gap and the need
for a unified evaluation framework to enable comprehensive
evaluations across various linguistic tasks in a fair and repro-
ducible fashion. Namely, developing a standardized, unified
evaluation benchmark dataset would be intriguing. In addi-
tion, modeling a strong set of baselines to be used as a test bed
and trained on domain-specific data would also be interesting.

IX. CONCLUSION
This paper presents a survey on NLP robustness research in
a consistent and systemic way. We identified various gaps
in the literature with recommendations on future area of
research directions following various elements in the NLP
pipeline. As numerous real-world NLP projects have failed
after deployment due to lack of robustness, exploring the
robustness as a multi-dimensional concept that requires the
development of new techniques is paramount. We note that
newly developed techniques should address the spurious
correlation challenges and achieve high out-of-distribution
accuracy to ensure sufficient sensitivity to perturbations and
ultimately lead to high precision in realistic text classifi-
cation settings. Overall, it is our hope that this research
work will serve as a fresh guide for the research community
on technique, metric, and dataset to use, and motivate for
additional interest and work in this space addressing the
various gaps.
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