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ABSTRACT In order to improve the weak magnetic detection ability under the background of Gaussian
colored magnetic environment noise, a magnetic anomaly detection method based on feature fusion and
isolation forest (IForest) algorithm is proposed in this paper. The method uses different feature algorithms
to extract the statistical features, time-frequency features and fractal features of the signal, reduces the
dimensionality of the features by principal component analysis (PCA) and generates feature fusion tensors.
Finally the IForest algorithm is used to achieve target detection. The simulation and experimental results
show that the method has a higher detection rate under different SNR of Gaussian color noise, which is
approximately 5%-18% higher than that of the traditional feature detection algorithm. This method can
train an effective detection model with only a small number of negative samples. Compared with the fully
connected neural network (FCN) model trained with unbalanced samples, the detection rate increases by
approximately 5%-12%, and it takes less time.

INDEX TERMS Magnetic anomaly detection, feature fusion, unsupervised learning, isolation forest, prin-

cipal component analysis.

I. INTRODUCTION

Magnetic anomaly detection is widely used in geological
exploration, anti-submarine investigation and other fields due
to its high concealment, strong anti-natural interference abil-
ity, and good regionality [1]. Aeromagnetic anomaly detec-
tion is one of the main forms of magnetic anomaly detection
[2], but due to the long detection distance, the target signal
is very weak compared to the background magnetic field.
The influence of factors such as the background noise of the
magnetic detector and the changing field of the geomagnetic
field increases the difficulty of target detection.

Experts have done a lot of research on improving the weak
magnetic detection ability. Ginzbug first proposed that a set
of standard orthonormal basis functions (OBF) can be used
to accurately describe the magnetic dipole signal [3], and
the energy detector was constructed by using the squared
sum of the decomposition coefficients of the OBF. However,
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this algorithm can only achieve better results in the back-
ground of Gaussian white noise. The actual magnetic noise
is mostly colored noise with a power spectral density of 1/f*
[4]. So [5] proposed to use the Kahennan-Lovey expansion
to correct the standard orthonormal basis function according
to the autocorrelation coefficient of the geomagnetic noise,
which adapting OBF detectors to colored noise better. How-
ever, in the actual detection process, the shortest distance
and relative motion state between the non-cooperative target
and the platform are difficult to estimate, which leads to
the limitation of this method. Tang Y, Pan M C, etc. have
studied detection algorithms based on magnetic background
noise, such as minimum entropy filtering [6], [7], stochastic
resonance [8], etc., which using the statistical characteristics
of magnetic background noise, but its performance is easily
limited by low SNR [9]. Most of these traditional detec-
tion methods are based on the detection of a single feature,
which cannot make full use of the information in the sig-
nal, and are often only suitable for specific environmental
noise.
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In recent years, many scholars have studied the method
of using machine learning to extract multi-domain features
of target signals to achieve target detection [10]. Refer-
ence [11] converts the original signal into a two-dimensional
image through Wigner-Ville time-frequency transformation,
and uses CNN to achieve classification detection. Although
the detection performance is improved, the image processing
will occupy a lot of computing resources, and the efficiency is
low, which cannot meet the needs of real-time detection. The
article [12] designed a CNN with residual structure, which
can directly process one-dimensional signals and shorten the
calculation time. Reference [13] uses FCN to automatically
extract the multi-domain features of the target signal, which
improves the detection rate under the colored noise back-
ground. These methods can establish a more complex nonlin-
ear relationship between the multi-domain features of the sig-
nal, so as to better ensure the detection effect under different
noises. However, most of these methods have high require-
ments on the quality and quantity of samples, and the effect
is poor under the condition of uneven positive and negative
samples in the training set, so the practicability is not strong.

In this paper, a magnetic anomaly detection method based
on feature fusion and IForest algorithm is proposed. Firstly,
the real-time signal is intercepted into several time series
samples through a sliding window, and the time-frequency
features, statistical features, fractal features of each sample
is extracted. Then use PCA to reduce the feature dimension,
and finally input it into the pre-trained IForest detector to
complete the target detection. Based on the simulation data
set, the influence of feature dimension, the number of isola-
tion trees (iTrees), and the maximum number of samples on
IForest is studied to optimize the parameter settings. Through
simulation and design experiments, the performance of this
method is compared with several existing detection methods.
The feasibility and superiority of the method are verified.

Il. AEROMAGNETIC ANOMALY DETECTION MODEL
During aeronautical magnetic detection, as the relative posi-
tion of the target and the magnetic detector changes, the mag-
netic signal changes regularly, and the target is detected by
processing and analyzing the measured signal. The process is
modeled as shown in Fig.1.

Under normal circumstances, the effective detection dis-
tance of an aviation magnetometer is more than 600m, far
exceeding the size of the target. According to the paper [14],
the target can be equivalent to a magnetic dipole. Under this
condition, a Cartesian coordinate system is established with
the target _p)osition as the origin, and the magnetic induction
intensity B generated at the spatial point (x, y, z) is:

B, — 100 [

(3x — r2)M + 3xyM, + 3sz]
100

By=— [3xny + 3y — rOM, + 3szZ] (1
100 .

B.=— [3szx +3yeMy + (B2 — r )MZ]
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FIGURE 1. Aeromagnetic anomaly detection model.

where distance r = /x2 + y? + 72, magnetic moment M =
(My, My, M,)".

Without considering the background magnetic interference
and the background noise of the magnetic detector, the out-
put value of the optical pump magnetic detector carried on
the aviation platform is the modulus value of the comblned
magnetic field 7 (i the target magnetic anomaly T and the
geomagnetic field ¢, which is:

- —
AT = |T|-|T)| @)

Simplified from the cosine theorem, we get:

—
AT = |T,|cos6 3)

That i Is, the measured magnetic anomaly AT is the projec-
tion of T on the direction of the geomagnetic field. By con-
sulting the data, it ga)m be seen that the direction change of
the magnetic field T} in the area of 10000 km? is less than
1°, so the direction angle 6 of the geomagnetic field can be
regarded as a fixed value [15]. Denote 6 by the magnetic
inclination angle I and the magnetic declination angle D,
according to the spatial triangular relationship AT can be
expressed as:

AT = By coslcosD + BycosIsinD + B;sinl )

It shows that the amplitude of the magnetic anomaly signal
is affected by the target magnetic moment, magnetic inclina-
tion, magnetic declination and other factors, and changes with
the relative position of the target and the magnetic detector.

However, the signal is often polluted by colored noise.
This is because the interference of the sensors’ background
noise and the short-term change of the geomagnetic field
[16] makes the power spectrum of the actual noise not evenly
distributed in each frequency band but is decremented by 1/f*
(0 < a < 2) [17]. In this case, traditional detection methods
do not work well [5].

The use of machine learning method for magnetic anomaly
detection can solve this problem. As long as the sample cov-
erage is wide enough, the method can better adapt to vari-
ous environmental noises. Correspondingly, the effect of this
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method is greatly affected by the number and quality of sam-
ples [18]. In practical applications, the label information of
most of the obtained samples is unknown, so it is difficult to
use supervised learning methods to train the model. In addi-
tion, due to the high cost of acquiring positive samples (mixed
signals containing targets), the sample size is small while the
number of negative samples (pure background noise) is large,
the detection performance of the model trained with imbal-
anced samples will be greatly reduced. Therefore, this paper
proposes a real-time magnetic anomaly detection method
based on feature fusion and IForest algorithm, which fully
mines the sample information through unsupervised learning,
and has important theoretical value and application prospects.

IIl. MAGNETIC ANOMALY DETECTION METHOD BASED
ON FEATURE FUSION AND IFOREST ALGORITHM

A. FEATURE FUSION

Feature fusion is to use different feature extraction algorithms
to obtain different features of magnetic anomaly signal, then
fuse these features to reduce the dimension, and use the fused
feature values as the input of the target detection model [19].

1) FEATURE EXTRACTION
Feature extraction can suppress noise interference and reduce
information redundancy. The selected features need: strong
interpretability of the original signal, high degree of division,
insensitivity to noise changes. Accordingly, this paper selects
the statistical features [16], time-frequency features [20], and
fractal features [21] as the basis for target detection.
Zero-crossing analysis is an analysis method based on the
statistical characteristics of the signal. The zero-crossing rate
refers to the number of times that the signal passes through
the zero value after removing the linear component per unit
time [22]. Suppose a time series x(n),n = 1, 2, ... N, and the
operator x [-] is defined such that:

1
a(m) = xIx(n)] = { o My )
Then the number of zero crossings of the signal x(n) is:
N
D=7 lqn) —qn— DI ©)

n=2

Obviously, 0 < D < N — 1, The zero-crossing rate is defined
as:

J )
T N-1
Define the k-order difference operator V%, The zero-
crossings are extended to higher orders by the following
recursion:

{Vx(n) =x(n)—x(n—1)

VEx(n) = V[VF1x)], ®)

k=2,3,....K

Among them, K is the maximum difference order. The length
of Vx(n) is N — 1 while the length of ka(n) is N-k. Defining
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the zero-crossing number of differential time series vE=lxn)
is Dg, then its zero-crossing rate is:

(N —k)

The time-frequency feature provides information on the
signal variation with time of different frequency components.
The commonly used analysis methods include short-time
Fourier transform, wavelet packet analysis, etc [23]. Consider
its advantages in handling non-stationary time-varying sig-
nals [24], the paper uses wavelet packet analysis to extract
the time-frequency characteristics of the signal. The principle
of the algorithm is to use a set of wavelet coefficients to
approximate the signal to be analyzed:

L
Vil

Among them, ¥ (¢) is the base wavelet function. Parameter
a is the scale parameter, which reflects the period length of
the wavelet and corresponds to the frequency domain infor-
mation of the signal; b is the translation parameter, which
controls the appearance position of the wavelet in the time
domain by shifting, reflecting the time domain information.
The wavelet packet decomposition process is realized by
recursion, which is equivalent to convolving the wavelet
packet coefficients with the paired high-pass filter G(k) and
low-pass filter H (k). The formula is as follows:

wjom(n) = ~2 Y H(k — 2m)wj 1 m(k)

keZ (1 1)
Wwiam1(m) = v2) " Glk — 2wy (k)

keZ

&)

Ry

—b
Ya p(t) = w(tT), a,beR,a#0 (10

Among them, wj ,,(n) represents the wavelet packet coeffi-
cient of the mth node of the jth decomposition layer. And
the larger the amplitude is, the more similar the signal at the
corresponding frequency band and time domain position is to
the wavelet packet function. According to the literature [15],
the sym6 wavelet base is suitable for multi-scale decomposi-
tion of aeromagnetic signals, so this paper selects the sym6
wavelet base, and the number of decomposition layers is 4.

The essence of fractal characteristics is the self-similarity
of the research object, which is a supplement to the statistical
characteristics and time-frequency characteristics of signals
[25]. Geomagnetic noise has obvious long-range autocorre-
lation between local and local [21]. Noise and mixed target
signals can be distinguished by extracting fractal features.
In this paper, the fractal features of the signal are extracted
by calculating the box dimension. The calculation method of
the box dimension of the time series is as follows:

(1) Suppose a time series x(n) of length N is measured. Nor-
malize its amplitude and time scale and then put it into a

square.
(2) Select a grid consisting of boxes with side length ¢,,,, m =
1,2,..., M,coverthe unit square in (1) with the grid, and

record the number of intersections of each size box with
x(n), denoted as N, (&,).
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(3) Calculate Dp = InNy, (e1,) / (—Inegy), if x(n) is a regu-
lar fractal, the relationship between In NV, (&) and In g,
on the double logarithmic coordinate system is a straight
line, and Djp is the slope of the straight line.

2) PCA FUSION DIMENSIONALITY REDUCTION

There are usually strong correlation features in the extracted
signal features, which will interfere with the detection effect
and increase the amount of calculation. Therefore, we use the
PCA algorithm to compress the extracted feature values to
simplify the model input.

The core idea of PCA is to find a set of k-dimensional
new basis (k < n) which any two basis vectors satisfy linear
independence in the original n-dimensional space., so that the
original feature is mapped to this set of bases with the largest
variance, and the projection of the original data on the new
base is the dimension-reduced data. Suppose there are mn-
dimensional vectors x; (1 < i < m) in a dataset X:

N
X

X=|: |, xeR (12)
T

xm

The dimensionality reduction process can be expressed as:

yi = Wx; (13)
where y; € RFand k < n, then
wi

W=| : |erb (14)
Wi

The derivation shows that in order to maximize the vari-
ance after mapping the original data to w, the eigenvectors
corresponding to the largest k eigenvalues should be selected
to form W [26], and then the dimensionality-reduced data can
be obtained by formula(13). It can be seen that the principal
components generated by PCA are linear combinations of the
original features rather than a single feature. The principal
components with a cumulative contribution rate greater than
95% after dimensionality reduction [27] are selected to form
a feature fusion tensor.

B. FOREST MAGNETIC ANOMALY DETECTION ALGORITHM
IForest is an unsupervised learning algorithm based on deci-
sion trees that identifies anomalies by isolating outliers in
data [28]. In the process of magnetic detection, due to the
short duration of the magnetic anomaly target signal, the data
distribution is sparse and far from pure noise data clusters
with high density, such samples will be isolated after a few
random feature divisions, resulting in shorter paths in the tree.
Therefore, by calculating the average path length, the normal
value and the abnormal value can be distinguished, and the
target detection can be realized. The algorithm principle is
shown in Fig.2.

The algorithm is divided into two phases, training and
anomaly detection [29]. Training is to use the training set

VOLUME 10, 2022

x>60
240 N Y
@
150
®e
L]
100
L
]
20 35 60 120
Anomaly
Score
Anomaly
threshold L IForest
normal polut
240
(=]
145 =y
®e
®
100
®
& [

18 34 120

FIGURE 2. IForest detection principle.

data to generate several iTrees to form IForest, each iTree
is a binary tree structure, representing several division meth-
ods of sample points. During anomaly detection, the test set
samples are brought into each iTree, the average path length
and anomaly score are calculated, and the threshold is used
to determine whether it is anomaly. The specific process is as
follows:

(1) Randomly select n samples from the training sample set
and put them into the root node of an iTree. Set the
maximum value in the sample data to be xpx and the
minimum value to be Xpip.

(2) Randomly select one dimension of the sample data and
a certain dividing point P(Xmin < P < Xmax) under this
dimension, and divide the node data into two subspaces:
put the samples with data less than P into the left node
while put the sample greater than or equal to P into the
right node.

(3) Repeat (1)-(2) recursively in the child nodes, and contin-
uously generate new child nodes until there is only one
sample in each node or the limit tree height is reached.

(4) Cycle (1)-(3) to continue training the next iTree until the
specified number of iTrees are generated.

(5) The average height c(n) of each iTree is calculated to
normalize the average path length of all sample points,
as shown in equation (15).

2Hmn—1)—(m—1)/n], n>2
cn) =11, n=2 (15)
0, otherwise

where H (i) is the harmonic number, which can be esti-
mated by H(i) = In(i) + ¢, Euler—Mascheroni constant
¢~ 0.577.
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(6) Input the sample to be detected into the trained [Forest
model, make it traverse each iTree, calculate the path
length h(x) of the sample x, and obtain the abnormal score
s(x, n) of the sample, the formula is as follows:

E(h(x))

s(x,n) =2" "< (16)

E(h(x)) is the expectation of the path length A(x). A(x) is
equivalent to the number of divisions required to isolate
a sample point. The closer s(x, n) is to 1, the greater
possibility that the sample point is abnormal.

C. PRINCIPLE OF MAGNETIC ANOMALY DETECTION
METHOD BASED ON FEATURE FUSION AND IFOREST
Since the smallest unit processed by the method in this paper
is the sample, consider using a sliding window to subdivide
the data into multiple time series samples so that realize real-
time detection. The sliding window should contain the com-
plete target signal without introducing too much noise. So its
size should be set according to the duration of the target signal
which is calculated according to 3 x CPA /v [30]. The selected
window length is usually slightly larger than the effective
duration, and the difference between the two is the window
moving step, ensuring that there is always a window that can
contain the complete target signal.

Fig.3 shows the flow of the detection method proposed
in this paper. Firstly, the geomagnetic noise lasting a period
of time is divided into several samples of the same length
through a sliding window. Then extract the statistical features,
time-frequency features and fractal features of the sample
signal and use PCA to fuse the extracted features to construct
a feature fusion tensor. Set the model parameters (number of
iTrees, maximum number of samples, etc.) to train the iForest
model. In the detection process, the input signal also need to
be processed by segmentation, feature extraction, and PCA.
Then the trained iForest model is used to complete the target
detection according to the threshold determined by the N-P
criterion.

IV. SIMULATION AND EXPERIMENTAL VERIFICATION

A. SIMULATION

1) SIMULATION DESIGN

The sampling rate of the optical pump magnetic detector is
generally 20Hz, the cruising speed of the platform is about
320-380km/h, and the effective range of the magnetic detec-
tor can reach 600m-900m [31]. According to this, the simu-
lation parameters of the underwater magnetic anomaly target
are set, such as TABLE 1 shown.

For the non-cooperative target, the information such as
relative position, and the angle between magnetic moment
direction and the detection path is unknown. In order to be
close to the real situation and test the generalization per-
formance of the method, the samples should cover as many
situations as possible. Set Gaussian color noise conditions,
repeat the simulation 6000 times under different magnetic
moment directions for the target signal superimposed with
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TABLE 1. Simulation parameter settings.

Numerical value

(62,-0.1, 1.5) x10°

Target simulation conditions

Target magnetic moment (A-m?)

Geomagnetic dip (°) 45
Magnetic declination (°) 0
Lateral distance (m) 0
Vertical distance (m) 600
Cruise speed (m/s) 100
Sampling rate (Hz) 20

TABLE 2. Sample set division.

Training set (Number of Test set (Number of

Algorithm positive samples/Number of ~ positive samples/Number
negative samples) of negative samples)

PCA-IForest 0/10000 1000/1000
FCN (1:1) 5000/5000 1000/1000
FCN (1:19) 500/9500 1000/1000
LOF / 1000/1000
oS 0/10000 1000/1000
HOC / 1000/1000

the set noise, that is, generate 6000 positive samples under
each noise condition. The simulation is repeated 11,000 times
for the pure Gaussian color noise to generate 11,000 nega-
tive samples. Change the noise conditions and simulate in
the same way to generate sample sets under different noise
conditions. The training set and test set required for the dif-
ferent methods used in the following sections are divided
as shown in TABLE 2, in which local outlier factor (LOF)
and high-order zero-crossing detection (HOC) do not require
training.

When extracting features, try to choose the value that
makes the difference between the noise and the mixed sig-
nal as large as possible. The high-order zero-crossing rate,
wavelet packet coefficient and box dimension of pure noise
signal and mixed signal are calculated under the Gaussian
color noise with SNR of 0dB and noise index « of 0.9,
as shown in Fig.4. According to Fig.4, the first 10-order
zero-crossing rate is selected as the statistical eigenvalue.
The wavelet packet coefficient of the first node (0-0.625Hz)
of the fourth decomposition layer is selected as the time-
frequency eigenvalue. Box dimensions which the side lengths
of the square box are 2, 4, 8, 16, and 32 is selected as fractal
eigenvalues.

The extracted features are fused and reduced by PCA.
Because the units of different eigenvalues are different and the
amplitudes are quite different, the data should be standardized
before PCA [32]. The formula is:

x = (17)

where X is the sample mean and o is the variance of the data.
The principal components with a cumulative contribution rate
greater than 95% are used as the input of the IForest model.
The IForest model is trained with the training set and then
tested on the test set.
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2) PARAMETER OPTIMIZATION

This section studies the influence and optimization of the fea-
ture dimension, the number of iTrees and the maximum num-
ber of samples on the performance of the IForest algorithm.
Let the number of positive samples in the detection samples
be T and the number of negative samples be F'; the number of
samples determined by the algorithm as positive samples and
the correct ones is 77; the number of samples determined by
the algorithm as positive samples and the wrong ones is TF.
The concepts of detection rate (7P), false alarm rate (FP),
ROC curve, and AUC are:

T

TP = —

T (18)
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TF
FP="—

7 19)

The ROC curve is a curve composed of FP as the horizontal
axis and 7P as the vertical axis; AUC is the area under the
ROC curve. The closer the AUC is to 1, the better the algo-
rithm performance [33]. AUC is more stable than TP, so AUC
is selected as the evaluation index when designing param-
eters. In addition, due to the high real-time requirements
for the algorithm of the aeromagnetic detection, the calcu-
lation efficiency should also be considered in the parameter
design.

The random selection of dimensions ensures that IFor-
est can fully mine different feature information. But this
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FIGURE 5. Selection of feature dimension. (a) The relationship between the number of feature dimension, AUC, and detection
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SNR = —10dB), (c) The relationship between the number of feature dimension, AUC, and detection time(x = 0.9, SNR = —5dB), (d) The
relationship between the number of feature dimension, AUC, and detection time(x = 0.9, SNR = 0dB).

randomness also introduces noise, which makes abnormal
samples form denser clusters and confuse them with normal
samples. Four different noise conditions are set, and the train-
ing and testing of the IForest model is completed according
to the TABLE 2 sample division under each noise. The rela-
tionship between the number of feature dimension, AUC, and
detection time is shown in Fig.5.

It can be seen that the AUC increases with the increase of
the number of dimension and gradually becomes stable, and
then the AUC decreases slightly. The higher the SNR and the
smaller the color noise coefficient «, the earlier convergence
occurs, indicating that when the noise interference is small,
the ideal detection effect can be obtained by using fewer
features, which is consistent with the actual situation. The
detection time used for different number of dimensions is
close. When the noise interference is small, the detection time
is shortened, because the number of negative sample data seg-
mentation is relatively small. In summary, the performance is
the best when the first 7 principal components generated by
PCA are selected as the input of the [Forest model.
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The number of iTrees determines the scale of the model,
the larger the number, the more stable algorithm is. However,
the number of iTrees is not as big as possible. Since each
iTree has different ability to distinguish outliers, we only need
to focus on iTrees that can distinguish positive and negative
samples to a greater extent. Too many iTrees will waste com-
puting power and reduce efficiency. The relationship between
the number of iTrees and AUC and average abnormal score
under the four noise conditions is as shown in Fig.6.

Fig.6 shows that when the number of iTrees is small, the
model detection effect is poor, and the AUC fluctuate greatly.
When the number of iTrees increases, AUC and the average
abnormal score gradually converge, indicating that the model
tends to be stable. As the number of iTrees increases, the
detection time will increase proportionally, so the minimum
value that makes the algorithm stable is selected, which is set
to 100 in this paper.

The maximum number of samples is the number of sam-
ples used to train each iTree. As shown in Fig.7, the influ-
ence of this parameter on the detection performance under
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four noise conditions is studied. It can be clearly seen that
AUC increases with the increase of the maximum number of
samples and gradually converges. This is because more data
segmentation methods are generated to mine more detailed
information, but when the number is too large, a large number
of similar iTrees will be generated, resulting in overfitting.
In addition, when the maximum number of samples increases,
the average path length of iTree increases and the detection
time increases. According to this, the maximum number of
samples is set to 512 in this paper.

3) SIMULATION RESULTS AND ANALYSIS

In order to verify the detection performance of the method
in this article, compare it with other methods under different
noise conditions. Firstly, two common unsupervised learn-
ing algorithms, LOF and One-class support vector machine
(OS), are introduced to compare with the IForest algorithm.
Fig.8 shows the ROC curves of the three algorithms and
their respective AUCs. It can be seen that the AUC of the
IForest algorithm is 2%-11% higher than that of the other
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two algorithms. When the noise interference is small, the
advantage of [Forest becomes weak, because the isolated data
is random and the number of recursion is difficult to con-
trol. However, from the practical application point of view,
the IForest algorithm is more suitable for the detection of
magnetic anomalies in the background of low SNR color
noise.

The detection method proposed in this paper is compared
with the FCN in [13] and the HOC algorithm in [16]. We set
different proportions of positive and negative samples in the
FCN training set data to analyze its performance when the
sample proportions are not balanced. Set FP = 0.015, and
calculate the detection rates of three methods in different
SNRs (color noise coefficient « = 0.9) according to the N-P
criterion, as shown in Fig.9 (a). It can be seen that when the
ratio of positive and negative samples in training set is 1:1,
the detection rate of FCN is much higher than the other two
methods, but when the ratio is adjusted to 1:19, its detection
rate drops significantly. This is because the FCN model will
tend to reduce the loss of a large number of negative samples
during iterative update in order to achieve the minimum loss
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of full training samples, resulting in a decrease in the detec-
tion ability of positive samples. However, the ratio of posi-
tive and negative samples in the actually obtained magnetic
data is much less than 1:19. So the advantages of method in
this paper are highlighted. It only uses negative samples for
training without affecting the ability to characterize sparse
positive samples. Compared with FCN (1:19), the detection
rate can be improved by 5%-12%, and this improvement is
more obvious at low SNR. The detection rate of HOC is the
lowest. Compared with HOC, the detection rate of the method
in this paper increases by about 3%-20%, indicating that the
fusion feature is more suitable for the detection of magnetic
anomaly in the background of color noise.

Fig.9 (b) shows the total time of whole process of FCN
and method in this paper under the same hardware environ-
ment. It can be seen that the time of this method is about
25%-35% of FCN, which is due to the fact that it does not
involve complex iterative calculations, and with good linear
time complexity. In addition, with the improvement of the
SNR, the time-consuming of the method in this paper is
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gradually shortened while the FCN remains basically
unchanged, indicating that the method in this paper is more
flexible and more practical.

B. EXPERIMENT
1) EXPERIMENTAL DESIGN
The equipment used in the experiment mainly includes
magnetic source, magnetic sensor, A/D conversion module,
PC and so on. Limited by the existing conditions, a three-
axis fluxgate sensor developed by the research group is used
to replace the optical pump magnetometer. The sensitivity
is 10pT/\/Hz@ 1Hz, the resolution is 0.25nT, the dynamic
range is =75000nT, and the sampling frequency is 400Hz. Its
measurement error has been corrected. The magnetic source
is an axially magnetized magnet with a magnetic moment of
about 0.036A-m?. Data acquisition and processing are com-
pleted by the PC.

The experimental site is in a degaussing laboratory, where
the magnetic environment is relatively uniform and stable.
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.| 3-axis fluxgate sensor

FIGURE 10. Experimental system setup.

The experimental time is 01:00-05:00 in the morning. Firstly,
the pure geomagnetic environmental noise is monitored for a
period of time to generate the negative sample data required
for training. Then take the sensor position as the coordinate
origin, the north direction is the positive direction of the x-
axis, and the east direction is the positive direction of the
y-axis to establish a rectangular coordinate system. Place
the magnetic source on the non-magnetic trolley. The initial
position of the magnetic source is (-10.5m, 1.1m, 0.75m). The
trolley is driven by a stepper motor to move along the positive
direction of the x-axis at a speed of 1m/s while the PC record
magnetic field data. The experimental scene setup is shown
in Fig.10.

Change the lateral distance between the sensor and mag-
netic source, take 10 measuring points, and generate positive
sample data of different distances. Perform multiple sets of
measurements at each measuring point, and change the direc-
tion of the magnetic source after each set of measurements,
so that the positive samples cover the targets in various states
as much as possible to avoid overfitting.

2) DATA PREPROCESSING

Fig.11(a) is a piece of original magnetic field data measured
at a lateral distance of 1.5m from the magnetic source. It can
be seen that the target signal is submerged in the geomag-
netic background field and difficult to identify, so we need
to preprocess the data. The slowly changing trend term and
power frequency noise in the magnetic measurement signal
are removed by band-pass filtering. In order to simplify the
calculation, the data is Downsampling from 400Hz to 20Hz.
The preprocessed signal waveform is shown in Fig.11(b). The
sample data used for experimental verification refers to the
preprocessed data.

Asdescribed in Section III-C, a period of time-series signal
is divided into several samples by a sliding window. It is
estimated that the duration of the magnetic source signal is
about 5s, the length of the sliding window is set to 5.5s,
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and the moving step is 0.5s. Divide a piece of pure noise
signal with a duration of about 505s after preprocessing into
1000 negative samples for training the IForest model, and
randomly select 950 negative samples for training the FCN
model. Measure the magnetic field data when the magnetic
source is in motion. Repeat the measurement 5 times for
each measuring point (the direction of the magnetic source
is changed after each time is measured), and a total of 5 x
10 = 50 groups of mixed signals are generated. The ratio
of positive and negative samples in the FCN training set
is 50:950 = 1:19.

3) EXPERIMENTAL RESULTS AND ANALYSIS

Firstly, the IForest detection model is trained by the method
in this paper; the FCN model is trained according to the paper
[13] (the ratio of positive and negative samples in the training
setis 1:19). Then place a magnetic source on the trolley, move
the trolley, and measure 25 sets of magnetic field data at each
measuring point. Finally input them into the detection model
to calculate the output. Fig.12 shows the output of the IForest
detection model when the signal shown in Fig.11 is input.
It can be seen that this method can effectively suppress noise
and accurately detect the target.

When the magnetic background noise is relatively stable,
adjusting the lateral distance is equivalent to changing the
SNR [34]. The method in this paper, FCN, and HOC were
used to detect. Analyze their performance at different lateral
distances. The results are shown in Fig.13.

It can be seen that the detection rate of the method in
this paper is the highest, and the experimental results are
consistent with the simulation results. Compared with HOC,
the detection rate of the method is increased by about 4%-
18%, which proves the superiority of fusion feature detec-
tion. Although the detection rate of FCN has been improved
compared with that of HOC, it is seriously reduced when
the positive and negative samples of the training set are
unbalanced. When the horizontal distance is 1.7m, the detec-
tion rate of FCN is less than 40%, while the detection rate
of the method in this paper is still above 50%. Compared
with the FCN detection rate, the increase is about 4%-
15%, which even exceeds the simulation test results. This is
because the positive samples collected at different distances
are not distinguished when training the FCN. Although the
positive samples cover a variety of states of the target, the
model does not sufficiently learn the various states. In con-
trast, the method in this paper can build a detection model
with only a small number of negative samples and shows
better detection performance under low SNR. The calcu-
lation shows that the method in this paper takes an aver-
age of 1.66 x 107*s to detect a sample, which is much
smaller than the moving step of the sliding window, indicat-
ing that the method can meet the requirements of real-time
detection.

The experimental environment set in this paper is ideal,
and the interference of background magnetic anomalies on
the results in the actual detection process is not considered.
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The trolley can be approximated to move in a straight line at
a uniform speed on a non-magnetic guide rail, but in reality,
the speed and trajectory of the flying carrier will fluctuate
due to the influence of the airflow. Due to the existence of the
non-orthogonal error of the three axes of the fluxgate sensor,
the calculated total magnetic field value is inaccurate. These
factors which are simplified in the experiment will affect the
detection results.
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V. CONCLUSION

In this paper, a magnetic anomaly detection method based on
feature fusion and isolation forest algorithm is proposed. The
method extracts the statistical features, time-frequency fea-
tures and fractal features of the magnetic anomaly signal and
uses PCA to generate the fusion feature tensor, realizes the
real-time target detection by the IForest algorithm. We stud-
ied and optimized the parameters of [Forest model. The per-
formance of the method is analyzed through simulation and
experiment, and the conclusions are as follows:

1) Compared with unsupervised learning algorithms such
as LOF and OS, the IForest used in this paper has
an AUC improvement of 2%-11%, and this improve-
ment is more obvious when the noise interference is
strong.

2) The detection rate of proposed method is about 5%-
18%higher than HOC, and the fusion feature is more
suitable for magnetic target detection in the background
of color noise.

3) The detection performance of FCN will decrease sharply
when the positive and negative sample imbalance of
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4)

the training set. The method of this article can train
an effective detection model with less negative sam-
ples. Compared with the FCN (1:19), the detection rate
increases at 5%-12%.

This method does not need to model the target or back-
ground. The calculation is simple, and it is more suitable
for real -time detection.

The PCA algorithm used in this method is a linear feature
fusion method, so the effect is not obvious when dealing
with nonlinear data. And the randomness of the IForest algo-
rithm leads to unstable detection results. To deal with these
problems, we will study non-linear feature fusion methods
and more complicated unsupervised learning algorithms such
as generative adversarial networks (GAN) for magnetic tar-
get detection to further improve the performance of weak
magnetic detection. In addition, the experimental conditions
designed in this paper are relatively ideal, but the actual geo-
magnetic environment noise is more complex, the shaking of
the moving platform, the local geomagnetic anomaly caused
by the geological structure and other factors will affect the
detection results. The next step will be to design an external
field aeromagnetic scale model test to further verify the effect
of the method.
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