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ABSTRACT In decision making problems, complex q-rung orthopair fuzzy set is regarded as a more
practical tool than complex intuitionistic fuzzy set and q-rung orthopair fuzzy set. This paper proposes
several aggregation operators based on the Aczel-Alsina t-norm and t-conorm for aggregating complex
q-rung orthopair fuzzy data. The suggested operators are then used to establish a multiple criteria decision-
making (MCDM)method. The Aczel-Alsina operations t-norm and t-conorm can have the advantage of good
flexibility with the operational parameter. In this regard, we expand the notions of the Aczel-Alsina t-norm
and t-conorm to the complex q-rung orthopair fuzzy environment and provide certain aggregation operators
in this study. Furthermore, we show the compatible features of the suggested operators. To overcome the
defects of the existing entropy measures, a novel complex q-rung orthopair fuzzy entropy approach is put
forward for acquiring the unknown criteria weights objectively. Following that, we describe an MCDM
technique with unknown criterion weights in a complex q-rung orthopair fuzzy environment grounded on
the originated operators. Then, to demonstrate the model’s flexibility and validity, we analyze and solve a
problem concerning with the selection of the sector that had the most impact on the Pakistan Stock Exchange.
Subsequently, we demonstrate how the parameter’s inclusion in our proposed model influences decision-
making outcomes. At last, the generated outcomes are compared to the past approaches to demonstrate our
suggested technique’s superiority.

INDEX TERMS Aczel–Alsina t-norms, complex q-rung orthopair fuzzy set, complex q-rung orthopair fuzzy
Aczel–Alsina aggregation operators, entropy measure, MCDM.

I. INTRODUCTION
The technique of multi-criteria decision-making (MCDM)
is a skilled way to handle complex and challenging data in
real-world scenarios. MCDM is a technique that can produce
ranking grades for finite alternatives based on the distinctive
objects of different options; it is a crucial component of the
decisionmaking sciences [1], [2], [3], [4], [5], [6]. In daily life
decision making scenarios, when analyzing data, uncertainty
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and incompleteness are always an issue. According to the idea
of crisp sets, an item either belongs to or does not belong
to a certain class. But in real world, many events cannot be
represented on such a scale. For that point, the doctrine of
fuzzy set (FS) was familiarized by Zadeh [7], in which only
the membership grade is constrained inside the unit inter-
val. The FS theory has gotten a great deal of attention from
notable scholars and has been implemented in several scenar-
ios and areas. However, the FS idea has often failed to operate
accurately. For instance, it is challenging to use FS to get
information in the form of membership and non-membership
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grades. Atanassov [8] propounded the idea of intuitionistic
FS (IFS), which is a modified version of the FS to success-
fully handle awkward and inaccurate information, to address
such issues. IFS covers the grades of membership µ and non-
membership ν with the rule 0 ≤ µ1

+ν1 ≤ 1. The IFS theory
has been the subject of substantial investigation and has been
applied in several publications [9], [10], [11]. Nonetheless,
the range of IFS data is limited and relies on the unnecessary
requirement that the sum of µ and ν should be kept inside the
unit interval. To address this issue, Yager devised the idea of
Pythagorean fuzzy sets (PyFS), a modified version of IFS for
tackling complex and inaccurate information. PyFS covers
the grades of membership µ and non-membership ν with the
rule 0 ≤ µ2

+ ν2 ≤ 1. The topic of PyFS has gotten a great
deal of interest from a wide range of researchers [12], [13],
[14]. For instance, Ren et al. [12] studied the TODIMmethod
in a Pythagorean fuzzy setting to tackle the MCDM prob-
lems. Garg [14] introduced new trigonometric sine operating
rules for PyFS. Kumar and Kumar [15] addressed a decision
making problem for optimal antivirus mask selection under
pythagorean fuzzy data. Likewise IFS, the range of PyFS is
also narrow and follows a criterion stating that the total of
the squares of µ and ν should be contained within the unit
interval; however, this is not essential. If certain information’s
sum of the squares of both grades exceeded the unit interval.
For instance, if we assigned a grade of 0.8 for membership
and a grade of 0.9 for non-membership, then the PyFS criteria
is violated, since 0.82+ 0.92 = 1.45 > 1. To circumvent this
issue, Yager [16] extended the PyFS to q-rung orthopair fuzzy
set (q-ROFS) to better handle complicated and unreliable
situations including the aforesaid problems. q-ROFS covers
the grades of membership µ and non-membership ν with the
rule 0 ≤ µq + νq ≤ 1 (q ≥ 1). Using q-ROFS, it is simple
to solve the given information, as 0.95 + 0.85 = 0.91817 <
1. The q-ROFS premise differs significantly from prevalent
theories such as IFSs and PFSs. Under these characteristics,
eminent scholars have examined and applied a huge study to
several disciplines [17], [18], [19]. For example, several types
of aggregation operators have been developed by scholars
such as Hamacher norm-based [20], neutrality operational
laws [21], Heronian mean [19], normalized bidirectional pro-
jection [17], exponential operation laws [22], trigonometric
operations [23] to solve the decision making problems.

In our real activities, ambiguity and fuzziness in the
data coincide with variations in the phase (periodicity)
of the data. Thus, the present theories are inadequate to
account for this information, resulting in a loss of knowl-
edge. Ramot et al. [24] devised the notion of complex fuzzy
set (CFS) to circumvent this issue. The idea of CFS has gar-
nered considerable attention from eminent academics and has
been the subject of multiple investigations [25], [26], [27].
Since CFS provides no information regarding the disagrees
of the object, the approaches based on it are of a restrictive
nature. Subsequently, Alkouri and Salleh [28] extended CFS
into the complex IFS (CIFS) paradigm. CIFS addresses the

grades of membership and non-membership using the rules
0 ≤ µ1

+ ν1 ≤ 1 and 0 ≤
(
ðµ
)1
+ (ðν)1 ≤ 1, and

has achieved widespread acceptance [23], [29], [30], [31].
Nonetheless, the range of CIFS data is notably limited by
the noticeable rule 0 ≤ µ1

+ ν1 ≤ 1 and 0 ≤
(
ðµ
)1
+

(ðν)1 ≤ 1, which is unnecessary. Ullah et al. [32] proposed
the notion of complex PyFS (CPyFS) to handle unreliable and
awkward information more efficiently than CIFS in order to
overcome such issues. The CPyFS rules for the membership
and non-membership grades are 0 ≤ µ2

+ ν2 ≤ 1 and
0 ≤

(
ðµ
)2
+ (ðν)2 ≤ 1. But, the range of CPyFS data is

still limited and constrained by rule 0 ≤ µ2
+ ν2 ≤ 1 and

0 ≤
(
ðµ
)2
+ (ðν)2 ≤ 1. However, it his is not essential, if a

person gives information in which the sum of the squares of
the real parts (and imaginary parts) of both grades exceeds the
unit interval. For instance, if we take 0.9ei2π (0.8) for mem-
bership grade and 0.8ei2π (0.9) for non-membership grade,
then by utilizing the constraints of the CIFS and CPyFS,
0.92+ 0.82 = 1.45 > 1 and 0.82+ 0.92 = 1.45 > 1 indicate
that the CIFS and complex CPyFS have failed. The authors
of Reference [33] proposed the doctrine of complex q-ROFS
(Cq-ROFS) as an updated tool of CPFS to handle unreliable
information in order to address this issue. Cq-ROFS addresses
the grades of membership and non-membership according to
the rules 0 ≤ µq + νq ≤ 1 and 0 ≤

(
ðµ
)q
+ (ðν)q ≤ 1.

Evidently, Cq-ROFSs can readily solve the aforementioned
information, since 0.95 + 0.85 = 0.91817 < 1 and 0.85 +
0.95 = 0.91817 < 1. Consequently, Cq-ROFS differ signifi-
cantly from prevalent concepts such as CIFS and CPyFS. For
detailed information on Cq-ROFS theory, please refer to the
articles [34], [35], [36].

In the literature, many aggregation operators based on t-
norm (TN) and t-conorm (TCN) have been developed for
aggregating assessments knowledge in a fuzzy environment.
Xia et al. [37] put forward intuitionistic fuzzy aggregation
operators with Archimedean TN and TCN.Wei and Zhao [38]
presented induced interval-valued hesitant aggregation oper-
ators based on Einstein TN and TCN. Seikh and Man-
dal [39] introduced an MCDM approach based on the q-rung
orthopair fuzzy Frank aggregation operators. Ali et al. [40]
created weighted interval-valued dual hesitant fuzzy aggre-
gation operators using Archimedean t-norm and t-conorm.
The authors of Ref. [20] studied EDAS method based on
their designed q-rung orthopair fuzzy Hamacher aggrega-
tion operators. Liu et al. [41] studied a series of complex
q-rung orthopair fuzzy Muirhead mean operators based on
Schweizer–Sklar operations. Further, they discussed their
relationships and special cases in length. In order to limit
the impact of individual preference on decision-making,
Liu and Li [42] devised dependent Hamacher aggregation
operators for Cq-ROFSs. These TNs and TCNs had played
a crucial role in the implementation of FSs in decision-
making. Aczel and Alsina [43] initially presented a novel
pair of TN and TCN that is more flexible than the previously
described TN and TCN. Senapati et al. [44], [45] constructed
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Aczel-Alsina aggregation operators for a framework of IFSs
and also for interval-valued IFSs (IVIFSs), and then used
them to addressMCDM issues, while Senapati [46] examined
Aczel-Alsina aggregation operators based on picture fuzzy
sets with application toMCDM. Recently, Hussain et al. [47]
defined the fundamental T-spherical fuzzy aggregation oper-
ators in terms of Aczel-Alsina operations. Simultaneously,
Naeem and Ali [48] investigated spherical fuzzy Aczel-
Alsina aggregation operators and their application to solar
energy cells. To our knowledge, no research has been discov-
ered that combines the concepts of Aczel-Alsina t-norm and
t-conorm under the background of Cq-ROFS. By leveraging
the benefits of Aczel-Alsina t-norm and t-conorm for offering
flexibility in decision-making processes, it would be conceiv-
able to construct an effective tool for managing a higher level
of imprecision in MCDM challenges in a complex q-rung
orthopair fuzzy environment.

As each criteria possesses some different aspects, all of
them cannot be levelled with the same weight. Consequently,
determining the proper weight for each criterion is the most
important component of anMCDMproblem. InmostMCDM
situations, the weights of the criteria are assumed to be
totally known. However, this is not the case with actual
MCDM applications. To determine criteria weights for com-
plex q-rung orthopair fuzzy MCDM problems Mahmood
and Ali [49] have proposed the entropy measures. But their
proposed entropy measures do not consider the degree of
hesitation, and also have certain counterintuitive cases as
mentioned in Section []. Therefore, it is necessary to construct
a new entropy measure which not only consider the degree of
hesitation but also have the capability of handling the coun-
terintuitive cases.

Motivated by the above two paragraphs, the main contri-
butions of this study are outlined as:

1. To investigate Aczel-Alsina t-norm and t-conorm
operational laws of Cq-ROFS and their
characteristics.

2. To develop various complex q-rung orthopair fuzzy
aggregation operators in terms of the proposed
operations.

3. To introduce a novel complex q-rung orthopair
fuzzy entropy measure and its significant
characteristics.

4. To build an MCDM approach with Cq-ROFS based
on the defined operators with unknown weight
information.

5. To demonstrate the applicability and advantages of
the presented approach.

This paper’s structure is as follows: Section II will
go through the fundamental ideas of Cq-ROFSs and
Aczel–Alsina triangular norms. Section III describes the
Aczel–Alsina operational laws for Cq-ROFNs. Section IV
puts forward complex q-rung orthopair fuzzy Aczel–Alsina
averaging and geometric operators and proves some of their
desirable properties and special cases. In Section V, we give

the concept of a new entropy of C-qROFS to overcome
the shortcomings of the existing complex q-rung orthopair
fuzzy entropies. Section VI builds a decision-making
framework for dealing with MCDM problems employing
Cq-ROFNs as characteristic values using the provided oper-
ators. Section VII includes a case study to show how
the proposed technique may be applied. This section also
delves at how a parameter affects decision-making outcomes.
Section VIII provides a comparative examination of various
acceptable approaches to demonstrate the adequacy of the
provided technique. Section IX concludes the entire article.

II. SOME BASIC CONCEPTS
In this part, we will present t-norm, t-conorm, Aczel–Alsina
t-norm, Aczel–Alsina t-conorms, and some core concepts of
q-ROFSs to help readers comprehend the work.
Definition 1 ([50]): A t-norm is a function T : [0, 1]2 −→

[0, 1] that meets
T1. T (h̄1, h̄2) = T (h̄2, h̄1) ∀ h̄1, h̄2 ∈ [0, 1] ;
T2. T (h̄1, h̄2) ≤ T (h̄3, h̄4) if h̄1 ≤ h̄3, h̄2 ≤

h̄4 ∀ h̄1, h̄2, h̄3, h̄4 ∈ [0, 1] ;
T3. T (h̄, 1) = h̄ ∀ h̄ ∈ [0, 1] ;
T4. T (h̄1,T (h̄2, h̄3)) = T (T (h̄1, h̄2) , h̄3) .
Some examples of t-norms
1). TP (h̄1, h̄2) = h̄1h̄2 (product t-norm),
2). TM (h̄1, h̄2) = min (h̄1, h̄2) (minimum t-norm),
3). TL (h̄1, h̄2) = max (h̄1 + h̄2 − 1, 0) (Lukasiewicz

t-norm),

4). TD (h̄1, h̄2) =


h̄1, if h̄2 = 1
h̄2, if h̄1 = 1 (drastic t-norm)
0, otherwise.

∀ h̄1, h̄2 ∈ [0, 1] .
Definition 2 ([51]): A t-conorm is a function S :

[0, 1]2 −→ [0, 1] that meets
S1. S (h̄1, h̄2) = S (h̄2, h̄1) ∀ h̄1, h̄2 ∈ [0, 1] ;
S2. S (h̄1, h̄2) ≤ S (h̄3, h̄4) if h̄1 ≤ h̄3, h̄2 ≤

h̄4 ∀ h̄1, h̄2, h̄3, h̄4 ∈ [0, 1] ;
S3. S (h̄, 0) = h̄ ∀ h̄ ∈ [0, 1] ;
S4. S (h̄1, S (h̄2, h̄3)) = S (S (h̄1, h̄2) , h̄3) .
Some examples of t-conorms
1). SP (h̄1, h̄2) = h̄1 + h̄2 − h̄1h̄2 (probabilistic sum),
2). SM (h̄1, h̄2) = max (h̄1, h̄2) (maximum t-conorm),
3). SL (h̄1, h̄2) = min (h̄1 + h̄2, 1) (Lukasiewicz t-

conorm),

4). SD (h̄1, h̄2) =


h̄1, if h̄2 = 0
h̄2, if h̄1 = 0 (drastic t-conorm)
1, otherwise.

∀ h̄1, h̄2 ∈ [0, 1] .
Additionally, it established the fact [51] that when T is a

t-norm and S is a t-conorm, then T (h̄1, h̄2) ≤ min {h̄1, h̄2}
and S (h̄1, h̄2) ≥ max {h̄1, h̄2} ∀ h̄1, h̄2 ∈ [0, 1].
Definition 3 ([43]): The Aczel–Alsina t-norm(
T ζA
)
ζ∈[0,∞]

is postulated as (1), as shown at the bottom of

the next page.
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Some special cases: T∞A = min, T 0
A = TD, T 1

A = TP.
Definition 4 ([52]): The Aczel–Alsina t-conorm(
SζA
)
ζ∈[0,∞]

is postulated as (2), as shown at the bottom of

page 5.
Some special cases: S∞A = max, S0A = SD, S1A = SP.
The t-norm T ζA and t-conorm SζA are dual with respect to

each other ∀ ζ ∈ [0,∞]. Further, T ζA and SζA are strictly
increasing and strictly decreasing, respectively.

It is worthy to note that the Aszel-Alsina category
of t-norms are the only ones that meet the equivalence
T ζA
(
h̄λ1, h̄

λ
2

)
= T ζA (h̄1, h̄2)

λ
∀ λ > 0 and h̄1, h̄2 ∈ [0, 1].

In this section, we present a concise overview of q-ROFSs.
Definition 5 ([16]): Let X be a fixed set. A q-ROFSQ on

X is described as

Q = {(h̄, µ(h̄), ν(h̄)) |h̄ ∈ X} , q ≥ 1, (3)

where µ(h̄) ν(h̄) ∈ [0, 1] denote the membership and
non-membership grades of h̄ ∈ X , respectively, accorded that
0 ≤ (µ(h̄))q + (ν(h̄))q ≤ 1. The degree of indeterminacy is
(π (h̄))q = 1−((µ(h̄))q + (ν(h̄))q) . For convince, Yager [16]
termed Q = (µ, ν) a q-rung orthopair fuzzy number
(q-ROFN).
Definition 6 ([16]): Let Q1 and Q2 be any two q-ROFNs

and η > 0, then the basic rules of operation on them are listed
as
1) Q1 ⊕Q2 =

((
µ
q
1 + µ

q
2 − µ

q
1µ

q
2

)1/q
, ν1ν2

)
;

2) Q1 ⊗Q2 =

(
µ1µ2,

(
ν
q
1 + ν

q
2 − ν

q
1ν

q
2

)1/q)
;

3) Qη
1 =

(
µ
η

Q1
,
(
1−

(
1− νq1

)η)1/q)
;

4) ηQ1 =

((
1−

(
1− µq1

)η)1/q
, ν
η
1

)
;

5) Qc
1 =

(
ν1, µQ1

)
.

Definition 7 ([53]): Let Q be a q-ROFN, then the score
function is characterized by:

S (Q) = µq − νq, (4)

where q ∈ [1,∞), S (Q) ∈ [−1, 1]. The larger the value of
S (Q), the larger the q-ROFN Q.
Definition 8 ([54]): Let Q be a q-ROFN, then the degree

of accuracy is defined in the following manner:

A (Q) = (µ)q + (ν)q ; A (Q) ∈ [0, 1] . (5)

When the computed score values are similar, the larger the
degree of accuracy A (Q), the larger the q-ROFN.
Definition 9: A Cq-ROFS Z on a fixed set X is given by

Z = {(h̄, µ̈(h̄), ν̈(h̄)) |h̄ ∈ X} , q ≥ 1, (6)

where µ̈(h̄) = µ(h̄)ei2π(ðµ), ν̈(h̄) = ν(h̄)ei2π(ðν ) ∈ [0, 1]
symbolizes the complex-valued truth and complex-valued

falsity grades of h̄ ∈ X , respectively, accorded that 0 ≤
(µ(h̄))q + (ν(h̄))q ≤ 1, 0 ≤

(
ðµ
)q
+ (ðν)q ≤ 1, where

µ, ν, ðµ, ðν ∈ [0, 1]. The degree of hesitation is π (h̄)q =
(1− ((µ(h̄))q + (ν(h̄))q))

(
1−

((
ðµ
)q
+ (ðν)q

))
. For con-

vince, we termed Z =
(
µei2π(ðµ), νei2π(ðµ)

)
a complex

q-rung orthopair fuzzy number (Cq-ROFN).
Definition 10 ([55]): Let Z be a Cq-ROFN, then the score

function is characterized by:

S (Z) =
1
4
·
(
2+

(
µq − νq

)
+
(
ðqµ − ðqν

))
, (7)

where q ∈ [1,∞), S (Z) ∈ [−1, 1]. The larger the value of
S (Z), the larger the Cq-ROFN Q.
Definition 11 ([55]): Let Z be a Cq-ROFN, then the

degree of accuracy is defined in the following manner:

A (Z) = µq + νq + ðqµ + ðqµ, (8)

where A (Z) ∈ [0, 1] . When the computed score values are
similar, the larger the degree of accuracy A (Z), the larger the
Cq-ROFN.
Definition 12: Let Z1 and Z2 be any two Cq-ROFNs and

η > 0, then the basic rules of operation on them are listed as
(1)–(5), shown at the bottom of the next page.

III. COMPLEX Q-RUNG ORTHOPAIR FUZZY
ACZEL-ALSINA OPERATIONAL LAWS
In view of the Definitions 3 and 4, in what follows, we put
forward some generalized operational rules of Cq-ROFNs
and their relevant characteristics.
Definition 13: Let Z1 and Z2 be any two Cq-ROFNs,

ζ ≥ 1 and λ > 0, then the Aczel–Alsina t-norm and t-conorm
operations on them are given by (1)–(4), shown at the bottom
of page 6.
Theorem 1: Let Z, Z1 and Z2 be any three Cq-ROFNs,

then we have

1) Z1 ⊕ Z2 = Z2 ⊕ Z1;
2) Z1 ⊗ Z2 = Z2 ⊗ Z1;
3) λ (Z1 ⊕ Z2) = λZ1 ⊕ λZ2, λ > 0;
4) (λ1 + λ2)Z = λ1Z⊕ λ2Z, λ1, λ2 > 0;
5) (Z1 ⊗ Z2)

λ
= Zλ1 ⊗ Zλ2, λ > 0;

6) Zλ1 ⊗ Zλ2 = Z(λ1+λ2), λ1, λ2 > 0.

Proof: See (1)–(6), shown at the bottom of
pages 7 and 8.

T ζA (h̄1, h̄2) =


TD (h̄1, h̄2) , if ζ = 0
min {h̄1, h̄2} , if ζ = ∞

exp−
(
(− ln h̄1)ζ+(− ln h̄2)ζ

)1/ζ
, otherwise

∀ h̄1, h̄2 ∈ [0, 1] (1)
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IV. COMPLEX Q-RUNG ORTHOPAIR FUZZY
ASZEL-ALSINA AGGREGATION OPERATORS
This segment presents various complex q-rung orthopair
fuzzy Aszel-Alsina aggregation operators based on the arith-
metic average operator and the geometric average operator.

A. COMPLEX Q-RUNG ORTHOPAIR FUZZY ASZEL-ALSINA
AVERAGING AGGREGATION OPERATORS
Based on the proposed operations, in this section,
we introduce some novel averaging aggregation operators,
including complex q-rung orthopair fuzzy Aszel-Alsina
average (Cq-ROFAAA) operator, complex q-rung orthopair
fuzzy Aczel-Alsina weighted averaging (Cq-ROFAAWA)
operator, complex q-rung orthopair fuzzy Aczel–Alsina
ordered weighted averaging (Cq-ROFAAOWA) operator,
complex q-rung orthopair fuzzy Aczel–Alsina ordered
weighted averaging (Cq-ROFAAOWA) operator, and com-
plex q-rung orthopair fuzzy Aczel–Alsina hybrid averaging
(Cq-ROFAAHA) operator. In addition, we investigate some
special cases and properties of these operators.
Definition 14: Let Zι =

(
µιei2π(ðµι), νιei2π(ðν ι)

) (
ι = 1,

2, . . . , [
)
be a family of Cq-ROFNs, then the Cq-ROFAAWA

operator is:

Cq− ROFAAWA
(
Z1,Z2, . . . ,Z[

)
= ⊕

[
ι=1 (wιZι) , (9)

where w =
(
w1,w2, . . . ,w[

)T is the weight vector of
Zι (ι = 1, 2, . . . , [) such that wι > 0 and

∑[
ι=1 wι = 1.

Especially, if w =
(
1
[
, 1
[
, . . . , 1

[

)T
, then the Cq-ROFAAWA

operator reduces to Cq-ROFAAA operator of dimension [,
which is described as follows:

Cq− ROFAAA
(
Z1,Z2, . . . ,Z[

)
=

1
[
⊕
[
ι=1 (Zι) . (10)

Theorem 2: Let Zι =
(
µιe2iπðµι , νιe2iπðν ι

) (
ι = 1,

2, . . . , [
)
be a family of Cq-ROFNs, then the result obtained

by utilizing Cq-ROFAAWA operator is still a Cq-ROFN, and
(11), as shown at the bottom of page 9.

Proof: We can prove Theorem 2 with the help of the
mathematical induction method in the following way:

For [ = 2, we have Cq− ROFAAWA (Z1,Z2), as shown at
the bottom of page 9.

Hence, the result is true for [ = 2.
Suppose that Eq. (11) is true for [ = k , then we have

Cq − ROFAAWA (Z1,Z2, . . . ,Zk), as shown at the bottom
of page 9.

Now for [ = k + 1, we have Cq−ROFAAWA
(
Z1,Z2, . . . ,

Zk ,Zk+1
)
, as shown at the bottom of page 10.

Thus, Eq. (11) is legitimate for [ = k + 1, and hence,
by the principle of mathematical induction, the result given
in Eq. (11) is true for all positive integer [.
Theorem 3 (Idempotency): Let Zι =

(
µιe2iπðµι , νιe2iπðν ι

)
(ι = 1, 2, . . . , [) be a family of Cq-ROFNs, if Zι = Z ∀ ι,
then

Cq− ROFAAWA
(
Z1,Z2, . . . ,Z[

)
= Z. (12)

SζA (h̄1, h̄2) =


SD (h̄1, h̄2) , if ζ = 0
max {h̄1, h̄2} , if ζ = ∞

1− exp−
(
(− ln(1−h̄1))ζ+(− ln(1−h̄2))ζ

)1/ζ
, otherwise

∀ h̄1, h̄2 ∈ [0, 1] (2)

1)

Z1 ⊕ Z2 =

((
µ
q
1 + µ

q
2 − µ

q
1µ

q
2

)1/q ei2π(ðqµ1+ðqµ2−ðqµ1ðqµ2)1/q , ν1ν2ei2π(ðν1ðν2)) ;
2)

Z1 ⊗ Z2 =

(
µ1µ2ei2π(ðµ1ðµ2),

(
ν
q
1 + ν

q
2 − ν

q
1ν

q
2

)1/q ei2π(ðqν1+ðqν2−ðqν1ðqν2)1/q) ;
3)

Zη1 =

(
µ
η
1e
i2π(ðηµ1),

(
1−

(
1− νq1

)η)1/q ei2π(1−(1−ðqν1)η)1/q) ;
4)

ηZ1 =

((
1−

(
1− µq1

)η)1/q ei2π(1−(1−ðqµ1)η)1/q , νη1 ei2π(ðην 1)
)
;

5)

Zc1 =
(
ν1ei2πðν1 , µQ1e

i2πðµ1
)
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Proof: Since Zι = Z ∀ ι, and
∑[
ι=1 wι = 1 so by

Theorem 2, we have Cq − ROFAAWA
(
Z1,Z2, . . . ,Z[

)
, as

shown at the bottom of page 10.

Theorem 4 (Monotonicity): Let Zι =
(
µιe2iπðµι , νιe2iπðν ι

)
(ι = 1, 2, . . . , [) and Żι =

(
µ̇ιe2iπðµ̇ι , ν̇ιe2iπðν̇ ι

)
(ι = 1, 2, . . . , [) be two families of Cq-ROFNs, such that
µιe2iπðµι ≥ µ̇ιe2iπðµ̇ι and νιe2iπðν ι ≤ ν̇ιe2iπðν̇ ι ∀ ι, then

Cq− ROFAAWA
(
Z1,Z2, . . . ,Z[

)
≥ Cq− ROFAAWA

(
Ż1, Ż2, . . . , Ż[

)
. (13)

Proof: Since µιe2iπðµι ≥ µ̇ιe2iπðµ̇ι and νιe2iπðν ι ≤
ν̇ιe2iπðν̇ ι ∀ ι. Based on these, we have the subsequent
inequalities the equation can be derived, as shown at the
bottom of page 11, which implies that the equation can be
derived, as shown at the bottom of page 11.

Hence Cq − ROFAAWA
(
Z1,Z2, . . . ,Z[

)
≥ Cq −

ROFAAWA
(
Ż1, Ż2, . . . , Ż[

)
.

Theorem 5 (Boundedness): Let Zι =
(
µιe2iπðµι , νιe2iπðν ι

)
(ι = 1, 2, . . . , [) be a family of Cq-ROFNs, and let Z− =
min

{
Z1,Z2, . . . ,Z[

}
and Z+ = max

{
Z1,Z2, . . . ,Z[

}
,

then

Z− ≤ Cq− ROFAAWA
(
Z1,Z2, . . . ,Z[

)
≤ Z+. (14)

Proof: As given that

Z− = min
{
Z1,Z2, . . . ,Z[

}
=

(
µ−e2iπðµ− , ν−e2iπðν−

)
and

Z+

= max
{
Z1,Z2, . . . ,Z[

}
=

(
µ+e2iπðµ+ , ν+e2iπðν+

)
,

where

µ−e2iπðµ−

= min
{
µ1e2iπðµ1 , µ2e2iπðµ2 , . . . , µ[e

2iπðµ[
}
,

1)

Z1 ⊕ Z2 =

 q

√
1− e

−

(
(− ln(1−µ

q
1))

ζ
+(− ln(1−µ

q
2))

ζ
)1/ζ

e2iπ
q

√
1−e
−

(
(− ln(1−ð

q
µ1))

ζ
+(− ln(1−ð

q
µ2))

ζ
)1/ζ

,

q

√
e
−

(
(− ln νq1)

ζ
+(− ln νq2)

ζ
)1/ζ

e2iπ
q
√
e
−

(
(− lnðqν1)

ζ
+(− lnðqν2)

ζ
)1/ζ ;

2)

Z1 ⊗ Z2 =

 q

√
e
−

(
(− lnµq1)

ζ
+(− lnµq2)

ζ
)1/ζ

e2iπ
q
√
e
−

(
(− lnðqµ1)

ζ
+(− lnðqµ2)

ζ
)1/ζ

,

q

√
1− e

−

(
(− ln(1−ν

q
1))

ζ
+(− ln(1−ν

q
2))

ζ
)1/ζ

e2iπ
q

√
1−e
−

(
(− ln(1−ð

q
ν1))

ζ
+(− ln(1−ð

q
ν2))

ζ
)1/ζ ;

3)

Zλ1 =

 q

√
e
−

(
λ(− lnµq1)

ζ
)1/ζ

e2iπ
q
√
e
−

(
λ(− lnðqµ1)

ζ
)1/ζ

,

q

√
1− e

−

(
λ(− ln(1−ν

q
1))

ζ
)1/ζ

e2iπ
q

√
1−e
−

(
λ(− ln(1−ð

q
ν1))

ζ
)1/ζ ;

4)

λZ1 =

 q

√
1− e

−

(
λ(− ln(1−µ

q
1))

ζ
)1/ζ

e2iπ
q

√
1−e
−

(
λ(− ln(1−ð

q
µ1))

ζ
)1/ζ

,

q

√
e
−

(
λ(− ln νq1)

ζ
)1/ζ

e2iπ
q
√
e
−

(
λ(− lnðqν1)

ζ
)1/ζ
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1)

Z1 ⊕ Z2 =

 q

√
1− e

−

(
(− ln(1−µ

q
1))

ζ
+(− ln(1−µ

q
2))

ζ
)1/ζ

e2iπ
q

√
1−e
−

(
(− ln(1−ð

q
µ1))

ζ
+(− ln(1−ð

q
µ2))

ζ
)1/ζ

,

q

√
e
−

(
(− ln νq1)

ζ
+(− ln νq2)

ζ
)1/ζ

e2iπ
q
√
e
−

(
(− lnðqν1)

ζ
+(− lnðqν2)

ζ
)1/ζ

=

 q

√
1− e

−

(
(− ln(1−µ

q
2))

ζ
+(− ln(1−µ

q
1))

ζ
)1/ζ

e2iπ
q

√
1−e
−

(
(− ln(1−ð

q
µ2))

ζ
+(− ln(1−ð

q
µ1))

ζ
)1/ζ

,

q

√
e
−

(
(− ln νq2)

ζ
+(− ln νq1)

ζ
)1/ζ

e2iπ
q
√
e
−

(
(− lnðqν1)

ζ
+(− lnðqν1)

ζ
)1/ζ = Z2 ⊕ Z1.

2)  q

√
e
−

(
(− lnµq1)

ζ
+(− lnµq2)

ζ
)1/ζ

e2iπ
q
√
e
−

(
(− lnðqµ1)

ζ
+(− lnðqµ2)

ζ
)1/ζ

,

q

√
1− e

−

(
(− ln(1−ν

q
1))

ζ
+(− ln(1−ν

q
2))

ζ
)1/ζ

e2iπ
q

√
1−e
−

(
(− ln(1−ð

q
ν1))

ζ
+(− ln(1−ð

q
ν2))

ζ
)1/ζ

=

 q

√
e
−

(
(− lnµq2)

ζ
+(− lnµq1)

ζ
)1/ζ

e2iπ
q
√
e
−

(
(− lnðqµ2)

ζ
+(− lnðqµ1)

ζ
)1/ζ

,

q

√
1− e

−

(
(− ln(1−ν

q
2))

ζ
+(− ln(1−ν

q
1))

ζ
)1/ζ

e2iπ
q

√
1−e
−

(
(− ln(1−ð

q
ν2))

ζ
+(− ln(1−ð

q
ν1))

ζ
)1/ζ = Z2 ⊗ Z1.

3)

λ (Z1 ⊕ Z2) =

 q

√
1− e

−

(
λ(− ln(1−µ

q
1))

ζ
+(− ln(1−µ

q
2))

ζ
)1/ζ

e2iπ
q

√
1−e
−

(
λ(− ln(1−ð

q
µ1))

ζ
+(− ln(1−ð

q
µ2))

ζ
)1/ζ

,

q

√
e
−

(
λ(− ln νq1)

ζ
+(− ln νq2)

ζ
)1/ζ

e2iπ
q
√
e
−

(
λ(− lnðqν1)

ζ
+(− lnðqν2)

ζ
)1/ζ

=

 q

√
1− e

−

(
λ(− ln(1−µ

q
1))

ζ
)1/ζ

e2iπ
q

√
1−e
−

(
λ(− ln(1−ð

q
µ1))

ζ
)1/ζ

,

q

√
e
−

(
λ(− ln νq1)

ζ
)1/ζ

e2iπ
q
√
e
−

(
λ(− lnðqν1)

ζ
)1/ζ

⊕

 q

√
1− e

−

(
λ(− ln(1−µ

q
2))

ζ
)1/ζ

e2iπ
q

√
1−e
−

(
λ(− ln(1−ð

q
µ2))

ζ
)1/ζ

,

q

√
e
−

(
λ(− ln νq2)

ζ
)1/ζ

e2iπ
q
√
e
−

(
λ(− lnðqν2)

ζ
)1/ζ

= λZ1 ⊕ λZ2.

4)

λ1Z⊕ λ2Z =

 q
√
1− e−

(
λ1(− ln(1−µq))ζ

)1/ζ
e2iπ

q

√
1−e
−

(
λ1(− ln(1−ð

q
µ))

ζ
)1/ζ

,

q
√
e−
(
λ1(− ln νq)ζ

)1/ζ
e2iπ

q
√
e
−

(
λ1(− lnðqν)

ζ
)1/ζ
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⊕

 q
√
1− e−

(
λ2(− ln(1−µq))ζ

)1/ζ
e2iπ

q

√
1−e
−

(
λ2(− ln(1−ð

q
µ))

ζ
)1/ζ

,
q
√
e−
(
λ2(− ln νq)ζ

)1/ζ
e2iπ

q
√
e
−

(
λ2(− lnðqν)

ζ
)1/ζ

=

 q
√
1− e−

(
(λ1+λ2)(− ln(1−µq))ζ

)1/ζ
e2iπ

q

√
1−e
−

(
(λ1+λ2)(− ln(1−ð

q
µ))

ζ
)1/ζ

,

q
√
e−
(
(λ1+λ2)(− ln νq)ζ

)1/ζ
e2iπ

q
√
e
−

(
(λ1+λ2)(− lnðqν)

ζ
)1/ζ = (λ1 + λ2)Z.

5)

(Z1 ⊗ Z2)
λ
=

 q

√
e
−

(
(− lnµq1)

ζ
+(− lnµq2)

ζ
)1/ζ

e2iπ
q
√
e
−

(
(− lnðqµ1)

ζ
+(− lnðqµ2)

ζ
)1/ζ

,

q

√
1− e

−

(
(− ln(1−ν

q
1))

ζ
+(− ln(1−ν

q
2))

ζ
)1/ζ

e2iπ
q

√
1−e
−

(
(− ln(1−ð

q
ν1))

ζ
+(− ln(1−ð

q
ν2))

ζ
)1/ζ

λ

=

 q

√
e
−

(
λ
(
(− lnµq1)

ζ
+(− lnµq2)

ζ
))1/ζ

e2iπ
q
√
e
−

(
λ

(
(− lnðqµ1)

ζ
+(− lnðqµ2)

ζ
))1/ζ

,

q

√
1− e

−

(
λ
(
(− ln(1−ν

q
1))

ζ
+(− ln(1−ν

q
2))

ζ
))1/ζ

e2iπ
q

√
1−e
−

(
λ

(
(− ln(1−ð

q
ν1))

ζ
+(− ln(1−ð

q
ν2))

ζ
))1/ζ

=

 q

√
e
−

(
λ
(
(− lnµq1)

ζ
))1/ζ

,
q

√
1− e

−

(
λ
(
(− ln(1−ν

q
1))

ζ
))1/ζ

e2iπ
q

√
1−e
−

(
λ

(
(− ln(1−ð

q
ν1))

ζ
))1/ζ

⊗

 q

√
e
−

(
λ
(
(− lnµq2)

ζ
))1/ζ

e2iπ
q
√
e
−

(
λ

(
(− lnðqµ2)

ζ
))1/ζ

,

q

√
1− e

−

(
λ
(
(− ln(1−ν

q
2))

ζ
))1/ζ

e2iπ
q

√
1−e
−

(
λ

(
(− ln(1−ð

q
ν2))

ζ
))1/ζ = Zλ1 ⊗ Zλ2 .

6)

Zλ1 ⊗ Zλ2 =

 q
√
e−
(
λ1(− lnµq)ζ

)1/ζ
e2iπ

q
√
e
−

(
λ1(− lnðqµ)

ζ
)1/ζ

,

q
√
1− e−

(
λ1(− ln(1−νq))ζ

)1/ζ
e2iπ

q

√
1−e
−

(
λ1(− ln(1−ð

q
ν))

ζ
)1/ζ

⊗

 q
√
e−
(
λ2(− lnµq)ζ

)1/ζ
e2iπ

q
√
e
−

(
λ2(− lnðqµ)

ζ
)1/ζ

,

q
√
1− e−

(
λ2(− ln(1−νq))ζ

)1/ζ
e2iπ

q

√
1−e
−

(
λ2(− ln(1−ð

q
ν))

ζ
)1/ζ

=

 q
√
e−
(
(λ1+λ2)(− lnµq)ζ

)1/ζ
e2iπ

q
√
e
−

(
(λ1+λ2)(− lnðqµ)

ζ
)1/ζ

,

q
√
1− e−

(
(λ1+λ2)(− ln(1−νq))ζ

)1/ζ
e2iπ

q

√
1−e
−

(
(λ1+λ2)(− ln(1−ð

q
ν))

ζ
)1/ζ = Z(λ1+λ2).
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ν−e2iπðν−

= max
{
ν1e2iπðν1 , ν2e2iπðν2 , . . . , ν[e

2iπðµ[
}
,

µ+e2iπðµ+

= max
{
µ1e2iπðµ1 , µ2e2iπðµ2 , . . . , µ[e

2iπðµ[
}
,

Cq− ROFAAWA
(
Z1,Z2, . . . ,Z[

)
=

 q

√
1− e

−

(∑[
ι=1 wι(− ln(1−µ

q
ι ))

ζ
)1/ζ

e2iπ
q

√
1−e
−

(∑[
ι=1 wι(− ln(1−ð

q
µι))

ζ
)1/ζ

,

q

√
e
−

(∑[
ι=1 wι(− ln νqι )

ζ
)1/ζ

e2iπ
q
√
e
−

(∑[
ι=1 wι(− lnðqν ι)

ζ
)1/ζ (11)

Cq− ROFAAWA (Z1,Z2) = w1Z1 ⊕ w2Z2

=

 q

√
1− e

−

(
w1(− ln(1−µ

q
1))

ζ
)1/ζ

e2iπ
q

√
1−e
−

(
w1(− ln(1−ð

q
µ1))

ζ
)1/ζ

,

q

√
e
−

(
w1(− ln νq1)

ζ
)1/ζ

e2iπ
q
√
e
−

(
w1(− lnðqν1)

ζ
)1/ζ

⊕

 q

√
1− e

−

(
w2(− ln(1−µ

q
2))

ζ
)1/ζ

e2iπ
q

√
1−e
−

(
w2(− ln(1−ð

q
µ2))

ζ
)1/ζ

,

q

√
e
−

(
w2(− ln νq2)

ζ
)1/ζ

e2iπ
q
√
e
−

(
w2(− lnðqν2)

ζ
)1/ζ

=

 q

√
1− e

−

(
w1(− ln(1−µ

q
1))

ζ
+w2(− ln(1−µ

q
2))

ζ
)1/ζ

e2iπ
q

√
1−e
−

(
w1(− ln(1−ð

q
µ1))

ζ
+w2(− ln(1−ð

q
µ2))

ζ
)1/ζ

,

q

√
e
−

(
w1(− ln νq1)

ζ
+w2(− ln νq2)

ζ
)1/ζ

e2iπ
q
√
e
−

(
w1(− lnðqν1)

ζ
+w2(− lnðqν2)

ζ
)1/ζ

=

 q

√
1− e

−

(∑2
ι=1 wι(− ln(1−µ

q
ι ))

ζ
)1/ζ

e2iπ
q

√
1−e
−

(∑2
ι=1 wι(− ln(1−ð

q
µι))

ζ
)1/ζ

,

q

√
e
−

(∑2
ι=1 wι(− ln νqι )

ζ
)1/ζ

e2iπ
q
√
e
−

(∑2
ι=1 wι(− lnðqν ι)

ζ
)1/ζ

Cq− ROFAAWA (Z1,Z2, . . . ,Zk) = ⊕kι=1 (wιZι)

=

 q

√
1− e

−

(∑k
ι=1 wι(− ln(1−µ

q
ι ))

ζ
)1/ζ

e2iπ
q

√
1−e
−

(∑k
ι=1 wι(− ln(1−ð

q
µι))

ζ
)1/ζ

,

q

√
e
−

(∑k
ι=1 wι(− ln νqι )

ζ
)1/ζ

e2iπ
q
√
e
−

(∑k
ι=1 wι(− lnðqν ι)

ζ
)1/ζ
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and

ν+e2iπðν+ = min
{
ν1e2iπðν1 , ν2e2iπðν2 , . . . , ν[e2iπðν [

}
.

As a result, there are ongoing inequities:
Thereby, Z− ≤ Cq − ROFAAWA

(
Z1,Z2, . . . ,Z[

)
≤ Z+.

Cq− ROFAAWA (Z1,Z2, . . . ,Zk ,Zk+1)
= ⊕

k
ι=1 (wιZι)⊕ (wk+1Zk+1)

=

 q

√
1− e

−

(∑k
ι=1 wι(− ln(1−µ

q
ι ))

ζ
)1/ζ

e2iπ
q

√
1−e
−

(∑k
ι=1 wι(− ln(1−ð

q
µι))

ζ
)1/ζ

,

q

√
e
−

(∑k
ι=1 wι(− ln νqι )

ζ
)1/ζ

e2iπ
q
√
e
−

(∑k
ι=1 wι(− lnðqν ι)

ζ
)1/ζ

⊕

 q

√
1− e

−

(
wk+1

(
− ln

(
1−µqk+1

))ζ )1/ζ
e2iπ

q

√
1−e
−

(
wk+1

(
− ln

(
1−ðqµk+1

))ζ )1/ζ
,

q

√
e
−

(
wk+1

(
− ln νqZk+1

)ζ)1/ζ


=

 q

√
1− e

−

(∑k+1
ι=1 wι(− ln(1−µ

q
ι ))

ζ
)1/ζ

e2iπ
q

√
1−e
−

(∑k+1
ι=1 wι(− ln(1−ð

q
µι))

ζ
)1/ζ

,

q

√
e
−

(∑k+1
ι=1 wι(− ln νqι )

ζ
)1/ζ

e2iπ
q
√
e
−

(∑k+1
ι=1 wι(− lnðqν ι)

ζ
)1/ζ

Cq− ROFAAWA
(
Z1,Z2, . . . ,Z[

)
=

 q

√
1− e

−

(∑[
ι=1 wι(− ln(1−µq))ζ

)1/ζ
e2iπ

q

√
1−e
−

(∑[
ι=1 wι(− ln(1−ð

q
µ))

ζ
)1/ζ

,

q

√
e
−

(∑[
ι=1 wι(− ln νq)ζ

)1/ζ
e2iπ

q
√
e
−

(∑[
ι=1 wι(− lnðqν)

ζ
)1/ζ

=

 q
√
1− e−

(
(− ln(1−µq))ζ

)1/ζ
e2iπ

q

√
1−e
−

(
(− ln(1−ð

q
µ))

ζ
)1/ζ

,
q
√
e−
(
(− ln νq)ζ

)1/ζ
e2iπ

q
√
e
−

(
(− lnðqν)

ζ
)1/ζ

=

(
µe2iπðµ , νe2iπðν

)
= Z

q

√
1− e

−

(∑[
ι=1 wι(− ln(1−µ

q
ι ))

ζ
)1/ζ

e2iπ
q

√
1−e
−

(∑[
ι=1 wι(− ln(1−ð

q
µι))

ζ
)1/ζ

≥

q

√
1− e

−

(∑[
ι=1 wι(− ln(1−µ̇

q
ι ))

ζ
)1/ζ

e2iπ
q

√
1−e
−

(∑[
ι=1 wι

(
− ln

(
1−ðq

µ̇ι

))ζ )1/ζ

and

q

√
e
−

(∑[
ι=1 wι(− ln(ν

q
ι ))

ζ
)1/ζ

e2iπ
q
√
e
−

(∑[
ι=1 wι(− ln(ð

q
ν ι))

ζ
)1/ζ

≤

q

√
e
−

(∑[
ι=1 wι(− ln(ν̇

q
ι ))

ζ
)1/ζ

e2iπ
q
√
e
−

(∑[
ι=1 wι(− ln(ð

q
ν ι))

ζ
)1/ζ

85324 VOLUME 10, 2022



J. Ali, M. Naeem: Complex q-Rung Orthopair Fuzzy Aczel–Alsina Aggregation Operators and Its Application to MCDM

Theorem 6 (Symmetry): Let Zι =
(
µιe2iπðµι , νιe2iπðν ι

)
(ι = 1, 2, . . . , [) be a family of Cq-ROFNs. Then, if Z̆ι =(
µ̆ιe2iπðµ̆ι , ν̆ιe2iπðν̆ ι

)
(ι = 1, 2, . . . , [) be any permutation

of Zι, then we have

Cq− ROFAAWA
(
Z1,Z2, . . . ,Z[

)
= Cq− ROFAAWA

(
Z̆1, Z̆2, . . . , Z̆[

)
. (15)

Proof: The proof is obvious and thus omitted.
Next, we introduce complex q-rung orthopair fuzzy

Aczel–Alsina orderedweighted averaging (Cq-ROFAAOWA)
operator.
Definition 15: Let Zι =

(
µιe2iπðµι , νιe2iπðν ι

)
(ι = 1, 2, . . . , [) be a family of Cq-ROFNs, then the
Cq-ROFAAOWA operator is:

Cq− ROFAAOWA
(
Z1,Z2, . . . ,Z[

)
= ⊕

[
ι=1

(
$ιZδ(ι)

)
,

(16)

where $ =
(
$1,$2, . . . ,$[

)T is the position weights of
Zι (ι = 1, 2, . . . , [) such that $ι > 0 and

∑[
ι=1$ι = 1.

(δ(1), δ(2), . . . , δ([)) is a permutation of (1, 2, . . . , [) such
that Zδ(ι−1) ≥ Zδ(ι) for ι = 1, 2, . . . , [.

Theorem 7: Let Zι =
(
µιe2iπðµι , νιe2iπðν ι

) (
ι = 1,

2, . . . , [
)
be a family of Cq-ROFNs, then the result obtained

by utilizing Cq-ROFAAOWA operator is still a Cq-ROFN,
and (17), as shown at the bottom of the next page.

Proof: We skip the proof of this theorem since it is
analogous to that of Theorem 2.
The following features may be efficiently shown by using

the Cq-ROFAAOWA operator.
Theorem 8 (Idempotency): Let Zι =

(
µιe2iπðµι , νιe2iπðν ι

)
(ι = 1, 2, . . . , [) be a family of Cq-ROFNs, if Zι = Z ∀ ι,
then

Cq− ROFAAOWA
(
Z1,Z2, . . . ,Z[

)
= Z. (18)

Theorem 9 (Monotonicity): Let Zι=
(
µιe2iπðµι , νιe2iπðν ι

)
(ι = 1, 2, . . . , [) and Żι =

(
µ̇ιe2iπðµ̇ι , ν̇ιe2iπðν̇ ι

)
(ι = 1, 2, . . . , [) be two families of Cq-ROFNs, such that
µιe2iπðµι ≥ µ̇ιe2iπðµ̇ι and νιe2iπðν ι ≤ ν̇ιe2iπðν̇ ι ∀ ι, then

Cq− ROFAAOWA
(
Z1,Z2, . . . ,Z[

)
≥ Cq− ROFAAOWA

(
Ż1, Ż2, . . . , Ż[

)
. (19)

 q

√
1− e

−

(∑[
ι=1 wι(− ln(1−µ

q
ι ))

ζ
)1/ζ

e2iπ
q

√
1−e
−

(∑[
ι=1 wι(− ln(1−ð

q
µι))

ζ
)1/ζ

,

q

√
e
−

(∑[
ι=1 wι(− ln νqι )

ζ
)1/ζ

e2iπ
q
√
e
−

(∑[
ι=1 wι(− lnðqν ι)

ζ
)1/ζ

≥

 q

√
1− e

−

(∑[
ι=1 wι(− ln(1−µ̇

q
ι ))

ζ
)1/ζ

e2iπ
q

√
1−e
−

(∑[
ι=1 wι

(
− ln

(
1−ðq

µ̇ι

))ζ )1/ζ
,

q

√
e
−

(∑[
ι=1 wι(− ln ν̇qι )

ζ
)1/ζ

e2iπ
q
√
e
−

(∑[
ι=1 wι

(
− lnðq

ν̇ ι

)ζ )1/ζ

q

√
1− e

−

(∑[
ι=1 wι(− ln(1−µ−q))

ζ
)1/ζ

e2iπ
q

√
1−e
−

(∑[
ι=1 wι

(
− ln

(
1−ðq

µ−

))ζ )1/ζ

≤

q

√
1− e

−

(∑[
ι=1 wι(− ln(1−µ

q
ι ))

ζ
)1/ζ

e2iπ
q

√
1−e
−

(∑[
ι=1 wι(− ln(1−ð

q
µι))

ζ
)1/ζ

≤

q

√
1− e

−

(∑[
ι=1 wι(− ln(1−µ+q))

ζ
)1/ζ

e2iπ
q

√
1−e
−

(∑[
ι=1 wι

(
− ln

(
1−ðq

µ+

))ζ )1/ζ

q

√
e
−

(∑[
ι=1 wι(− ln(ν+q))

ζ
)1/ζ

e2iπ
q
√
e
−

(∑[
ι=1 wι

(
− ln

(
ðq
ν+

))ζ )1/ζ

≤

q

√
e
−

(∑[
ι=1 wι(− ln(ν

q
ι ))

ζ
)1/ζ

e2iπ
q
√
e
−

(∑[
ι=1 wι(− ln(ð

q
ν ι))

ζ
)1/ζ

≤

q

√
e
−

(∑[
ι=1 wι(− ln(ν−q))

ζ
)1/ζ

e2iπ
q
√
e
−

(∑[
ι=1 wι

(
− ln

(
ðq
ν−

))ζ )1/ζ
.
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Theorem 10 (Boundedness): LetZι=
(
µιe2iπðµι , νιe2iπðν ι

)
(ι = 1, 2, . . . , [) be a family of Cq-ROFNs, and let Z− =
min

{
Z1,Z2, . . . ,Z[

}
andZ+ = max

{
Z1,Z2, . . . ,Z[

}
, then

Z− ≤ Cq− ROFAAOWA
(
Z1,Z2, . . . ,Z[

)
≤ Z+. (20)

Theorem 11 (Symmetry): Let Zι =
(
µιe2iπðµι , νιe2iπðν ι

)
(ι = 1, 2, . . . , [) be a family of Cq-ROFNs. Then, if Z̆ι =(
µ̆ιe2iπðµ̆ι , ν̆ιe2iπðν̆ ι

)
(ι = 1, 2, . . . , [) be any permutation of

Zι, then we have

Cq− ROFAAWA
(
Z1,Z2, . . . ,Z[

)
= Cq− ROFAAWA

(
Z̆1, Z̆2, . . . , Z̆[

)
. (21)

The q-ROFAAWA operator weights just the Cq-ROFNs,
as defined by Definition 14, while the q-ROFAAOWA oper-
ator weights only the ordered locations of the Cq-ROFNs,
as defined by Definition 15. As a result, weights represent
various aspects of the q-ROFAAWA and q-ROFAAOWA
operators. Nonetheless, one of the operators, as well as
the other operators, consider just one of them. To address
this shortcoming, we study the q-rung orthopair fuzzy
Aczel–Alsina hybrid averaging (q-ROFAAHA) operator,
which weights all of the provided Cq-ROFN and their appro-
priate ordered position.
Definition 16: Let Zι =

(
µιe2iπðµι , νιe2iπðν ι

)
(ι = 1, 2, . . . , [) be a family of Cq-ROFNs, then the
Cq-ROFAAHA operator is:

Cq− ROFAAHA
(
Z1,Z2, . . . ,Z[

)
= ⊕

[
ι=1

(
$ιẐδ(ι)

)
,

(22)

where $ =
(
$1,$2, . . . ,$[

)T is the weight vector asso-
ciated with Cq-ROFAAHA Zι (ι = 1, 2, . . . , [) such that
$ι > 0 and

∑[
ι=1$ι = 1, w =

(
w1,w2, . . . ,w[

)T is
the weight vector of Zι (ι = 1, 2, . . . , [) such that wι > 0
and

∑[
ι=1 wι = 1. Ẑδ(ι) is the ιth largest of the weighted

Cq-ROFNs Ẑι
(
Ẑι = ([wι)Zι

)
, (ι = 1, 2, . . . , [) and [ is

the balancing coefficient.
Theorem 12: Let Zι =

(
µιe2iπðµι , νιe2iπðν ι

) (
ι = 1,

2, . . . , [
)

be a family of Cq-ROFNs, then the result
obtained by utilizing q-ROFAAHA operator is still a
Cq-ROFN, and (23), as shown at the bottom of the next
page.

Proof: We skip the proof of this theorem since it is
analogous to that of Theorem 2.

As analogous to those of Cq-ROFAAWA operator and
Cq-ROFAAOWA, the Cq-ROFAAHA operator also follows
the idempotency, monotonicity, boundedness and symme-
try properties. Besides the aforesaid characteristics, the
q-ROFAAHA operator has the following special cases.
Corollary 1: Cq-ROFAAWA operator is a special case of

the Cq-ROFAAHA operator.

Proof: Let$ =
(
1
[
, 1
[
, . . . , 1

[

)T
, then

Cq− ROFAAHA
(
Z1,Z2, . . . ,Z[

)
= $1Ẑδ(1) ⊕$2Ẑδ(2) ⊕ . . .⊕$[Ẑδ([)

=
1
[

(
Ẑδ(1) ⊕ Ẑδ(2) ⊕ . . .⊕ Ẑδ([)

)
= w1Z1 ⊕ w2Z2 ⊕ . . .⊕ w[Z[
= Cq− ROFAAWA

(
Z1,Z2, . . . ,Z[

)
.

Corollary 2: Cq-ROFAAOWA operator is a special case
of the Cq-ROFAAHA operator.

Proof: Let w =
(
1
[
, 1
[
, . . . , 1

[

)T
, then

Cq− ROFAAHA
(
Z1,Z2, . . . ,Z[

)
= $1Ẑδ(1) ⊕$2Ẑδ(2) ⊕ . . .⊕$[Ẑδ([)
= $1Zδ(1) ⊕$2Zδ(2) ⊕ . . .⊕$[Zδ([)
= Cq− ROFAAOWA

(
Z1,Z2, . . . ,Z[

)
.

B. COMPLEX Q-RUNG ORTHOPAIR FUZZY ASZEL-ALSINA
GEOMETRIC AGGREGATION OPERATORS
Based on the designed operations, in this section, we put
forward some novel geometric aggregation operators includ-
ing complex q-rung orthopair fuzzy Aszel-Alsina geo-
metric (Cq-ROFAAG) operator, complex q-rung orthopair
fuzzy Aszel-Alsina weighted geometric (Cq-ROFAAWG)
operator, complex q-rung orthopair fuzzy Aczel–Alsina
ordered weighted averaging (Cq-ROFAAOWA) operator,
complex q-rung orthopair fuzzy Aczel–Alsina ordered
weighted geometric (Cq-ROFAAOWG) operator, and com-
plex q-rung orthopair fuzzy Aczel–Alsina hybrid geometric

Cq− ROFAAOWA
(
Z1,Z2, . . . ,Z[

)
=

 q

√
1− e

−

(∑[
ι=1$ι

(
− ln

(
1−µqδ(ι)

))ζ)1/ζ

e2iπ
q

√
1−e
−

(∑[
ι=1$ι

(
− ln

(
1−ðqµδ(ι)

))ζ )1/ζ
,

q

√
e
−

(∑[
ι=1$ι

(
− ln νqδ(ι)

)ζ)1/ζ

e2iπ
q
√
e
−

(∑[
ι=1$ι(− lnðqν δ(ι))

ζ
)1/ζ (17)
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(Cq-ROFAAHG) operator. In addition, we investigate some
special cases and properties of these operators.
Definition 17: Let Zι =

(
µιe2iπðµι , νιe2iπðν ι

)
(ι = 1, 2, . . . , [) be a family of Cq-ROFNs, then the
Cq-ROFAAWG operator is:

Cq− ROFAAWG
(
Z1,Z2, . . . ,Z[

)
= ⊗

[
ι=1 (Zι)

wι , (24)

where w =
(
w1,w2, . . . ,w[

)T is the weight vector of
Zι (ι = 1, 2, . . . , [) such that wι > 0 and

∑[
ι=1 wι = 1.

Especially, if w =
(
1
[
, 1
[
, . . . , 1

[

)T
, then the Cq-ROFAAWG

operator reduces to Cq-ROFAAG operator of dimension [,
which is described as follows:

Cq− ROFAAG
(
Z1,Z2, . . . ,Z[

)
= ⊗

[
ι=1 (Zι)

1
[ . (25)

Theorem 13: Let Zι =
(
µιe2iπðµι , νιe2iπðν ι

)
(ι = 1, 2, . . . , [) be a family of Cq-ROFNs, then the result
obtained by utilizing Cq-ROFAAWG operator is still a
Cq-ROFN, and (26), as shown at the bottom of the next page.

Proof: We can prove Theorem 13 with the help of the
mathematical induction method in the following way:

For [ = 2, we have the equation can be derived, as shown
at the bottom of next page.

Hence, the result is true for [ = 2.
Suppose that Eq. (26) is true for [ = k , then we have the

equation can be derived, as shown at the bottom of next page.
Now for [ = k + 1, we have the equation can be derived,

as shown at the bottom of page 15.
Thus, Eq. (26) is legitimate for [ = k+1 and hence, by the

principle of mathematical induction, result given in Eq. (26)
is true for all positive integer [.
Theorem 14 (Idempotency): Let Zι =

(
µιe2iπðµι ,

νιe2iπðν ι
)
(ι = 1, 2, . . . , [) be a family of Cq-ROFNs, ifZι =

Z ∀ ι, then

Cq− ROFAAWG
(
Z1,Z2, . . . ,Z[

)
= Z. (27)

Proof: Since Zι = Z ∀ ι, and
∑[
ι=1 wι = 1 so by

Theorem 13, we have the equation can be derived, as shown
at the bottom of page 15.

Theorem 15 (Monotonicity): Let Zι =
(
µιe2iπðµι ,

νιe2iπðν ι
)
(ι = 1, 2, . . . , [) and Żι =

(
µ̇ιe2iπðµ̇ι , ν̇ιe2iπðν̇ ι

)

(ι = 1, 2, . . . , [) be two families of Cq-ROFNs, such that
µιe2iπðµι ≥ µ̇ιe2iπðµ̇ι and νιe2iπðν ι ≤ ν̇ιe2iπðν̇ ι ∀ ι, then

Cq− ROFAAWG
(
Z1,Z2, . . . ,Z[

)
≥ Cq− ROFAAWG

(
Ż1, Ż2, . . . , Ż[

)
. (28)

Proof: Since µιe2iπðµι ≥ µ̇ιe2iπðµ̇ι and νιe2iπðν ι ≤
ν̇ιe2iπðν̇ ι ∀ ι. Based on these, we have the subsequent
inequalities the equation can be derived, as shown at the
bottom of page 15, which implies that the equation can be
derived, as shown at the bottom of page 16.

Hence

Cq− ROFAAWG
(
Z1,Z2, . . . ,Z[

)
≥ Cq− ROFAAWG

(
Ż1, Ż2, . . . , Ż[

)
.

Theorem 16 (Boundedness): Let Zι =
(
µιe2iπðµι ,

νιe2iπðν ι
)
(ι = 1, 2, . . . , [) be a family of Cq-ROFNs, and let

Z− =

min
{
Z1,Z2, . . . ,Z[

}
andZ+ = max

{
Z1,Z2, . . . ,Z[

}
, then

Z− ≤ Cq− ROFAAWG
(
Z1,Z2, . . . ,Z[

)
≤ Z+. (29)

Proof: As given that

Z− = min
{
Z1,Z2, . . . ,Z[

}
=

(
µ−e2iπðµ− , ν−e2iπðν−

)
and

Z+

= max
{
Z1,Z2, . . . ,Z[

}
=

(
µ+e2iπðµ+ , ν+e2iπðν+

)
,

where

µ−e2iπðµ−

= min
{
µ1e2iπðµ1 , µ2e2iπðµ2 , . . . , µ[e

2iπðµ[
}
,

ν−e2iπðν−

= max
{
ν1e2iπðν1 , ν2e2iπðν2 , . . . , ν[e2iπðν [

}
,

µ+e2iπðµ+

= max
{
µ1e2iπðµ1 , µ2e2iπðµ2 , . . . , µ[e

2iπðµ[
}
,

and

ν+e2iπðν+ = min
{
ν1e2iπðν1 , ν2e2iπðν2 , . . . , ν[e2iπðν [

}
.

Cq− ROFAAHA
(
Z1,Z2, . . . ,Z[

)
=

 q

√
1− e

−

(∑[
ι=1$ι

(
− ln

(
1−µ̂qδ(ι)

))ζ)1/ζ

e2iπ
q

√
1−e
−

(∑[
ι=1$ι

(
− ln

(
1−ðq

µ̂δ(ι)

))ζ )1/ζ
,

q

√
e
−

(∑[
ι=1$ι

(
− ln ν̂qδ(ι)

)ζ)1/ζ

e2iπ
q

√
e
−

(∑[
ι=1$ι

(
− lnðq

ν̂ δ(ι)

)ζ )1/ζ (23)
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As a result, there are ongoing inequities the equation can be
derived, as shown at the bottom of page 16.

Thereby, Z− ≤ Cq − ROFAAWA
(
Z1,Z2, . . . ,Z[

)
≤ Z+.

Cq− ROFAAWG
(
Z1,Z2, . . . ,Z[

)
=

 q

√
e
−

(∑[
ι=1 wι(− lnµqι )

ζ
)1/ζ

e2iπ
q
√
e
−

(∑[
ι=1 wι(− lnðqµι)

ζ
)1/ζ

,

q

√
1− e

−

(∑[
ι=1 wι(− ln(1−ν

q
ι ))

ζ
)1/ζ

e2iπ
q

√
1−e
−

(∑[
ι=1 wι(− ln(1−ð

q
ν ι))

ζ
)1/ζ (26)

Cq− ROFAAWG (Z1,Z2) = Zw1
1 ⊗ Zw2

2

=

 q

√
e
−

(
w1(− lnµq1)

ζ
)1/ζ

e2iπ
q
√
e
−

(
w1(− lnðqµ1)

ζ
)1/ζ

,

q

√
1− e

−

(
w1(− ln(1−ν

q
1))

ζ
)1/ζ

e2iπ
q

√
1−e
−

(
w1(− ln(1−ð

q
ν1))

ζ
)1/ζ

⊗

 q

√
e
−

(
w2(− lnµq2)

ζ
)1/ζ

e2iπ
q
√
e
−

(
w2(− lnðqµ2)

ζ
)1/ζ

,

q

√
1− e

−

(
w2(− ln(1−ν

q
2))

ζ
)1/ζ

e2iπ
q

√
1−e
−

(
w2(− ln(1−ð

q
ν2))

ζ
)1/ζ

=

 q

√
e
−

(
w1(− lnµq1)

ζ
+w2(− ln νq2)

ζ
)1/ζ

e2iπ
q
√
e
−

(
w1(− lnðqµ1)

ζ
+w2(− ln νq2)

ζ
)1/ζ

,

q

√
1− e

−

(
w1(− ln(1−ν

q
1))

ζ
+w2(− ln(1−µ

q
2))

ζ
)1/ζ

e2iπ
q

√
1−e
−

(
w1(− ln(1−ð

q
ν1))

ζ
+w2(− ln(1−µ

q
2))

ζ
)1/ζ

=

 q

√
e
−

(∑2
ι=1 wι(− lnµqι )

ζ
)1/ζ

e2iπ
q
√
e
−

(∑2
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ζ
)1/ζ

,

q

√
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−
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q
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ζ
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√
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−

(∑2
ι=1 wι(− ln(1−ð

q
ν ι))

ζ
)1/ζ

Cq− ROFAAWG (Z1,Z2, . . . ,Zk) = ⊗kι=1 (Zι)
wι

=

 q

√
e
−

(∑k
ι=1 wι(− lnµqι )

ζ
)1/ζ

e2iπ
q
√
e
−

(∑k
ι=1 wι(− lnðqµι)

ζ
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,

q
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1− e

−

(∑k
ι=1 wι(− ln(1−ν

q
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ζ
)1/ζ

e2iπ
q

√
1−e
−

(∑k
ι=1 wι(− ln(1−ð

q
ν ι))

ζ
)1/ζ
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Theorem 17: (Symmetry) Let Zι =
(
µιe2iπðµι , νιe2iπðν ι

)
(ι = 1, 2, . . . , [) be a family of Cq-ROFNs. Then, if Z̆ι =
(µ̆ι, ν̆ι) (ι = 1, 2, . . . , [) be any permutation of Zι, then we

have

Cq− ROFAAWG
(
Z1,Z2, . . . ,Z[

)
= Cq− ROFAAWG

(
Z̆1, Z̆2, . . . , Z̆[

)
. (30)

Cq− ROFAAWA (Z1,Z2, . . . ,Zk ,Zk+1)
= ⊕

k
ι=1 (wιZι)⊕ (wk+1Zk+1)

=

 q

√
1− e

−

(∑k
ι=1 wι(− ln(1−µ

q
ι ))

ζ
)1/ζ

e2iπ
q

√
1−e
−

(∑k
ι=1 wι(− ln(1−ð

q
µι))

ζ
)1/ζ

,

q

√
e
−

(∑k
ι=1 wι(− ln νqι )

ζ
)1/ζ

e2iπ
q
√
e
−

(∑k
ι=1 wι(− lnðqν ι)

ζ
)1/ζ

⊕

 q

√
1− e

−

(
wk+1

(
− ln

(
1−µqk+1

))ζ )1/ζ
e2iπ

q

√
1−e
−

(
wk+1

(
− ln

(
1−ðqµk+1

))ζ )1/ζ
,

q

√
e
−

(
wk+1

(
− ln νqZk+1

)ζ)1/ζ


=

 q

√
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−

(∑k+1
ι=1 wι(− ln(1−µ

q
ι ))

ζ
)1/ζ
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q

√
1−e
−

(∑k+1
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,
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−
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(∑k+1
ι=1 wι(− lnðqν ι)

ζ
)1/ζ

Cq− ROFAAWG
(
Z1,Z2, . . . ,Z[
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=
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√
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−
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−
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)1/ζ = (µe2iπðµ , νe2iπðν) = Z.
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Proof: The proof is obvious and thus omitted.
Next, we introduce complex q-rung orthopair fuzzy

Aczel–Alsina orderedweighted geometric (Cq-ROFAAOWG)
operator.
Definition 18: Let Zι =

(
µιe2iπðµι , νιe2iπðν ι

) (
ι = 1,

2, . . . , [
)
be a family of Cq-ROFNs, then the Cq-ROFAAOWG

operator is:

Cq− ROFAAOWG
(
Z1,Z2, . . . ,Z[

)
= ⊗

[
ι=1

(
Zδ(ι)

)$ι , (31)

where $ =
(
$1,$2, . . . ,$[

)T is the position weights of
Zι (ι = 1, 2, . . . , [) such that $ι > 0 and

∑[
ι=1$ι = 1.

(δ(1), δ(2), . . . , δ([)) is a permutation of (1, 2, . . . , [) such
that Zδ(ι−1) ≥ Zδ(ι) for ι = 1, 2, . . . , [.
Theorem 18: Let Zι =

(
µιe2iπðµι , νιe2iπðν ι

) (
ι = 1,

2, . . . , [
)
be a family of Cq-ROFNs, then the result obtained

by utilizing Cq-ROFAAOWG operator is still a Cq-ROFN,
and (32), as shown at the bottom of the next page.

Proof: We skip the proof of this theorem since it is
analogous to that of Theorem 13.

The following features may be efficiently shown by using
the q-ROFAAOWG operator.
Theorem 19 (Idempotency): Let Zι =

(
µιe2iπðµι ,

νιe2iπðν ι
)
(ι = 1, 2, . . . , [) be a family of Cq-ROFNs, ifZι =

Z ∀ ι, then

Cq− ROFAAOWG
(
Z1,Z2, . . . ,Z[

)
= Z. (33)

Theorem 20 (Monotonicity): Let Zι =
(
µιe2iπðµι ,

νιe2iπðν ι
)
(ι = 1, 2, . . . , [) and Żι =

(
µ̇ιe2iπðµ̇ι , ν̇ιe2iπðν̇ ι

)
(ι = 1, 2, . . . , [) be two families of Cq-ROFNs, such that
µιe2iπðµι ≥ µ̇ιe2iπðµ̇ι and νιe2iπðν ι ≤ ν̇ιe2iπðν̇ ι ∀ ι, then

Cq− ROFAAOWG
(
Z1,Z2, . . . ,Z[

)
≥ Cq− ROFAAOWG

(
Ż1, Ż2, . . . , Ż[

)
. (34)

Theorem 21 (Boundedness): Let Zι =
(
µιe2iπðµι ,

νιe2iπðν ι
)
(ι = 1, 2, . . . , [) be a family of Cq-ROFNs,

and let Z− = min
{
Z1,Z2, . . . ,Z[

}
and Z+ =

max
{
Z1,Z2, . . . ,Z[

}
, then

Z− ≤ Cq− ROFAAOWG
(
Z1,Z2, . . . ,Z[

)
≤ Z+. (35)
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√
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Theorem 22 (Symmetry): Let Zι =
(
µιe2iπðµι , νιe2iπðν ι

)
(ι = 1, 2, . . . , [) be a family of Cq-ROFNs. Then, if Z̆ι =(
µ̆ιe2iπðµ̆ι , ν̆ιe2iπðν ι

)
(ι = 1, 2, . . . , [) be any permutation

of Zι, then we have

Cq− ROFAAWG
(
Z1,Z2, . . . ,Z[

)
= Cq− ROFAAWG

(
Z̆1, Z̆2, . . . , Z̆[

)
. (36)

The Cq-ROFAAWG operator weights just the Cq-ROFNs,
as defined byDefinition 17, while the Cq-ROFAAOWGoper-
ator weights only the ordered locations of the Cq-ROFNs,
as defined by Definition 18. As a result, weights represent
various aspects of the Cq-ROFAAWG and Cq-ROFAAOWG
operators. Nonetheless, one of the operators and the other
operators consider just one of them. To address this short-
coming, we study the complex q-rung orthopair fuzzy
Aczel–Alsina hybrid geometric (Cq-ROFAAHG) operator,
which weights all of the provided Cq-ROFN and their appro-
priate ordered position.
Definition 19: Let Zι =

(
µιe2iπðµι , νιe2iπðν ι

)
(ι = 1, 2, . . . , [) be a family of Cq-ROFNs, then the
Cq-ROFAAHG operator is:

Cq− ROFAAHG
(
Z1,Z2, . . . ,Z[

)
= ⊗

[
ι=1

(
Ẑδ(ι)

)$ι
,

(37)

where $ =
(
$1,$2, . . . ,$[

)T is the weight vector associ-
ated with q-ROFAAHG Zι (ι = 1, 2, . . . , [) such that $ι >
0 and

∑[
ι=1$ι = 1, w =

(
w1,w2, . . . ,w[

)T is the
weight vector of Zι (ι = 1, 2, . . . , [) such that wι > 0 and∑[
ι=1 wι = 1. Ẑδ(ι) is the ιth largest of the weighted

Cq-ROFNs Ẑι
(
Ẑι = Z([wι)ι

)
, (ι = 1, 2, . . . , [) and [ is the

balancing coefficient.
Theorem 23: Let Zι =

(
µιe2iπðµι , νιe2iπðν ι

)
(ι = 1, 2, . . . , [) be a family of Cq-ROFNs, then the result
obtained by utilizing Cq-ROFAAHG operator is still a
Cq-ROFN, and (38), as shown at the bottom of the next page.

Proof: We skip the proof of this theorem since it is
analogous to that of Theorem 13.
As analogous to those of Cq-ROFAAWG operator and

Cq-ROFAAOWG, the Cq-ROFAAHG operator also follows
the idempotency, monotonicity, boundedness and symme-
try properties. Besides the aforesaid characteristics, the
Cq-ROFAAHG operator has the following special cases.

Corollary 3: Cq-ROFAAWG operator is a special case of
the Cq-ROFAAHG operator.

Proof: Let$ =
(
1
[
, 1
[
, . . . , 1

[

)T
, then

Cq− ROFAAHG
(
Z1,Z2, . . . ,Z[

)
= Ẑ$1

δ(1) ⊗ Ẑ$2
δ(2) ⊗ . . .⊗ Ẑ$[δ([)

=

(
Ẑδ(1) ⊗ Ẑδ(2) ⊗ . . .⊗ Ẑδ([)

) 1
[

= Zw1
1 ⊗ Zw2

2 ⊗ . . .⊗ Zw[[
= Cq− ROFAAWG

(
Z1,Z2, . . . ,Z[

)
.

Corollary 4: Cq-ROFAAOWG operator is a special case
of the Cq-ROFAAHG operator.

Proof: Let w =
(
1
[
, 1
[
, . . . , 1

[

)T
, then

Cq− ROFAAHG
(
Z1,Z2, . . . ,Z[

)
= Ẑ$1

δ(1) ⊗ Ẑ$2
δ(2) ⊗ . . .⊗ Ẑ$[δ([)

= Z$1
δ(1) ⊗ Z$2

δ(2) ⊗ . . .⊗ Z$[δ([)
= Cq− ROFAAOWG

(
Z1,Z2, . . . ,Z[

)
.

V. NOVEL COMPLEX Q-RUNG ORTHOPAIR FUZZY
ENTROPY MEASURE
This section is dedicated to construct a new entropy of
C-qROFS to overcome the shortcomings of the existing com-
plex q-rung orthopair fuzzy entropies. First, we let the uni-
verse be X = {h̄1, h̄2, . . . , h̄n}, any C-qROFS on X is
Z =

{(
h̄, µ(h̄)ei2π(ðµ), ν(h̄)ei2π(ðν )

)
|h̄ ∈ X

}
. Next, a new

complex q-rung orthopair fuzzy is created by combining
membership and non-membership differences with degree
of hesitation π (h̄) in order to more accurately characterise
the uncertainty of information. Additionally, a comparison is
made to underline the shortcomings of the present ones.

In what follows, we first review the existing complex
q-rung orthopair fuzzy entropy measure given by Mahmood
and Ali [49] and at the end we draw a comparison through
solid examples.
Definition 20: [49] For the Cq-ROFS Z ={(
h̄, µ(h̄)ei2π(ðµ), ν(h̄)ei2π(ðν )

)
|h̄ ∈ X

}
, the complex q-rung

orthopair fuzzy entropy of Z is given as takes after (39) and
(40), as shown at the bottom of the next page.

Cq− ROFAAOWG
(
Z1,Z2, . . . ,Z[

)
=

 q

√
e
−

(∑[
ι=1$ι

(
− lnµqδ(ι)

)ζ)1/ζ

e2iπ
q
√
e
−

(∑[
ι=1$ι

(
− lnðqµδ(ι)

)ζ )1/ζ
,

q

√
1− e

−

(∑[
ι=1$ι

(
− ln

(
1−νqδ(ι)

))ζ)1/ζ

e2iπ
q

√
1−e
−

(∑[
ι=1$ι(− ln(1−ð

q
ν δ(ι)))

ζ
)1/ζ (32)
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In Eqs. (39) and (40), difference of membership and
non-membership degrees are considered when calculating
entropy measures. However, in many complicated practi-
cal problems, DEs are uncertain due to the limitations of
their cognition and the complicatedness of objective things.
Thereby, the role of hesitation in complex q-rung orthopair
fuzzy entropy should not be depreciated. In addition, some
counterintuitive situations still exist for the entropy mea-
sure mentioned above; that is, when the difference between
the membership degree and non-membership degree is the
same, it cannot effectively distinguish the fuzziness of two
Cq-ROFSs. Some examples are included as follows:
Example 1: Let the universal set X be a single point

set, and Z1 =
{(
h̄, 0.2ei2π(0.3), 0.5ei2π(0.6)

)}
and Z2 ={(

h̄, 0.3ei2π(0.2), 0.6ei2π(0.5)
)}

be two Cq-ROFSs on X . Uti-
lizing Eqs. (39) and (40), we get

E1 (Z1) = E1 (Z2) = E2 (Z1) = E2 (Z2) = 0.3751.

Clearly, Z1 6= Z2, but the computed result shows that the
entropy of Cq-ROFSs Z1 and Z2 is equal, which is contrary
to the actual situation.
Example 2: Let the universal set X be a single point

set, and Z1 =
{(
h̄, 0.4ei2π(0.5), 0.6ei2π(0.2)

)}
and Z2 ={(

h̄, 0.55ei2π(0.35), 0.25ei2π(0.55)
)}

be two Cq-ROFSs on X .
Utilizing Eqs. (39) and (40), we get

E1 (Z1) = E1 (Z2) = E2 (Z1) = E2 (Z2) = 0.4131.

Again, we get the same entropy of two different
Cq-ROFSs. Thus, E1 and E2 are counterintuitive.
The new complex q-rung orthopair fuzzy entropy can be

characterized in the following way:
Definition 21: For the Cq-ROFS Z ={(
h̄, µ(h̄)ei2π(ðµ), ν(h̄)ei2π(ðν )

)
|h̄ ∈ X

}
, the complex q-rung

orthopair fuzzy entropy of Z is given as takes after (41), as
shown at the bottom of the next page.

In the subsequent lines, we are going to verify several
characteristics associated with the suggested complex q-rung
orthopair fuzzy entropy measure.
Theorem 24: The mapping E : Z −→ [0, 1] is stated

as complex q-rung orthopair fuzzy entropy if it meets the
following properties:

1) E (Z) = 0 if and only if Z is a crisp set;
2) E (Z) = 1 if and only if µ(h̄) = ν(h̄) and ðµ(h̄) =

ðν(h̄) ∀ h̄ ∈ X ;
3) E (Z1) ≤ E (Z2) if µ1(h̄) + ν1(h̄) ≥ µ2(h̄) +
ν2(h̄), ðµ1(h̄) + ðν1(h̄) ≥ ðµ2(h̄) + ðµ2(h̄), and
|µ1(h̄)− ν1(h̄)| ≥ |µ2(h̄)− ν2(h̄)| ,

∣∣ðµ1(h̄)− ðν1(h̄)
∣∣

≥
∣∣ðµ2(h̄)− ðµ2(h̄)

∣∣ , ∀ h̄ ∈ X;
4) E (Z) = E (Zc) .

Proof:

1) If E (Z) = 0, then 2 = |µq(h̄)− νq(h̄)| +∣∣ðqµ(h̄)− ðqν(h̄)
∣∣− π (h̄) .We have µ(h̄) = 0, ν(h̄) = 1,

ðµ(h̄) = 0, ðν(h̄) = 1, π (h̄) = 0 or µ(h̄) = 1, ν(h̄) = 0,
ðµ(h̄) = 1, ðν(h̄) = 0, π (h̄) = 1 or µ(h̄) = 0, ν(h̄) = 1,
ðµ(h̄) = 1, ðν(h̄) = 0, π (h̄) = 0 or µ(h̄) = 1, ν(h̄) = 0,
ðµ(h̄) = 0, ðν(h̄) = 1, π (h̄) = 0. Hence, in each case Z
is a crisp set. Conversely if Z is a crisp set, then clearly
E (Z) = 0.

2) If E (Z) = 0, then
n =

∑
h̄∈X

2−|µq(h̄)−νq(h̄)|−
∣∣ðqµ(h̄)−ðqν (h̄)∣∣+π(h̄)

2+|µq(h̄)−νq(h̄)|+
∣∣ðqµ(h̄)−ðqν (h̄)∣∣+π(h̄) , this implies

2−|µq(h̄)−νq(h̄)|−
∣∣ðqµ(h̄)−ðqν (h̄)∣∣+π(h̄)

2+|µq(h̄)−νq(h̄)|+
∣∣ðqµ(h̄)−ðqν (h̄)∣∣+π(h̄) = 1 ∀ h̄ ∈ X . This fur-

ther implies that− |µq(h̄)− νq(h̄)|−
∣∣ðqµ(h̄)− ðqν(h̄)

∣∣ =
|µq(h̄)− νq(h̄)| +

∣∣ðqµ(h̄)− ðqν(h̄)
∣∣. Thus, we have

µ(h̄) = ν(h̄) and ðµ(h̄) = ðν(h̄) ∀ h̄ ∈ X .

Cq− ROFAAHG
(
Z1,Z2, . . . ,Z[

)
=

 q

√
e
−

(∑[
ι=1$ι

(
− ln µ̂qδ(ι)

)ζ)1/ζ

e2iπ
q

√
e
−

(∑[
ι=1$ι

(
− lnðq

µ̂δ(ι)

)ζ )1/ζ
,

q

√
1− e

−

(∑[
ι=1$ι

(
− ln

(
1−ν̂qδ(ι)

))ζ)1/ζ

e2iπ
q

√
1−e
−

(∑[
ι=1$ι

(
− ln

(
1−ðq

ν̂ δ(ι)

))ζ )1/ζ (38)

E1 (Z) =
1
n

∑
h̄∈X


 sin

(
π×(2+µq(h̄)−νq(h̄)+ðqµ(h̄)−ð

q
ν (h̄))

8

)
+

sin
(
π×(2−µq(h̄)+νq(h̄)−ðqµ(h̄)+ð

q
ν (h̄))

8

)
− 1

× 1

2
1
q − 1

 , (39)

E2 (Z) =
1
n

∑
h̄∈X


 cos

(
π×(2+µq(h̄)−νq(h̄)+ðqµ(h̄)−ð

q
ν (h̄))

8

)
+

cos
(
π×(2−µq(h̄)+νq(h̄)−ðqµ(h̄)+ð

q
ν (h̄))

8

)
− 1

× 1

2
1
q − 1

 (40)
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Conversely, if we take µ(h̄) = ν(h̄) and ðµ(h̄) =
ðν(h̄) ∀ h̄ ∈ X , then clearly E (Z) = 1.

3) if µ1(h̄) + ν1(h̄) ≥ µ2(h̄) + ν2(h̄), ðµ1(h̄) +
ðν1(h̄) ≥ ðµ2(h̄) + ðµ2(h̄), then π1(h̄) ≤

π2(h̄); and |µ1(h̄)− ν1(h̄)| ≥ |µ2(h̄)− ν2(h̄)| ,∣∣ðµ1(h̄)− ðν1(h̄)
∣∣ ≥ ∣∣ðµ2(h̄)− ðµ2(h̄)

∣∣. Therefore,
we get E (Z1) ≤ E (Z2).

4) E (Z) = 1
n

∑
h̄∈X

2−|µq(h̄)−νq(h̄)|−
∣∣ðqµ(h̄)−ðqν (h̄)∣∣+π(h̄)

2+|µq(h̄)−νq(h̄)|+
∣∣ðqµ(h̄)−ðqν (h̄)∣∣+π(h̄) =

1
n

∑
h̄∈X

2−|νq(h̄)−µq(h̄)|−
∣∣ðqν (h̄)−ðqµ(h̄)∣∣+π(h̄)

2+|νq(h̄)−µq(h̄)|+
∣∣ðqν (h̄)−ðqµ(h̄)∣∣+π(h̄) = E (Zc) .

Following Example 1 above, the entropy measures for the
Cq-ROFSs Z1 and Z2 are worked out by Eq. (41), as follows:

E (Z1) = 0.5385, E (Z2) = 0.5819.

Obviously, the proposed E overcomes the counterintuitive
situation of E1 and E2.
Analogously, following Example 2, we get

E (Z1) = 0.6000, E (Z2) = 0.5952.

Thus, the counterintuitive situation of E1 and E2 is address.
Through Examples 1 and 2, it is clear that the entropy

measure presented in this study takes into account not
only the difference between the membership degree and
non-membership degree, but also the hesitation of DEs.
It represents the fuzzy degree of the fuzzy set in terms of
uncertainty and unknown aspects in a more complete and
objective manner. In addition, taking into account the influ-
ence of the hesitation degree on complex q-rung orthopair
fuzzy entropy, Eq. (41) can be utilised to differentiate the
scenario when the deviation of the membership degree and
non-membership degree are identical. Meanwhile, the use of
Eq. (41) can effectively avoid the emergence of counterintu-
itive phenomena, which further elaborates the effectiveness
of the novel entropy measure.

VI. MCDM APPROACH
In this part, we use our proposed Cq-ROFAAHA and
Cq-ROFAAHG operators to provide an MCDM method for
dealing with MCDM problems in q-rung orthopair fuzzy
situations.

Let o = {o1, o2, . . . , om} be a discrete set of alterna-
tives and κ =

{
κ1, κ2, . . . , κ[

}
be the corresponding set of

criteria with weight vector w =
{
w1,w2, . . . ,w[

}
where

wι ∈ [0, 1] such that
∑[
ι=1 wι = 1. A team of experts

is assembled to evaluate each alternative oi (i = 1, 2, . . .m)
in relation to the relevant criteria κι (ι = 1, 2, . . . , [). The

experts provide the evaluation information in the form of
Cq-ROFNs marked by Ziι =

(
µiιe2iπðµiι , νiιe2iπðν iι

)
where

according to experts µiιe2iπðµiι denotes membership, and
νiιe2iπðν iι denotes non-membership grades to which alterna-
tive oi meets that the criteria κι having the constraint that
0 ≤ µqiι + ν

q
iι ≤ 1 for q ≥ 1.

A. ENTROPY MODEL
Due to limited knowledge, time constraints, and the complex-
ity of problems, it is difficult to provide weight information in
advance. To address such a problem efficiently, we calculate
the weights of criteria based on the proposed entropymeasure
as follows:

w[ =
1− E[
[∑
ι=1

1− E[

. (42)

Here E[ ∈ [0, 1] , [ = 1, 2, . . . , n is defined as

E[ =
1
m

m∑
i=1

2−
∣∣∣µqi[ − νqi[∣∣∣− ∣∣∣ðqµi[ − ðqν i[

∣∣∣+ πi[
2+

∣∣∣µqi[ − νqi[∣∣∣+ ∣∣∣ðqµi[ − ðqν i[
∣∣∣+ πi[ . (43)

Setting the value of q = 1, 2 in the above equation,
it reduced to CPyFS (for q = 2) and CIFS (for q = 1).
Further, if we take the imaginary part zero, then in that case
Eq. (42) reduced to PyFS (for q = 2) and IFS (for q = 1).

B. ALGORITHM
In the subsequent steps, we outline the suggested model’s
decision process.

Step 1 From the preceding analysis gather the expert’s
evaluation information provided for each alterna-
tive to their corresponding criteria and then build
a decision matrix as follows the equation can be
derived, as shown at the bottom of next page.

Step 2Build the normalized decisionmatrixN =
(
Z̃iι
)
m×[

by use of the following transformation

Z̃iι =

{
Ziι, κι is benefit criteria,
Zciι, κι is cost criteria.

(44)

where Zciι =
(
νiιe2iπðν iι , µiιe2iπðµiι

)
is the comple-

ment of Ziι.
Step 3 In the light of Eq. (43), determine the criteria weight

vector.
Step 4Use the newly designed Cq-ROFAAHA or

Cq-ROFAAHGoperator to obtain the overall aggre-
gated result from matrix N row-wise for each alter-
native oi.

Step 5Employ Eq. (4) to determine the score value of each
aggregated result derived in Step 2.

E (Z) =
1
n

∑
h̄∈X

2− |µq(h̄)− νq(h̄)| −
∣∣ðqµ(h̄)− ðqν(h̄)

∣∣+ π (h̄)
2+ |µq(h̄)− νq(h̄)| +

∣∣ðqµ(h̄)− ðqν(h̄)
∣∣+ π (h̄) (41)
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Step 6Rank the alternatives oi (i = 1, 2, . . . ,m) in
descending order according to their score values
and get the optimal one.

VII. AN ILLUSTRATIVE EXAMPLE
In this part, in order to demonstrate the implementation of
the proposed MCDM method, we solve a problem (adopted
fromRef. [22]) to examine the sector that had themost impact
on the Pakistan Stock Exchange (PSX) during calendar year
2021.

A. BACKGROUND DESCRIPTION
The PSXwas established on 11 January 2016 after the merger
of the Karachi Stock Exchange, Lahore Stock Exchange
and Islamabad Stock Exchange. As of January 2022, over
375 firms with a total market value of PKR 7,756 billion
(USD $52 billion) are listed on the PSX.

There are about 220,000 individual investors in addition
to 1,886 international institutional investors and 883 local
institutional investors on the exchanges. There are also over
400 brokerage firms and 21 asset management firms that are
members of the PSX. The Karachi Stock Exchange, one of
the PSX’s component stock exchanges, was ranked among
the world’s top performing frontier stock markets: between
2009 and 2015, it had an average annual return of 26%.
In December 2016, PSX sold $40 million worth of strategic
shares to a Chinese consortium. On May 27, 2021, record-
breaking trade volumes of 2.20 billion shares were achieved.
It surpassed the previous record volume of 1.56 billion shares,
which was achieved on May 26, 2021. There are numerous
sectors which affect PSX including Sec1= automobile sector,
Sec2=construction, Sec3=banking and Financial services, and
Sec4=pharmaceutical sector. we are interested in finding out
the most important sector, out of these sectors.

Taking into account the above four sectors Seci; (i =
1, 2, . . . , 4). Our goal is to order these four sectors into
decreasing order from the most important to the least impor-
tant that affected PSX during 2021. Further, we consider
the four major factors κι; (ι = 1, 2, 3, 4) which influenced
the role of these sectors Seci; (i = 1, 2, . . . , 4) in PSX
and these are κ1= crude oil price movement, κ2 = budget
2021, κ3=performance of the debt market, and κ4= reduction
in repo rate by the State bank of Pakistan (SBP). Experts
use Cq-ROFNs to examine sectors since it is time-periodic

problem. The influence of a given sector on PSX fluctuates
during the course of the year. Some sectors affect stock mar-
ket for few months only and not for the whole year. Since
complex q-rung orthopair fuzzy environment is the ideal
environment for handling time-periodic problems, thereby
experts employ Cq-ROFNs to describe their evaluation val-
ues. In this problem, the amplitude terms represent the influ-
ence degree of sectors under the mentioned criteria on PSX,
whilst the phase term represents the duration of this influence.

B. THE DECISION-MAKING PROCESS
The steps for addressing the aforesaid MCDM problem are
detailed as:

Step 1: The assessment values given by economic experts
are listed in Table 1.

In Table 1, we have the assessment value of Sec1 under
criteria κ1 is given as

(
0.7ei2π (

5
12 ), 0.1ei2π (

2
12 )
)
. The mem-

bership part 0.7 reveals that the experts believe that there
is 70 percent influence of Sec1 on PSX during the year
2021 under criteria κ1 and the duration of this influ-
ence is of 5 months out of 12 months. Analogously, for
non-membership part 0.1, the experts agree that with a degree
of 10 percent there is no influence of Sec1 on PSX during
the year 2021 under criteria κ1 and the time span with no
influence is of 2 months out of 12 months. Analogously, the
remaining data can be decoded.

Step 2: In the considered problem the criteria κ2 and κ3 are
benefit type, κ1 and κ4 are cost type. Based on Eq. (44) and
Table 1, the original decision matrix M = (Ziι)4×4 can be
updated to the following normalized decision matrix M =
(Ziι)4×4, which is documented in Table 2.

Step 3: According to proposed entropy model, the criteria
weight vector is acquired as takes after:

w1 = 0.3471,w2 = 0.2316,w3 = 0.2308,w4 = 0.1905.

[w1 = 1.388, [w2 = 0.9264, [w3 = 0.9232, [w4 = 0.7620.

Step 4: Using the complex q-rung orthoair fuzzy informa-
tion detailed in Table 1, the values of Ẑiι = ([wι)Ziι are
computed as shown follows:

Ẑ11 =

(
0.1179ei2π (0.1960), 0.6095ei2π(0.2967)

)
,

Ẑ12 =

(
0.5820ei2π (0.3216), 0.4278ei2π(0.5262)

)
,

κ1 · · · κι · · · κ[

o1
...

oi
...

om



(
µ11e2iπðµ11 , ν11e2iπðν11

)
· · ·

(
µ1ιe2iπðµ1ι , ν1ιe2iπðν1ι

)
· · ·

(
µ1[e

2iπðµ1[ , ν1[e
2iπðµ1[

)
...

. . .
...

. . .
...(

µi1e2iπðµi1 , νi1e2iπðν i1
)
· · ·

(
µiιe2iπðµiι , νiιe2iπðν iι

)
· · ·

(
µi[e

2iπðµi[ , νi[e2iπðν i[
)

...
. . .

...
. . .

...(
µm1e2iπðµm1 , νm1e2iπðνm1

)
· · ·

(
µmιe2iπðµmι , νmιe2iπðνmι

)
· · ·

(
µm[e

2iπðµm[ , νm[e2iπðνm[
)


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TABLE 1. Complex q-rung orthopair fuzzy decision matrix C .

TABLE 2. Normalized complex q-rung orthopair fuzzy decision matrix N .

Ẑ13 =

(
0.3856ei2π (0.4019), 0.8138ei2π(0.6079)

)
,

Ẑ14 =

(
0.2632ei2π (0.07280), 0.5897ei2π (0.5132)

)
,

Ẑ21 =

(
0.2347ei2π (0.09798), 0.6095ei2π (0.4733)

)
,

Ẑ22 =

(
0.7823ei2π (0.6479), 0.2251ei2π(0.1000)

)
,

Ẑ23 =

(
0.8855ei2π (0.2404), 0.3291ei2π(0.4455)

)
,

Ẑ24 =

(
0.2632ei2π (0.1459), 0.3995ei2π (0.4328)

)
,

Ẑ31 =

(
0.3503ei2π (0.3883), 0.4919ei2π (0.7764)

)
,

Ẑ32 =

(
0.6812ei2π (0.4836), 0.3277ei2π (0.3612)

)
,

Ẑ33 =

(
0.5811ei2π (0.5647), 0.5273ei2π (0.6877)

)
,

Ẑ34 =

(
0.3527ei2π (0.2191), 0.7620ei2π (0.8031)

)
,

Ẑ41 =

(
0.4637ei2π (0.2927), 0.8639ei2π (0.5695)

)
,

Ẑ42 =

(
0.4836ei2π (0.3216), 0.3277ei2π (0.4444)

)
,

Ẑ43 =

(
0.3856ei2π (0.4019), 0.6239ei2π (0.5275)

)
,

Ẑ44 =

(
0.1749ei2π (0.2929), 0.7620ei2π (0.3477)

)
.

Based on the score function Eq. (7), we have

Ẑδ(11) = Ẑ12

=

(
0.5820ei2π (0.3216), 0.4278ei2π (0.5262)

)
,

Ẑδ(12) = Ẑ11

=

(
0.1179ei2π (0.1960), 0.6095ei2π (0.2967)

)
,

Ẑδ(13) = Ẑ14

=

(
0.2632ei2π (0.07280), 0.5897ei2π (0.5132)

)
,

Ẑδ(14) = Ẑ13

=

(
0.3856ei2π (0.4019), 0.8138ei2π (0.6079)

)
,

Ẑδ(21) = Ẑ22

=

(
0.7823ei2π (0.6479), 0.2251ei2π (0.1000)

)
,

Ẑδ(22) = Ẑ23

=

(
0.8855ei2π (0.2404), 0.3291ei2π (0.4455)

)
,

Ẑδ(23) = Ẑ24

=

(
0.2632ei2π (0.1459), 0.3995ei2π (0.4328)

)
,

Ẑδ(24) = Ẑ21

=

(
0.2347ei2π (0.09798), 0.6095ei2π (0.4733)

)
,

Ẑδ(31) = Ẑ32

=

(
0.6812ei2π (0.4836), 0.3277ei2π (0.3612)

)
,

Ẑδ(32) = Ẑ33

=

(
0.5811ei2π (0.5647), 0.5273ei2π (0.6877)

)
,

Ẑδ(33) = Ẑ31

=

(
0.3503ei2π (0.3883), 0.4919ei2π (0.7764)

)
,

Ẑδ(34) = Ẑ34

=

(
0.3527ei2π (0.2191), 0.7620ei2π (0.8031)

)
,

Ẑδ(41) = Ẑ42

=

(
0.4836ei2π (0.3216), 0.3277ei2π (0.4444)

)
,

Ẑδ(42) = Ẑ43

=

(
0.3856ei2π (0.4019), 0.6239ei2π (0.5275)

)
,

Ẑδ(43) = Ẑ44

=

(
0.1749ei2π (0.2929), 0.7620ei2π (0.3477)

)
,

Ẑδ(44) = Ẑ41

=

(
0.4637ei2π (0.2927), 0.8639ei2π (0.5695)

)
.

Now utilizing Cq-ROFAAHA operator i.e., Eq. (22) (q=2
and ζ = 1), having associated weight vector $ =
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{0.2, 0.2, 0.3, 0.3} to work out the overall value of each alter-
native oi, shown as follows:

Z1 =

(
0.4005ei2π (0.2786), 0.5770ei2π(0.4539)

)
,

Z2 =

(
0.6434ei2π (0.3494), 0.3891ei2π (0.3335)

)
,

Z3 =

(
0.5520ei2π (0.4600), 0.4853ei2π (0.5993)

)
,

Z4 =

(
0.4088ei2π (0.3381), 0.5712ei2π (0.4679)

)
.

Step 5: In the light of Eq. (7), figure out the score value of
each alternative Seci, derived as follows:

S (Sec1) = 0.4248, S (Sec2) = 0.5684,

S (Sec3) = 0.4804, S (Sec4) = 0.4341.

Step 5: The ranking of alternatives is Sec2 � Sec3 �
Sec4 � Sec1. Hence, Sec2 is the most important sector.
Now, we are leveraging the Cq-ROFAAHG operator to

emulate the decision-making process.
According to the Cq-ROFAAHG operator, the main steps

are as follows:
Step 1-2: These are identical to above Steps 1-2.
Step 3: Using the complex q-rung orthoair fuzzy infor-

mation detailed in Table 2, the values of Ẑiι = Z([wι)iι are
computed as shown follows:

Ẑ11 =

(
0.04093ei2π (0.08312), 0.7792ei2π (0.4823)

)
,

Ẑ12 =

(
0.6229ei2π(0.3612), 0.3863ei2π (0.4836)

)
,

Ẑ13 =

(
0.4292ei2π(0.4455), 0.7815ei2π (0.5647)

)
,

Ẑ14 =

(
0.3995ei2π(0.1505), 0.4436ei2π (0.3677)

)
,

Ẑ21 =

(
0.1071ei2π(0.03178), 0.7792ei2π (0.6623)

)
,

Ẑ22 =

(
0.8132ei2π (0.6869), 0.1926ei2π (0.0800)

)
,

Ẑ23 =

(
0.9073ei2π (0.2780), 0.2888ei2π (0.4019)

)
,

Ẑ24 =

(
0.3995ei2π (0.2552), 0.2632ei2π (0.2929)

)
,

Ẑ31 =

(
0.1881ei2π (0.2175), 0.6796ei2π (0.8983)

)
,

Ẑ32 =

(
0.7186ei2π (0.5262), 0.2893ei2π (0.3216)

)
,

Ẑ33 =

(
0.6239ei2π (0.6079), 0.4830ei2π (0.6471)

)
,

Ẑ34 =

(
0.4973ei2π (0.3477), 0.6336ei2π (0.6837)

)
,

Ẑ41 =

(
0.2803ei2π (0.1460), 0.9488ei2π (0.7468)

)
,

Ẑ42 =

(
0.5262ei2π (0.3612), 0.2893ei2π (0.4025)

)
,

Ẑ43 =

(
0.4292ei2π (0.4455), 0.5811ei2π (0.4830)

)
,

Ẑ44 =

(
0.2933ei2π (0.4328), 0.6336ei2π (0.2191)

)
.

Based on the score function Eq. (7), we have

Ẑδ(11) = Ẑ12

=

(
0.6229ei2π (0.3612), 0.3863ei2π (0.4836)

)
,

Ẑδ(12) = Ẑ14

=

(
0.3995ei2π (0.1505), 0.4436ei2π (0.3677)

)
,

Ẑδ(13) = Ẑ13

=

(
0.4292ei2π (0.4455), 0.7815ei2π (0.5647)

)
,

Ẑδ(14) = Ẑ11

=

(
0.04093ei2π (0.08312), 0.7792ei2π (0.4823)

)
,

Ẑδ(21) = Ẑ22

=

(
0.8132ei2π (0.6869), 0.1926ei2π (0.0800)

)
,

Ẑδ(22) = Ẑ23

=

(
0.9073ei2π (0.2780), 0.2888ei2π (0.4019)

)
,

Ẑδ(23) = Ẑ24

=

(
0.3995ei2π (0.2552), 0.2632ei2π (0.2929)

)
,

Ẑδ(24) = Ẑ21

=

(
0.1071ei2π (0.03178), 0.7792ei2π (0.6623)

)
,

Ẑδ(31) = Ẑ32

=

(
0.7186ei2π (0.5262), 0.2893ei2π (0.3216)

)
,

Ẑδ(32) = Ẑ33

=

(
0.6239ei2π (0.6079), 0.4830ei2π (0.6471)

)
,

Ẑδ(33) = Ẑ34

=

(
0.4973ei2π (0.3477), 0.6336ei2π (0.6837)

)
,

Ẑδ(34) = Ẑ31

=

(
0.1881ei2π (0.2175), 0.6796ei2π (0.8983)

)
,

Ẑδ(41) = Ẑ42

=

(
0.5262ei2π (0.3612), 0.2893ei2π (0.4025)

)
,

Ẑδ(42) = Ẑ44

=

(
0.2933ei2π (0.4328), 0.6336ei2π (0.2191)

)
,

Ẑδ(43) = Ẑ43

=

(
0.4292ei2π (0.4455), 0.5811ei2π (0.4830)

)
,

Ẑδ(44) = Ẑ41

=

(
0.2803ei2π (0.1460), 0.9488ei2π (0.7468)

)
.

Now utilizing Cq-ROFAAHG operator i.e., Eq. (37) (sup-
pose q=2 and ζ = 1), having associated weight vector $ =
{0.3, 0.2, 0.25, 0.25} to work out the overall value of each
alternative oi, shown as follows:

Z1 =

(
0.2938ei2π(0.2160), 0.6223ei2π (0.4730)

)
,

Z2 =

(
0.4524ei2π(0.2105), 0.4638ei2π (0.4224)

)
,
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FIGURE 1. Ranking of sectors by Cq-ROFAAHA operator.

FIGURE 2. Ranking of sectors by Cq-ROFAAHG operator.

Z3 =

(
0.4717ei2π (0.4066), 0.5593ei2π(0.7104)

)
,

Z4 =

(
0.3738ei2π (0.3317), 0.7176ei2π(0.4973)

)
.

Step 4: According to Eq. (7), compute the score value of
each alternative oi, derived as follows:
S (Sec1) = 0.3805, S (Sec2) = 0.4686, S (Sec3) =

0.3926, S (Sec4) = 0.3719.
Step 5: The ranking of alternatives is Sec2 � Sec3 �

Sec1 � Sec4. Hence, Sec2 is the most important sector. It is
the same as Cq-ROFAAHA operator. The results obtained
by Cq-ROFAAHA operator and Cq-ROFAAHG operator are
graphically visualized in Fig. 1 and 2, respectively.

C. INFLUENCE STUDY
To demonstrate the effect of different magnitudes of the
parameter ζ , we use different parametric values of ζ inside
our given technique to rank the alternatives. Tables 3 and 4
demonstrate the ranking implications of the sectors Seci(i =
1, 2, . . .m) based on the Cq-ROFAAHA and Cq-ROFAAHG

operators, as seen in Figs. 3 and 4. It is evident that as the
magnitude of ζ for the Cq-ROFAAHA operator grows, so do
the score values of the alternatives; nevertheless, when the
magnitude of ζ for the Cq-ROFAAHG operator increases, the
score values of the alternatives decreases. However, in both
circumstances, the associated ranking stays constant, sug-
gesting that the suggested technique always has the iso-
tonicity quality, enabling DEs to choose the optimal value
depending on their preferences. Based on these numbers and
analysis, it is concluded that a DE may choose the appropri-
ate value of ζ based on its decision-making behaviour. For
example, if the DE is the most hopeful about the choice,
he or she might choose the Cq-ROFAAHG operator with
smaller ζ values. However, if he/she uses the Cq-ROFAAHA
operator to aggregate the process, he/she may use greater
values of the parameters ζ . Furthermore, if a DE employs the
Cq-ROFAAHA operator throughout the aggregation process
to get the most pessimistic choice, he or she might choose
lower values of ζ . The influence of ζ values on decision
making makes our proposed strategy more flexible since DEs
may change the parameters based on their preferences and
practical scenarios. Furthermore, as shown in Figs. 3 and 4,
even though the values of ζ vary throughout the presentation,
the outputs of the choices seem to be the same, confirming
the consistency of the recommended operators.

VIII. COMPARATIVE ANALYSIS
To study the efficacy of the schemed aggregation oper-
ators, this section compares several preexisting aggrega-
tion operators such as complex q-rung orthopair fuzzy
weighted averaging (Cq-ROFWA) [56], complex q-rung
orthopair fuzzy weighted geometric (Cq-ROFWG) [56],
complex pythagorean fuzzy einstein ordered weighted
averaging (CPFEOWA) [57], complex pythagorean fuzzy
einstein ordered weighted geometric (CPFEOWG) [57],
complex pythagorean fuzzy einstein hybrid averaging
(CPFEHA) [57], complex pythagorean fuzzy einstein hybrid
geometric (CPFEHG) [57], intuitionistic fuzzy Aczel–alsina
hybrid averaging (IFAAHA) [44], intuitionistic fuzzy
Aczel–alsina hybrid geometric (IFAAHG) [44], q-rung
orthopair fuzzy weighted averaging (q-ROFWA) [54], q-
rung orthopair fuzzy weighted geometric (q-ROFWG) [54],
q-rung orthopair fuzzy frank ordered weighted averaging
(q-ROFFOWA) [39], q-rung orthopair fuzzy frank ordered
weighted geometric (q-ROFFOWG) [39], q-rung orthopair
fuzzy frank hybrid averaging (q-ROFFHA) [39], q-rung
orthopair fuzzy frank hybrid geometric (q-ROFFHG) [39],
and the proposed aggregation operators Cq-ROFAAHA and
Cq-ROFAAHG in the same working environment. We dis-
covered some interesting findings, which are detailed as
follows:

i). According to the Table 5, the most significant sector
derived from all the operators under consideration is the same,
with the exception of the IFAAHA [44], and IFAAHG [44]
operators, which are invalid since the IFS requirement is not
met in the studied data. Except for [44] operators, which can
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TABLE 3. Ranking results by Cq-ROFAAHA with various ζ .

FIGURE 3. Score values of the alternatives for various values ζ by Cq-ROFAAHA operator.

TABLE 4. Ranking results by Cq-ROFAAHG with various ζ .

be treated as a special version of the developed operators,
none of the existing operators listed in Table 5, consider Aczel
Alsina operations, which enable the decision aggregation pro-
cedure more flexible.

ii). From Table 5 and Fig. 5, it is evident that the rank-
ing results derived by the Cq-ROFWA and Cq-ROFWG [56]
totally match with the proposed aggregation operator
Cq-ROFAAHA results. But both the operators weights just
the Cq-ROFNs and neglect the ordered positions of the
Cq-ROFNs, whereas the proposed operators encounter both
the Cq-ROFNs as well as their ordered positions weights.

Furthermore, the Liu et al. [56] aggregation-based technique
is based on a score function witch has many weak aspects.
For better comparison, we have calculated the score values
using the formulation provided by [55]. However, using the
score function of [56] may provide ineffective results.

iii). The operators given by Janani et al. [57] are based on
complex pythagorean data. For the considered problem these
operators work and the results obtained from these opera-
tors under investigation are almost same, except CPFEHA
and CPFEHG operators which is due to the structural dif-
ference of these operators. But, the range of CPyFS data is
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FIGURE 4. Score values of the alternatives for various values ζ by Cq-ROFAAHG operator.

TABLE 5. Ranking results based on different aggregation operators.

still limited and constrained by rule 0 ≤ µ2
+ ν2 ≤ 1

and 0 ≤
(
ðµ
)2
+ (ðν)2 ≤ 1. However, if a person gives

information in which the sum of the squares of the real parts
(and imaginary parts) of both grades exceeds the unit interval.
For instance, if we take 0.9ei2π (0.8) for membership grade
and 0.8ei2π (0.9) for non-membership grade, then by utilizing
the constraints of the CPyFS, 0.92 + 0.82 = 1.45 > 1 and
0.82 + 0.92 = 1.45 > 1 indicate that the CPyFS have failed.
iv). From Table 5, it is evident that the results derived on

the basis of q-ROFWAand q-ROFWGoperators [54] are little
different from the suggested operators results. This difference
is mainly due to the ignorance of amplitude terms. This cause
a serious loss of information and thus these operators are
not suitable for handling two dimensional problems. Further,
in terms of operational rules, Liu et al.’s technique [54] only
addresses the computation of aggregation operators under
algebraic operation rules and accordingly have no any addi-
tional parameter, which limits its capacity to deal with chal-
lenges. On the other hand, the suggested approach in this
study is based on Aczel Alsina operations. As a result, our

technique is more adaptable and successful in choosing oper-
ational rules according to real problems.

v). For good measures, likewise the presented aggregation
operators, Sheikh and Mandal [39] operators also permits the
DEs to choose their preferences with respect to the different
values of the parameter but these operators deal with one
dimensional information at a time, which often results data
loss. This shortfall implies that the proposed work is superior
than [39].

To demonstrate the suggested aggregating operator’s supe-
riority over other considered existing operators, the following
noteworthy properties have been bullated:
1). Generality: The aggregation operators utilized in the

proposed method are the generalization of certain pre-
vailing aggregation operators. For instance, the opera-
tors given in [44], [54], and [56] are special cases of
the suggested Cq-ROFAAHA and Cq-ROFAAHG oper-
ators, when we assign specific values to the parameters
ζ and q. So the approach described in this article is more
comprehensive.
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FIGURE 5. Comparative analysis with existing aggregation operators.

2). Parameter ζ : The designed aggregation operators
include a parameter ζ that allows DEs to alter the
aggregate value based on real-world decision demands,
and they capture numerous existing complex q-rung
orthopair aggregation operators. Along these lines, the
benefit is that the proposed operators have a better level
of consensus and flexibility.

3). Property of Isotonicity: The operators presented
in this article adhere the property of isotonicity.
The Cq-ROFAAHA (Cq-ROFAAHG) operator val-
ues grow (reduce) monotonically with the increase of
parameter ζ , allowingDEs to select the right value based
on their risk preferences. If the DEs are risk preference,
they may take the parameter value as low as fairly prac-
ticable; if the DEs are risk aversion, they can take the
parameter value as high as reasonably achievable in the
case of the Cq-ROFAAHA operator, and vice versa for
the Cq-ROFAAHG operator. Thus, the DEs can use the
appropriate parameter value based on their risk tolerance
and real demands.

4). Criteria Weights: The existing approaches [39], [44],
[54], [56], [57] are incapable of dealing with MCDM
situations with unknown weight information. Whilst the
presented approach is effective in such situations due to
the proposed entropy measure. Though Mahmood and
Ali developed an entropy model in 2021 [49] to address
the circumstance of unknown weight information in a

complex q-rung orthopair fuzzy environment, but there
are several shortcomings in their supplied model (please
see the discussion in Section V).

IX. CONCLUSION
The Cq-ROFS is an effective track to represent ambiguous
data than the CIFSs and CPyFSs. Its distinctive feature is
that the sum of the qth power of the amplitude term (sim-
ilar to the phase term) of the complex-valued membership
grades and the qth power of the amplitude term (similar
to the phase term) of the complex-valued non-membership
grades is equal to or less than 1. In this article, some new
complex q-rung orthopair fuzzy Aczel Alsina operations and
complex q-rung orthopair fuzzy Aczel Alsina aggregation
operators, such as Cq-ROFAAWAoperator, Cq-ROFAAOWA
operator, Cq-ROFAAHA operator, Cq-ROFAAWG operator,
Cq-ROFAAOWG and Cq-ROFAAHG operator have been
framed for aggregating Cq-ROFNs. Meanwhile, some desir-
able characteristics of the propound operators that include
idempotency, monotonicity, boundedness and commutativity
have been described and validated. Afterwards, the existing
complex q-rung orthopair fuzzy entropy measures were crit-
icized and a novel entropy model for criteria weight deter-
mination based on the proposed entropy measure was put
forward. Following that, a decision framework based on the
proposed operators was built to solve the MCDM problems
with fully unknown weight information, and it was applied to
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the selection of most important sector that effects the Pakistan
Stock Exchange. We further analyzed the behaviour of the
presented operators by altering the values of the parameter ζ .
Finally, a detailed comparative analysis was conducted with
preexisting approaches to manifest the credibility of the con-
cepts set out in the decision-making procedure. In future, our
work will be extended to other aggregation operators, namely,
HM [58], partitioned BM [59], power BM [60], MSM [33],
Hamy mean [61] and so on, with Cq-ROFNs to generate
different efficient aggregation operators which may, subse-
quently, be utilized for resolving MCDM problems.
Availability of Data and Materials: All data generated or

analysed during this study are included in this published
article.
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