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ABSTRACT Smart homes have been recently important sources for providing Activity of Daily
Living (ADL) data about their residents. ADL data can be a great asset while analyzing residents’ behavior to
provide residents with better and optimized services. A popular example is to analyze residents’ behavior to
predict their future activities and optimize smart homes performance accordingly. This paper proposes a fore-
casting framework that utilizes ADL data to predict residents’ next activities in a smart home environment.
Forecasting is performed via the conjunction of embedding algorithm to encode the data and Bidirectional
Long Short-Term Memory (BiLSTM) deep neural networks to process the data. The proposed framework
is evaluated over five real ADL datasets where the experiments show the outperformance of the proposed
framework with accuracy scores ranging from 98.7% to 93.8%.

INDEX TERMS Smart home, human activity recognition, BiLSTM neural networks, sequence prediction.

I. INTRODUCTION
Smart homes utilize Internet of Things (IoT) concept to pro-
vide residents a more comfortable experience. Smart home
systems are built around the concept of monitoring and con-
trolling devices using sensors [1] where those sensors are
connected through wireless networks to collect Activity of
Daily Living (ADL) data. Activity of Daily Living data is
the data that describes the resident activity such as watch-
ing TV or eating lunch. ADL data can be used to recog-
nize and predict the behavior of residents and their activities,
which can be utilized in various applications such as health-
care [2], energy consumption [3], recommendation systems,
and anomaly detection [4].

To comprehend and detect residents’ ADLs, Human
Activity Recognition (HAR) approaches are developed,
which involve monitoring and analyzing residents’ behavior.
Human Activity Recognition (HAR) is the process of identi-
fying the correct activity that has been performed by residents
in smart homes. There are three main types of HAR, sensor-
based, vision-based, and radio-based [5]. Sensor-based type
depends on data collected from sensors to detect human
activities. For example, the activation of a light sensor is
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indicatingmovement in certain area or related to certain activ-
ity. Vision-based type depends on data formats as images and
videos to detect human activities. For example, movements
in smart home videos that could indicate doing certain activ-
ities such as walking or cooking. Radio-based type depends
on signals’ information and characteristics to detect human
activities. For example, wearable motion sensors that detect
body parts movement could indicate doing certain activities
such as walking or sitting.

Another important field of study related to ADLs is called
Human Activity Prediction (HAP), which mainly relies on
machine learning techniques to forecast human activities
from historical data. HAP is used in various applications
such as video surveillance, crime prevention, and health care
systems. HAP also identifies and predicts future activities in
order to collect knowledge about the resident’s experience
and behavior [6].

Human activity recognition and predication can be used
to help elderly people living alone during their daily lives.
HAR and HAP act as early warning system when abnormal
activities are detected or predicted [7]. In addition, HAR and
HAP can be beneficial in energy conservation models [8].

Recognizing and predicting complex human activities in
connected environments can be vital for users inside these
environments. Users can benefit from various applications
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related to security, performance and efficiency while man-
aging smart homes resources such as electricity and water.
For Example, elder, ill or disabled people who live alone
can benefit greatly from predicting their next activities and
providing some type of home automation. In addition, home
automation can be very beneficial in energy consumption
model. This research is motivated by such needs to predict
users’ next activities in smart home environment with high
quality.

This paper leverages deep learning to detect and predict
smart home future activities. It proposes sensor-based HAR
model as the first phase and HAP model as the second
phase of future activities prediction framework. The pro-
posed framework utilizes Bidirectional Long Short Mem-
ory (BiLSTM) [9] deep neural networks in conjunction with
word2vec [10], [11] encoding models to enhance HAR and
HAP in sensor-based environment. BiLSTM deep neural net-
work was used given its benefits in learning sequence data
while taking into consideration data dependency. The contri-
butions of our work are summarized as follows. We propose a
novel BiLSTM with Word2Vec NLP Embedding Technique
for sensor-based HAP. The effect of the contribution is mea-
sured through a comprehensive evaluation. An extensive eval-
uation for our proposed framework was performed on several
benchmark datasets.

The rest of this paper is organized as follows. Section 2
reviews related work while Section 3 presents the proposed
framework for activity recognition and prediction in smart
homes. Section 4 reports the experimental results followed
by a discussion. Finally, Section 5 presents conclusion and
future work.

II. BACKGROUND AND RELATED WORK
This section presents the background and related work
required to formulate the research problem and the pro-
posed framework. First, background is presented to give an
overview about word embedding, neural networks, recurrent
neural networks. Second, Human Activity Recognition and
prediction models in the literature are presented.

A. BACKGROUND
Machine learning (ML) techniques are playing a critical role
in discovering knowledge from data and providing a reliable
recognition and prediction of human behavior. A neural net-
work is one of ML techniques which provides a good per-
formance in comparison to other techniques when it comes
to prediction [12]. A neural network consists of one input
layer, one output layer, and one or multiple hidden layers.
Each layer consists of a number of units called neurons.
Each neuron has a function over the weighted sum of its
inputs called activation function such as sigmoid, relu, tanh,
and other functions. Using training data, the weights of
this weighted sum are learned through optimizer such as
RMSprop, Stochastic Gradient Descent (SGD), AdamaX,
and other optimizers [13].

FIGURE 1. LSTM Architecture.

ARecurrent Neural Network (RNN) [14] is a type of neural
network that includes cyclic connections between different
layers, which adds state (i.e., memory) to the model and gives
it the ability to ‘‘remember’’ past information. In other words,
the training in hidden units depends on the values of the
previous units to process the inputs in the given timestamp
and return the output.

Given Xt is the input at timestamp t, Ht is the hidden state
at timestamp t and contains all historical information up to t.
Authors in [15] formulated the function that is performed in
each unit in the hidden layer as presented in eq. (1) where F is
the activation Function, U and W are vectors of weights over
the new inputs and the hidden state respectively.

Ht = F(UXt +WHt−1) (1)

A special type of RNN is Long Short-Term Mem-
ory (LSTM) network but more complex than RNN because
it uses complex unit which called a memory cell [16]. LSTM
is considered an enhanced network of RNN that includes a
memory cell state Ct which stores information and values
from previous states but for longer period than RNN.

As illustrated in fig. 1, LSTM has three types of gates
which are input, forget, and output. Input gate it as presented
in eq. (4) has sigmoid function presented in eq. (2) that takes
the previous hidden state and the current input, then decides
which information of input vector Xt and hidden unit Ht−1
should pass to update the cell state Ct presented in eq. (6)
which uses tanh function presented in eq. (3). The forget gate
ft as presented in eq. (5) determines whether to forget or keep
the information of previous cell stateCt−1. The output gateOt
as presented in eq. (7) controls the flow of information from
the current cell state to the hidden state. The mathematical
equations eqs. (2) to (8) [12] show the details of the LSTM
gates, where the symbol

⊙
represents element-wise vectors

multiplication and W is the weights vector.

sigmoid(x) =
1

1+ e−x
(2)

tanh(x) =
ex + e−x

ex − e−x
(3)
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FIGURE 2. Bidirectional LSTM (BiLSTM) architecture [17].

it = sigmoid(WixXt +WiHHt−1 + bi) (4)

ft = sigmoid(WfxXt +WfHHt−1 + bf ) (5)

Ct = Ct−1
⊙

ft

+ it
⊙

tanh(WCxXt +WCHHt−1 + bC )

(6)

Ot = sigmoid(WOxXt +WOHHt−1 + bO) (7)

Ht = Ot
⊙

tanh(Ct ) (8)

The BiLSTM [17], [18], [19] is a type of LSTM network
that includes two parallel LSTM: forward and backward.
It is a neural network that can extract knowledge from past
and future sequences to produce an output. Fig. 2 shows the
BiLSTM architecture that was introduced in [17]. BiLSTM
provides better accuracy than LSTM because the output layer
receives information from past nodes and future nodes [20].

The forward LSTMprocesses information from left to right
and its hidden state can be shown as

−→
Ht= LSTM (Xt ,Ht−1),

while the backward LSTM processes information from
right to left and its hidden state can be shown as

←−
Ht=

LSTM (Xt ,Ht+1). The output of BiLSTM for the hidden state
can be summarized by concatenating the forward and back-
ward states as Ht = [

−→
Ht ,
←−
Ht ]. Mathematical equations

eqs. (9) to (19) provide details of the three gates: input, for-
get, and output gates which are similar to regular LSTM as
eqs. (2) to (8) but hidden stateHt calculated based on forward
and backward LSTM.

Forward LSTM

it = sigmoid(WixXt +WiHHt−1 + bi) (9)

ft = sigmoid(WfxXt +WfHHt−1 + bf ) (10)

Ct = Ct−1
⊙

ft

+ it
⊙

tanh(WCxXt +WCHHt−1 + bC )

(11)

Ot = sigmoid(WOxXt +WOHHt−1 + bO) (12)
←−
Ht = Ot

⊙
tanh(Ct ) (13)

Backward LSTM

it = sigmoid(WixXt +WiHHt+1 + bi) (14)

ft = sigmoid(WfxXt +WfHHt+1 + bf ) (15)

Ct = Ct+1
⊙

ft

+ it
⊙

tanh(WCxXt +WCHHt+1 + bC )

(16)

Ot = sigmoid(WOxXt +WOHHt+1 + bO) (17)
−→
Ht = Ot

⊙
tanh(Ct ) (18)

Hidden State Update

Ht = [
−→
Ht ,
←−
Ht ] (19)

In recent years, there have been significant improvements
of deep learning techniques, as they have been successfully
applied to natural language processing (NLP). NLP was
used in smart home applications in order to provide remote
monitoring and controlling of smart appliances [21]. Natu-
ral Language Processing (NLP) is used in various domains,
including text classification [22]. Word embedding is a text
classification technique that can be obtained using neural
networks, where words are represented as real-valued vectors
based on their context in natural language before using them
through different models. Different word embedding algo-
rithms are used to build vectors such as word2vec, GloVe [23]
and term frequency [24].

Word2Vec technique [10] utilizes a neural network with a
single hidden layer in order to learn the word representations
by involving both target word and context words. Word2vec
offers two approaches: Continuous Bag of Words (CBOW)
and Skip-gram [10]. CBOW learns the representations by pre-
dicting the current word based on its context while Skip-gram
learns representations by predicting surrounding words given
the current word.

B. RELATED WORK
Recent research aims to improve humans’ quality of living
by addressing their needs within a smart home environment.
Consequently, recognition and prediction of human activities
has become an important research field with a wide range of
applications. One of these applications presented in [25] used
Markov Logic Network to recognize the residents’ profiles
based on their activities and preference. A resident’s profile
might contain: resident role (father, mother, son. . . ), gender
(male or female), age range (young, middle-age, etc.), and
job (worker, student, doctor, etc.). The residents’ profiles
can be used to improve the performance of recognition and
prediction tasks.

1) HUMAN ACTIVITY RECOGNITION
Machine Learning (ML) techniques have been used to
effectively solve human activity recognition problem. For
instance, the widespread of smartphones and wearable
accelerometer sensors could be used to build Bayesian
stream-based active learning and Conditional Restricted
Boltzmann Machine (CRBM) classifier that could label
sensory sequential data as proposed in [5].
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Various algorithms such as Decision Tree (DT) [26], Naive
Bayes (NB) [27], Support Vector Machine (SVM) [28],
K-Nearest Neighbor (KNN) [29], and Logistic Regression
(LR) [30] are widely used in human activity recognition.
Some of these algorithms were used beside Linear Discrimi-
nant Analysis (LDA) [31] and Ensemble Learning (EL) [32]
to recognize activities of elderly people who are living alone
as proposed in [7]. The proposed model was evaluated using
CASAS datasets [33] where it showed 90% accuracy.

In [34], the authors used DT, KNN, NB, LR as a classifier
chain that was accumulated through Majority Voting Ensem-
ble classifier to solvemulti-resident activity recognition prob-
lem. While evaluating the model using ARAS datasets [34],
the experimental results showed that the proposed model
achieved 90% average accuracy.

A Probabilistic neural network (PNN) was integrated with
H2O autoencoder approach for recognizing the activities per-
formed in a smart home, then separating the normal from
the anomalous activities [4]. Although the model provided an
overall accuracy of 90%, PNN also needs a lot ofmemory size
to be implemented. Convolutional Neural Network (CNN),
Conditional Random Fields (CRF), and Hidden Markov
Model (HMM) were used in [35] and [36] over the Kasteren
datasets [36] to recognize activity label. The main limitation
of their work is that the model encapsulated the events in one
input matrix for each activity without considering the order of
these events, which could differ according to human nature.

Several studies have been utilized Convolutional Neu-
ral Network (CNN) as in [37], a layer-wise training CNN
with local loss for HAR using wearable sensors, which
was evaluated using different datasets UCI HAR dataset,
OPPORTUNITY dataset, UniMib-SHAR dataset, PAMAP
dataset, and WISDM dataset. Similar models were evaluated
using same datasets, which considered cross-channel com-
munication in HAR scenario [38]. Learned offsets and fea-
ture amplitudes were added into standard convolution in [39].
In addition, in [40], multi-CNNs were integrated with atten-
tion mechanism to enhance HAR task. Otherwise, in [41],
a multi-branch CNN is proposed, which utilized a selective
kernel mechanism for HAR.

Different deep learning (DL) models such as LSTM,
Uni-LSTM, BiLSTM, Casc-LSTM, Ens2-LSTM, and
CascEns-LSTM were used in [42] to learn how to recognize
human activities. The proposed algorithms were compared
to Conditional Random Fields (CRF) and Hidden Markov
Model (HMM) results over CASAS datasets. The experi-
ments showed that LSTM provides the best accuracy.

2) HUMAN ACTIVITY PREDICTION
HumanActivity Prediction (HAP)models have suffered from
less attention than activity recognition in literature. HAP
models are important tomany real applications such as energy
consumption [43], [44] prediction which could save a lot of
smart homes energy.

In [45], the authors proposed a new hybrid HAP
model using HMM (Hidden Markov Model) and SVM

(Support Vector Machines). The experiment’s results were
compared with Hybrid model of HMM (Hidden Markov
Model) and MLP (Multi-Layer Perceptron). These two
approaches were invented to recognize ADLs from home
environments using binary sensors’ datasets. They used
Kasteren datasets [36] and OrdoneZ datasets to evaluate the
two approaches. The HMM-SVM approach showed better
results with almost 67% average F-Score.

Furthermore, LSTM proved that it is the most efficient
algorithm in activity prediction either used alone or with other
algorithms. This was clear in multiple cases whether it was to
predict the next activity [6], predict the sensors designated to
the next activity [8], or predict the time that will elapse until
the next event [12].

Another direction is to detect activity via object usage as
presented in [46]. Passive RFIDTags and LSTMare used over
OrdoneZ datasets to recognize and predict the activity label.
Similar to previous research [45], a sensor-based model was
presented in [47] where authors have managed to predict the
next activity and the timestamp of next sensor event using
LSTM. They used different datasets such as: CASAS [33],
MITB [48], and Kasteren datasets [36] to evaluate their work.
The experiments showed that the best accuracy was 52.9%.
Their framework was separated into two phases. In the first
phase, data was preprocessed and cleaned. Fast Fourier trans-
form was used in order to capture the frequency characteris-
tics. Data was then divided into sequences of the same size
using slidingwindow. In the second phase, LSTMwas trained
to predict the next activity.

In addition, the authors in [49] implemented different algo-
rithms such as ALZ, LZ78, and LSTM to predict the next
activity performed in a smart home. Their proposed model
achieved 54.6% accuracy while evaluating using Aruba
dataset and 45.4% while using Cairo dataset. Another sim-
ilar study [50] proposed complex approaches but its best
approach achieved 82.35% accuracy while evaluating using
Milan and Aruba datasets. Authors in [51] have utilized fea-
ture engineering to generate a strong set of features before
training their model on them. Their approach managed to
achieve an average accuracy of 89%. Table 1 summarizes the
most related HAP models to our work showing their features,
algorithms and their accuracy’s results.

All previous models have considered HAR and HAP as
separate tasks where each model has its own perspective
while processing the ADL data. Motivated by the successful
results of the LSTM-based network demonstration for several
recognition and prediction applications, this paper utilizes
LSTM to combine HAR and HAP in a unified framework in
order to predict future activities with high accuracy.

III. PROPOSED FRAMEWORK
In this paper, we aim to enhance the performance of methods
that recognize and predict human activities in smart home
environment. Consequently, the proposed framework tackles
the two problems of activity recognition and prediction in
sequence where the output of recognition algorithm is used
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TABLE 1. Summary of results, features and methods used in the literature papers for activity prediction.

as an input for prediction algorithm. Detection problem is
formulated as follows. Given several sensors’ values that
create an event, we need to recognize the human activity
that is related to that event and the state of such activity
as being in the beginning, middle, or an end of an activity.
The prediction algorithm is formulated as follows. Given a
number of activities and their states, the proposed frame-
work should predict the next activity/activities that the smart
home resident is expected to perform. The proposed frame-
work that is presented in fig. 3 is detailed in the following
subsections.

A. SMART HOME CASAS DATASET AND PREPROCESSING
Researchers employed many datasets in a smart home envi-
ronment for HAR and HAP solutions. Because of vari-
ety, cost and time-consuming challenges that may be faced
while collecting real-world data, public benchmark datasets
became critical for academic researchers. CASAS smart
home project [33], [52], [53] provides several benchmark
datasets that contain sequential sensor data collected from

a residents’ homes during a period of time. Five anno-
tated datasets, named Cairo [54], Kyoto7 [54], Aruba [54],
HH104 [54], and Milan [54] were selected among all avail-
able CASAS datasets. These datasets are represented as
tuples of date and time, the SensorID, the state/value, and the
activity label (take medicine, watch TV, etc.).

The Cairo dataset contains sensor data collected from
home of a volunteer two residents R1 and R2, during a period
of two months. The dataset contains sequential sensor data
collected from a residents’ home that was equipped with only
two kinds of sensors; motion (M) and temperature (T) sen-
sors. The dataset has 13 unique activities, and total number
of events 726,500 event.

The Kyoto7 dataset contains sensor data collected from
home of a volunteer two residents R1 and R2, during a period
of two months with different kinds of sensors such as motion
(M), kitchen item (I), door (D), burner (AD1-A), hot water
(AD1-B), cold water (AD1-C), and temperature (T) sensors.
The dataset has 16 unique activities, and total number of
events 138,000 event.
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FIGURE 3. Proposed framework.

The Aruba dataset contains sensor data collected from
home of a volunteer woman, during a period of seven months
with different kinds of sensors such as motion (M), door (D),
and temperature (T) sensors. The dataset has 11 unique activ-
ities, and total number of events 1,719,500 event.

The HH104 dataset contains sensor data collected from
home of a volunteer, during a period of two months
with different kinds of sensors such as such as door (D),
motion (M), temperature (T), and light (LS) sensors. The
dataset has 30 unique activities, and total number of events
478,000 event.

The Milan dataset contains sensor data collected from
home of a volunteer woman, during a period of three
months with different kinds of sensors such as such as
motion (M), door (D), and temperature (T) sensors. The
dataset has 15 unique activities, and total number of events
433,500 event.

A sample of these datasets is presented in table 2 and the set
the unique activities of these datasets are presented in table 3.

The data collected in the datasets can be described
as follows. Let Sensors ∈ {BATV001,LS012, . . .} where
Sensors set contains the sensors identifiers/names, and

TABLE 2. Example of sensors data.

generally formulated as S =
{
S1, S2, . . . , SQ

}
. Let Sensor

State ∈ {ON ,OFF, . . .}, and generally formulated as C =
{C1,C2, . . . ,CB}. Let Events∈ {M021_OFF,LS013_7, . . .},
and generally formulated as E = {E1,E2, . . . ,EM }. Let
Activity ∈ {Work, Sleep,Cook, . . .}, and generally for-
mulated as A = {A1,A2, . . . ,AN }, and Activity State ∈
{Begin, Intermediate,End}. Each event (E) consists of
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TABLE 3. Daily living activities in multiple datasets.

Sensor(S) and the sensor state. Each activity (A) consists of
a number of events (E).

Data Preprocessing is a fundamental stage of the proposed
framework as it is performed before the recognition phase
and the prediction phase. In our framework, we ignore the
Date and Time of an event, as we focus on the sequence of
the events that happened in a certain period. Consequently,
the input features for our framework will be the SensorID,
State and the Activity features. In addition, the Activity
related to each sensor event is modified to include an activity
state; either start of the activity, middle, or the end of the
activity (e.g., start of the sleep activity will be ‘‘B-Sleep’’,
intermediate of the sleep activity will be ‘‘I-Sleep’’, and

the end of sleep activity will be ‘‘E-Sleep’’). Sensor events
that are not in the beginning, the middle, or the end of an
activity will be annotated as (‘‘O’’) activity. Another step
is performed to improve the model’s performance where
‘‘SensorID’’ and ‘‘State’’ are combined to a new feature
‘‘SensorID/State’’. For instance, if SensorID = M021 and
State = ON then the new feature value will be M021_ON.
Table 4 shows the features that are used after all preprocessing
steps.

B. PROPOSED FRAMEWORK
The proposed framework contains four main stages: Sensor
Events Embedding, BiLSTM Recognition model, Activities
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TABLE 4. Example of Sensor data after ignoring, merging and enhancing
features values.

FIGURE 4. Continuous Bag of Words (CBOW) Architecture [10].

Embedding, and BiLSTM Prediction model. These stages are
described in the following subsections.

1) SENSOR EVENTS EMBEDDING
Both words sequences in any text and sensors events are
generated from a closed set of options where the context
of sequence item defines the item meaning. To calculate
the embeddings in our model, we employed the Word2Vec
technique, a widely used embedding model. Word2vec
algorithm is used to embed sensor events into vector of D
dimension for each sensor event. We chose the Word2Vec
technique because of its effectiveness, memory efficient, and
it is easy-implemented unsupervised learning method.

Word2vec is utilized to map events to numeric vectors
given the context where the event appeared. The Continuous
Bag ofWords (CBOW) neural network architecture is utilized
to train the word2vec model where the network predicts the
current event using its surrounding events in a specific win-
dow size. The weights of hidden layer neurons in the neural
network is used as the event vector. The fig. 4 Illustrate the
CBOW neural network architecture.

After converting each sensor event into a vector, the
sequence of sensor events is divided into a subsequence of
size equals to N sensor events. The subsequence is the main
block in the learning process as all the models will learn the

FIGURE 5. Embedding Matrix.

behavior of sensor events and related activities from each
subsequence. Each subsequence is represented as a matrix
of sensor events vectors which is called embedding Matrix,
as shown in fig. 5.

The embedding matrix has N rows, where N is the number
of sensor events in each subsequence andD dimension vector
for each sensor event. This embedding Matrix will be fed to
the first BiLSTM model that recognizes the activities.

2) BILSTM RECOGNITION MODEL
The BiLSTM Recognition model is formulated as follows.
Given a sequence of events, ourmodel will classify each event
in the sequence based on the order of the sequence into its
activity. Also, this model will show the activity state (begin,
middle, and end) when this event happens. The order of the
sequence is necessary because the event classification will
differ based on past and future events. The BiLSTMRecogni-
tion model takes sensor events embedded vectors as an input
and produces the activity and the state of this activity for each
sensor event in the sequence given to the model. An LSTM
layer was built above the BiLSTMmodel to enhance the final
recognition results.

The Human Activity Recognition Algorithm is depicted
in Algorithm 1, where eventsList is a list of previous and
current sequential events generated by environmental sen-
sors. The embedding vector dimension (D) and the subse-
quence size (N) are provided as input assuming D= 100 and
N = 100. This algorithm attempts to generate the correspond-
ing activity for each event.

3) ACTIVITIES EMBEDDING
After getting results from recognition BiLSTM model,
word2vec embedding technique is used to embed and map
each activity in the result into a 100-dimension vectors using
word2vec model. The sequence of activities is divided into a
subsequence of size equals to N activities which will be fed
to the second BiLSTM model to predict the future activities.

4) BILSTM PREDICTION MODEL
The BiLSTM prediction model is formulated as follows.
Given a sequence of previous activities which represents the
history, the model will predict future sequence of activities
and their states while considering the order of the previous
sequence. The BiLSTM prediction model takes recognized
activities states embedded vectors as an input and produces
the next activity and its state as an output. An LSTM layer
was built above our BiLSTM model to enhance the final
prediction results.
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Algorithm 1 Human Activity Recognition Algorithm
Input: eventsList ← List of sequential events D← Embed-
ded vector dimension N ← SubSequences size

Output: activitiesList ← List of related activity and its sta-
tus for each event
for each uniqueEvent ∈ eventsList do

eventvector ←Word2Vec(uniqueEvent,D)
normalizedvec←Normalization(eventvector)
embeddingMap[uniqueEvent] = normalizedvec

end for
for each event ∈ eventsList do

eventvector ← embeddingMap[event]
eSequence← append(eventvector)

end for
for i = 0 to eSequence Length do

Subsequences← append(eSequence[ i : i + N )
i← i + N

end for
model ← Hybrid model of BiLSTM and LSTM
Configuration
for each embeddingMatrix ∈ Subsequences do

y← model.predict(embeddingMatrix)
activity← OneHotDecoding(y)
activitiesList ← append(activity)

end for
return activitiesList

The Human Activity Prediction Algorithm is depicted in
Algorithm 2, where activitiesList is a list of previous and cur-
rent sequential activities. The embedding vector dimension
(D) and the subsequence size (N) are provided as input. This
algorithm attempts to generate the future activities for the
next k activities. This algorithm could be adapted as needed
to predict activities that might happen in the next M minutes.

IV. PERFORMANCE EVALUATION
The objective of performance evaluation is to prove the capa-
bility of the proposed framework to predict future activi-
ties with high accuracy. Toward this objective, the proposed
framework performance is evaluated in terms of accuracy and
F-score for predicting the smart home resident activities in
two settings of experiments.

A. EXPERIMENTAL SETUP
All the experiments of this study were implemented on a
one core-i7 and 16GB RAM Computer. The algorithms were
implemented using Python 3.9.7, Gensim 4.1.2, Tensorflow
v2.8 [55], and Keras 3.1 [56].

B. GENERAL HYPERPARAMETERS
To generate the embedding values for events and activi-
ties, Word2vec model of Gensim package was utilized. Each
event/activity was represented by a vector of 100 continu-
ous value. We used mincount equals to one, which means
that Word2Vec model didn’t ignore any event/activity in any

Algorithm 2 Human Activity Prediction Algorithm
Input: activitiesList ← List of previous and current activ-

ities recognized by Algorithm 1 K Number of activities
need to be predicted M Time Length of activities need
to be predicted D ← Embedded vector dimension N ←
SubSequences size

Output: predictedactivitiesList ← List of sequential future
activities and their status
for each uniqueAct ∈ activitiesList do

activityvector ←Word2Vec(uniqueAct,D)
normalizedvec←Normalization(activityvector)
embeddingMap[uniqueAct] = normalizedvec

end for
for each activity ∈ activitiesList do

activityvector ← embeddingMap[activity]
activitySequence← append(activityvector)

end for
model ← Hybridd model of BiLSTM and LSTM
Configuration
if M ≥ 0 then

for i = 0 to activitiesList Length do
duration← 0
count ← 0
while duration ≤ t do

count ← count + 1
count ← activitiesList[i+1]−activitiesList[i]
i← i+ 1

end while
SubsequencesCount ← append(count)

end for
K ← most frequent count in SubsequencesCount

end if
if K ≥ 0 then

for i = 0 to K do
y← model.predict(activitySequence)
activitySequence← append(y)
activity← embeddingMap(y)
predictedactivitiesList ← append(activity)

end for
end if
return predictedactivitiesList

sequence. In addition, 10 worker threads were used to train
word2vec models.

In Recognition BiLSTM model, the categorical cross-
entropy was used as a loss function since there are more than
two class labels. In prediction BiLSTM model, Root Mean
Square Error (RMSE) was used as a loss function which is
calculated using eq. (20), where Yn is the expected output and
Ȳn is the predicted output. The training loss and validation
loss curves for predicting the activities’ embedding vectors
are shown in fig. 6.

RMSE =

√√√√ 1
N

N∑
n=1

(Yn − Ȳn)2 (20)
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FIGURE 6. Training loss curves.

Adamax [57] is an extension of the Adam optimizer [58]
and it is a variant of Adam based on the infinity norm.
In Recognition BiLSTM model and Prediction BiLSTM
model, Adamax was used which is more preferable than
Adam especially in models with embedding.

In order to train the recognition and prediction models,
all the training input subsequences were assumed to be with
equal length to ensure that there is enough information to
learn during the training process. The subsequence lengthwas
set to 100, which was found to improve the performance of
the models and consequently improve the final performance
of the framework.

C. EVALUATION MEASURES
Accuracy is used as the main evaluation metric in order
to find the correctness of the future activities’ prediction.
On the other hand, F-score is used to find out which
activity has the best prediction quality. Both Accuracy
and F-score are calculated as shown in eqs. (21) to (24),
where Tp denotes the True Positives, and Tn the True
Negatives.

Accuracy =
TP + TN

TP + TN + FP + FN
(21)

Precision =
TP

TP + FP
(22)

Recall =
TP

TP + FN
(23)

F1Score =
2 ∗ Precision ∗ Recall
Precision+ Recall

(24)

The proposed framework was evaluated using 10-folds
cross validation procedure where the accuracy and F-score
for the 10 folds were averaged to obtain the final results. The

FIGURE 7. Mean Accuracy and Standard Deviation for our framework
with different duration of time (Minutes).

mean accuracy which is the average of accuracy of all folds
is calculated as eq. (25), where k is 10. A Ten-Fold Cross
Validation splits data into 10 equally-sized folds. The model
is trained on K-2 folds, one fold for validation and one fold
for testing.

MeanAccuracy =
1
K

K∑
n=1

Accuracy(n) (25)

D. EXPERIMENTAL EVALUATION
The proposed framework performance is evaluated in two set-
tings over the five datasets presented earlier. The first setting
is to predict the resident activities for the next M minutes in
the future. The objective of performing several experiments
in this setting is to find the maximum duration of minutes
which we can predict activities within while having the high-
est accuracy. To get the best duration, fixed batch size 500 and
fixed number of epochs 100 were used in different length of
time duration as presented in fig. 7. The best duration was
found to be three minutes.

The second setting is to predict a fixed number K of activ-
ities that the resident will do in the future without restricting
it to a given time. The objective of performing several exper-
iments in this setting is to find the maximum fixed number of
activities which can be predicted with the highest accuracy.
To get the best number, fixed batch size 500 and fixed number
of epochs 100 were used in different number of activities as
presented in fig. 8. The best fixed number of activities was
found to be ten activities.

In this paper, after performing several experiments,
0.001 was found to be the best learning rate value for both
recognition and prediction models. Drop out approach was
performed to randomly drop out nodes during training to
reduce overfitting and improve generalization error. Several
experiments presented in table 5 were performed to select the
most suitable dropout. A dropout value of 0.25 was used to
reduce overfitting.
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TABLE 5. Mean accuracy for our framework with different dropout before enhancement.

TABLE 6. Precision Recall and F1 Score for next 3 minutes and next 10 activities for Cairo dataset.

FIGURE 8. Mean Accuracy and Standard Deviation for our framework
with different number of activities.

E. RESULTS AND DISCUSSION
The chosen configuration would yield the best results while
predicting activities in the next three minutes and almost the

best results while predicting the next ten activities. The best
accuracy for predicting the next ten activities was found to be
98.727% on Cairo dataset while the accuracy for predicting
activities that would happen in next 3 minutes was found to
be 96.065% on Cairo dataset.

Precision, Recall and F1 Score were used to evaluate the
effectiveness of the proposed framework in the chosen con-
figuration. Precision, Recall, and F1 Score of each activ-
ity for the two experiments on each dataset are presented
in tables 6 to 10, and Confusion matrices for each dataset
are shown in figs. 9 to 13. For example, activities such as
‘Cook_Breakfast’, ‘Cook’ and ‘Personal_Hygiene’ have the
best prediction performance on the results where their F1
score is near to 1. On the other hand, activities such as
‘Take_Medicine’ or ‘Morning_med’ have F1 score near to
Zero which may be related to their scarceness on the training
datasets.

Several studies [6], [8], [46], [47], [49], [50], [51] were
proposed to predict the next activity only not an entire future
sequence of activities as proposed in this paper. Previous
approaches have utilized different algorithms such as LSTM,
Conditional Random Fields (CRF), Hidden Markov Model
(HMM), Naive Bayes, and other approaches [49], [51].
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TABLE 7. Precision Recall and F1 Score for next 3 minutes and next 10 activities for HH104 dataset.

TABLE 8. Precision Recall and F1 score for next 3 minutes and next 10 activities for Kyoto7 dataset.
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TABLE 9. Precision Recall and F1 score for next 3 minutes and next 10 activities for Aruba dataset.

TABLE 10. Precision Recall and F1 score for next 3 minutes and next 10 activities for Milan dataset.

TABLE 11. Activity prediction accuracy comparison.

Although these studies used the same benchmark datasets
that was utilized in this paper during evaluation, several
considerations should be considered. For example, differ-
ent training and testing splits in addition to the nature of
the framework itself where the proposed activity prediction
model did the prediction using the results of activity recog-
nition model. While considering all the difference between
other approaches and the proposed framework, the proposed
framework has achieved the highest accuracy comparing with

the evaluation results reported for other approach. On more
specific level, the proposed framework has achieved an aver-
age accuracy score of 95.6% on five different datasets while
other models [8], [49], [50] have achieved accuracy scores
ranging from 45.5% to 89.7% on the same datasets. Although
this is not a fair comparison betweenmodels, but it would give
an indication about the quality of the proposed framework.

On the other hand, we compared the proposed framework
against the model presented in [49] to provide evidence about
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FIGURE 9. Confusion matrix for Aruba dataset.

FIGURE 10. Confusion matrix for Cairo dataset.

FIGURE 11. Confusion matrix for Kyoto dataset.

the superiority of proposed framework against one of the very
recent models. In [49], they utilize an overcomplete-deep
autoencoder (OCD-AE) to distinguish between normal and
abnormal activities. In addition, (LSTM) neural network was
used to forecast the next activity. In order to provide a fair

FIGURE 12. Confusion matrix for Milan dataset.

FIGURE 13. Confusion matrix for HH104 dataset.

experiment, we re-implemented the model presented in [49]
before evaluating its next activity forecasting performance on
the same five dataset we used to evaluate the proposed frame-
work. Table 11 present the results of accuracy comparison
between the proposed framework and the model presented
in [49]. The results show the outperformance of our proposed
framework. In addition, the results acquired for the model
presented in [49] for Aruba and Cairo datasets are synchro-
nized with the results reported in their paper for the same
datasets. The proposed framework outperformance is thought
to be related to the utilization ofWord2Vec embeddings espe-
cially that LSTM in [49] used one-hot encoder to encode the
data at input layer.

Embeddings have proved a huge success through NLP
models and managed to improve the performance of different
NLP tasks with a huge margin. The similarity between words
and sensor readings where each of them has a closed set
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of vocabulary was the key to utilize Word2Vec embeddings
in order to generate sensor readings representations. The
embeddings allowed sensor readings that happen within sim-
ilar contexts to have similar representations. Consequently,
the recognition and prediction Bi-LSTM networks were fed a
better input data representations of sensor readings at their
input layer which enhanced the recognition and prediction
performance of future activities.

V. CONCLUSION AND FUTURE WORK
In this paper, we proposed a framework for recognizing and
predicting future activities for smart home inhabitants. The
findings given in this study demonstrated that the Word2Vec
embedding technique and BiLSTM may be utilized together
to generate a hybrid solution with high activity recogni-
tion and prediction ability. The suggested framework demon-
strated that basic techniques, such as Word2Vec, which is
utilized in a variety of domains, may be leveraged to improve
the performance of HAR and HAP tasks. By comparing
our model to previous models, we were able to demon-
strate its efficiency and acceptability. The proposed approach
reached average accuracy for predicting the next ten activi-
ties 95.602% while the accuracy for predicting activities that
would happen in next 3 minutes 88.337%.

In the future, several tests on various sorts of datasets with
extremely high volatility would be carried out. To improve
accuracy, several parameter tweaking approaches may be
considered.
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