
Received 22 June 2022, accepted 1 August 2022, date of publication 8 August 2022, date of current version 16 August 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3197585

QoE-Driven IoT Architecture: A Comprehensive
Review on System and Resource Management
BOONYARITH SAOVAPAKHIRAN 1, WIBHADA NARUEPHIPHAT1,
CHALERMPOL CHARNSRIPINYO1, SEBNEM BAYDERE 2, (Member, IEEE),
AND SUAT ÖZDEMIR 3, (Member, IEEE)
1National Electronics and Computer Technology Center, NSTDA, Pathumthani 12120, Thailand
2Department of Computer Engineering, Yeditepe University, 34755 Istanbul, Turkey
3Department of Computer Engineering, Hacettepe University, 06800 Ankara, Turkey

Corresponding author: Boonyarith Saovapakhiran (boonyarith.sao@nectec.or.th)

This work was supported in part by the National Science and Technology Development Agency (NSTDA), Ministry of Higher Education,
Science, Research and Innovation, Thailand, under Project P1952667; and in part by The Scientific and Technological Research Council of
Turkey (TUBITAK), Turkey, under Project 119N049.

ABSTRACT Internet of Things (IoT) services have grown substantially in recent years. Consequently,
IoT service providers (SPs) are emerging in the market and competing to offer their services. Many
IoT applications utilize these services in an integrated manner with different Quality-of-Service (QoS)
requirements. Thus, the provisioning of end-to-end QoS is getting more indispensable for IoT platforms.
However, provisioning the system by using only QoS metrics without considering user experiences is not
sufficient. Recently, Quality of Experience (QoE) model has become a promising approach to quantify actual
user experiences of services. A holistic design approach that considers constraints of various QoS/QoE
metrics together is needed to satisfy requirements of these applications and services. Besides, IoT services
may operate in environments with limited resources. Therefore, effectivemanagement of services and system
resources is essential for QoS/QoE support. This paper provides a comprehensive survey for the state-of-
the-art studies on IoT services with QoS/QoE perspective. Our contributions are threefold: 1) QoE-driven
architecture is demonstrated by classifying vital components according to QoE-related functions in prior
studies; 2) QoEmetrics andQoE optimization objectives are classified by corresponding system and resource
control problems in the architecture; and 3) QoE-aware resource management e.g., QoE-aware offloading,
placement and data caching policies with recent Machine Learning approaches are extensively reviewed.

INDEX TERMS Internet of Things, quality of service, quality of experience, IoT services, IoT applications,
QoS for IoT services, QoS metrics, QoE metrics, IoT architecture.

I. INTRODUCTION
Quality of Services (QoS) plays a vital role in maintaining
services with acceptable criteria for IoT systems. Most prior
studies attempted to exploit QoS metrics for various pur-
poses of controls to improve user experiences e.g., optimizing
network delay, network quality, and energy consumption.
However, recent studies have shown that designing control
policies by using QoS metrics alone is not sufficient to reflect
actual user experiences. QoS metrics can be seen as system

The associate editor coordinating the review of this manuscript and

approving it for publication was Jie Tang .

factors that have impact on user experiences. In addition, user
experiences can be affected by human factors [1]: user pro-
files, tendency, history, characteristics, gender and age. Con-
text factors such as location, places and application-related
factors (e.g., live streaming) are other non-system factors.
Therefore, optimizing system based on QoS metrics only is
not sufficient. Many recent works focused on studies of Qual-
ity of Experience (QoE) instead. Although there is no exact
definition for QoE, the definition given by Le Callet et al. in
[2] and [3] are widely accepted by the research community:
‘‘QoE is the degree of delight or annoyance of the user
of an application or service. It results from the fulfillment

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 84579

https://orcid.org/0000-0003-1837-6017
https://orcid.org/0000-0001-5031-820X
https://orcid.org/0000-0002-4588-4538
https://orcid.org/0000-0003-0619-0338

B. Saovapakhiran et al.: QoE-Driven IoT Architecture: A Comprehensive Review on System and Resource Management

of his or her expectations with respect to the utility and/or
enjoyment of the application or service in the light of the
user’s personality and current state.’’

Recently, emerging IoT architectures with multi-layers,
e.g., Mobile Edge Computing (MEC), Fog Computing and
Cloud Computing, have been proposed to improve user
experiences. By placing services in computational resources
nearby users, significant amount of service delays can be
reduced. Managing services and resources on these emerging
networks have been investigated by a number of studies.
Still, QoE is not often incorporated into the architectures and
resource control policies. Therefore, further investigations on
QoE-driven IoT architectures and resource control policies in
these emerging architectures are needed.

Developing QoE-aware services for IoT applications
requires various perspectives of system design such as
QoE-aware system architecture, models of QoE metrics,
QoE-related underlying technologies, QoE-aware resource
management and control. These topics are still actively stud-
ied in the literature. For this reason, this paper explores the
QoE-driven designs and the state of the are studies on the
aforementioned dimensions in a comprehensive manner.

The paper is organized as follows: First, our motivation
and the categorization of the data sources are explained in
Section II. Next, current designs of IoT architectures with
QoS support are given in Section III. QoE-driven IoT archi-
tectures and QoS/QoE metrics used in IoT applications are
discussed in Section IV and Section V respectively. Various
aspects of resource management issues in IoT systems are
covered in Section VI. In Section VII QoS/QoE correlation
models are provided. SectionVIII contains a discussion of the
findings and future research directions. Finally, concluding
remarks are given in Section IX.

II. MOTIVATION
There is an increasing interest in incorporating user expe-
rience into the system design. As QoE can be varied for
each application as well as each user due to different per-
ceptions affected by various factors e.g., user preferential,
user location and types of applications, it is essential to
define measurable QoE metrics that are suitable for a par-
ticular application/user. Although QoE-related topics have
been studied in numerous works, these works are specific to
certain application areas, solely focusing on tiers, systems,
problems and methods related to those applications. Lack of
understanding related to the underlying critical components
in IoT systems for supporting QoE in the current literature
inspires us to provide this comprehensive this study. In this
paper, we provide a general guideline and mapping of how
QoE can be derived and controlled for a multi-tier system for
various applications using recent methods and solutions.

When QoE is considered in the design of IoT architecture,
QoE-related vital components are required to be investigated
first. Some prior works focused on mapping QoE com-
ponents into high-level system architectures. For instance,
the authors in [4] provided a mapping of QoE monitoring

FIGURE 1. Publication sources classified by publishers.

FIGURE 2. Publication sources classified by year.

and management onto Software Defined Network (SDN)
or Network Function Virtualization (NFV) based architec-
tures. Although this work covers some QoE components,
vital elements of QoE-Driven architectures have not yet been
extensively studied. In this paper, we present a comprehensive
study of a QoE-Driven structure for IoT systems by cate-
gorizing the structure into 4 major parts in regard to sys-
tem architecture: QoE Cause Factors, QoE Measurement and
Indicators, QoE Prediction, QoE Optimization and Control.
These crucial parts are surveyed and classified from recent
works.

We address the QoE-related issues and challenges in var-
ious aspects. Our data sources are drawn from well-known
publishers such as IEEE, Elsevier, ACM, Springer, Wiley and
others. The distribution of the publication sources classified
by publishers is shown in Figure 1. As can be seen, IEEE
provides the main source with 69%. The distibution of the
remaining publications by publishers are 12% Elsevier, 7%
Springer and 12% others. In addition, the classification of
the publications by year is presented in Figure 2. 70% of the
cited works are published during the period of 2017-2022.

84580 VOLUME 10, 2022

B. Saovapakhiran et al.: QoE-Driven IoT Architecture: A Comprehensive Review on System and Resource Management

FIGURE 3. Classification of QoE works.

FIGURE 4. Classification of QoS works.

The number of publications by type are 82 journals, 61 con-
ferences, 5 books, and 2 for preprints.

The classification of QoE related publications is also
given in Figure 3. These publications are categorized into
the following topics: Survey, QoE definition, QoE Influenc-
ing Factors (IFs), QoE Prediction, QoE Optimization and
Control, QoE-aware offloading, QoE-aware placement, and
QoE-aware caching. The number of papers per topic are 6,
2, 2, 5, 25, 10, 9, 10, and 12 respectively. Similarly, the
classification of QoS related studies are given in Figure 4.
These studies are also categorized into the topics: Survey,
QoS metrics, QoS in IoT architecture, QoS controls in IoT,
QoS aware placement, and QoS aware caching. The number
of papers for each topic are 5, 25, 1, 15, 3, and 7 respectively.

In QoE-Driven IoT architectures, we consider the fol-
lowing essential components: First, QoE Cause Factors are
quality metrics corresponding to user, application, service,
network or physical layer. These factors are classified accord-
ing to associated metrics of each layer for QoE-driven IoT
architecture. Next, methods for measuring QoE, which can
be subjective, objective or hybrid, have to be implemented
for accurate QoE evaluation. Subjective methods are not
available in real-time because of complexity of procedures
and involvement of users. To estimate QoE in real-time,
an objective function of QoE models from correlation with

QoS metrics can be used. Also, QoE metrics can be modeled
by using different combination of QoE Cause Factors. They
are also dependent on application types, so we attempt to
provide an insight of QoEmetrics by categorizing them based
on problem types. Nevertheless, recent works have attempted
to apply emerging methods in Machine Learning (ML) for
predicting QoE. Thus, QoE prediction byML-based methods
is indispensable to be a crucial part for optimizing QoE in IoT
systems. When QoE can be approximated in real-time, it can
be used as optimization objectives to solve variety of prob-
lems e.g., QoE-aware adaptive rate control in streaming ser-
vices [5], QoE-aware power controls onMEC/Fog/Cloud [6],
QoE-aware network controls on SDN/NFV enabled net-
works [7]. For this reason, prior works on QoE-aware opti-
mization and control are required to further investigation
from many aspects of problems.

In addition, whenQoE is incorporated into the architecture,
resource management problems need to be tackled. Recent
issues in resource management for emerging networks can
be classified into offloading problems, application/service
placement problems, data caching problems. However, to the
best of our knowledge, only a few recent works focused on
QoE-aware offloading, placement and data caching policies.
So, it is an active area that requires further investigation given
that QoE is accurately predicted.

For these reasons, we are motivated to provide a com-
prehensive review on vital QoE-related components for
QoE-Driven architecture. We classify these components in a
perspective of high level architecture, and show details for
each QoE-related component. These components are named
as QoE Cause Factors, QoE Measurement and Indicators,
QoE Prediction, and QoE Optimization and Control. More-
over, we focus on how the most recent ML techniques can be
applied in each component, which is not often mentioned by
prior works. A variety of models of QoE metrics and its opti-
mization objectives are classified by problem types. Then,
QoE-aware resource management is elaborated on three main
types of problems: offloading, placement and caching prob-
lems. Similarly, ML-based algorithms are mainly focused in
the QoE-aware resource management too.

Prior works related to ours can be listed as follows: [1], [4],
[8], [9], [10], [11], [12], [13], [14], [15], and [16]. In Table 1,
a summary of contributions and limitations of these works are
provided and our contributions are included.

Recent surveys focused on topics related to QoE model,
QoEmeasurement, QoE architecture based on emerging tech-
nologies e.g., MEC/Fog/Cloud, SDN/NFV and networks.
Prior QoE-related survey works are [1], [4], [8], [9]. In [4],
Skorin-Kapov et al. classified QoE models into 4 emerging
models: active learning, crowdsourcing, interdisciplinary and
data-aware QoE modeling. Also, important QoE monitor-
ing components and infrastructure were investigated, and
data-driven techniques for QoE monitoring was illustrated
too. High-level architectures by mapping of QoE monitoring
component and QoE management onto SDN/NFV enabled
networks were presented. Next, a survey of existing QoE

VOLUME 10, 2022 84581

B. Saovapakhiran et al.: QoE-Driven IoT Architecture: A Comprehensive Review on System and Resource Management

definitions, QoE measurement and the role of data in QoE
modeling are provided by Fizza et al. [8] for IoT applica-
tions. Methods for current QoE measurement were inves-
tigated for IoT applications: subjective methods and data
quality sub-metric methods. The authors categorized the role
of data for QoE modeling into accuracy, data completeness,
usefulness, and timeliness. According to [1], QoE subjective,
objective and hybrid measurement methods are classified
and discussed extensively. The authors provided a review
of QoE Influencing Factors (IFs), which were divided into
three main categories: System IFs, Context IFs and Human
IFs. Various forms of subjective assessment such as single
sequence test, double sequence test, multiple sequence test,
long sequence test were investigated. On the other hand,
objective assessment was divided into media-layer, para-
metric packet-layer, bitstream-layer, parametric planning and
hybrid models. A general objective QoE model approach was
shown by comparing existing objective quality metrics. Then,
hybrid assessment was illustrated and shown to be related to
ML prediction model for QoE. Comparison of three assess-
ments in terms of performance was discussed. QoE manage-
ment and adaptive streaming approaches for SDN/NFV-based
networks e.g., Mobile Edge Computing, Fog Computing,
Cloud Computing were investigated in [9]. Also, Barakabitze
et al. discussed extension of works to emerging applica-
tion: Augmented Reality, Virtual Reality and others. Var-
ious areas in optimization control in QoE-aware adaptive
streaming over SDN-based networks were investigated e.g.,
Server and Network-assisted Optimization, QoE-Fairness
and QoE-centric Control, QoE-Centric RoutingMechanisms,
QoE-Aware SDN/NFV-based Mechanisms using MPTCP
and Segment Routing, QoE cross-layer Optimization, QoE
optimization in MEC,Fog,Cloud, and QoE for new applica-
tions (AR/VR and Gaming).

Nevertheless, prior works [1], [4], [8] did not discuss
in details about QoE metrics, QoE optimization objectives,
QoE prediction and control methods and QoE-aware resource
management techniques. AlthoughBarakabitze et al. [9] pro-
vided a comprehensive survey on various optimization area,
they focused solely on adaptive streaming services over
SDN/NFV enabled networks and emerging MEC/Fog/Cloud
networks. Other types of QoE-aware optimizations and
resource management e.g., QoE-aware offloading, placement
and caching were not investigated in that work.

From a resource perspective, QoE-aware resource controls
are still not extensively investigated in emerging network e.g.,
MEC/Fog/Cloud. Prior surveys in resource management can
be found in [10], [11], [12], [13], [14], [15], [16]. Many stud-
ies of resource management, related to emerging networks,
are classified into three main types: computational offloading
problems, application or service placement problems and
data caching problems. Surveys in offloading problems were
discussed in [10], [11], [12], [13]. Reviews of placement
policies are also shown in [14], [15]. Various perspectives of
data caching problems are provided by [16]. All surveys are
summarized in Table 1.

First, let us consider prior surveys on computational
offloading problems, which were studied in [10], [11], [12],
[13]. Lin et al. [10] classified offloading problems by flow
types in Edge. Also, offloading optimization techniques were
investigated. However, most optimization objectives were
based on QoS metrics rather than QoE. Next, Islam et al.
in [11] summarized offloading problems based on com-
putation models, decision-making model and algorithmic
approaches. Still, most optimization objectives were mini-
mizing energy consumption, computational cost, revenues
and task failures, which were system-related metrics. QoE
was not focused in that work. Additionally, emerging net-
works such as Edge inducemobility problems toward offload-
ing problems. Thus, mobility-aware offloading problems
were studied in prior works, and a review on this problem is
shown by Zaman et al. in [12]. Most works focused on energy
efficiency and latency reduction. Similarly, QoE is barely
seen in the review. According to [10], [11], [12], offloading
problems are often solved by classic optimization. A further
investigation on ML-based offloading policies is provided
in [13]. However, optimization objectives are based on QoS
metrics, and QoE is required more studies.

Next, a prior survey about placement policies is illustrated.
A review of service placements in Fog/Edge Computing is
provided by Salaht et al. [14]. Their placement objectives
were based on QoS e.g., latency, cost, energy. A few number
of studies took QoE into their consideration. Most placement
methods in that survey were solved by classic optimization.
Recently, ML-based approaches have been utilized to solve
placement problems. A study by Salaht et al. [14] provided a
review of ML-based placement policies in current literature.
Still, QoS metrics are mainly used by prior studies, but QoE
is utilized by only a few works.

For data caching problems, Shuja et al. [16] provided a
recent survey on ML approaches for data caching in emerg-
ing networks. In [16], both classic Machine Learning and
emerging Deep Learning techniques were investigated in data
caching at Edge networks. Most of optimization objectives
are still related to QoS rather than QoE.

In terms of resources, it is obvious that QoE-aware
resource management still requires further investigation.
Since some previous works focus only on QoSmetrics, incor-
porating QoE metrics into resource management problems is
challenging. As a result, we provide a reviews on QoE-aware
resource management from the perspective of offloading,
placement and data caching policies for emerging networks.

Moreover, current systems are being driven by QoE
requirements. However, there is still lack of understanding in
QoE-Driven architectures. Thus, the structure of QoE-driven
architecture is summarized in this paper. We demonstrate
what crucial components are being used for supporting QoE.
We provide a review of QoE models that are classified
by QoE Cause Factors at different layers. Methodologies
for QoE prediction and calculation are discussed in details.
Also, QoE-aware optimization and control are demonstrated
in the level of system architecture.

84582 VOLUME 10, 2022

B. Saovapakhiran et al.: QoE-Driven IoT Architecture: A Comprehensive Review on System and Resource Management

TABLE 1. Comparison of QoS/QoE surveys.

In brief, our contributions are listed as the following:

1) A survey of crucial elements in QoE-Driven IoT
Architecture including classification of QoE Cause
Factors, QoE predictionmethodologies, QoE optimiza-
tion and control in the level of IoT architecture. Our
reviews are based on recent ML-based approaches.
QoE-Driven IoT platform is basically composed of
multiple AI-based functions.

2) Model of QoE metrics classified by QoE prediction,
optimization and resource management problems.

3) Reviews of QoE-aware resource management meth-
ods: QoE-aware computational offloading policies,
QoE-aware placement policies and QoE-aware data
caching policies. In addition, most recent approaches
e.g., ML-based policies are extensively discussed in
this paper.

Unlike others, our work provides structural details of how
QoE can be factored, measured, modeled, predicted and
manipulated with recent ML approaches for IoT systems.

Moreover, QoE-aware resource allocation and management
of prior works for multi-tier IoT systems are classified and
various aspects of QoE objectives andmetrics withML-based
solutions are shown. Next, existing IoT architectures are
investigated and QoE-Driven IoT architectures are discussed
in more details in section IV.

III. EXISTING DESIGNS OF IoT ARCHITECTURES
In this section, various designs of IoT architectures are dis-
cussed. Common designs of Layered IoT architectures are
evaluated in Subsection A. Then, in Subsection B, current
commercial IoT platforms, mostly Service Oriented Archi-
tecture, are discussed to determine shared functions. Lastly,
in Subsection C, we discuss the necessary QoS components
of IoT architectures.

Understanding the current designs of IoT systems can give
us insight about QoS and service management. The sum-
mary of the existing IoT architectures are discussed in this
section.

VOLUME 10, 2022 84583

B. Saovapakhiran et al.: QoE-Driven IoT Architecture: A Comprehensive Review on System and Resource Management

A. LAYERED IoT ARCHITECTURES
Anumber of IoT services are widely deployed and distributed
over different geographical areas. Since IoT sensing data can
be exchanged across domains, novel applications or auto-
mated services from IoT services can be invented. Smart
applications are created by using these services e.g., intel-
ligent traffic, environmental monitoring, smart city, smart
campus and others. It is undeniable that these services have
to be executed on some service platforms. To exploit IoT ser-
vices, we first discuss about current service IoT architectures.
In prior works, basic IoT services were mostly constructed
by using layered IoT architecture [17], [18], [19], [20], [21],
and [22].

Three common layers are shown in most of previous works
namely: perception or sensing layer, network layer, appli-
cation and/or service layer. IoT sensing devices are imple-
mented in perception layer to collect sensing data back to
cloud or to forward control command from the cloud to IoT
devices. As IoT data are measured at IoT devices, sensing
data is exchanged via wide range of communication tech-
nologies (4G, 5G,WiFi, LoRA) and protocols (CoAP,MQTT,
IP) at network layer. When data reaches an application layer,
it is processed, analyzed, stored and visualized by computing
resources on Cloud. Applications generally offer services
according to user requirements via application interfaces.
Sometimes, the application layer is embedded with a service
sublayer to manage and allocate services for applications.

Although the traditional IoT architecture is composed of
three layers, slightly different architectures with additional
layers are proposed in the literature. In traditional designs,
IoT services are developed for particular application domain
by using the three layer approach. This approach incurs high
operating cost on resource management for service provider
because of high heterogeneity of IoT environments. Various
types of computing, storage and configurations have to be
properly maintained by using different methods. Moreover,
data migration and service provision are quite troublesome
tasks for administrators. More efforts and resources have to
be poured into system development if more demands request
for new applications. As a result, many research works have
focused on designing an IoT platform, which can handle
heterogeneous data and services.

In [17], MicroThings architecture attempted to solve
the problems of the three layered basis design. MicroTh-
ings proposed a framework for three environments: Infor-
mation aggregation, Centralized control and Application
environment. Information aggregation environment enables
ubiquitous access network. Centralized control environment
provides unified framework and elastic computing for on-
demand and heterogeneous computing for various types of
devices. Application environment supports application pro-
visioning, deployment, and development.

It is obvious that heterogeneity in IoT system is one
of the major issues. Similarly, Krco et al. [18] claimed that
IoT service architecture should comply with the following

features: capability to handle heterogeneous domains, sup-
port wide ranges of user requirements, less complex sys-
tem, common framework for unifying different applications.
According to [18], different working groups had studied and
designed IoT a service architecture. IoT-I group focused on
analysis of various IoT architecture. IoT-A group focused on
design of an IoT framework for common service architecture.
The group provided Architecture Reference Model (ARM)
and a set of their best practices utilized for building IoT
architecture. IoT-A group worked in parallel with FIWARE
project [23], which attempted to develop the next generation
IoT architecture. ETSI M2M and oneM2M groups attempted
to define a standard for IoT architectures, which was pro-
posed to have two domains: device and gateway domain, and
network domain. Each domain has service layer capabilities
embedded for performing M2M functions. In short, common
IoT architecture and framework are quite crucial for tackling
the heterogeneity of IoT natures.

In addition, Lv et al. [19] proposed a general IoT architec-
ture. Service architectures could be designed by either top-
down or bottom-up approaches. In the top-down approach,
services and applications are used as the starting point, and
IoT devices are organized according to service requests.
In contrast, the bottom-up approach focuses on connecting
things with one another and expanding their connectivity
and services through applications. In that work, the bottom-
up approach was chosen and 7-layer IoT architecture was
proposed. Its layers are composed of sensing layer, intelligent
device layer, physical information layer, logical information
layer, IoT basic service layer, service middle layer, and appli-
cation layer. The sensing layer deals with sensor, actuator
and network at physical nodes while the intelligent device
layer handles terminal and local services at physical nodes.
The physical information layer is just an abstraction layer for
physical IoT objects while the logical information layer pro-
vides an abstraction for virtual IoT objects. The main layer
for service abstraction is the IoT Basic Service layer, which is
utilized to identify Things, collect data from Things, and con-
trol the behavior of Things. The service middle layer supports
providing service descriptions, flows, and interactions. The
application layer has functions similar to other architectures.
As mentioned earlier, two service layers are emerging in
their design because wide ranges of IoT services have to be
managed at some points of the architecture.

Instead of the service middle layer, Lee [20] proposed a
starting point for developing IoT services at Service Manage-
ment layer. This layer was designed for supporting activities
and procedures in organization by enhancing application or
solutions in domains of lower levels. Its five layer architecture
composes of service management layer, application/solution
layer, processing layer, network layer, and perception layer.
The IoT architecture is quite similar to the approach in [24],
except that there is the processing layer (data management
layer). The processing layer (middleware layer) functions
are to cleanse, store, analyze, and process data from the

84584 VOLUME 10, 2022

B. Saovapakhiran et al.: QoE-Driven IoT Architecture: A Comprehensive Review on System and Resource Management

network layer. Sample platforms in the processing layer are
database management, data analytics, and Cloud Computing
for massive data storage, high-speed broadband networks and
fast processing speed to enable real-time decision making.
The processing layer is similar to the Service Sublayer of the
application layer in [24] or the Service middle layer in [19].
Both seem to be designed for data management, data analysis
and decision making.

Similarly, Zhong et al. [21] proposed 4 layer architec-
tures : perception layer, network layer with two sub-layers,
application support layer, and application presentation layer.
The application support layer implements Cloud Computing,
middleware service, and data analytics. Its function is similar
to the processing layer in [20], the Service Sublayer in [24],
the Service middle layer in [19]. The application presentation
layer manages visualization and interaction in each domain
application such as smart building, logistics, and intelligence
traffic system. On the other hand, the network layer is divided
into two sub-layers : access network (4G,5G,WiFi,Cellular)
and core network (Internet, dedicated network). Thus, the
service layer is quite mandatory for common IoT service
architecture. It should be in the middle between the network
layer and the application layer, or locates above the applica-
tion layer for managing a big picture of all services.

In [22], Sarkar et al. proposed Distributed Internet-like
Architecture for Things (DIAT), which tackled issues like
heterogeneity of IoT devices and also privacy and security.
In their architecture, they proposed a new intermediate layer
between the application layer and the perception layer. This
layer is called IoT Daemon, which is composed of three
sub-layers : Virtual Object Layer (VOL), Composite Vir-
tual Object Layer (CVOL), and Service Layer (SL). VOL
represented physical objects or entities as virtual objects,
which had semantic description for modeling physical IoT
objects. CVOL composed of multiple virtual objects such
that a certain task could be accomplished by a service from
this composite objects. CVOL needs a discovery mechanism
for determining optimized composite objects. SL receives a
service request from the application layer or creates one on
its own for service creation. SL job is to divide each request
into sub-tasks that will be processed by CVOL. Still, this IoT
Daemon is just another name of the Service layer of other
works, [19], [20], [21], [24], except that functional details of
this layer are totally different.

In conclusion, various prior studies suggested that a com-
mon service IoT architecture was a layered architecture with
at least four layers (Perception, Network, Service and Appli-
cation) as shown in Figure 5 should suffice. In the Service
layer, its responsibility should cover the following tasks :
service identification and mapping, service selection, service
composition, service provisioning, service placement, service
access, and service classification. These functions are used
to cope with well-known issues in IoT environments e.g.,
heterogeneity, highly dynamics, privacy and security, man-
agement cost.

FIGURE 5. General layered IoT architecture.

B. SERVICE ORIENTED ARCHITECTURES
Most of commercial IoT platforms are widely deployed
and serviced by big-name companies such as Intel, Baidu,
Tencent, Amazon, Google, Oracle, Samsung and Microsoft.
In contrast, open IoT platforms are public to various commu-
nities such as FIWARE,OpenMTC, SiteWhere,Webinos [25]
and Eclipse IoT [26]. Each platform is highly different from
others. It is not clear how to group all of them into one
unified reference architecture. Some of them are proposed by
using layered approach such as Intel IoT platform [27]. Most
designs are based on Service Oriented Architecture (SOA) or
microservices such as Microsoft Azure IoT [28] and AWS
IoT [29].

Thus, Guth et al. [25] proposed a reference IoT architec-
ture based on six common component types in IoT platforms.
Those six components are Sensor, Actuator, Device, Gate-
way, IoT Middleware, and Application. They showed that
existing IoT platform designs (both commercial and open-
source) can be mapped onto their reference architecture.
IoT Integration Middleware, supporting multiple core feature
functions for managing devices and services for applica-
tions, is the main component in this architecture. However,
Guth et al. [25] did not categorize what functions were sug-
gested to be implemented based on the current platform’s
IoT Integration Middleware (IoTIM). We extend their results
with a set of functions that this middleware should provide
to fulfill the desired IoT services : namely message broker,
device management, application interface, connectivity man-
agement, context management, device discovery, security and
identity management, and event and analytical processing.
This indicates that any IoT architectures should support these
functions.

Firstly, components in IoT IntegrationMiddleware (IoTIM)
were elaborated for each platform. The platforms are com-
pared based on the service functions they utilize. Components
in IoT Integration Middleware for FiWARE, OpenMTC,
SiteWhere, Webinos, and AWS platforms are described as
follows. In FiWARE architecture, IoTIM has IoT broker, IoT
discovery, IoT device management, and data context broker
as IoT backend. In OpenMTC, backend components are
composed of connectivity, network exposure, core features,
application enablement. For SiteWhere, a tenant engine is

VOLUME 10, 2022 84585

B. Saovapakhiran et al.: QoE-Driven IoT Architecture: A Comprehensive Review on System and Resource Management

responsible for device management, communication engine,
REST APIs, Integration, Data Storage SPIs and Asset SPIs.
Unlike others, Webinos IoTIM is focused on User Authenti-
cation, Policy Repository, Policy Enforcement andWebAPIs.
Components in AWS IoT are Message Broker, Thing Shad-
ows, Thing Registrys, Rule Engines, Security and Identity.

Next, we consider IoTIM on IBM Watson, Microsoft
Azure IoT, Samsung SmartThings, Intel IoT, and Eclipse
IoT platforms. IBM Watson IoT architecture has analytic,
risk management, connect, information management, open
standard services, flexible deployment. In Microsoft Azure
IoT, core components of IoTIM are IoT Hub, Event process-
ing and insight, Device business logic, connectivity mon-
itoring, application device provisioning and management.
The middleware of Samsung SmartThings has an application
management system and subscription processing. According
to [27], Intel IoT reference architecture comprises Device
and configuration management, Data ingestion software, Ser-
vice orchestration, security management, analytic software.
As discussed in [26], Eclipse IoT core features are device
management, application enablement, connectivity and mes-
sage routing, data management and storage, device registry,
event management, analytic, and User Interface, while its
cross-stack is composed of security and ontology.

According to [25], [26], [27], all of these components
can be grouped and categorized by the following functions :
MessageBroker, ContextManagement, DeviceManagement,
Device Discovery, Connectivity Management, Security and
Identity Management, Event and Analytical Processing and
Application Interface parts. It can be seen that Device man-
agement, Application Interface, Connectivity Management,
and Context Management functions often occur in IoT Inte-
gration Middleware. It is known that Context and Device
management are responsible for handling IoT context and
device information. Also, Application Interface is used by
other IoT modules, devices, applications to access all current
IoT data. IoTIM is at the center of the platform, so most
of other IoT components will have to access IoTIM. This
connectivity has to be properly managed. Those are the main
reasons why these components often occur in IoTIM of vari-
ous platforms.

On the contrary, Message broker, Device discovery, Secu-
rity and Identity management, Event and analytical pro-
cessing sometimes appear in IoTIM. Security and Identity
Management require more complexity and resources on the
system. It may be a better choice to separate them as external
services in most platforms. Event and analytical processing
can be seen as an option for developers or administration of
IoT platforms. Similarly, Message broker is used to handle
IoT devices with specific protocols, so it can be thought of an
alternative to connect to wide ranges of IoT protocols. Device
discovery is explicitly defined only in FiWARE, AWS IoT,
Eclipse IoT. However, this function is rather compulsory, so it
may be indirectly implemented in other modules. Thus, com-
plex tasks such as security management, event and analytical
processes can be separated from IoTIM for some platforms.

In short, IoT Integration Middleware is the essential
component in existing IoT platforms where its must-have
functions are the following : message broker, device man-
agement, application interface, connectivity management,
context management, device discovery, security and identity
management, event and analytical processing software mod-
ules. However, existing platform solutions do not explicitly
provide details on how to handle QoS in their architectures
even though QoS management may potentially be integrated
inside the aforementioned services.

C. IoT ARCHITECTURE WITH QoS SUPPORT
In the layered IoT architecture, it composes of four common
layers : Perception, Network, Service, Application Layer.
Each layer has its own QoS metrics in terms of perfor-
mances [24]. Precisely, QoS metrics in Perception layer can
be energy consumption (service life time), mobility infor-
mation accuracy, location information accuracy, serving cov-
erage, time synchronization, sampling frequency, sampling
precision, or resolution e.g., video. Also, QoS at Network
layer can be bandwidth, delay, loss rate, jitter, throughput
and response time. QoS at Application and Service layer
can be service time, service delay, service priority, service
accuracy and service load. These metrics locally associate
with individual layer functions because of inheritance from
performance tuning.

To achieve end-to-end QoS requirement, negotiation
among these layers is unavoidable. Interaction between
higher and lower layers to exchange resource information
is one approach to ensure QoS by properly scheduling and
assigning resources. For instance, Duan et al. [24] proposed
to construct a new vertical layer called QoS Management
Facility layer. This layer interacted with QoS broker at Per-
ception layer and Network layer to negotiate and interpret
QoS requirements to local parameters. In short, this approach
attempts to control multiple QoS across layers such that a
negotiated E2E QoS metric is achievable.

Alternatively, Issarny et al. [45] considered Service Ori-
ented Approach (SOA) to design IoT services. IoT service is
just another Service Oriented Architecture but the reverse is
not true.Moreover, it can be seen that some existing platforms
are designed by using SOA and middleware approaches. It is
more practical to view Things as an IoT service. An applica-
tion is just a composition from various IoT services.

Previously, IoT Integration Middleware of various plat-
forms are elaborated and based on Service Oriented
Approach. It is shown that a number of certain elements
are implemented in existing platforms e.g., message broker,
device management, connectivity management, context man-
agement and others. Nevertheless, QoS related components
are not explicitly defined.

To achieve QoS constraints, additional QoS related ele-
ments are necessary by these SOA Middleware approaches.
In that paper, a number of QoS-related elements are catego-
rized in Table 2. In the table, must-have QoS elements in
IoT middleware can be categorized into five groups : QoS

84586 VOLUME 10, 2022

B. Saovapakhiran et al.: QoE-Driven IoT Architecture: A Comprehensive Review on System and Resource Management

TABLE 2. QoS control for IoT integration middleware.

negotiation, QoSMonitoring, QoS TrafficManagement, QoS
Decision and QoS Scheduler.

QoS negotiation is an initial procedure before the requested
service starts. It is utilized to communicate about QoS
contract between Service Providers (SPs) and Clients. The
requested service from applications will specify a set of
QoS targets to SPs. SPs monitor and control their resources
to achieve this QoS request. For instance, in [30], a QoS
broker was deployed for negotiating QoS between SPs and
consumers for Web Service requests in SOA architecture.

Since QoS negotiation is a critical process for completing
QoS agreement, several works proposed negotiation frame-
work solutions. According to [31], a dynamic QoS negoti-
ation framework and Markov Decision Strategy negotiation
algorithm were proposed in their work to handle QoS for
IoT services. The results show that their method improved
success rate, completion time and social welfare in negoti-
ation procedures. Moreover, Li and Clarke [32] proposed a
context based SLA negotiation for IoT service domain. Their
strategy is automated by attempting to resolve the conflicts
for multiple rounds of negotiation with different counter
offers for selecting best service scores. It is shown to improve
success rate and negotiation time. In [33], negotiation frame-
work was proposed and published as a service for achieving
QoS target. Their framework is called BETaaS or Building
the Environment for The Things as a Service. In [34], the
game theoretic approach was used to design a negotiation
framework when conflict of QoS occurred between SPs and
Clients. Their proposed method was based on mixed strategy

on Nash Equilibrium. Their results show that the mixed
strategy outperforms both concession and tradeoff strategy in
terms of utility and success rate.

Previously, it was seen that the current QoS and resource
status in the system are necessary in the QoS negotiation pro-
cess. It is unavoidable that the system must have knowledge
about QoS status before assigning further resources for their
clients. QoS monitoring is mainly used for checking QoS
status, so that the system can fulfill QoS requests.

For instance, Middleware QoS management for IoT ser-
vices was proposed in [38] to monitor and detect QoS degra-
dation, so that QoS actions could be executed to improve
QoS level to the target. Moreover, in [37], monitoring QoS
was utilized in their proposed QoS-aware scheduling for IoT
services. In [36], Process Monitoring Agent, Sensing Quality
and Energy Monitoring Agent are important components to
handle QoS supports for IoT services. According to [39],
QoS monitoring and prediction were used to enable QoS
support. IoTPredict was proposed in [40] for monitoring and
predicting QoS. Their strategy was designed by collaborative
approach.

In addition to negotiation and monitoring, another impor-
tant component is QoS traffic management. As it is named,
QoS traffic management is responsible for dealing with dif-
ferent types of traffic over networks to ensure QoS for End-to-
End service. IoT networks are highly dynamic because of the
tremendous number of devices and traffic flows. As a result,
to achieve QoS, the system must have capability to control
various types of traffic.

VOLUME 10, 2022 84587

B. Saovapakhiran et al.: QoE-Driven IoT Architecture: A Comprehensive Review on System and Resource Management

In prior work [41], Al-Shammari et al. attempted to solve
network resource starvation problem by proposing a traffic
management policy. The policy can prevent degradation of
networks and enhance QoS performance of Machine Type
Communication. The improvement results are verified by
simulation. As shown in [42], Software Defined Network-
ing (SDN) technology can overcome many difficulties and
problems of controlled network resources. By separating con-
trol and data plane, SDN with network programmable fea-
tures can help managing network resources better than ever.
Karakus andDurresi [42] provided survey in SDN technology
and described how it could be utilize in QoS provision-
ing for network applications. Additionally, Seeger et al. [43]
proposed an automated translation framework for convert-
ing QoS network constraints into SDN configuration. Also,
an automated QoS mechanism for SDN network was investi-
gated in [44].

Next, QoS decision and Scheduler will be discussed. QoS
decision and Scheduler are quite related. QoS decision is used
for making a decision based on predefined rules or dynamic
algorithms to solve conflicts in resources when QoS deterio-
rates. On the other hand, the QoS scheduler is responsible for
scheduling requests over resources to achieve the QoS target.
A scheduling method can be either static or dynamic.

According to [35], Menascé et al. extended QoS brokering
with a service selection to maximize utility functions. In [36],
QoS Decision Making Function and QoS Broker are the
main elements for handling QoS of IoT services. On the
contrary, Li et al. [37] proposed a QoS scheduling algorithm
for classifying emergency and non-emergency messages to
improve performance. Then, a three-layer QoS scheduling
model for SOA IoT applications was discussed in [37].

As shown in prior works, major components for imple-
menting QoS support in IoT services can be categorized
into QoS Negotiation, QoS Monitoring, QoS Traffic Man-
agement, QoS Decision and Scheduler. These elements are
essential for IoT Integration Middleware to achieve QoS
support in any IoT architecture. Next, let us consider designs
of architecture that are driven by QoE requirements.

IV. QoE-DRIVEN IoT ARCHITECTURE
As shown earlier, QoS is highly critical for maintaining per-
formances of the system. To support QoS, the architecture
of the IoT system has to include various components e.g.,
QoS negotiation, QoS decision, QoS monitoring, QoS traffic
management and QoS scheduler. However, QoS alone is
not sufficient to deliver a high enough satisfaction for users
because their experiences are not measured. QoE term was
defined to quantitatively measure the user experiences. Thus,
the system can be controlled in such a way that QoE values
are achieved and the users are satisfied.

Unlike other works, vital components in QoE-Driven
architecture are classified in the view of system layers as
follows.

• QoE common architecture
• QoE Cause Factors associate with system layers

• QoE prediction
• QoE optimization and control

The comprehensive review of the overall architecture and
QoE-related parts are shown in this section. Discussion about
recent ML approaches in each part are also provided.

Indeed, there is no exact definition for the QoE. Neverthe-
less, in principle, QoE is proposed to measure how users meet
their expectation. Each user has different levels of satisfac-
tion, which are hardly extracted as quantitative measures.

Recently, QoE has become a promising approach to deliver
high satisfactory experiences for different user expectations.
To deliver such an experience, the system has to implement
QoE supports for users. To achieve QoE, it means that the sys-
tem has to be able to control or configurate system parameters
on multiple resources from data source to a destination. QoE
implied that end-to-end data flow has been controlled such
that the experience at the end user is validated and qualified
to be at a good level.

Deployment of QoE features onto the IoT system certainly
requires a new ecosystem to the current IoT architectures.
First, the service provider has to define which indicators of
user expectations will be utilized as QoE feedback informa-
tion. Next, the system has to be capable of measuring user
experiences or QoE. Measuring QoE is a challenging task
because user satisfaction varies even if the system environ-
ment is the same and there is no exact QoE definition. QoE
can be subjectively measured from users, but it is hardly mon-
itored in real-time where the system environment is continu-
ously changing. So, real-time QoE measurement will require
the system to estimate or predict the current QoE from the
environment. When real-time QoE is feasible, the prediction
QoE value will be used for optimizing both configurations
and parameters in the system environment. Eventually, the
QoE controller is responsible for dynamically applying new
configurations and parameters to accomplish the target QoE
for users.

As the QoE ecosystem is elaborated, it is seen how
QoE affects onto the IoT architecture. At least, additional
components, e.g., QoE indicator, QoE measurement, QoE
estimation and prediction, QoE optimization and QoE system
controller, are considered to be crucial in QoE implementa-
tion. QoE indicator tells us how the service provider measure
the QoE. It can be either direct or indirect measurement.
Based on this indicator, QoE estimation and prediction will
be deployed for real-time computation, which leads to QoE
optimization. QoE optimization has to collect QoE mea-
surement, and attempt to control system configurations and
parameters such that QoE target can be accomplished. Then,
QoE controller has to be designed for system reconfiguration
purposes.

According to prior information, it is not difficult to see that
QoE architecture can be depicted as in Figure 6. In Figure 6,
we can divide QoE things into 6 parts, which will be
elaborated in the following subsections. Subsection IV-A is
related to QoE Cause Factors, which can be divided into
two main cause factors : User-related and Application-related

84588 VOLUME 10, 2022

B. Saovapakhiran et al.: QoE-Driven IoT Architecture: A Comprehensive Review on System and Resource Management

factors and System-related factors. In Subsection IV-B, vari-
ous methods for measuring QoE are explored in prior works.
Then, QoE model for training and prediction are provided
in Subsection IV-C. Some important QoE indicators are
discussed in Subsection IV-C. Lastly, related works about
QoE optimization and system controller are described in
Subsection IV-D.

A. QoE CAUSE FACTORS
According to Figure 6, we first discuss about QoE Influencing
Factors (IFs) before QoE Cause Factors, which is defined
in this paper for simplicity of explanation. QoE Influencing
Factors are indeed factors that can affect user experiences.
Because QoE is rather subjective and dependent on users,
QoE IFs can be seen as causes of user experiences. The
QoE IFs can result in different QoE results under similar
environments.

QoE IFs are classified into 4 different perspective as
illustrated in [46] : Human-related, System-related, Context-
related, and Content-related IFs. Human-related IFs can be
intepreted as personal characters of each user, which is highly
dependent on human information e.g., characteristics, gender,
expectation, memory experiences and others. These factors
lead people to various expectations. System-related IFs are
QoS-related parameters and configurations of the system
from physical to application layers. Context-related IFs are
factors that define the current environment of users, usually
physical, temporal, social and economic. Content-related IFs
are associated with service and application e.g., codec and
chunk sizes in multimedia services.

However, when we consider the system in Figure 6, how
we could interpret these QoE Influencing Factors into the
IoT architecture is still questionable. Previously, it is seen
that QoE can be influenced by human factors, system fac-
tors, context factors, and content factors. However, when
we consider the relationship between these factors and the
system, they cannot be directly mapped onto each layer of the
system. These QoE IFs can still be mapped onto QoE-related
metrics/parameters in each layer, which are redefined as QoE
factors connecting to various layers. For our convenience,
the term ‘‘QoE Cause Factors’’ is defined for the simplicity
of connecting different parts of QoE IFs into the system
architecture. To be precise, ‘‘QoE Cause Factors’’ are system
factors that directly affect the QoE value or user experiences
from the perspective of the system. We define QoE Cause
Factors (CFs) based on the system in Figure 6, so that it is
feasible to map QoE IFs into QoE CFs.We consider QoE CFs
in Table 3 at each layer according to the system in Figure 6.
Similar to Table 3, the authors in [47] and [48] investigated

relationships between QoE IFs and the layered-based IoT ref-
erence model. They focused on what QoE IFs are influential
in the IoT context and how to extend QoE measures to IoT
machines. Also, the authors extend the concept of Quality of
Data (QoD) and Quality of Information (QoI) for quantifying
the quality of experience when IoT machines are involved.

According to [47], critical QoE IFs are classified into
technical, user, and context groups. There are two factors
in the technical group: the physical and the network fac-
tors. In the physical factors, QoE IFs are related to physical
resource constraints at devices e.g., computing power, stor-
age, and battery. In the network factors, QoE IFs connect
to network QoS metrics. The system utilized subjective fac-
tors such as application usage and user actions to infer user
satisfaction in the user group. QoD and QoI are associated
with the context group and the application factors. QoD was
defined by data accuracy, truthfulness, completeness, and up-
to-dateness. Moreover, QoI was defined by the amount of
beneficial information to users. Lastly, application factors
mean ease of use and how information connects via the user
interface. These factors are mapped onto the layered IoT
reference model as follows. The physical and network factors
are mapped onto the physical and network layer, respectively.
Both of them also are mapped onto the virtualization layer.
QoD and QoI are linked to the service layer. User subjective
and application factors are related to the application layer.

Still, there is no reference IoT model for evaluating the
QoE; leveraging the QoE evaluation and control framework
is important. Floris et al. in [48] proposed the layered QoE
management framework for integrating with the layered IoT
reference model and evaluating the QoE. There are five lay-
ers: the physical device layer, the network layer, the virtu-
alization layer, the combination layer, and the application
layer. The physical device layer focuses on QoD acquired
from devices; It is then used in the virtualization layer, such
as the data accuracy of GPS signal, video quality data (res-
olution, coding). The network layer acquires network QoS
metrics, e.g., delay, bandwidth, and jitter to measure the
performance and forward the QoS metrics to the virtual-
ization layer. The virtualization layer determines QoD for
each virtualized object (VO) from related QoS metrics. Then,
the combination layer determine the overall QoE from the
QoD and QoE of multiple VOs. In the application layer,
QoE context IFs such as technical factors (device specifica-
tions), social factors (user tendency), business factors (oper-
ating cost), and environment factors (places) are considered
here.

According to [47] and [48], the authors investigated how
the QoE can be evaluated in various layers based on the novel
concept of QoD and QoI. Unlike [47], [48], we attempt to
create themap between each layer’s QoE IFs andQoE-related
metrics. So, we can gain insight into how to measure, predict,
and evaluate the QoE in the system by using associate metrics
as input for the QoE model.

In Table 3, QoE IFs are correlated with measured metrics,
technologies and control parameters at each layer. QoE IFs
means that there are factors having high impact for user
expectations and experiences. To measure these IFs, the
column metrics demonstrate what we can measure in each
system layer. Then, emerging technologies sometimes are
associated with how the system can be controlled. Finally,
IF-related control parameters are listed at each layer to

VOLUME 10, 2022 84589

B. Saovapakhiran et al.: QoE-Driven IoT Architecture: A Comprehensive Review on System and Resource Management

FIGURE 6. IoT architecture with QoE supports.

demonstrate what the system expects to control to achieve
the QoE.

First, let us consider User level. User-related and Context-
related QoE IFs are associated with user engagement metrics
at this layer. User and Context related IFs can be gender, age,
social, characteristics, education, user location, background,
usage history, living environments, job, personal interest and
others. These factors can be measured by using User Engage-
ment metrics such as records of user profile and background,
number of downloads, average visit time, screen views per
visits, retention rate, user event tracking (e.g., search history),
and others [6], [49], [50], [51], [51], [52], [53], [54], [55]. All
of these measurements can be utilized by Machine Learning
approaches to tailor quality of experience at User level, which
is dependent on marketing strategies.

At the Application level, IFs are associated with contents
of applications. For instance, video-related IFs are video
codec, resolution, video types and others as stated in [46].
Video-related metrics from a system perspective are video
distortion rate, average data rate or Video Quality Metrics
(VQM) [56]. Examples of configurable parameters for videos
are video codec, frame rate and interval, compression ratio,
buffer size, chunk size, resolution [5], [46], [56], [57], [58].
For voice-related applications, voice codec, call setup time,
call blocking ratio are examples for their IFs. Next, voice-
related control parameters are voice codec, call setup mech-
anism and others. Similarly, voice-related metrics are voice
signal impairment, call setup success rate, blocking proba-
bility, average call setup time, Mean Opinion Score (MOS),
Perceptual Evaluation of Speech Quality (PESQ) [59]. For
web-related applications, download and fetch time can be
seen as both IFs and performance metrics that system can
measure. Since both download and fetch time are related to
Network and Physical Layers, the system can control related
mechanisms or protocols (e.g. HTTP) for surfing web sites.

At the Service level, service management can be classified
into three parts : Device-related IFs, Data-related IFs and
System-related IFs. For Device-Related IFs, device registra-
tion, device discovery and device management can affect
user expectations. Their influences can be quantified by
some of the following metrics e.g., registration failure rate,
registration time, discovery time, number of errors in dis-
covery process, and ease of usage. Registration, discovery,
subscription and notification mechanisms can be designed
such that they are appropriated with the system. Next, data
semantic, data repository and management, data subscription
and notification, transaction management, service charging
and accounting areData-related IFs. For instance, notification
failure rate, number of subscriptions, notification success
rate, notification time, transaction statistics and service costs
can be used to measure what experiences users are encoun-
tering. To improve service quality, service optimization can
be used to alleviate some of these problems. Lastly, examples
of System-Related IFs in Service level are application man-
agement, group management, communication (connectivity)
management and others. Their metrics are ease of usage,
number of connectivity failures, number of hand-over con-
nectivity, number of security breaches. Connectivity mech-
anisms and security choices can be appropriately designed
such that the service quality is acceptable.

Since QoE IFs have a certain degree of correlation with
QoS metrics at system layers such as network (control) or
physical layer. According to [60], Liotou et al. provided
studies of the QoE model and estimation, and relationships
between QoS and QoE, QoE IFs. The authors provided the
relationships between Quality IFs and QoS in aspect of net-
work/physical layers, equipments, wireless conditions, ser-
vice, and other factors. Although, the relationships between
IFs and QoS are described, both are still tightly coupled in
their illustration. In contrast, this work attempts to determine

84590 VOLUME 10, 2022

B. Saovapakhiran et al.: QoE-Driven IoT Architecture: A Comprehensive Review on System and Resource Management

the relationships among IFs, measured metrics, technologies
and control parameters at different layers.

At the Control or Network layer, its major Influent Fac-
tor is focused on network quality. QoS metrics at network
level are jitter, delay, packet loss rate, data rate and volume,
reliability, congestion indicators, busy period, round trip time
[7], [50], [61], [62], [63], [64], [65]. Indeed, these metrics are
measured in most networks. Technologies such as SDN [64]
and NFV [66] are emerging to help system operators to
control these metrics more efficiently. Control variables for
SDN and NFV are flow rule/table and node/link parameters
respectively.

At the Sensing level, channel quality is the main factor
affecting user experiences. In short, QoS metrics, typically
used in most systems, are bandwidth, signal strength, bit error
rate, dropping probability, power consumption [6], [54]. Even
though IoT devices can be physically operated by these tech-
nologies : WiFi, NB-IoT, LoRA, LTE, 5G, all of them have
similar control parameters such as bandwidth control, sub-
carriers, modulation scheme, coding, transmission power.
These parameters can be used to improve the quality of
communication channel as well as user experiences.

Previously, impact factors of user experiences at each layer
are elaborated in Table 3. However, recent concepts such
as QoD, QoI and QoB (Quality of Business) in [47], [48],
and [67] have emerged for evaluating QoE in the IoT context.
QoD is the quality of sensed data composed of data accu-
racy, truthfulness, completeness, and up-to-dateness. On the
other hand, QoI is referred to the amount of helpful infor-
mation for a decision or action. Both QoD and QoI are
related to content and context-related IFs. Next, QoB can be
seen as QoE system-related IFs in the resource plane, e.g.,
resource cost and constraints.Most of the prior works exclude
resource constraints or expenses from their QoE model.
Instead, researchers include these costs and constraints into
their optimization objective rather than the models. When
QoB is extracted into different levels, it is more convenient
for QoE provisioning. Lastly, QoS metrics are mostly related
to the system-related IFs in the physical and network layers.
These novel concepts have been still developing in recent
works.

In brief, we consider what QoE IFs should be at each layer
of the IoT system. Then, we attempt to attack the problem
of quantifying or measuring these IFs with redefined metrics.
Some may be related to emerging technologies. Finally, con-
figurable or control parameters are listed to demonstrate that
QoE can properly be controlled by these parameters or tuning
mechanisms.

B. QoE MEASUREMENT AND INDICATOR
To measure user experiences, QoE has to be quantified such
that the running system is aware of what satisfaction level
of users currently are. This QoE indicator will be utilized as
the feedback information for the system to adjust controllable
parameters as discussed in the prior section at each layer. So,

the QoE is converging to the value that user experiences are
in high satisfaction level.

One of the well-known QoE indicators is Mean Opinion
Score (MOS). It is widely used tomeasure quality inmultime-
dia services [75]. MOS is quantified into five levels of quality
experiences from 1 to 5 (bad, poor, fair, good, excellent). Its
measurement can be subjective, objective or hybrid manners.
In subjective measurement, MOS is measured from users
either in experiments or real usage. Many previous stud-
ies [75] attempted to determine relationships between MOS
and multimedia parameters by conducting several different
subjectivemeasurements. The subjective experiments usually
require more time to give an accurate result. In contrast,
objective MOS is used as the estimation of subjective MOS
(automated subjective measurement). The MOS approxima-
tion formulas are derived from the MOS subjective experi-
ments, which are standardized and conducted in multimedia
applications [75].

Various methods for MOS subjective measurement are
used in prior studies [75] such as Absolute Category Rating
(ACR), Double-Stimulus Impairment Scale (DSIS), Double-
Stimulus Continuous Quality Scale (DSCQS), Subjective
Assessment Methodology for Video Quality (SAMVIQ),
Degradation Category Rating (DCR) and others. They are
commonly used to measure QoE in multimedia applications
such as video streaming and voice/speech transmission. Even
though, MOS subjective methods are designed to measure
and quantify user experiences into different satisfaction lev-
els. They are not practical in the dynamic system where
the quality of services is continuously changing over time.
To measure QoE in real-time, MOS objective measurement
is used instead of subjective one. As shown in [56], [60],
they were formulated by using Content-related parameters
to calculate MOS score e.g., Peak Signal to Noise Ratio
(PSNR), Structural Similarity (SSIM) and Video Quality
Metrics (VQM).

Novel QoE subjective measurement is actively investigat-
ing because of more users demanding of higher satisfaction
level. Most prior QoE indicators are designed for multimedia
applications. Several new studies proposed a new frame-
work for measuring subjective QoE in IoT systems such
as [76]. According to [76], Suryanegara et al. proposed a
new QoE measurement framework based on Absolute Cat-
egory Rating with Hidden Reference (ACR-HR) scale. Their
measurement has two phases : measuring experience before
and after IoT implementation. When MOS can be derived
from both phases, Differential MOS (DMOS) is computed on
basis of ACR-HR scale method. DMOS can be interpreted
as the strong and weak points of implementation, so an
improvement of service implementation can be found. How-
ever, existing QoE subjective measurement is still based on
conservative methods derived from prior multimedia appli-
cations. More studies on new QoE subjective model will be
essential for QoE-Driven IoT platform.

Unlike in the multimedia context, recent studies in the IoT
domain [67] proposed a new method to measure the QoE

VOLUME 10, 2022 84591

B. Saovapakhiran et al.: QoE-Driven IoT Architecture: A Comprehensive Review on System and Resource Management

TABLE 3. QoS cause factors.

when interaction among machines is involved. Nevertheless,
interaction in the IoT context often occurs between machines
or machine-to-machine (M2M) communication without user
intervention. As a result, personal feedbacks from users are
sometimes not feasible. Subjective tests are not even practi-
cal. As a result, Minovski et al. in [67] introduced a novel
term to define the quality of experience in the IoT paradigm:
Quality of IoT or QoIoT. This term is utilized to model the
QoE from the users’ perspective, including both objective
or subjective factors and machine experiences or Quality of
Machine Experience (QoME). The authors use quality infor-
mation of data, network, and context to evaluate the overall
QoE in the intelligent IoT machine.

From a real-time perspective, it is difficult and quite infea-
sible to measure actual QoE from users instantly. Because
actual QoE is involved with usage feedback from users, esti-
mating and predicting QoE by using objective methods are
a better approach. As a result, many prior works proposed
QoE-related things by using objective QoE metrics. QoE
metrics can be estimated from various factors : network delay
and quality, [6], [50], [54], [61], [62], [63], [64], [77], [78],
latency [79], energy consumption [80], [81] processing and

completion time [82], resource states [81], [83], content-
related metrics (e.g., voice, video, image) [84], [85], [86],
[87], and user-related metrics [49], [81] and others. For more
details, a summary of QoE indicators from the literature is
reviewed in QoE Metric Section.

Previous discussion has been focused only on either sub-
jective or objective. However, recent research works in Arti-
ficial Intelligences (AI) allow us to exploit novel Machine
Learning (ML) techniques for predicting or estimating QoE.
According to Figure 6, it will use system and service metric
data along with valid QoE measurement to train and predict
the QoE model. Related works will be discussed in the next
section.

C. QoE PREDICTION
Unlike QoS metrics, QoE measurement is quite subjective
and requires a long and tedious procedure. It is not difficult
to see that QoS metrics and QoE indicators have some cor-
relations. The relationship between QoS and QoE measure-
ment has been studied by many prior works such as [60],
[88]. QoE estimation with various objective models were
provided, so that complicated subjective measurement could

84592 VOLUME 10, 2022

B. Saovapakhiran et al.: QoE-Driven IoT Architecture: A Comprehensive Review on System and Resource Management

be avoided. In [88], QoE metrics are focused on video quality
assessment, and one QoE metric can be correlated to many
QoS metrics. It can be seen that many works attempted
to solve real-time QoE prediction based on relationships
between QoS and QoE metrics.

QoE prediction has become necessary mechanism for
controlling system to achieve higher satisfaction level.
As depicted in Figure 6, QoE prediction is rather new for
IoT architecture. It is required feedback information from
system, service, application and user metrics for predicting
a new QoE. It can be thought of as an AI-related part because
quantifying and predicting QoE is quite subjective, and vari-
ous ML techniques are good at predicting things.

These ML techniques help the system predicting instant
QoE values, and QoE can be feasibly controlled in real-
time. Classical ML techniques, e.g., Naive Bayes, Support
Vector Machine (SVM), K-Nearest Neighbors (KNN), Deci-
sion Tree (DT), Random Forest (RF) and Neural Network
(NN), have been studied and proposed to predict QoE value
for various systems. Example of these works are illustrated
in [50], [51], [61], [62], [63], [77], [89], [90], [91], [92], [93],
[94], [95], [96], [97], [98].

In [50], Mushtaq et al. studied system and service factors
having performance impact on QoE. Also, the correlation
between QoE and QoS metrics is investigated. The authors
provided MOS calculation methods from QoE data sets,
which are based on classical Machine Learning approaches.
They conducted a comparison among ML techniques such as
Naive Bayes, SVM, KNN, DT, RF and NN. They showed that
DT gave the best MOS estimation.

Abar et al. [89] evaluated 4 basic supervise learning tech-
niques e.g., Decision Tree, Neural Network, K Nearest
Neighbors and Random Forest for QoE prediction. These
algorithms were utilized to predict QoE in real-time based
on full service parametric such as SSIM, VQM and video
application metrics such as frame rate, data rate, resolution.
Also, the authors use Degradation Category Rating (DCR) as
subjective measurement for building the training model and
validation. Their simulation result on SDN-based network
shows that the best ML method for predicting QoE is the
Random Forest algorithm.

According to [61], QoE prediction was performed by using
network information (e.g., Round Trip Time (RTT), jitter,
bandwidth, delay) and objective parameters (e.g., VQM,
PSNR, SSIM). The MOS estimation is conducted in real-
time in SDN-based network. First, they collected MOS and
network parameters as data sets. Then, these data sets were
utilized for training Machine Learning Regression models.
The authors also proposed an adaptive enhancing QoE mech-
anism that monitors and predicts the current value of QoE,
then it modifies network configurations to control QoE.

According to [62], Menkovski et al. provided a theoretical
discussion on how to apply QoS parameters (e.g., delay, jitter)
to predict QoE. They built a data set from a collection of
system data and subjective test scores from end users. Then,

online ML algorithms based on SVM and DT were applied
to predict the QoE value.

Evaluation of QoE prediction models from four classicML
methods are conducted by Charonyktakis et al. [63]. These
four ML methods are based on Artificial Neural Network
(ANN), SVM, DT, and Gaussian Naive Bayes. Their experi-
ments were performed on voice applications and utilized QoS
metrics (e.g., jitter, delay, packet loss) as input parameters for
prediction.

Customized NN and Bayesian techniques for predicting
QoE was applied by Vasilev et al. [77]. Network QoS param-
eters such as duration of streams, number of TCP incoming
and outgoing packets, average delay, jitter, packet loss rate,
packet retransmission, and others were used for estimating
QoE.

Three ML-based algorithms such as KNN, RF and DT
are applied to predict QoE, MOS scores by [51]. The MOS
subjective measurements were used to determine QoE impact
factors related to both social context factors and user engage-
ment metrics. Then, these user and context metrics were used
in QoE prediction model.

In [91], a Feed-Forward Back-Propagation Neural Net-
work (FFBPNN) was deployed to predict MOS when input
parameters are network-related factors (e.g., network capac-
ity, network bandwidth, network path constraints). The
authors extended the QoE prediction to maximize MOS by
using a multimodal data fusion technique. This technique
was the first attempt to create a relationship between external
factors (user data) and internal factors (system data). Then,
the fused results were used to construct a QoE model. The
proposed algorithm was applied to optimize QoE on Multi-
media IoT applications (MIoT).

According to [92], [93], [94], the authors proposed a ML
regression-based approach for estimating the QoE by using
network QoS data which is derived from probing networks
via ICMP packets. Moreover, Mustafa et al. proposed to
apply ML methods such as RF, k-NN and ANN for approx-
imating the QoE from network QoS metrics in [95]. Next,
a novel ML-based system is invented in [96], [97] for detect-
ing the live video streams and predicting the QoE from net-
work characteristics LSTM Neural Network is utilized for
detecting the live video stream. On the other hand, Random
Forest technique is utilized for creating the ML classifier
model for inferring the QoE. QoE predictions with ML algo-
rithms e.g., decision tree, k-nearest neighbors, and support
vector machine are investigated by Laiche et al. [98].

Recently, emerging ML techniques, e.g., Deep Learning
(DL), Deep Reinforcement Learning (DRL), Deep Neural
Network (DNN), Deep Q-Learning Network (DQN) and oth-
ers, have been applied to improve the QoE prediction prob-
lem. These research works are demonstrated in [52], [53],
[58], [68], [78], [90]. Still, novel ML-based QoE prediction
methods are being actively investigated.

Lopez-Martin et al. [90] studied three types of prediction
models : classical ML methods, deep learning methods and

VOLUME 10, 2022 84593

B. Saovapakhiran et al.: QoE-Driven IoT Architecture: A Comprehensive Review on System and Resource Management

deep learning with Gaussian Process (GP) classifier. For deep
learning methods, they conducted the experiment on both
Convolution Neural Network (CNN) and Random Neural
Network (RNN). Their results showed that deep learning
with GP classifier gave the best prediction model. Also, they
proposed a QoE detection and prediction based on the combi-
nation of CNN and RNN model to estimate QoE. They used
network information from packets to predict QoE and binary
classification for detecting anomalies on video transmission.

A large-scale data set is collected for training QoE model,
where data is composed of four types of subjective scores
and 89 network parameters by Tao et al. [52]. The authors
developed Deep Neural Network (DNN) for determining net-
work parameters and QoE relations, then it was applied for
predicting QoE scores for mobile video applications.

A hybrid network between DNN and Improved Recur-
rent Neural Network (IRNN) was invented to evaluate the
QoE indicator by Yue et al. [53]. Due to non-seqential and
sequential factors from users, system, context IFs, the authors
attempted to integrate both of these factors into different
layers of RNN. Non-sequential information was incorporated
into Input Layer of RNN. On the other hand, sequential
information was included into Attention Layer of RNN. Their
method was applied on Internet video applications, and it was
shown to outrun other QoE evaluation methods.

In [58], Lekharu et al. proposed a sequential DNN, specif-
ically LTSM-CNN as a QoE prediction model. It is claimed
to have capable of longer memory duration than other CNNs.
So, the prediction is more accurate than others. LTSM-CNN
is applied for video quality estimation of three QoE metrics
e.g., perceived video quality, buffering time, and video quality
switches. Moreover, Reinforcement Learning (RL) is applied
for learning control mechanism to adaptively stream video
data to users while maintaining the QoE. RL is implemented
on top of Dynamic Adaptive Streaming over HTTP (DASH)
framework or Adaptive Bit Rate (ABR) over HTTP. Their
results are shown that improvement of video quality occurs
while degradation in system parameters is reduced. Similar
to [58], Hou and Zhang [78] proposed a Deep Reinforcement
Learning (DRL) to adaptively adjust streaming rate such that
QoE was optimized. Their ABR algorithm exploited Deep
Q-Learning Network (DQN) to improve QoE.

Real-time QoE measurement based on Deep Learn-
ing was used over encrypted traffic by Shen et al. [68].
Their QoE metrics include start-up delay, rebuffering and
video resolution. The authors proposed a new QoE pre-
diction called DeepQoE, which is based on RNN with
RTT as input data. It was shown that their estima-
tion was improved when compared to state-of-the-art
methods.

In brief, it is shown that manyQoE predictions involvewith
ML techniques, which require training and validation data set,
novel Neural Networks, learning algorithms, QoE models,
and relationships between QoE and user/service/system met-
rics. For this reason, QoE prediction stirred a new structure
of IoT architecture with QoE supports.

D. QoE OPTIMIZATION AND CONTROL
If QoE prediction can be feasibly performed in real-time,
QoE-aware system controller targets to achieve its optimal
objective. Control policies in prior works are performed at
one or more of these layers : physical layer (e.g., transmission
control, power control) [6], [54], [99] network layer (e.g.,
network cost) [54] or control layer (e.g., SDN-based con-
troller, NFV-based controller) [6], [7], [64], [65], [66], [99],
application (content-related) layer (e.g., rate control, video-
related parametric control) [5], [57], [58], [64], [66], [78], and
user layer [54].

It is shown that QoE-aware control policies are mostly
related to delivery contents (e.g., video services). Since
video service has a unique characteristics in quality perspec-
tive, various video-related parameters (e.g., buffering, start-
up delay) and quality metrics (e.g., SSIM, VQM) can be
included into control policies. Also, there is a content-related
framework, called Dynamic Adaptive Streaming over HTTP
(DASH), purposely designed to adaptively control data rate
for video streaming services. Prior works such as [5], [57],
[58], [66] incorporated video-related parameters and stated
into their control policies. In addition, the control layer is
often a place where control policies are utilized in SDN-based
or NFV-based networks. Since SDN or NFV enabled net-
works allow us to control end-to-end delay, many previous
studies attempted to propose control policies to optimize user
experiences by these technologies. Examples of those works
are [6], [7], [64], [65], [66], [99]. Still, control of network
configuration can be performed in network layer as in [54]
if not SDN-enabled network. Some other works in [6], [54],
[99] concentrated on control policies over transmission rate
and power. Lastly, He et al. [54] attempted to take user
experiences into QoE consideration.

Recently, most works have studied design control policies
by using emerging ML-based techniques. Thus, we focus
on recent ML-based control policies that are devised for
QoE improvement. A summary of ML-based approaches
for QoE optimization and control is demonstrated in
Table 5. For simplicity, we divide the literature into
content-related policies and network-related policies because
some works mixed different control points into one
policy.

First, let us consider content-related policies in terms of
rate adaptation control and content-related parameters as
shown in [5], [57], [58], [78], [99]. Details of these works are
elaborated below. In [57], Liu et al. proposed a Deep Rein-
forcement Learning (DRL) for Dynamic Adaptive Streaming
HTTP (DASH) to improve video QoE. The reward func-
tion of Deep Q-Learning is a chunkwise subjective QoE,
and their objective is to maximize this QoE. The authors
also proposed to modify NN and learning process for faster
ABR algorithm’s convergence. In short, the rate adaptation
algorithm is designed by using DRL, so QoE is maximized.
This work is similar to [58] and [78] as illustrated in QoE
Prediction Section. In [58], Lekharu et al. used DNN as a
learning network while the RL algorithm is designed for rate

84594 VOLUME 10, 2022

B. Saovapakhiran et al.: QoE-Driven IoT Architecture: A Comprehensive Review on System and Resource Management

TABLE 4. QoE prediction.

adaptation under DASH framework. In [78], DQN is their
learning network, and DRL algorithm is applied for adapting
streaming rate too. Deeplive, a new DRL-based algorithm,
was proposed to maximize QoE for live video streaming ser-
vices by Tian et al. [5]. The authors focused on QoE metrics
such as rebuffering, latency, bit rate switches, frame skipping
and resolution. Moreover, they improved DRL learning time
by exploiting a quick start method with rate-based algorithm
and historical data. They showed that both learning time
and QoE were improved significantly. An adaptive trans-
mission control based on Deep Reinforcement Learning for
3D video streaming was proposed by Zhou et al. [99]. The
authors collected feedback information from video playback
as QoE information. Also, LTSM networks were deployed
for bandwidth and viewport prediction. Instead, historical
information of the blocks was used for Actor-Critic Network
to control transmission speed over Mobile Edge Comput-
ing (MEC) nodes in SDN-based networks. It was shown that
their approach helps improving user experiences.

Next, control policies related to SDN/NFV-based and
network-based controllers are discussed in [6], [7], [54],
[64], [65] and [66]. Some of them such as [64] and [66]
include content-related parameters into their QoE optimiza-
tion. Also, Moura et al. [6] and He et al. [54] incorporate
physical layer control into their problems. Their details are
described in the followings. QFlow was proposed to control
reconfigurable flow parameters in SDN-based networks by
Bhattacharyya et al. [64]. The algorithm is designed by using
Reinforcement Learning technique. The authors focused on
how to assign each client to proper (priority) queue so that

QoE could be improved. Their objective QoE metrics are
based on network QoS metrics and video player state (e.g,
buffered video time). In high load situation, their algorithm
outran well-known solutions in terms of user experiences.
In [65], a ML-based algorithm was proposed for computa-
tional offloading from IoT nodes to Fog servers in multi-hop
IoT networks. Their objective is to improve QoE by minimiz-
ing end-to-end delay and maximizing reliability of network
path by using adaptive switching in SDN controller. The
problem was Multi-objective optimization, and a regression-
based KNN algorithm was designed to determine the best set
of source and destination nodes. ML approach was used to
design a QoE-aware Cognitive Learning Network framework
for optimizing QoE on SDN-based networks by Wang and
Delaney [7]. In their framework, Aggregation, Training and
Prediction modules are added on the current SDN architec-
ture. First, SDN system parameters and application states
are feed into the Aggregation module, and only high impact
metrics will be selected through Training module. In the
Training module, supervised learning e.g., classification and
regression will be used to build a QoE prediction model.
Then, the prediction value will be evaluated and tested in Pre-
diction module. The authors applied the relationship between
QoSmetrics and QoE to estimate QoE. In [6], power usage of
wireless nodes were optimized by using the RL approach and
SDN technology. Since SDN-based wireless network allow
auto-configuration for wireless nodes, automated power con-
trol and channel selection on these nodes are feasible. For
this reason, the RL algorithm is designed to maximize QoE
by controlling transmission power and channel selection via

VOLUME 10, 2022 84595

B. Saovapakhiran et al.: QoE-Driven IoT Architecture: A Comprehensive Review on System and Resource Management

SDN controller. Their QoE prediction was based on SVM,
and it retrieved system parameters such as physical rate,
medium busy as inputs for MOS estimation. Wang et al. [66]
proposed to use RL for selecting Initial Video Segment (IVS)
of video streaming services. Since IVS parameters affect
to QoE performance, a novel framework called Rldish was
deployed at Edge of Content Delivery Network (CDN) to
choose IVS which was the best for QoE. QoE is observed
in real-time at Edge nodes, and it is used as a reward function
in RL algorithm. Their QoE metrics are defined as a weight
combination of a maximum start-up latency, general latency
and buffering time. Then, Rldish was deployed as Virtualized
Network Function (VNF) in HTTP cache server for support-
ing HTTP-based live streaming. The average QoE is signifi-
cantly improved by this proposed framework. A DRL-based
algorithm was proposed to tackle resource allocation prob-
lems on cache capacity and transmission rate over constraint
networks by He et al. [54]. Also, a QoE model was proposed
by including network costs and user IFs. Their simulation
results showed that QoE was improved for tested IoT system.

In conclusion, QoE optimization and control often take
place at content-related and control layers, which are themost
crucial part affecting QoE. However, user experiences can be
worsen if the system misses to incorporate other important
factors in other layers e.g., power control, transmission band-
width, or resource capacity. As a result, there is still a room
for future control policies incorporating all critical QoE IFs
into the design.

V. IoT APPLICATIONS AND QoS/QoE METRICS
IoT applications have a wide range of QoS requirements. It is
best to know what QoS metrics of existing applications are.
So, these metrics can be used for modelling QoE later. First,
we consider important QoS metrics for existing IoT appli-
cations in Subsection V-A. Given these QoS metrics, it is not
suffice for emerging application e.g., multimedia IoT applica-
tions, which demand on high computational resources. Next,
a summary of QoE metrics in current literature is provided
and is classified by optimization problems in Subsection V-B.
Table 7 provides insight of how QoE is modeled for various
types of problems.

Details in various perspectives of the QoS and QoE met-
rics associated with each layer are elaborated. Unlike others,
a comprehensive review of QoS/QoE metrics is extensively
investigated in this section.

A. QoS METRICS AND IoT APPLICATIONS
QoS requirements rely on IoT applications. For example,
some of them demand extremely low packet error rate
while others focus on delay or throughput. Specifically,
video streaming application may require low delay and high
throughput for general multimedia applications. In contrast,
it requires an extremely low error rate when video stream-
ing is used for medical applications. Even both are video
streaming, QoS requirements are vastly different. Determin-
ing of QoS metrics is essential for measuring the application

performance, which is related to user satisfaction. On the
other hand, it also determines the underlying technologies the
service providers have to deploy to support their services.
When QoS metrics are determined, service providers can
consider choices of their technologies.

To determine QoS metrics, applications from various areas
are investigated to see which metrics are mostly concerned in
IoT domain.We consider various domains of IoT applications
such as Multimedia, Industrial IoT, Military, Healthcare and
Transportation applications. QoS metrics of these applica-
tions are listed as the followings : jitter [100], [101], [102],
latency [100], [103], packet loss [100], [101], [104], [105],
[106], [107], [108], throughput [101], [102], [103], [104],
[106], [107], [108], [109], [110], [111], [112], delay [102],
[104], [105], [106], [107], [108], [109], [111], [112], [113],
[114], reliability [110], [112], [114], [115], [116], [117],
[118], availability [113], [116], [118], scalability [115],
energy [107], [109], [118], round-trip-time [101], [116],
maintainability [116], and response time [117]. Thesemetrics
are often utilized tomeasure performance of IoT applications.
Nevertheless, metrics such as packet Loss, throughput, delay
and reliability seem to be used more frequently than others.
Specifically, these metrics are defined at network layers.

Moreover, each application seems to focus on different
group of QoS metrics. For example, healthcare applica-
tions [106], [107], [108], [111] are mainly concerned over
QoS like packet loss, delay and throughput because nature
of healthcare applications require low delay and packet loss.
Loss of little information can highly affect patients or doctors
who use the applications. In transportation, it was shown
by [102], [112], [117], [118] that reliability, delay and packet
loss were used more than others because transportation appli-
cations require less delay and more reliable from service
providers. Some metrics such as jitter and energy may be
concerned in some applications. Jitter was focused on mul-
timedia and industrial information types which was defined
as QoS in [100], [104], [113]. Energy was a key performance
indicator in industrial applications e.g., [101], [103], [109],
[115] because of its costs.

Next, the relationship between application types and QoS
metrics is investigated. It is shown in Table 6. According
to Table 6, applications in Smart home/building, SmartGrid,
Healthcare, Smart Environment, Industrial IoT, Transporta-
tion are discussed. These applications have related QoS met-
rics such as data rate, data volume, packet loss rate, latency,
and reliability. In addition, IoT devices can physically com-
municate via the following technologies such as LTE-M,
NB-IoT, LoRA, WIFI, Bluetooth (BLE), Zigbee and RFID.
Each has different capabilities in terms of coverage, data rate,
power consumption and topology. The choice of physical
technology will be directly correlated to range of applications
and QoS requirements.

According to Table 6, QoS metrics are highly corre-
lated to the application domain. A certain type of appli-
cation indirectly obligates QoS metrics for IoT service
providers. In smart grid, most applications in sub-domain

84596 VOLUME 10, 2022

B. Saovapakhiran et al.: QoE-Driven IoT Architecture: A Comprehensive Review on System and Resource Management

TABLE 5. QoE optimization and control.

acceptmedium to high latency andmedium data rate, whereas
it typically requires high reliability around 98-99.9 percent.
Because controlling high-voltage devices in electrical system
does not require real-time operation, but very high reliability
to prevent the system from failures. In smart home/building,
the application requires low data rate, latency in minutes
but high reliability. This application is not required long
range communication, and devices can be readily installed
in houses or buildings. In healthcare, packet loss rate and
latency are required to be very low while data rate is used
from medium to high. The reason is that health status or
information from both patients and doctors is critical for
diagnostic and emergency response. Moreover, there is no
QoS restriction for environment applications except latency
in a few seconds and update frequency. Environmental data
has no urgently direct impact to human when compared to
other domains. Industrial IoT such as factory automation
requires super low latency (0.25-10 ms) and packet loss rate
(10−9) because every second incurs operation cost. When it
comes to the transportation domain, most applications require
low latency and high accuracy (low packet loss rate), but not
high data rate and volume.

In brief, each layer has its own QoS control methods.
QoS can be controlled in various ways for different types of
networks. However, for End-to-EndQoS, a choice of physical
technology and network types, QoS metrics and application
requirements have to be consistent, so it is feasible to achieve
QoS constraint. To achieve QoS, a set of feasible combination
from physical and network technologies have to be managed
or scheduled by service providers. Their methods will be
dependent on the structure of their systems.

B. QoE METRICS
In a system, QoS metrics can be readily drawn into anyone’s
mind. However, when we discuss about QoE, it requires an
understanding of the underlying structure of QoE models.
Existing QoE metrics collected from previous works are
demonstrated that QoE can be modeled by a combination of
system, service, application and user related metrics. Table 7
is a summary of existing QoE metrics in the literature.

According to Table 7, QoE can be modeled and estimated
by incorporating one or more metrics from network-related
metrics, system-related metrics, content-related metrics, and
user-related metrics.

VOLUME 10, 2022 84597

B. Saovapakhiran et al.: QoE-Driven IoT Architecture: A Comprehensive Review on System and Resource Management

TABLE 6. Related QoS metrics for application.

In the level of a network, QoE objective models should
include network quality, network delay, network parameters
and information, network constraints and data rate. Network
quality, e.g., jitter, loss, impairment indicators, are used for
QoEmodels in the followingworks : [6], [50], [54], [55], [61],
[62], [63], [64], [77], [78], [84], [125], [126]. In addition,
network delay is used for objectively estimating QoE in [61],
[62], [63], [77]. Some works extended their QoE models
to include network states e.g., parameters, statistics related
to network utilization or even network packets themselves.
Example of these works are [52], [77], [83], [90]. Constraints
on networks, e.g., capacity, bandwidth, path constraints, can
be taken into QoE model creation such as in [91]

Additional important metrics for including into QoEmodel
are system-related as shown in Table 7. QoE can be modeled
from multiple system-related states and performance indica-
tors e.g., energy consumption [79], [80], [81], [127], [128],
[129], [130], [131], service access rate [82], resource usage or
resource gain [82], [83], [125], [132], processing time or com-
pletion time [80], [82], [125], hardware outage [131], storage
cost [133], caching capacity [133], data sharing gain [79],
task drop loss [79], task success rate [129], transmission time
(downlink and backhaul) [134], and transmission rate [87].

Nevertheless, some metrics defined in many prior works
cross over multiple parts in the system e.g., time metric like
latency. Latency is incorporated into QoE models in many

works; however, its definition sometimes includes both com-
putational and communication time. It corresponds to both
system and network metrics. Prior works that incorporate
latency into QoE models can be listed as the following :
computation and communication latency [127], application
latency [128], overall latency [79], service latency [129],
[130], application latency [81] and latency (SINR) in data
transmission [133].

Actual experiences are reflected from users via QoE esti-
mation. However, it is highly associated with contents of
applications too such as video, image, voice, game and others.
Prior works focused on modeling QoE mostly in video appli-
cations because of their readiness in QoE subjective mea-
surement. Video-related metrics can be buffering time, video
quality switches, start-up delay, rebuffering, resolution, frame
rate, player state, buffer ratio or chunk size. These metrics are
utilized by QoE models of the following works : [50], [57],
[58], [64], [68], [78], [85], [86], [87], [89], [134]. Also, some
works such as [89], [135] include standard video parametric
or objective indicators (SSIM, VQM, PSNR) into their QoE
models. For image-related applications, image sizes can be
used into QoE model too, as shown in [84]. For game-related
contents, game experience loss is considered for direct user
experience to the content in [136].

It is obvious that user-related metrics are still not often
included into prior QoE models. User-relate metrics can

84598 VOLUME 10, 2022

B. Saovapakhiran et al.: QoE-Driven IoT Architecture: A Comprehensive Review on System and Resource Management

be user tendency, profile, users’ device status, class-based
metrics and others. Mushtaq et al. [50] and Song et al. [49]
included user profiles into their QoEmodel. User engagement
and perception metrics are applied in [6], [51], [52], [53],
[54], [55], [131]. Incorporating social context factor into QoE
was studied by Laiche et al. [51]. Context information related
to user was used in the QoE model by Ting et al. [53], and
Hong and Kim [128].

In conclusion, QoE metrics can be modeled from various
QoE cause factors : user (user and context), application (con-
tent), service, network and physical (system) metrics. The
summary of prior works is shown in Table 7. It can be seen
that most metrics used in the literature are network quality
and energy consumption. Still, user-related metrics are used
by a small number of works. Content-related metrics are
mostly derived from video applications. Due to the lack of
QoE models in other applications e.g., IoT, images, it is an
opportunity for researchers to invent new QoE models.

VI. QoS/QoE AND RESOURCE MANAGEMENT
For IoT systems, QoS/QoE-aware recent problems in
resource management are discussed in this section. Since
IoT systems consist of heterogeneous computing resources
scattering around in Mobile devices, MEC, Fog and Cloud.
Assignment of computational tasks and allocation of com-
puting and memory of resources are indispensable to achieve
QoS/QoE criteria. Problems of resource management in
IoT often fall into the following categories : computational
offloading problems, application or service placement prob-
lems, data caching problems. Recent QoS/QoE-related works
will be reviewed in subsequent sections.

The critical aspects of QoE-aware resource management
are presented in this section. Unlike most prior works, they
are not mainly considered QoE-aware resource management
in various problems. In this work, we focus on how the current
research in the literature tackles the QoE-related issues with
recent ML approaches for emerging IoT systems such as
Edge/Fog/Cloud as follows.

• QoE-aware computational offloading
• QoE-aware resource placement
• QoE-aware data caching

A. QoS/QoE AND COMPUTATIONAL OFFLOADING
Computational offloading is a problem of determining the
best node, which is commonly located in Edge, for mov-
ing tasks from Cloud nodes to these Edge nodes. It is a
crucial procedure for improving user experiences as well as
QoS/QoE metrics. By offloading tasks from Cloud to MEC,
reduction of latency will be significantly lower; thus, users
experience faster response time. Offloading problems often
relate to determine the best location to move computational
workloads so that overall latency of services is minimized.

The problems are extensively investigated in prior liter-
ature e.g., [10], [11], [12]. All of them are comprehensive
survey papers related to offloading problems. According

to [10], the authors studied the classification of offloading
problem types based on offloading flows in Edge architec-
tures, computational model (e.g., channel model, comput-
ingmodel, communicationmodel), offloadingmethodologies
(e.g., optimization, MDP, game theory, ML-based methods).
Most prior objectives are related to minimization in latency,
energy consumption, task dropping, cost and maximization
in computational rate and efficiency. All of them are system-
related factors, not in QoE perspective.

Similarly, a survey by Islam et al. [11] focused on offload-
ing problems at Mobile Edge computing. The authors classi-
fied the problems into three strategic models : computational
model, decision-making model, and algorithmic methodolo-
gies. Prior works in the paper are concerned with minimiz-
ing latency, minimizing energy consumption at end devices,
optimizing computational costs or revenues and minimizing
task failures. Only QoS metrics are taken into optimizing
offloading, but QoE is rarely mentioned in the prior works.

Lastly, offloading problems at MEC with mobility-
awareness are elaborated in [12]. According to [12], most
objectives are related to latency, energy efficiency and execu-
tion time. Unlike others, mobility models are taken into con-
sideration in this survey. Also, the authors extracted features
of existing offloading schemes such as energy efficiency,
latency reduction, execution time, channel states, distances
between Edge and User devices, and offloading failure reduc-
tion. Still, QoE is rarely seen in that review.

Studies in [10], [11] and [12] demonstrated how offloading
problems could be solved by various methodologies. A lot
of works attempted to propose offloading policies based on
classic optimization techniques. Recent works focused on
utilization of ML-based algorithms to offload computational
tasks from Cloud to Edge or from Mobile devices to Edge.
It is investigated by [13], which classified all prior works into
three main ML approaches : supervised learning, unsuper-
vised learning and reinforcement learning. Optimizedmetrics
are still related to only delay, energy, QoS, response time, cost
and others, but QoE is not addressed.

For these reasons, QoE-aware offloading problems are
investigated further in this paper. It is obvious that most of
prior offloading goals are related to QoS factors rather than
QoE. Thus, real user experiences are not captured by existing
offloading policies. Recent QoE-related offloading schemes
are listed in [79], [80], [127], [128], [129], [130], [138],
[139], [140], [141]. The summary of these works is shown
in Table 8.

Let us consider QoE-aware offloading problems, which
are formulated by classic optimization techniques. According
to [127], QoE and trade-off between latency and energy con-
sumption at Edge are considered a computation offloading
scheduling problem. The authors defined QoE factors by
using latency (both computation and communication) and
energy consumption at Edge and Mobile devices. The system
attempted to allocate tasks on Edge computing servers so that
these QoE factors were optimized. The authors formulated
the problem as Mixed Integer NLP, which was solved by

VOLUME 10, 2022 84599

B. Saovapakhiran et al.: QoE-Driven IoT Architecture: A Comprehensive Review on System and Resource Management

TABLE 7. QoE metrics.

84600 VOLUME 10, 2022

B. Saovapakhiran et al.: QoE-Driven IoT Architecture: A Comprehensive Review on System and Resource Management

Reformulated Linearized Technique (RLT) and branch and
bound method. It is shown that overall QoE, energy con-
sumption and latency performance are improved. Unlike oth-
ers, Hong and Kim [128] studied computational offloading
problems from mobile to cloud to optimize trade-off between
energy consumption and application latency. In addition, user
context such as user tendency and battery information was
included into the problem. Dynamic Programming (DP) was
used to maximize QoE, which was calculated by parame-
ters on three domains : context, human and technological
domains. Battery level, application characteristics, amount
of offloaded data are parameters in context domain. User
tendency and per-slot energy consumption and latency were
used in human and technological domain respectively.

Moreover, the problem of offloading task from IoT devices
to Fog nodes was considered for optimizing the trade-
off between energy consumption and task completion time
by [80]. The authors’ objective was to minimize the overhead
of energy and completion time in task offloading processes.
They assumed that the weighted sum of energy consumption
and task completion time was perceived as QoE by users.
A heuristic algorithm was proposed and based on the Gen-
ertic Algorithm and Particle Swarm Optimization for solving
mixed integer nonlinear programming. In [138], Li et al.
proposed Queec, a QoE-Aware Task offloading algorithm,
to offload computing tasks from resource contraint nodes to
Edge. Their algorithm was designed by using Mixed Inte-
ger Linear Programming (MILP). Also, as shown in [139],
Pham et al. applied Branch and Bound techniques to deter-
mine the offloading algorithm maximizing the QoE utility
function. Greedy-based heuristic algorithm is used in [140] to
improve the QoE by minimizing the overall completion time
of the system.

Recently, emerging ML approaches have been applied on
various works as well as offloading problems. We consider
QoE-related offloading policies, which are based on recent
ML techniques. In [79], a RL-based computational offload-
ing algorithm was proposed to select proper MEC devices,
so the quality of experiences in terms of computational
delay, energy consumption and task drop loss were optimized.
This computational offloading technique was used with IoT
wireless devices, which had Energy Harvest (EH) func-
tions. The authors attempted to optimize both performance
and energy consumption. To accelerate convergence time,
Fast Deep Q-Network was utilized together with hotbooting
Q-Learning algorithm. Their simulation results showed that
all quality parameters are improved In [129], Lu et al. created
a novel QoE model incorporating the following metrics :
service latency, energy consumption and task success rate
at Edge Computing nodes. Deep Reinforcement Learning
was utilized for offloading computational workload to these
Edge nodes, such that user satisfaction is higher. In their
works, Double Q-Learning with Dueling Network was used
instead of typical critic network in Actor-Critic deep net-
work. For faster algorithm convergence, the authors proposed
Double-dueling-deterministic policy gradient instead of deep

deterministic policy gradient together with this new QoE
model. Their results showed an improvement in QoE calcu-
lation. In [130], QoE-aware task offloading from Intelligent
Vehicles (IVs) to Edge nodes was investigated. The authors
assumed that IVs had limited caching spaces and computing
capabilities, and Edge nodes also had more caching resources
that could offloading from IVs. A new objective QoE model
was proposed by using restricted energy consumption at IVs
with service latency constraints. An improved DRL-based
algorithm, called RA-DDPG, was proposed to seek for
an optimal offloading solution saving more power. This
DRL-based algorithm was modified with new techniques
e.g., Prioritized Experience Replay (PER) and Stochastic
Weight Averaging (SWA). In [141], Dai et al. proposed
DRL-based a new offloading method from vehicles to Base
Station with UAV assisted Edge nodes, so the QoE function
(weighted sum of MOS) was maximized in IoV networks.

QoE-aware offloading policies are still an unaddressed
area in the current literature. Many prior works focused
on how to minimize latency and energy consumption by
exploiting offloading schemes. Only a few existing works
incorporate QoE into their offloading policies. Still, current
works lack concrete QoE-related evidence because of time
consuming processes in QoE measurement.

B. QoS/QoE AND PLACEMENT POLICIES
Placement problems of applications, containers or services
over resources are widely investigated in IoT system. Many
works attempted to propose placement policies such that
an allocation of computational services over heterogeneous
resources results in the best outcome. Various types of place-
ment problems have been studied e.g., application place-
ment, [81], [82], [125], container placement, [83], virtual
machine placement, [131], [136], user placement, [132], ser-
vice instance placement, [84], [126], [142].

Placement policy helps users receiving faster service
response and better quality (e.g., video) because services are
placed and run on either nearby or appropriate-processing
power nodes. Thus, these policies result in higher user expe-
riences or QoE. In addition, these placement policies are
commonly deployed on Edge nodes [84], [132], [143], or Fog
nodes [81], [82], [125], [126], [142], or Cloud infrastruc-
ture [83], [131], [136].

Still, most of the prior works considered only QoS for
placement objectives. As shown in [14], Salaht et al. pro-
vided a comprehensive survey for service placements in Fog
and Edge Computing. Prior placement policies focused on
latency, resource utilization, cost and energy consumption
as main objective functions. Only a few works considered
incorporating QoE into their placement problems.

Moreover, as demonstrated in [14], many works proposed
placement policies by using common optimization tech-
niques e.g., Integer Programming, Constrainted optimiza-
tion and others. Not many works focused on using Machine
Learning techniques in placement problems. Hence, in this
paper, we will focus only on QoE-related works, and some

VOLUME 10, 2022 84601

B. Saovapakhiran et al.: QoE-Driven IoT Architecture: A Comprehensive Review on System and Resource Management

TABLE 8. QoE-aware computational offloading.

ML-related placement policies because QoS-related and non-
ML-related works are extensively studied in the past.

Let us consider QoS-aware placement algorithms that are
ML-based policies such as [142], [143], and a comprehensive
survey in [14]. In [142], a RL-based placement algorithmwas
proposed tomaximize the value-based utility function for Fog
service placement. This RL-based algorithm together with
DQN is called FogReinforce. According to [143], Zhang et al.
considered Edge server placement problems at Mobile Edge
Computing. Their proposed placement policy was based on
enhanced DDPG algorithm fromDRL technique with Convo-
lutional LTSM networks. It attempted to maximize profit for
connected vehicles and total cost of reserving MEC server
and connection refuses. They exploited the spatio-temporal
correlation between vehicle and traffic with Convolution
LTSMnetworks in their design. Nevertheless, there is a recent
survey investigating AI-related placement policies on Fog
Computing. Similar to [14], most objectives were related
to time, cost, network, resource utilization and energy. QoE
was explicitly taken into account for only a few studies.
Nayeri et al. [15] showed that both classic ML and Deep

Learning techniques were used to find solutions for Fog
service placements.

It is shown that even though placement problems are exten-
sively studied, QoE is not incorporated into prior objective
functions. Therefore, real user experiences are not reflected
at all. Next, recent works that used QoE into their optimiza-
tion purposes will be discussed. The QoE-related placement
policies are summarized in Table 9. Common optimization
approaches have been applied for determining QoE-aware
placement policies into the following papers : [81], [82], [84],
[125], [126], [132] and [136]. On the other hand, QoE-aware
ML-based algorithms have recently been proposed in [83],
[131], [144].

To estimate QoE in real-time, the following works consider
for QoE calculation by using objective methods. In [82], QoE
was based on User IFs or User Expectation (UE) metrics e.g.,
service access rate, required resources, expected process-
ing time. The QoE metric in [81] is Multidimensional-QoE
model : Runtime Context (location, network strength, battery
level), Application usage factors (frequency of usage, over-
all ratings, time spent on application and others), and User

84602 VOLUME 10, 2022

B. Saovapakhiran et al.: QoE-Driven IoT Architecture: A Comprehensive Review on System and Resource Management

Expectation (accuracy, resource usage efficiency, response
time and preferences). Baranwal et al. [125] formulated QoE
by application ratings from expected access rate, required
resource, processing time, and resource ratings from Round
Trip Time, Resource Availability, Processing Speed. Accord-
ing to [132], QoE metric was estimated by using QoS-QoE
correlation model, or the Sigmoid function mapping QoS to
QoE for each user. QoE metric in [84] was modeled from
photo sizes, network QoS and placement location as input
parameters. MOS objective QoEwas estimated from network
impairment parameters (e.g., jitter and loss or G-Model) by
Tsipis et al. [126]. Also, QoE estimation can be application-
related e.g., gaming experience losses in [136]. In [83], Car-
valho andMacedo utilized QoE based on the standard such as
ITU P.1203, then they predicted the QoE by collecting CPU,
Memory, Disk, Network information. Lastly, UE-relatedmet-
ric are defined by using the impact of hardware outages, the
power required by Data Center and performance perceived by
users as shown in [131].

Now let us consider QoE-aware placement policies that
were proposed by recent literature in details. In [82], Mah-
mud et al. proposed a QoE-aware placement policy based
on Fuzzy logic approach for incoming application place-
ment requests in Fog Computing (FC). First, their policy
will prioritize application placement requests based on User
Expectation metrics, Rate of Expectation (service access
rate, required resources and expected data processing time),
by using Fuzzy method. FC instances will be classified by
Statusmetric, or Capacity Class Score, e.g., Round Trip Time,
Resource Availability, Processing Speed. Then, the policy
can map the prioritized placement requests onto potential
FC instances based on UE and Status metrics. A two-phase
QoE-aware placement algorithm in FC environments was
studied by Nashaat et al. [81]. They also proposed a multi-
dimensional QoE model for prioritizing application place-
ment requests. In the first phase, the algorithm prioritizes
new placement requests by runtime context, application usage
e.g., frequency of usage, overall ratings, uninstall ratings,
time spent on application, never-been-used ratings, User
Expectation metrics e.g., accuracy, resource usage efficiency,
response time and preferences. Next, it maps and places the
application placement requests on FC instances by consid-
ering resource status such as proximity, computing capabili-
ties, expected response time. A light-weight QoE-aware and
TOPSIS-based placement policy was proposed for applica-
tion placement in FC in [125]. The modified TOPSIS has
less complexity than common methods solving optimization
problems. Their strategy has two parts : prioritizing appli-
cations based on user experiences and fog instances based
on computing resources respectively. Their QoE model was
based on Rating of Application RoA (expected access rate,
required resource, processing time) used when prioritizing
applications, and Rating of Fog instances RoF (Round Trip
Time, Resource Availability, Processing Speed) used when
prioritizing Fog instances. Lai et al. [132] considered the

problem related to user allocation on shared Edge servers
with finite resources to maximize QoE. A heuristic algorithm
was proposed to maximize QoE by allocating users over
distributed Edge servers in Mobile networks. QoE estimation
for photo-related service placement on Edge was investigated
by Dinh-Xuan et al. [84]. Their QoE model was proposed to
determine the relationship between photo sizes and loading
time. It was modeled by using the logarithmic objective QoE
model as a function of photo fetching time (estimated by
network QoS : link capacity, RTT, packet loss). The authors
suggested that QoE of service placement could be improved
by choosing appropriate photo size, controlling network QoS
and relocating Edge closer to users. According to [126],
a QoE-Aware Rendering Service Allocation (QoERSA) was
proposed to optimize a delay-sensitive placement problem at
Fog computing. It is used to improve QoE for rendering game
service applications and to avoid offloading computational
tasks to Cloud, which results in higher delay. A distributed
algorithm for optimizing QoE in Virtual Machine Placment
problem in Cloud was proposed in [136]. The game theoretic
approach in resource competition was used to design a dis-
tributed algorithm when QoE was considered. They focused
only onVMplacement onCloud side. Themutual satisfaction
among different users appears to converge at a certain point
by using this algorithm.

Still, most recent works attempted to exploit ML meth-
ods for solving QoE-aware placement problems. Example of
these works are [83], [131], and [144]. In [83], a container
placement problem in Cloud environment was investigated by
Carvalho and Macedo. They proposed a Kubernetes sched-
uler extenstion and a resource scheduling policy to maxi-
mize QoE metric, which is defined according to ITU P.1203
standard. They exploited system information such as CPU,
memory, disk and network for QoE prediction. Their predic-
tion approach is based on a supervise learning method with
regression while LSTM or RNN is used as Neural Network
for predicting QoE. The result showed a significant improve-
ment in QoE. A DRL-based placement policy was proposed
for selecting server to deploy Virtual Machines in [131].
Caviglione et al. formulated a multi-objective optimization
by attempting to reduce the impact of hardware outage,
power usage and UE-related performance. The placement
mechanism was implemented on the Cloud side. According
to [144], a new DRL-based algorithm for allocating tasks and
resources in MEC networks is proposed to maximize QoE
function.

In brief, QoE-aware placement policies in prior stud-
ies are elaborated in this section. Even though a large
number of placement problems were proposed, only a
few among them included QoE metrics into their con-
sideration. In contrast to QoS, a good QoE model can
reflect to real user experiences. Most recent works have
focused on optimizing QoE-aware placement on resources
in Cloud/Fog/Edge by using emerging Deep Learning
techniques.

VOLUME 10, 2022 84603

B. Saovapakhiran et al.: QoE-Driven IoT Architecture: A Comprehensive Review on System and Resource Management

TABLE 9. QoS/QoE and placement policies.

84604 VOLUME 10, 2022

B. Saovapakhiran et al.: QoE-Driven IoT Architecture: A Comprehensive Review on System and Resource Management

C. QoS/QoE AND DATA CACHING
Data caching techniques are used to place frequent access
contents, services or applications on computing nodes close
to users. Normally, these nodes are close to users or places
where services are actually operated. Thus, access time to
services or contents are significantly reduced by optimizing
caching policies. Recent caching policies were designed to
reduce latency and decrease traffic in Edge Computing [133],
[134], [146], [147], Mobile Edge Computing (MEC) [85],
[86], [87], [135], [148], [149], Fog Radio Access Networks
(RANs) [150], [151], [152] and other Access Networks [49],
[55], [153].

Since Data caching helps the system reducing latency
between IoT devices and Edge/Fog, or Edge/Fog and Cloud,
minimizing content retrieval time and maximizing Caching
Hit Rate (CHR) will result in significant improvement of
QoS/QoE due to much lower access time. However, many
works proposed new caching policies with only QoS consid-
eration. Only some works studied how to incorporate a real
QoE into the problems.

In QoS-related caching policies, some were designed
to optimize revenues [146], network utility and backhaul
cost [153], content retrieval time [147], [148], [149], cache
hit rate [152], transmission delay [150], and end-to-end
latency [151]. Most prior works focused on minimizing con-
tent retrieval time and maximizing cache hit rate. These
QoS-related caching policies are summarized in Table 10.

Nevertheless, recent caching policies were proposed to
incorporate QoE model (user-related or service-related met-
rics) into their objectives rather than only QoS metrics. For
instance, the following works such as [86], [87], [134], [135]
proposed to incorporate application-related (video-related)
factors into their objective. Specifically, video quality level or
video-related parameters were used in their QoE calculation.
Some others included user-related factors into the QoEmodel
e.g., [49], [55]. It is well-known that the relationship between
QoS and QoE are sometimes used for predicting QoE score.
In [55], [85], logarithmic QoE-QoS correlation models [137]
were used for estimating QoE values. Also, Chou et al. [87]
used both QoS-QoE correlation function between accumu-
lated data rate and video-related metrics as their QoE. A prior
work e.g., [133] included caching-related parameters into
their QoE, which was modeled from storage cost, transmis-
sion latency and caching capacity. These QoE-related caching
policies are summarized in Table 10.

Many QoS-related caching policies were formulated as
optimization problems, and solved by classic optimization
techniques e.g., [146], [153]. In [146], Liu et al. consid-
ered for data caching problem at Edge Computing. They
proposed a heuristic algorithm to maximize data caching
revenues, which was calculated from profit and cost of
data caching subjected to access latency constraints. The
formulation was in Integer Programming (IP) form, and a
suboptimal algorithm was presented and experimented on
real dataset. Joint optimization between load balancing and

backhaul saving in [153] was proposed in cache manage-
ment at Wireless Access Networks. Dai and Yu attempted
to maximize backhaul-aware proportional fairness network
utility by exploiting both caching placement and association
of users to Base Stations. Their objective was a weighted
function of network utility and backhaul saving costs. They
proposed an iterative algorithm iterating between user asso-
ciation and content placement by using IP formulation. More
QoS-related caching policies with classic optimization tech-
niques have been extensively investigated in the literature.

Recently, new caching policies were proposed by exploit-
ing Machine Learning techniques e.g., [147], [148], [149],
[150], [151], [152]. Reinforcement Learning (RL) based
algorithms were presented in [147], [152]. Deep Reinforce-
ment Learning (DRL) based algorithm was demonstrated
in [148], [149], [151] with Double Dueling DQN, [150] with
Dueling DQN. In [152], Lu et al. proposed a RL-based algo-
rithm for minimizing cache hit loss rate in distributed Edge
caching of Fog RANs. Caching contents at Edge nodes such
that average transmission delay and Cache Hit Ratio were
minimized in Fog RANs was investigated by Xu et al. [147].
They proposed a RL-based algorithm to jointly minimize
traffic load and retrieval delay cost. A new caching policy was
used by Guo et al. [150] to minimize average transmission
delay and improve Cache Hit Ratio in Fog RANs. The algo-
rithm is based on the RL framework with Dueling DQN. Joint
optimization between caching policy, offloading policy and
radio resource allocation in Fog RANs was studied in [151].
A new DRL-based caching policy was proposed to minimize
average end-to-end delay by using actor-critic DRL with
DNN. According to [149], a multi-agent DRL-based algo-
rithm was proposed to minimize content access latency and
traffic cost for Content Delivery Networks (CDNs) at Edge.
A novel caching policy for minimizing fetching delay and
maximizing CHR was designed by using distributed Double
Dueling Q-Network (D3QN) and DRL algorithm in [148].
The authors considered for caching microservices at Edge to
minimize fetching delay and maximize hit ratio. The problem
was formulated by using cache node selection and microser-
vice replacement as Markov Decision Process (MDP). Then,
the Distributed Double Dueling Q-Network (D3QN) based
algorithm in the DRL approach was proposed to improve
fetching time, which was shown in their experiments.

More ML-related caching policies can be found in [16],
whose the authors provide a comprehensive survey of caching
problems on Edge. The authors provide Supervised Learn-
ing, Unsupervised Learning, Reinforcement Learning, Deep
Learning and other techniques on their survey. However, most
of their objective caching problems are Cache Hit Rate. Only
a few prior works concerns over impact factors from QoE.

Previously, QoE is not really taken into account for imple-
menting caching policies on Fog/Edge nodes. Still, recent
works took QoE Cause Factors into consideration when
designing data caching policies. For instance, QoE-aware
caching policies were presented in [49], [55], [85], [86], [87],

VOLUME 10, 2022 84605

B. Saovapakhiran et al.: QoE-Driven IoT Architecture: A Comprehensive Review on System and Resource Management

[133], [134] and [154]. According to [55], [85], [134], [155],
the authors used common optimization techniques for solving
caching problems. However, most recent works, e.g., [49],
[86], [87], [133] and [154], attempted to deal with these
problem by using emerging ML-based algorithms such as
Deep Learning.

As discussed, some QoE-aware caching policies were
designed by using optimization methods such as [55], [85],
[134]. In [134], Wang et al. considered UAV deployment
and caching placement at Edge networks, which allowed
data caching for UAVs. They attempted to maximize QoE
by optimizing both UAV deployment and caching place-
ment. The QoE is objective MOS, which is calculated from
downlink and backhaul transmission delay with inspired
video objective function. A new caching policy was imple-
mented in [55] for pre-caching most frequent used videos for
streaming services in Cloud RANs. The problem was divided
into two stages : caching stage and delivery stage. Long-
term transmission-aware caching problem was formulated in
caching stage, but short-term transmission problem was used
in delivery stage. A new iterative algorithm was proposed
to maximize the weighted sum of users’QoE, which was
approximated from long-term estimated QoE. This estimated
QoE was based on QoE-QoS correlation Logarithmic model.
According to [85], a Dual Lagarian-based caching policy was
designed to optimize caching placement and user association
of live video streaming services at MEC. Their QoE was
based on the QoE-QoS correlation Logarithmic model [137].
The proposed algorithm was used to maximize the weighted
sum of this objective QoE in a joint caching placement, video
quality decision and user association problem. A heuristic
data caching method was proposed in [155] to maximize the
overall QoE which was modeled from QoSmetrics, data stor-
age capacity and caching cost. The algorithm was designed
from Genetic algorithm.

In addition to these works, most recent works attempted to
apply Machine Learning approaches for solving QoE-aware
data caching problem at MEC. They can be listed in [49],
[86], [87], [133] and [154]. In [133], DRL-based data caching
at Edge Computing was proposed to reduce storage cost and
transmission latency. The algorithm attempted to maximize
QoE, which is modeled by three major IFs : storage cost,
transmission latency and cache capacity. Their approach was
based on Reinforcement Learning with a DNN approximator
for estimating Q-value. Also, a modified DRL was applied
to reduce convergence time in DRL. A QoE-aware caching
problem for short video transmission at Edge in IoV networks
was investigated in [49]. A DRL-based caching algorithm
was proposed for improving QoE, which was modeled by a
class-based user interest model. Similarly, Wu et al. [135]
focused on caching short videos in mobile networks. The
authors considered joint video quality selection and radio
bearer control problem, which was constructed as a MDP
problem. Their QoE objective is video quality level, which
is quite abstract. Deep Reinforcement Learning was used to
solve that problem, so long-term video quality profit was

maximized and cost of bearer and latency was minimized.
According to [87], a joint problem between caching video
contents and user association at MEC was studied. A new
DRL-based algorithm with Deep Determinisitic Policy Gra-
dient (DDPG)was proposed to reduce backhaul transmission.
The QoE value was estimated by using objective method,
which was calculated from the QoS-QoE correlation func-
tion dependent on accumulated data rate and video-related
parameters. In [86], Luo et al. considered the data caching and
video transcoding selection problem at Edge. A DRL-based
algorithm was proposed for optimizing QoE and energy
consumption on SDN-based networks. The authors included
dynamic of buffer, edge caching, video quality adaptation
and transcoding, and transmission into the algorithm design.
Their QoE function was related to content-related IFs or
video-related factors. In [154], a new DRL-based caching
algorithm was proposed to improve QoE. An algorithm was
designed by deciding on caching location, caching capacity
and caching priority.

In short, most of the prior works investigated data caching
problems when QoS was taken into consideration. Only a few
numbers of works included QoE into their problem formula-
tion. With emerging ML approaches, ML-based algorithms
have been proposed to solved these caching problems. Still,
when QoE is considering, little designs of caching policies
are based on ML approaches.

VII. RELATIONSHIPS BETWEEN QoS AND QoE
Previously, most QoE metrics can be derived from a combi-
nation of various QoS metrics. QoE metrics are defined to
measure the actual user experiences. QoS metrics are used to
indicate the performance state. Also, the performance state
has a direct impact on user experiences. That is the main
reason whymanyQoEmetrics are estimated fromQoS states.
This section will unfold the strong relationship between QoE
and QoS metrics. Prior works’ correlation models between
QoS and QoE are illustrated. Also, recent approaches to
estimate QoE, e.g., ML methods, are further discussed.

Determining the relationships and correlation between
QoS and QoE metrics can help us improve QoE models.
In addition to QoS-QoE correlation models, the relationships
of QoS and QoE in Machine Learning aspects are provided
in this section.

A. QoS-QoE CORRELATION MODELS
Since QoS and QoE have a strong correlation, a number of
prior works utilize their relationship for evaluating user expe-
riences. There are some works such as [55], [84], [85], [87],
[126], [134] that focus on determining the QoE estimation
model from QoS metrics. Some works attempt to predict the
objective model or estimate MOS scores, such as [55], [134].
Predicted the QoE value fromQoSmetrics is the target output
of these works. QoS-QoE Logarithmic model is often used
such as [55], [84], [85], [87], [133], [134]. Also, the summary
of the correlation between QoS and QoE is illustrated in
Table 11.

84606 VOLUME 10, 2022

B. Saovapakhiran et al.: QoE-Driven IoT Architecture: A Comprehensive Review on System and Resource Management

TABLE 10. QoS/QoE-aware data caching policies.

VOLUME 10, 2022 84607

B. Saovapakhiran et al.: QoE-Driven IoT Architecture: A Comprehensive Review on System and Resource Management

The relationships between performance parameters and
QoS metrics at each layer are shown in Table 11. At the
physical layer, research works such as [55], [85], [87], [133],
[134] model the QoE metrics from transmission rate ([55],
[85], [87]) and transmission delay ([133], [134]). At the
network layer, the authors in [84], [126] model the QoE
metrics by including the network QoS such as jitter [126],
packet loss [84], delay [126], and round trip time [84]. At the
application layer, the authors in [55], [83], [85], [87], [134],
[136] attempt to quantify the user experience by including
content-related QoS parametric such as video or game appli-
cations. For video application, the following works [55], [85],
[87], [134] and [83] are used in the QoE model. For game
application, game parametric is used in [136] for the QoE
model. At the user layer, the authors in [128] include user-
related data in their QoE model. Still, it can be seen that none
of the QoE models in our reviews consider the parameters
in the IoT service layer in their QoE model. Because the
IoT service layer is composed of functions for managing IoT
devices, these functions are not standard and common.

In addition, recent QoE models such as [84], [127], [128],
[131], [133], [136] are proposed to include the cost from the
resource plane because user experiences are affected from
resource constraints. For instance, resource constraints on
the storage cost [133], the link capacity [84], the computing
resources [131], [136], and energy consumption [127], [128]
are used to formulate the QoE model.

According to Table 11, the QoEmodels and their QoS-QoE
correlation functions that are formulated in prior works such
as [55], [83], [84], [85], [87], [126], [127], [128], [131], [133],
[134], [136] will be illustrated in the following paragraphs.

In [87] and [85], the authors consider a resource assign-
ment problem for multiple user equipment (UE) when users
request different video streaming requirements frommultiple
MEC base stations (BSs) in a cellular network, which its
resource is limited. The constraint of resources is bandwidth
requirement (fromUE to BS) for the l-th enchancement video
layers, caching capacity at mobile edge, and backhaul link
between BS and core network. Their QoE metric is based on
the logarithmic performance function, which is dependent on
the property of both video-specific parameters and transmis-
sion rate.

Q(ru,v, r̄u,v) = αvln(βv

∑
n
∑

l z
n,l
n,vdv,l

r̄u,v
) (1)

where αv and βv are video-specific parameters, r̄u,v is the
highest aggregated data rate supported by UE type, ru,v =∑

l z
u,l
n,vdv,l is the total allocated data rate for UEs, and zn,ln,v

is the control parameter to allocate the user u requesting the
l-th enhancement layer of video v from the n-th base station.
Their QoE model can be interpreted as the total satisfaction
level. Two layers are involved in the definition of the QoE :
transmission rate, channel quality at the access network layer,
and video parameters at the content layer. The authors showed
that the proposed DDPG-based algorithm can improve QoE
substantially.

According to [55], Sun et al. investigated the problem
of video caching placement at base stations (BS) to relieve
congestion of the link between BS and the core network.
Their objective is to enhance the quality of each user’s sat-
isfaction. The QoE model is formulated by using both user
subjective and QoS performance metrics for video streaming
applications. Its model is based on Weber-Fechner Law, and
its function is logarithmic due to the nature of the QoE. As a
result, QoE can be computed from the correlation function
of QoS in this case. In this paper, the QoE MOS objective
function is estimated by the following equation.

Qnk,u,H = anln(bn
Rnu,H
R̂nk

) (2)

where an and bn are video-specific parameters, Rnu,H is the
actual data rate of user u in the n-th group, R̂nk is the desired
data rate of user u in group n, and H is the matrix of
channel state information. The QoE represents the estimation
of the satisfaction of each user (MOS). The QoE model
is correlated with two QoS metrics: transmission rate and
video-specific parameters. The authors proposed two states
of caching policies that can improve the weighted sum ofQoE
when constraints on backhaul capacity, transmission power,
and storage capacity are also considered.

In [134], the authors considered the offloading traffic
problem by caching placement at Edge in unmanned aerial
vehicle (UAV) deployment. Multimedia content is commonly
distributed fromUAVs to the backhaul system. So, the authors
formulate the QoE model for maximizing user’s satisfaction
with the UAV system. In this work, the objective MOS score
is estimated by the Logarithmic function of the QoE model.
Their objective is to maximize all estimated MOS scores of
users in the cell. Each user’s MOS score is computed by

MOSm,k = C1ln(
1

Dm,k
)+ C2 (3)

where MOSm,k is the MOS score from UAV m to user k ,
C1 and C2 are system-specific parameters derived from the
simulation, and Dm,k is the transmission delay from UAV m
to user k , which is dependent on the function of backhaul
transmission rate from BS to UAV m, signal to noise ratio
SINR and the decision of caching content at BS.

The authors applied this QoE model because it is widely
used for measuring user experience in multimedia stream-
ing. Their QoE formulation is related to transmission rate
and system-specific parameters. The proposed heuristic algo-
rithm is shown to result in the near-optimal solution from their
simulation.

Caching contents at Edge to maximize user experiences
was investigated in [133]. He, Wang and Xu considered
the following influence factors: storage cost, transmission
latency, and caching capacity as their QoE model. The model
was defined as follows.

QoE = −La − ξCo (4)

84608 VOLUME 10, 2022

B. Saovapakhiran et al.: QoE-Driven IoT Architecture: A Comprehensive Review on System and Resource Management

where La is transmission latency which is dependent on SINR
and the amount of transmitted data in each chunk, ξ is the
weight parameter between latency and storage cost, and Co is
the storage cost which is dependent on storage pricing. Also,
it is noted that the transmission latency function is dependent
on the popularity of the content. If the cache hit rate is high
(popularity is high), then the transmission latency is low.

The authors consider QoE influencing factors related
to transmission latency, content popularity (content), and
resource constraints (capacity and cost). Also, the authors uti-
lized the RL approach with DQN to optimize user experience
according to this QoE model. The experiment results show
that QoE is improved by applying the algorithm.

In [84], the caching placement of photo contents in vari-
ous geographic edge devices is investigated to optimize the
user experience or QoE. The authors determine the rela-
tionship between photo loading time, photo size, caching
locations, and network QoS. They model the QoE by using
network QoS metrics such as link capacity, delay, and packet
loss. With these QoS metrics, the TCP throughput model is
derived. When the photo size is known, the system can utilize
the photo size and throughput model to estimate the loading
time. Their QoEmodel is based on this estimated loading time
of cached photo contents.

QoE(t) = −0.80 ln(t)+ 3.77 (5)

Similar to prior works [87] and [85], the QoE models
were Logarithmic function where these coefficients were
calculated by fitting waiting time of context browsing pho-
tos. Instead of using transmission rate, the authors uti-
lized throughput rate to model the QoE function. Since
users’satisfaction in photo content services is mainly due to
the waiting time before the photo appears. Indeed, QoE is
inferred from multiple network QoS metrics reflecting how
fast the system can deliver those photo contents. This QoE
model was derived from QoS metrics in the network layer.
The authors provided the experiment results to demonstrate
the relationship between QoS metrics and the QoE model.

In [126], Tsipis et al. studied the Fog allocation problems
of rendering services for game providers. The problem were
formulated as Facility Location Problem. They constructed
the QoE model by using gaming network impairment to
estimate Mean Opinion Score (MOS) of game users. The net-
work impairment was calculated from network QoS metrics
such as the average communication delay and the average
jitter. Indeed, the MOS Score (QoE) was approximated by
the following equation.

Qt (u) = −0.00000587 N (u)3 + 0.00139 N (u)2

− 0.114 N (u)+ 4.37 (6)

where N t (u) = 0.104 ¯D(u, vs)+ ¯J (u, vs), ¯J (u, vs) is the aver-
age jitter, and ¯D(u, vs) is the average communication delay
of user u at timestep t where vs is the fog renderer. Unlike
the popular logarithmic model, this QoE function is the 3-rd
degree polynomial function derived from gaming experience

loss by network impairment. It is undeniable that good or bad
gaming experiences are mainly dependent on the response
time and the quality of response data from fog renderers
for users. Both are highly related to the network impairment
function N t (u). The MOS model is mainly approximated
from network QoS metrics. Also, the authors proposed the
QoE Rendering Service Allocation method and show that it
can improve the QoE of users from their simulation results.

According to [136], Han et al. investigated the Virtual
Machine Placement problem for Cloud gaming services.
They proposed a game-theoretic algorithm for optimizing the
total cost such that the QoE of users was still under satis-
faction level. The authors utilized the delay, gaming resolu-
tion, and gaming FPS model to formulate the QoE objective,
which was gaming experience loss, similar to [126]. The
delay model was calculated by using the initial loading delay
because the game was loading into the memory from the files
on disks. The gaming resolutionmodel depended on the avail-
able bandwidth on the wireless channel, which affects the fea-
sible transmission rate, and the minimum required FPS. The
gaming FPS model was dependent on how fast the current
capability of resources could render the game. In short, it was
dependent on the allocation of renderer resources too. Their
QoE model was defined as follows.

Ln(a) = λ1Dn − λ2Fn(a)− λ3Vn (7)

where Dn is the total initialization delay for loading the
game from files, Fn(a) is the gaming FPS that is calculated
from a number of allocated resources such as CPU cores,
memory, Vn is the actual gaming resolution, Rn is resources
that are allocated for user n, and λi is the weight parameter
for dividing the impact of each factor (

∑
i λi = 1).

In [136], the QoE model was related to application-
specific parameters, e.g., resolution, FPS, assigned com-
puting resources, and loading delay. Their game-theoretic
approach achieved mutual satisfaction among users in the
finite states when the proposed VM placement method was
deployed.

Carvalho et al. investigated QoE-aware resource schedul-
ing for container-based systems in [83] with the video stream-
ing application. Their QoE metrics were based on the ITU-T
P.1203 standard, the subjective Mean Opinion Score. The
authors used the network level performance indicators to
infer the QoE value. They utilized computing resource data
(CPU, disk, memory, file system, network) as the input ; then,
they performed the subjective test to verify MOS. Their QoE
model was constructed by training the collected input data
using the Machine Learning approach. Since the authors con-
sidered video streaming as the main service, their QoE model
was the MOS subjective score of video referred from the ITU
standard. In short, the authors created the QoE model from
network and resource usage data. The proposed scheduler
significantly improved the average QoE and reduced resource
usage, according to their results.

In [131], the authors investigated the Virtual Machine
placement problem such that the placement policy attempt

VOLUME 10, 2022 84609

B. Saovapakhiran et al.: QoE-Driven IoT Architecture: A Comprehensive Review on System and Resource Management

to optimize multi-objective such as hardware outage, power
consumption and performance. The following equation
defines the QoE model at each time step t .

QoE t =

∑M
i=1 ρ

Lt ,t
i

∑N
j=1 λ

Lt ,t
ij 5N

r=1,r 6=jθyL
t ,t

ij yL
t ,t

ir∑M
i=1

∑N
j=1 λ

Lt ,t
ij

(8)

where M is the number of Physical Machine (PM), N is the
number of VMs, λL

t ,t
ij is the sum of used cpu, disk, network

of i-th Physical Machine at time step t , ρL
t ,t

i is the reliable
factor (impact of churn) of i-th PM and θh,k is the interference
between two classes of VMs deployed on the same PM.

Their QoEmodel was mainly derived from the user experi-
ence impact of co-location interference of the VM allocation
on the same PM. The interference was dependent on the num-
ber of allocated resources among different users. The author’s
QoE model was mainly correlated to performance metrics
such as interference level at PMs. The authors proposed a
heuristic Deep Learning-based policy to place VMs on physi-
cal servers. Their results showed that it could outperform bin-
packing heuristic policy.

Additionally, Luo et al. studied the offloading scheduling
problems at Edge devices to optimize the response time and
battery life for end-user devices [127]. Also, the proposed
offloading policy took the QoE model into account, resulting
in an improvement in both latency and power usage. Latency
and energy consumption models were used to construct the
QoE model. For latency model, it was composed of the
computation latency and communication latency. The energy
cost model was composed of the local execution energy cost
and offloading energy cost of user devices. The QoE-driven
cost was modeled as follows.

Q = TL + ηEN (9)

where TL is the total latency, EN is the total energy consump-
tion, and η is the weighted factor.

Since the purpose of offloading at Edge was to improve
the latency and reduce the power usage on mobile devices,
the user experience was directly affected by both metrics.
The QoEmodel was functions of QoSmetrics such as latency
(computation and communication) and energy consumption
(mobile and edge). According to the results, the proposed
scheme could achieve a better performance in terms of
latency and power usage when compared with benchmark
policies.

Also, the computation offloading problem from Mobile to
Cloudwas investigated in [128] byHong andKim. In addition
to the trade-off between latency and energy consumption,
the authors explicitly constructed the QoE model with the
additional user context, such as user tendency and user battery
level. Their QoE-aware cost function was determined from
energy consumption per timeslot, latency cost at slot t , and
user context cost.

ξt (lt , st) = wQoE (1− αB)
Et (st)
EL
+ (1− wQoE)αB

Dt (lt)
DL

(10)

where B is the normalized battery level, α is the applica-
tion characteristics, Et is the per-slot energy consumption
at timeslot t , st is the amount of transmit data (bits) at slot
t , lt is the remaining bits to tx, Dt (lt) is the latency cost,
Et (st) is the energy cost at timeslot t , EL = B ∗ Cbatt
is the battery capacity in Joules, DL = TτEL is the nor-
malized factors to make unitless combination of energy and
latency, andwQoE is the weight factor between two cost types.
In addition to latency and energy usage, battery level and
user tendency were included in this QoE model to reflect
more accurate user experiences. Their QoEmodel was related
to user context information (battery level, user tendency)
and performance (QoS) metrics (latency and energy con-
sumption). The authors proposed the suboptimal policy for
offloading scheduling with little extra costs while QoE was
significantly improved.

In short, QoE metrics in prior works are highly correlated
with performance metrics. Many works utilized QoS metrics
as the input parameters for estimating the QoE value. They
are also used to approximate MOS scores.

B. PREDICTING QoE FROM QoS METRICS
In the prior section, various QoE metrics are modeled from
the objective function of performance or QoS metrics. How-
ever, when many QoS metrics are utilized to estimate QoE,
the computational complexity of the QoE estimation function
becomes too high. As a result, another approach such as ML
emerges as a proper solution for modeling the QoE functions.
Still, QoS metrics from multiple layers are used as the input
data for building the QoE model.

When QoE output data can be measured or collected,
supervised learning methods such as Naive Bayes, Support
Vector Machine, K-Nearest Neighbor, Decision Tree, Ran-
dom Forest, Regression, and Neural Network can be utilized
for training the model. If QoE output data is not subjectively
measured, then QoE objective function can still be used with
more dynamic ML learning models such as unsupervised
learning, reinforcement learning, and deep learning models.

For supervised learning methods, ML methods for QoE
prediction are proposed in many prior works such as
Naive Bayes (NB) in [50], [63], [77], Support Vector
Machine (SVM) in [50], [63], k-Nearest Neighbor (k-NN)
in [50], [51], [89], Decision Tree (DT) in [50], [51], [62],
[63], [89], Random Forest (RF) in [50], [51], [89], Neural
Network (NN) in [50], [63], [77], [89], [91].

These research works utilized various QoS metrics as their
input for creating and evaluating theQoEmodel. For instance,
network QoS metrics are utilized in [50], [52], [61], [62],
[63], [77], [90], [91] and [53] as the input metrics for training
the QoE mode. Moreover, application-related metrics are
used as the input for the QoE model in [58], [61], [78],
[89] and [68] for modeling the QoE. User-related metrics are
also used as the input data in [51], [52] and [53]. Details
for modeling the QoE from QoS metrics are elaborated as
follows.

84610 VOLUME 10, 2022

B. Saovapakhiran et al.: QoE-Driven IoT Architecture: A Comprehensive Review on System and Resource Management

TABLE 11. Correlation between QoS and QoE.

According to [50], networkQoS, video properties, terminal
characteristics, and user-profile types as the input metrics for
training are used by the authors to train the objective QoE
model. ML methods such as NB, SVM, k-NN, DT, RF, and
NN are deployed to classify a set of input data into MOS
scores. The authors used the QoE subjective measurement or
MOS as the output data for training. The accuracy results for
DT/RF, 4-NN, NB/SVM, and NNT are 75%, 50%, 55-65%,
and 65%, respectively.

In [89], metrics such as full reference parametric (SSIM,
VQM) and application-related metrics (resolution, bit rate,
frame rate) are used as the input for training the model.
The objective ML model is predicted by using DT, NN,
k-NN, and RF methods. The subjective method, such as DCR
(Degradation Category Rating), is used for measuring the
QoE value. The disadvantage is that the collection period of
data is around 3 hours.

Letaifa proposed to optimize end-to-end QoE on video
streaming in an SDN context [61]. At the network layer,
network QoS metrics such as RTT, jitter, bandwidth, and
delay are used as the input for creating the QoE model. At the
application layer, video parameters such as buffering time,
resolution, bit rate, frame rate, VQM, SSIM, PSNR are also
the input for training the QoE model. The authors created an
ML model by fitting experimental data using the regression
approach. The model is then used to estimate MOS when net-
work QoS metrics are known. Training datasets are collected
from real MOS scores and network QoS from simulated SDN
networks. The predicted MOS and the video quality had a
correlation coefficient of around 0.8.

According to [62],Menkovski et al. presentML techniques
for modeling the QoE, which is derived from network and
application QoS parameters. Predicting QoE at run-time by
using network and application QoS metrics is studied in
this work. The authors proposed to build a QoE model in
an online fashion when feedback is a subjective measure-
ment. Online ML methods such as DT are used for training
the model. Prediction accuracy is over 90%. The advantage
of online training is the improvement of automation and
adaptability.

Next, MLQoE (user-centric QoE prediction) for voice/
video related applications was proposed in [63]. Three
datasets of unidirectional VoIP were used for training the
model. Network QoS metrics such as packet loss, delay
packet interarrival time, and jitter were the input of the
QoE model. The authors created the model using a modular
method that applied several ML regression algorithms for
training. Nested Cross-Validation was used to select the best
algorithm from ANN, SVM, Regression Machine, DT, and
Gaussian Naive Bayes classifier. The training procedure was
offline. The result outperformed the standard model such as
E-model, PESQ, WFL, and IQX. The disadvantage was that
the method requires a large-scale dataset to perform well.

In addition, Vasilev et al. in [77] focused on user per-
ception of video quality. Three main QoE factors, such as
average video bit rate, average video bit rate variation, and re-
buffering ratio, were utilized to build a BN model to predict
re-buffering events. Also, the authors used a custom NN to
verify the prediction performance. They utilized Adaptive
Multimedia Streaming Simulator Framework (AMust) in ns-
3 to simulate a large-scale dataset. The simulation duration
is one month with 69,000 video sessions and 50 associated
variables such as context data on network congestion and
characteristics, QoS metrics, QoE factors, and hidden QoE
variables. The prediction achieved around 97% accuracy of
the true distribution. The preparation of the training dataset
was tedious, and the model was not dynamic.

Moreover, Laiche et al. proposed in [51] to include user-
related factors, content-related and system factors for training
the QoE model in the video application. They utilized user
factors and social context factors such as popularity level
(number of likes, dislikes, comments, views) and engagement
level (playtime, view duration). The prediction model was
developed by using ML algorithms such as k-NN, RF, and
DT when quality factors from users were used as the input.
The open-source datasets were collected from crowdsourcing
and composed of 1,125 sample videos with individual logs.
The prediction accuracies for DT, RF, and k-NN were 94%,
82%, and 56 %, respectively. However, this method required
engagement from users to create the model.

VOLUME 10, 2022 84611

B. Saovapakhiran et al.: QoE-Driven IoT Architecture: A Comprehensive Review on System and Resource Management

QoE optimization via Data Fusion (QoEDF) framework
was proposed in [91] for MIoT applications. First, the frame-
work mapped user factors and network data with associated
MOS for creating the QoE model. Then, the framework
attempted to optimize the model continuously. Network QoS
(bandwidth, delay, loss, jitter, throughput, and others), appli-
cation factors (encoding, frame rate, sampling rate), and
historical MOS data were utilized as the input for creating
the QoE model. Neural Network was designed to predict
MOS for real-time QoE optimization. The system monitored
the QoE and network characteristics by collecting massive
historical multimodal data (network-related data and average
MOS scores). The framework optimized QoE with the cycle
of collecting data, training, and updating the model.

It is sometimes difficult to perform a large subjective mea-
surement. In this case, Unsupervised Learning and recent
Deep Learning methods are used to train the QoE model
continuously. For instance, contemporary works such as [52],
[53], [58], [68], and [90] are applied Deep Learning tech-
niques for predicting the QoE model.

As shown in [90], Lopez-Martin et al. investigated how
to predict the QoE from network packet information by
using the Deep Learning model. Network packet informa-
tion and QoS were used as the input for the model. The
authors proposed transforming the network flow information
as Psuedo-images that allow us to apply CNN. The pro-
posed classifier was based on CNN, RNN, and Gaussian Pro-
cess (GP) classifier. A dataset was collected from controlled
environments with several viewers evaluating video transmis-
sion when different network conditions. The accuracy was
around 60%-80% for unbalanced labels and 80%-95% for
other labels. The problem was that the training dataset was
highly unbalanced, and subjective results had noisy results.

In addtion, Tao et al. studied a data-driven QoE predic-
tion for mobile video transmission [52]. Network-related
factors (89 network parameters) were used for training the
QoE model. DNN was utilized for learning the relation-
ship between the network parameters and the subjective test
scores. A large dataset of over 80000 pieces and four subjec-
tive test scores were used. It can outperform other state-of-
the-art methods. The advantage was that the authors used a
large network of information to create the model.

Then, a hybrid Neural Network was designed for the QoE
evaluation in [53] because subjective methods are expensive,
error-prone, and unreliable. The authors used QoS metrics in
user, system, and context to construct the QoE model. The
Deep Learning approach was used with DNN and improved
RNN. Also, real-world datasets from large-scale VoD service
providers were used as the training data. The prediction accu-
racy was around 80%.

In [58], Lekharu et al. proposed theML approach to predict
QoE based on network data. Input data, such as network
data (network bandwidth, actual bit rate, segment size) and
content data (video quality, buffering time, smoothness), were
fed into the training model. A DNN was used to predict the
video quality model by inferring from video bit rates. This

DNN was based on LSTM and CNN (LASH) to estimate the
video quality (QoE) and select a a more appropriate bit rate
to maximize QoE. Also, the Actor-Critic network was used
for training data with a standard HSDPA Norway dataset.

According to [68], Shen et al. proposed a DeepQoE algo-
rithm for measuring the QoE in real-time. Network QoS
metrics such as RTT in upstream traffic were used as the
input for training the model. A Deep Learning approach with
a CNN-based classifier was applied to measure the video
QoE metrics composed of start-up delay, rebuffering event,
and video resolution. The author’s utilized real-world datasets
from two popular service providers (Youtube & Bilibili) in
training. Also, the prediction accuracy was over 90% for
identifying video QoE metrics.

Concisely, various QoS metrics were widely used as the
input metrics for building the QoE model. When the number
of metrics increases, many studies attempt to applyMLmeth-
ods to create the model. Recently, Deep Learning techniques
have been widely studied for QoE Evaluation. Therefore,
QoS metrics are tightly coupled with the QoE model.

VIII. FUTURE DIRECTIONS
Driven by QoE, multiple QoE-related problems are inter-
twined into multi-dimensional problems. First, various
IoT applications require different QoE metrics because of
content-related factors and user-related factors. Users with
the same similarity in characteristics often access to the same
application. So, each IoT application can have its own QoE
perspective or multi-dimensional QoE metrics of applica-
tions. Next, emerging systems e.g., MEC/Fog are multi-tier
architectures. Each tier has different resource specification
and capabilities as well as QoE aspects for system-related fac-
tors.Multi-dimension ofQoEmetrics in thismulti-tier system
arises to be a challenging problem. Resource management for
these multi-dimensional QoEmetrics in a multi-tier system is
non-trivial. Moreover, multi-dimensional QoE Cause Factors
appearing in this architecture have to be further investigated.

According to multi-dimensional characteristics, we envi-
sion an emerging AI-based layers for QoE management with
multi-tier QoE metrics and multi-dimensional QoE factors
on multi-tier systems. Unlike others, the expected AI-based
layers are extensively discussed for opening a path to new
research topics.

A. EMERGING AI-BASED LAYERS FOR QoE MANAGEMENT
According to prior sections, recent ML-based techniques
were proposed to solve various QoE management problems.
These techniques are promising because they can be per-
formed online with no model requirements. While the IoT
system is continuously growing larger, more AI-related parts
are used for QoE management. Most QoE related problems
are multi-dimensional problems that require high computa-
tional resources for processing. It is unavoidable to have a
separated AI infrastructure for managing QoE.

In Figure 7, a new AI-based layers for QoE management
is envisioned to be a part of a larger IoT system. There are

84612 VOLUME 10, 2022

B. Saovapakhiran et al.: QoE-Driven IoT Architecture: A Comprehensive Review on System and Resource Management

TABLE 12. Relations of QoS metrics and QoE learning models.

four major layers such as Data storage layer, Training layer,
Prediction layer and Validation layer that can be implemented
for support QoE management.

In multi-tier architecture, QoE Cause Factors are retrieved
from each tier, and these factors have to be used in various
QoE purposes e.g., QoE prediction, QoE-aware data caching,
QoE-aware placment control and others. These QoE factors
are originated from either Mobile Devices, Edge nodes, Fog
servers and Cloud servers. At multi-tier data storages, QoE-
related factors at each tier are monitored and collected for
later processing. Next, these data are classified and trans-
ferred by appropriate techniques in the Data storage layer for
processing. QoE data can be classified by different IoT appli-
cations and users into multiple datasets. We can see that QoE
management in emerging networks are associated with three
dimensions : tier, application and user domain. Then, QoE
data in each dataset is passing through the Training Layer
for training QoE model. The Training Layer can be used for
building QoE model corresponding to the objective domain.
It can be seen as a set of Neural Networks e.g., DNN, RNN,
CNN, LTSM and other networks inML literature. Given each

completed training model, the Prediction Layer is deployed
with prediction service instances that using training models
for predicting QoE. At last, the QoE metric associated with
each user and application is received and validated by user
subjective test in the Validation Layer. The Validation Layer
provides QoE subjective measurement and validation meth-
ods of training models with dataset for validation. Resulted
QoE metrics will be utilized by similar AI-based architec-
ture for managing resource and control IoT systems as prior
discussed in IV. For these reasons, this envisioned high-level
architecture could be investigated further in the future.

1) DATA STORAGE LAYER
The data storage layer is designed for storing large logging
data from performance metrics. Since logging QoE data
collected from multiple users/applications are substantial,
this layer is designed how we can retrieve data for train-
ing and evaluating QoE in real-time. This layer is quite
critical because the timing for retrieving data affects the
response time from the evaluation. How to retrieve data effec-
tively from the storage will determine the system’s overall

VOLUME 10, 2022 84613

B. Saovapakhiran et al.: QoE-Driven IoT Architecture: A Comprehensive Review on System and Resource Management

FIGURE 7. Emerging AI-based layers for QoE.

performance. Also, these QoE datasets are composed of
large-scale QoS data from various layers, so storing and
efficiently transferring data is challenging. Distributed file
systems are sometimes necessary for improving computa-
tion time and performance. Typically, there are two types
of datasets: training and validation datasets. The training
dataset is utilized for creating a model. Then, the valida-
tion dataset is applied to evaluate the model’s accuracy. For
instance, the authors in [51] divided the whole dataset into
70% training dataset and 30% validating dataset. Datasets can
be drawn from various sources, such as real data collected
from the environments and simulated data from the controlled
environments. The time for collecting the data depends on
the proposed model, whether it requires a large dataset for
training or not.

For instance, some datasets were simulated and acquired
from controlled environments such as [61] and [77]. In [61],
the authors acquired the network data from the simulated
SDN network. Similarly, Vasilev et al. in [77] collected the
statistical data from ns-3 simulated networks, and the col-
lection period was around one month. The datasets were
composed of 69000 video sessions with 50 associated vari-
ables which were related to the data of network congestion
and characteristics, QoS metrics, QoE factors, and variables.
In contrast, some works utilized the dataset acquired from the
real system, such as [51], [62], [63], and [91]. Menkovski
et al. in [62] collected data from network probing from the
real system. Also, the dataset utilized for creating the model
in [51] was open-source and derived from crowdsourcing
composed of 1125 sample videos and individual logs. The
datasets in [91] were created from monitoring and collecting
network statistics of the real system.

Because each application requires different QoE points of
view, multimedia applications are focused on video quality
perception, while tracking applications are concerned with
the accuracy of the location of the tracked objects. On the

same network/system, it is feasible that multiple QoE models
can be created from different datasets or models for various
applications. It is seen that the dataset for each QoE model
can be quite large and subtle and demand a long period of
aggregation. Moreover, if data is collected from different
geographic locations, the decentralization of datasets will
occur. How to categorize and manage these datasets in a
systematic way in this layer is still questionable and requires
further investigation.

The Data Storage Layer is responsible for managing large-
scale data storing for training and validating. Sometimes QoE
data are collected and distributed all over different geographic
areas. How to store and retrieve data for training and validat-
ing from either centralized or decentralized storage is quite
challenging. Most of the time, data can be either structured
or non-structured; storing data efficiently is not trivial.

2) TRAINING LAYER
The Training layer is designed for creating the ML model
by ingesting data from the Data Storage layer. It receives
corresponding datasets with important statistics of the phys-
ical, network, and other QoS-related metrics for train-
ing the proper QoE model. Training a particular model
requires a significant amount of computing resources. It is
a time-consuming process. Also, training the model requires
a specific network design for the learning model. QoE
models of applications have different learning structure
models. By separating the training process from the eval-
uation process, the system can process the computational
workloads in parallel. Still, more computing resources are
required. As a result, this layer help saves processing time
while the QoE prediction can still be estimated in run-time
applications.

In addition, recent works have used various Machine
Learning approaches to create the QoE model. As prior dis-
cussion, the Supervised Learning approaches such as NB,

84614 VOLUME 10, 2022

B. Saovapakhiran et al.: QoE-Driven IoT Architecture: A Comprehensive Review on System and Resource Management

SVM, k-NN, DT, RF, and NN were widely used in prior
works such as [50], [51], [62], [63], [77], [89], [91]. These
approaches require a good dataset with QoE subjective mea-
surement. Training datasets are collected from the environ-
ments, which can be drawn from the Data Storage Layer.
It was shown that datasets were collected from simulated
networks such as [51], [61], [62], [77], [89]. In [61], statistics
data was monitored and collected from simulated SDN net-
works. Furthermore, datasets in [77] were drawn from ns-3
simulated networks. In contrast, the authors in [62] collected
data from network probing in the real system. Open-source
crowdsourcing data from the real system in [51] was used to
create the model. Also, some works included subjective mea-
surement procedures to create their datasets, such as MOS
subjective measurement in [50], [89] with DCR, and [62].

Deep Learning has recently become the state-of-the-art
approach for creating the ML model due to its impressive
prediction accuracy. For instance, DeepQoE in [68] was pro-
posed to predict the QoE factors; its prediction accuracy was
over 90% to identify the start-up delay, rebuffering event,
and video resolution. Their model was CNN based classifier
for measuring video QoE metrics. Various models of Deep
Learning approaches were proposed in prior works, e.g.,
DNN in [52], [53], [58], and CNN in [68], [90]. In [58],
Lekharu et al. used Deep Neural Network (DNN) to predict
the video quality model by inferring from video bit rates.
Their DNN was based on LSTM and CNN (LASH), and it
was used to estimate the QoE (quality of videos) and select
the proper bit-rate to maximize QoE. According to [53],
the authors deployed DNN with improved RNN to train the
model with VoD service providers’ real-world datasets. The
custom DNN model in [53] can predict the QoE with around
80% of prediction accuracy. The authors in [52] applied
the DNN model to learn the relationship between network
information and the subjective test scores, and their dataset
was composed of more than 80000 pieces of network data.
The new classifier was investigated in [90] and based on
CNN, RNN, and Gaussian Process classifier. The QoE Deep
Learning-based model was just another type of network with
some intensive label computation for learning purposes.

In short, different types of QoE models can be designed
in the Training Layer. Then, computation resource issues
become a concern in achieving good performance. Sufficient
resources must be allocated to match the amount of data
transferred from the Data Storage Layer and the computation
requirements. Once the model training is complete, it must
be validated in the Validation Layer. After completing the
validation, the model will be deployed into the Prediction
Layer so that the system can evaluate QoE in real-time. How
to efficiently manage resources in the Training Layer for each
model can be further studied. Transferring a massive amount
of data from each dataset between the Training Layer and
the Validation Layer for learning and evaluating purposes
is quite challenging. Additionally, the collected data may
be distributed among various geographic locations, and the
decentralized model may be necessary for deployment.

3) PREDICTION LAYER
The Prediction Layer is where the deployment of the QoE-
designed model implements to predict the target outcome.
When the deployment of the QoE model has proceeded,
it monitors and retrieves necessary input data from various
points of system layers, e.g., user information, context-related
data, content parametric, control/network parameters, and
physical data. Then, the system processes all of the data with
the deployed model, and the target output is computed and
released for being used by other modules.

Deploying the model in run-time can be different from the
trained model. Several optimization techniques used to sim-
plify themodel help the deployment consume fewer resources
with faster processing time. Most of the time, computing
resources are restricted during high workload utilization.
Helpful techniques such as pruning [156], quantization [157],
[158], and aggregation can be applied to optimize the ML
model. Similarly, as discussed in [159], the computational
cost of theDeep Learningmodel can be improved by reducing
the spatial complexity, such as pruning the model parameters,
parameter sharing, network quantization, and others.

First, The quantization approach was proposed by [157]
to improve the speed of the forward and backward propaga-
tion calculation by lowering bits of models from Float Point
32 bits to Integer 8 bits. The technique attempt to reduce the
computation cost while retaining the accuracy to be nearly
the same. In [158], research at QualcommAI Research inves-
tigates how the quantization technique can reduce the com-
putational cost and latency in Neural networks. The authors
discussed how the AIModel Efficiency Toolkit (AIMET), the
library for quantization and compression of the AI model.
The tool provided an efficient way of optimizing the Neural
Network model. Network pruning can be used to prune the
completed trained model or be included in the online training
procedure. In practice, pruning the network of the completed
trained model typically gives higher accuracy than the other
approach, as shown in [160]. Examples of pruning techniques
are shown in [156], [161]. Additionally, both pruning and
quantization techniques simplify the model while improving
the prediction accuracy [161]. Parameter sharing is the clus-
tering approach for grouping a pattern of parameters, so the
computational costs decrease.

In the production environment, various approaches are
utilized for deploying the model, such as a web service,
a batch prediction, and an embedded model. The model is
completely trained and validated for web services before its
deployment, so all users can access the model as a service
via the Application Interface. On the contrary, the batch
model is continuously updated and retrained with the updated
dataset according to its scheduling update time. In practice,
computing resources tend to be limited, so the simplified
or embedded model is more suitable in resource-constrained
environments.

Given the infrastructure, the intensive computing model
requires additional Hardware such as Graphic Processing
Units (GPUs) and Tensor Processing Units (TPUs). The

VOLUME 10, 2022 84615

B. Saovapakhiran et al.: QoE-Driven IoT Architecture: A Comprehensive Review on System and Resource Management

model can be coded in various tools, e.g., Keras, Pytorch,
and TensorFlow. Also, recent popular approaches [162] for
deploying these models are container-based deployment,
e.g., Docker or Kubernetes. When the model is deployed
onto these systems, the model’s scalability for servicing
users becomes more elastic than the traditional approaches.
It is proper to deploy a medium-to-large scale model when
resources on the infrastructure are numerous. For resource-
limited environments, simplified and optimized ML models
are recommended for deploying as an embedded model.

In brief, the Prediction Layer is focused on the model
deployment. The run-time model is not necessarily the same
as the complete-trained model. It is dependent on the avail-
able resources in the infrastructure. Commonly, the well-
trained model can be further optimized and reduced its size
by various techniques, e.g., pruning, quantization, parameter
tuning, and sharing. Each application may prefer different
types of deployments, e.g., as aWeb service, batch prediction,
or embedded model. Web service is proper when the applica-
tion usage does not often require updates on the model. When
the model has to be quite dynamic, the regular update on the
model is preferred as in the batch prediction. If resources are
limited, the embedded model is suggested rather than other
models. Even though tools or languages used for creating
models are different, they can still be deployed on scalable
container-based technologies such as Docker or Kubernetes.

4) VALIDATION LAYER
The Validation Layer provides a mean to validate data for the
Training Layer and the well-trained model created from the
Training Layer. When the model is completely trained, it has
to be tested and validated before deployment for run-time
prediction. To validate the model requires another dataset for
validation purposes. Typically, the whole dataset are divided
into multiple datasets for training, validating and testing
purposes. Various approaches for splitting datasets, such as
holdout set, cross-validation, and others, can be applied to
verify whether the accuracy of the model is acceptable or not.
Typically, the datasets are divided into the training dataset
70% and the validation dataset 30% as shown in [51]. How-
ever, the additional holdout and cross-validation methods can
be used to divide datasets to improve the model accuracy
and to validate the well-trained model. For instance, holdout
and cross-validation are used in [163] to validate their ML
model. The additional holdout dataset is normally used for
eliminating the overfitting of the model after the validation
as the final evaluation.

The Cross-Validation (CV) techniques are commonly used
for model evaluation and selection in the ML field. Various
Cross-Validation techniques such as k-fold CV [163], [164],
Leave-One-Out CV, Leave-One-Group-Out CV, Nested
CV [63], and others are used to evaluate the model. Unlike
holdout fixed dataset, k-fold Cross Validation applies k-
iteration of training with k non-overlapping splitting datasets
from the original dataset to reduce the dataset’s bias/skew of
training. Its performance is the average value from each round

performance. The variance of k-fold CV is Leave-One-Out
CV, Leave-One-Group-Out CV, and Nested CV. For Leave-
One-Out CV, each sample data is pulled out for validation
while all other data are used for training. For Leave-One-
Group CV, the dataset is categorized according to the data
group, and only one group of the data is processed in each
fold/iteration of training. For Nested CV, k-fold CV is applied
at two places: inner and outer iteration. In the outer iteration,
the k-fold CV is used as the original k-fold CV for evaluating
the model. In the inner iteration, k-fold CV is used in the
training dataset parts for hyperparameter tuning. For instance,
the authors in [164] use a 5-fold cross-validation method for
their ML model to predict web QoE metrics from network
QoS. Nested CV is utilized in [63] discussed in the prior
section. This method is also used in model selection to select
the best-performing model.

Additionally, input data validation is also critical for train-
ing an ML model. If the input data is skewed, biased, and
prone to error, the prediction accuracy is likely low. More-
over, the quality of input data is so critical that it can deter-
mine the actual accuracy of the model according to [165].
The well-trained model can result in an inaccurate predic-
tion outcome with improper raw input data. In [165], the
authors investigated how to validate large input data into an
ML pipeline when data has no pattern, is schema-free, and
training skew. In [166], the authors proposed the TensorFlow
Data Validation (TFDV), developed by Google, for validating
the ML model in the ML platform. It was used to detect the
anomaly data scheme arriving at the ML pipeline, so systems
and staff can quickly solve early anomaly detection.

When QoE is in consideration, the subjective data for each
user has to be collected and included in the training and
validation procedure. In the previous section, various subjec-
tive measurement types can evaluate actual user experiences
or QoE metrics. For offline measurement, all subjective test
data, e.g., MOS, DMOS, has to be prepared and retrieved
from users before training and validating. For onlinemeasure-
ment, subjective measurement proceeds continuously until
the model’s accuracy reaches the target. As a result, monitor-
ing data and filtering the quality of the input data is necessary
for this layer. The User Interface development for evaluating
user experience is essential to facilitate access.

In summary, the Validation Layer is responsible for three
main tasks: ML model validation, data validation, and QoE
subjective test/measurement for validation purposes. For the
model validation, Cross-Validation is commonly used for
managing the whole dataset for training and validating the
model. The interaction between the Training Layer and the
Validation Layer is quite necessary, and how to interact
between those layers is quite challenging. Since the input
data for training and validating the model is crucial, recent
works focused on controlling the quality of the large-scale
dataset in the ML pipeline. When the QoE model is concen-
trated, subjective score data or metrics related to user experi-
ences are essentially collected and proved to be genuine and
integrity.

84616 VOLUME 10, 2022

B. Saovapakhiran et al.: QoE-Driven IoT Architecture: A Comprehensive Review on System and Resource Management

FIGURE 8. QoE domains.

B. QoE DOMAINS FOR MULTI-TIER QoE METRICS AND
MANAGEMENT
In multi-tier architecture, QoE metrics and QoE management
require a large number of information from different comput-
ing nodes, location, and tiers. It is known that acquiring data
from multiple nodes locating at different places and tiers can
result in deterioration of communication delays. Since each
tier has its own QoE Cause Factors, estimating QoE in local
domain can faster QoE-aware decisions and improve QoE
management in terms of resource management. QoE metric
in small domain e.g., Edge tier can be extended for larger
domain such as Edge+Fog tier and Edge+Fog+Cloud tier
respectively. A set of QoE domains is depicted in Figure 8.

In Figure 8, there are three QoE domains when multi-tier
system is considered. Examples of QoE domains are Edge
domain, Fog/Edge domain and Cloud/Fog/Edge domain.
QoE metrics, estimated by cause factors related to its tier, can
be used for local resource management for multiple users and
applications. This approach can significantly improve QoE
by achieving faster response time for controlling resources
to match up with real-time user perception. In our opin-
ion, incorporating three domains for QoE management is a
non-trival multi-dimensional problem, which requires further
studies.

IX. CONCLUSION
Driven by QoE requirements, many studies focused more
on QoE management in IoT system. Still, it is not obvious
what critical components are necessary and what resource
management techniques are typically used in QoE-Driven
architecture. Further studies on these hot topics should be
conducted. In this paper, we provide a comprehensive review
of vital components in QoE-Driven architecture e.g., QoE
Cause Factors, QoE measurement and indicators, QoE Pre-
diction, QoE optimization and control. Prior studies related
to these components were reviewed by focusing on recent
ML approaches. Then, QoEmetrics were modeled from these
cause factors. We summarized QoE metrics and QoE opti-
mization objectives for various kind of problems e.g., predic-
tion model, optimization and control, resource management
respectively. For resource management, we categorized into
three main problems for emerging IoT architectures : QoE-
aware offloading problems, QoE-aware placement problems

and QoE-aware data caching problems. The reviews are
mostly based onML approaches, whichwas not considered in
prior surveys. Since ML-based approaches have been widely
used to predict QoE and solve resource allocation problems,
this promising approach requires a novel concept of AI-based
layers for managing QoE. In our discussion, these layers, e.g.,
the Training Layer, the Validation Layer and the Prediction
Layer, can be used as the guideline for possible future works,
pending further investigation.

ACKNOWLEDGMENT
The authors are grateful for Prof. Dr. S. Serapin from
the Professional Authorship Center, National Science and
Technology Development Agency, for fruitful discussion in
manuscript editing.

REFERENCES
[1] M. Yang, S. Wang, R. N. Calheiros, and F. Yang, ‘‘Survey on

QoE assessment approach for network service,’’ IEEE Access, vol. 6,
pp. 48374–48390, 2018.

[2] A. Itu-T 1: Recommendation P. 10/G. 100, New Appendix I–Definition of
Quality of Experience (QoE), Telecommunication Standardization Sector
of ITU, document 100:2007, 2006.

[3] K. Brunnström, S. A. Beker, K. De Moor, A. Dooms, S. Egger,
M. N. Garcia, T. Hossfeld, S. Jumisko-Pyykkö, C. Keimel, M. C. Larabi,
and B. Lawlor, ‘‘Qualinet white paper on definitions of quality of expe-
rience,’’ Eur. Netw. Quality Exp. Multimedia Syst. Services (COST Action
IC), vol. 3, no. 2012, pp. 1–24, 2012.

[4] L. Skorin-Kapov, M. Varela, T. Hoßfeld, and K.-T. Chen, ‘‘A survey of
emerging concepts and challenges for QoE management of multimedia
services,’’ ACM Trans. Multimedia Comput., Commun., Appl., vol. 14,
no. 2s, pp. 1–29, Apr. 2018.

[5] Z. Tian, L. Zhao, L. Nie, P. Chen, and S. Chen, ‘‘Deeplive: QoE opti-
mization for live video streaming through deep reinforcement learning,’’
in Proc. IEEE 25th Int. Conf. Parallel Distrib. Syst. (ICPADS), Dec. 2019,
pp. 827–831.

[6] H. D. Moura, D. F. Macedo, and M. A. M. Vieira, ‘‘Wireless control
using reinforcement learning for practical web QoE,’’ Comput. Commun.,
vol. 154, pp. 331–346, Mar. 2020.

[7] L. Wang and D. T. Delaney, ‘‘QoE oriented cognitive network based on
machine learning and SDN,’’ inProc. IEEE 11th Int. Conf. Commun. Softw.
Netw. (ICCSN), Jun. 2019, pp. 678–681.

[8] K. Fizza, A. Banerjee, K. Mitra, P. P. Jayaraman, R. Ranjan, P. Patel, and
D. Georgakopoulos, ‘‘QoE in IoT: A vision, survey and future directions,’’
Discover Internet Things, vol. 1, no. 1, pp. 1–14, Dec. 2021.

[9] A. A. Barakabitze, N. Barman, A. Ahmad, S. Zadtootaghaj, L. Sun,
M. G. Martini, and L. Atzori, ‘‘QoE management of multimedia stream-
ing services in future networks: A tutorial and survey,’’ IEEE Commun.
Surveys Tuts., vol. 22, no. 1, pp. 526–565, 1st Quart., 2019.

[10] H. Lin, S. Zeadally, Z. Chen, H. Labiod, and L. Wang, ‘‘A survey on
computation offloading modeling for edge computing,’’ J. Netw. Comput.
Appl., vol. 169, Nov. 2020, Art. no. 102781.

[11] A. Islam, A. Debnath, M. Ghose, and S. Chakraborty, ‘‘A survey on task
offloading in multi-access edge computing,’’ J. Syst. Archit., vol. 118,
Sep. 2021, Art. no. 102225.

[12] S. K. Uz Zaman, A. I. Jehangiri, T. Maqsood, Z. Ahmad, A. I. Umar,
J. Shuja, E. Alanazi, and W. Alasmary, ‘‘Mobility-aware computational
offloading in mobile edge networks: A survey,’’ Cluster Comput., vol. 24,
pp. 1–22, Dec. 2021.

[13] A. Shakarami, M. Ghobaei-Arani, and A. Shahidinejad, ‘‘A survey on
the computation offloading approaches in mobile edge computing: A
machine learning-based perspective,’’ Comput. Netw., vol. 182, Dec. 2020,
Art. no. 107496.

[14] F. A. Salaht, F. Desprez, and A. Lebre, ‘‘An overview of service placement
problem in fog and edge computing,’’ACMComput. Surveys, vol. 53, no. 3,
pp. 1–35, May 2021.

[15] Z. M. Nayeri, T. Ghafarian, and B. Javadi, ‘‘Application placement in fog
computing with AI approach: Taxonomy and a state of the art survey,’’
J. Netw. Comput. Appl., vol. 185, Jul. 2021, Art. no. 103078.

VOLUME 10, 2022 84617

B. Saovapakhiran et al.: QoE-Driven IoT Architecture: A Comprehensive Review on System and Resource Management

[16] J. Shuja, K. Bilal, W. Alasmary, H. Sinky, and E. Alanazi, ‘‘Applying
machine learning techniques for caching in next-generation edge networks:
A comprehensive survey,’’ J. Netw. Comput. Appl., vol. 181, May 2021,
Art. no. 103005.

[17] Y. Shen, T. Zhang, Y. Wang, H. Wang, and X. Jiang, ‘‘Microthings:
A generic IoT architecture for flexible data aggregation and scalable
service cooperation,’’ IEEE Commun. Mag., vol. 55, no. 9, pp. 86–93,
Sep. 2017.

[18] S. Krco, B. Pokric, and F. Carrez, ‘‘Designing IoT architecture(s): A Euro-
pean perspective,’’ in Proc. IEEE World Forum Internet Things (WF-IoT),
Mar. 2014, pp. 79–84.

[19] W. Lv, F. Meng, C. Zhang, Y. Lv, N. Cao, and J. Jiang, ‘‘A general
architecture of IoT system,’’ in Proc. 7 IEEE Int. Conf. Comput. Sci.
Eng. (CSE) IEEE Int. Conf. Embedded Ubiquitous Comput. (EUC), vol. 1,
Jul. 2017, pp. 659–664.

[20] I. Lee, ‘‘The Internet of Things for enterprises: An ecosystem, architecture,
and IoT service business model,’’ Internet Things, vol. 7, Sep. 2019,
Art. no. 100078.

[21] C.-L. Zhong, Z. Zhu, and R.-G. Huang, ‘‘Study on the IoT architecture and
gateway technology,’’ in Proc. 14th Int. Symp. Distrib. Comput. Appl. Bus.
Eng. Sci. (DCABES), Aug. 2015, pp. 196–199.

[22] C. Sarkar, S. N. A. U. Nambi, R. V. Prasad, A. Rahim, R. Neisse, and
G. Baldini, ‘‘DIAT: A scalable distributed architecture for IoT,’’ IEEE
Internet Things J., vol. 2, no. 3, pp. 230–239, Jun. 2015.

[23] Fiware Foundation. The Opensource Platform for our Smart Digi-
tal Future—FiWARE. Accessed: Jan. 12, 2020. [Online]. Available:
https://www.fiware.org/

[24] R. Duan, X. Chen, and T. Xing, ‘‘A QoS architecture for IoT,’’ in Proc.
Int. Conf. Internet Things 4th Int. Conf. Cyber, Phys. Social Comput.,
Oct. 2011, pp. 717–720.

[25] J. Guth, U. Breitenbücher, M. Falkenthal, P. Fremantle, O. Kopp,
F. Leymann, and L. Reinfurt, ‘‘A detailed analysis of IoT platform
architectures: Concepts, similarities, and differences,’’ in Internet Every-
thing. Singapore: Springer, 2018, pp. 81–101. [Online]. Available:
https://link.springer.com/chapter/10.1007/978-981-10-5861-5_4

[26] Eclipse Foundation. (2016). The Three Software Stacks Required
for IoT Architectures. Accessed: Nov. 18, 2020. [Online]. Available:
https://iot.eclipse.org/

[27] Intel. The Intel IoT Platform Architecture Specification White Paper
Internet of Things (IoT). Accessed: Nov. 18, 2020. [Online]. Available:
https://www.scribd.com/document/386515116/Iot-Platform-Reference-
Architecture-Paper

[28] Microsoft AzureIoT IoT. Microsoft Azure IoT Reference Architecture.
Accessed: Nov. 18, 2020. [Online]. Available: https://docs.microsoft.
com/en-us/azure/architecture/reference-architectures/iot

[29] J. Guth, U. Breitenbucher, M. Falkenthal, F. Leymann, and L. Reinfurt,
‘‘Comparison of IoT platform architectures: A field study based on a
reference architecture,’’ in Proc. Cloudification Internet Things (CIoT),
Nov. 2016, pp. 1–6.

[30] D. A. Menascé, H. Ruan, and H. Gomaa, ‘‘QoS management in service-
oriented architectures,’’ Perform. Eval., vol. 64, nos. 7–8, pp. 646–663,
Aug. 2007.

[31] I. Udoh and G. Kotonya, ‘‘A dynamic QoS negotiation framework for IoT
services,’’ inProc. IEEEGlobal Conf. Internet Things (GCIoT), Dec. 2019,
pp. 1–7.

[32] F. Li and S. Clarke, ‘‘A context-based strategy for SLA negotiation in the
IoT environment,’’ in Proc. IEEE Int. Conf. Pervasive Comput. Commun.
Workshops (PerCom Workshops), Mar. 2019, pp. 208–213.

[33] E. Mingozzi, G. Tanganelli, and C. Vallati, ‘‘A framework for QoS nego-
tiation in things-as-a-service oriented architectures,’’ in Proc. 4th Int.
Conf. Wireless Commun., Veh. Technol., Inf. Theory Aerosp. Electron. Syst.
(VITAE), May 2014, pp. 1–5.

[34] X. Zheng, P.Martin, K. Brohman, and L.D.Xu, ‘‘Cloud service negotiation
in Internet of Things environment: A mixed approach,’’ IEEE Trans. Ind.
Informat., vol. 10, no. 2, pp. 1506–1515, May 2014.

[35] D. A. Menasce and V. Dubey, ‘‘Utility-based QoS brokering in service
oriented architectures,’’ in Proc. IEEE Int. Conf. Web Services (ICWS),
Jul. 2007, pp. 422–430.

[36] OpenIoT Consortium. D4.6. Quality of Service (QoS) for IoT services.
Accessed: Nov. 29, 2020. [Online]. Available: https://cordis.europa.
eu/docs/projects/cnect/5/287305/080/deliverables/001-OpenIoTD46
Draft.pdf

[37] L. Li, S. Li, and S. Zhao, ‘‘QoS-aware scheduling of services-oriented
Internet of Things,’’ IEEE Trans. Ind. Informat., vol. 10, no. 2,
pp. 1497–1505, May 2014.

[38] Y. Banouar, S. Reddad, C. Diop, C. Chassot, and A. Zyane, ‘‘Monitoring
solution for autonomicmiddleware-level QoSmanagement within IoT sys-
tems,’’ in Proc. IEEE/ACS 12th Int. Conf. Comput. Syst. Appl. (AICCSA),
Nov. 2015, pp. 1–8.

[39] G. White, A. Palade, and S. Clarke, ‘‘Qos prediction for reliable service
composition in IoT,’’ in Proc. Int. Conf. Service-Oriented Comput. Cham,
Switzerland: Springer, 2017, pp. 149–160.

[40] G.White, A. Palade, C. Cabrera, and S. Clarke, ‘‘IoTPredict: Collaborative
QoS prediction in IoT,’’ in Proc. IEEE Int. Conf. Pervasive Comput.
Commun. (PerCom), Mar. 2018, pp. 1–10.

[41] B. K. J. Al-Shammari, N. Al-Aboody, andH. S. Al-Raweshidy, ‘‘IoT traffic
management and integration in theQoS supported network,’’ IEEE Internet
Things J., vol. 5, no. 1, pp. 352–370, Feb. 2017.

[42] M. Karakus and A. Durresi, ‘‘Quality of service (QoS) in software
defined networking (SDN): A survey,’’ J. Netw. Comput. Appl., vol. 80,
pp. 200–218, Feb. 2017.

[43] J. Seeger, A. Broring, M.-O. Pahl, and E. Sakic, ‘‘Rule-based translation
of application-level QoS constraints into SDN configurations for the IoT,’’
in Proc. Eur. Conf. Netw. Commun. (EuCNC), Jun. 2019, pp. 432–437.

[44] W. Wang, Q. Qi, X. Gong, Y. Hu, and X. Que, ‘‘Autonomic QoS manage-
ment mechanism in software defined network,’’ China Commun., vol. 11,
no. 7, pp. 13–23, Jul. 2014.

[45] V. Issarny, G. Bouloukakis, N. Georgantas, and B. Billet, ‘‘Revisiting
service-oriented architecture for the IoT: A middleware perspective,’’ in
Proc. Int. Conf. Service-Oriented Comput. Cham, Switzerland: Springer,
2016, pp. 3–17.

[46] K. Bouraqia, E. Sabir, M. Sadik, and L. Ladid, ‘‘Quality of experience for
streaming services:Measurements, challenges and insights,’’ IEEE Access,
vol. 8, pp. 13341–13361, 2020.

[47] D. Pal, V. Vanijja, and V. Varadarajan, ‘‘Quality provisioning in the Internet
of Things era: Current state and future directions,’’ in Proc. 10th Int. Conf.
Adv. Inf. Technol. (IAIT), 2018, pp. 1–7.

[48] A. Floris and L. Atzori, ‘‘Managing the quality of experience in the mul-
timedia Internet of Things: A layered-based approach,’’ Sensors, vol. 16,
no. 12, p. 2057, 2016.

[49] C. Song, W. Xu, T. Wu, S. Yu, P. Zeng, and N. Zhang, ‘‘QoE-driven edge
caching in vehicle networks based on deep reinforcement learning,’’ IEEE
Trans. Veh. Technol., vol. 70, no. 6, pp. 5286–5295, Jun. 2021.

[50] M. S. Mushtaq, B. Augustin, and A. Mellouk, ‘‘Empirical study based on
machine learning approach to assess the QoS/QoE correlation,’’ in Proc.
17th Eur. Conf. Netw. Opt. Commun., Jun. 2012, pp. 1–7.

[51] F. Laiche, A. B. Letaifa, I. Elloumi, and T. Aguili, ‘‘When machine learn-
ing algorithms meet user engagement parameters to predict video QoE,’’
Wireless Pers. Commun., vol. 116, no. 3, pp. 2723–2741, Feb. 2021.

[52] X. Tao, Y. Duan, M. Xu, Z. Meng, and J. Lu, ‘‘Learning QoE of mobile
video transmission with deep neural network: A data-driven approach,’’
IEEE J. Sel. Areas Commun., vol. 37, no. 6, pp. 1337–1348, Jun. 2019.

[53] T. Yue, H. Wang, S. Cheng, and J. Shao, ‘‘Deep learning based QoE
evaluation for internet video,’’ Neurocomputing, vol. 386, pp. 179–190,
Apr. 2020.

[54] X. He, K. Wang, H. Huang, T. Miyazaki, Y. Wang, and S. Guo, ‘‘Green
resource allocation based on deep reinforcement learning in content-centric
IoT,’’ IEEE Trans. Emerg. Topics Comput., vol. 8, no. 3, pp. 781–796,
Jul./Sep. 2020.

[55] R. Sun, Y. Wang, N. Cheng, L. Lyu, S. Zhang, H. Zhou, and X. Shen,
‘‘QoE-driven transmission-aware cache placement and cooperative beam-
forming design in cloud-RANs,’’ IEEE Trans. Veh. Technol., vol. 69, no. 1,
pp. 636–650, Jan. 2019.

[56] Y. Wang, Survey of Objective Video Quality Measurements, vol. 1748.
Hopkinton, MA, USA: EMC Corporation, 2006, p. 39.

[57] J. Liu, X. Tao, and J. Lu, ‘‘QoE-oriented rate adaptation for DASH with
enhanced deep Q-learning,’’ IEEE Access, vol. 7, pp. 8454–8469, 2019.

[58] A. Lekharu, K. Y.Moulii, A. Sur, and A. Sarkar, ‘‘Deep learning based pre-
diction model for adaptive video streaming,’’ in Proc. Int. Conf. Commun.
Syst. Netw. (COMSNETS), Jan. 2020, pp. 152–159.

[59] Perceptual Evaluation of Speech Quality (PESQ): An Objective Method
for end-to-end Speech Quality Assessment of Narrow-Band Telephone
Networks and Speech Codecs, REC. ITU-TP 862, 2001.

[60] E. Liotou, D. Tsolkas, and N. Passas, ‘‘A roadmap on QoE metrics and
models,’’ in Proc. 23rd Int. Conf. Telecommun. (ICT), May 2016, pp. 1–5.

[61] A. Ben Letaifa, ‘‘Adaptive QoE monitoring architecture in SDN networks:
Video streaming services case,’’ in Proc. 13th Int. Wireless Commun.
Mobile Comput. Conf. (IWCMC), Jun. 2017, pp. 1383–1388.

[62] V. Menkovski, G. Exarchakos, and A. Liotta, ‘‘Machine learning approach
for quality of experience aware networks,’’ in Proc. Int. Conf. Intell. Netw.
Collaborative Syst., Nov. 2010, pp. 461–466.

84618 VOLUME 10, 2022

B. Saovapakhiran et al.: QoE-Driven IoT Architecture: A Comprehensive Review on System and Resource Management

[63] P. Charonyktakis, M. Plakia, I. Tsamardinos, and M. Papadopouli,
‘‘On user-centric modular QoE prediction for VoIP based on machine-
learning algorithms,’’ IEEE Trans. Mobile Comput., vol. 15, no. 6,
pp. 1443–1456, Jun. 2015.

[64] R. Bhattacharyya, A. Bura, D. Rengarajan, M. Rumuly, S. Shakkottai,
D. Kalathil, R. K. P. Mok, and A. Dhamdhere, ‘‘QFlow: A reinforcement
learning approach to high QoE video streaming over wireless networks,’’
in Proc. 20th ACM Int. Symp. Mobile Ad Hoc Netw. Comput., Jul. 2019,
pp. 251–260.

[65] A. Akbar, M. Ibrar, M. A. Jan, A. K. Bashir, and L. Wang, ‘‘SDN-enabled
adaptive and reliable communication in IoT-fog environment using
machine learning and multiobjective optimization,’’ IEEE Internet Things
J., vol. 8, no. 5, pp. 3057–3065, Nov. 2020.

[66] H. Wang, K. Wu, J. Wang, and G. Tang, ‘‘Rldish: Edge-assisted QoE
optimization of HTTP live streaming with reinforcement learning,’’ in
Proc. IEEE INFOCOM Conf. Comput. Commun., 2020, pp. 706–715.

[67] D. Minovski, C. Ahlund, K. Mitra, and R. Zhohov, ‘‘Defining quality of
experience for the Internet of Things,’’ IT Prof., vol. 22, no. 5, pp. 62–70,
Sep. 2020.

[68] M. Shen, J. Zhang, K. Xu, L. Zhu, J. Liu, and X. Du, ‘‘DeepQoE: Real-time
measurement of video QoE from encrypted traffic with deep learning,’’
in Proc. IEEE/ACM 28th Int. Symp. Quality Service (IWQoS), Jun. 2020,
pp. 1–10.

[69] M. Alsaeedi, M. M. Mohamad, and A. A. Al-Roubaiey, ‘‘Toward adaptive
and scalable OpenFlow-SDNflow control: A survey,’’ IEEE Access, vol. 7,
pp. 107346–107379, 2019.

[70] J. G. Herrera and J. F. Botero, ‘‘Resource allocation in NFV: A com-
prehensive survey,’’ IEEE Trans. Netw. Service Manage., vol. 13, no. 3,
pp. 518–532, Sep. 2016.

[71] R. Karmakar, S. Chattopadhyay, and S. Chakraborty, ‘‘A deep probabilistic
control machinery for auto-configuration of WiFi link parameters,’’ IEEE
Trans. Wireless Commun., vol. 19, no. 12, pp. 8330–8340, Dec. 2020.

[72] M. Kanj, V. Savaux, and M. Le Guen, ‘‘A tutorial on NB-IoT physical
layer design,’’ IEEECommun. Surveys Tuts., vol. 22, no. 4, pp. 2408–2446,
4th Quart., 2020.

[73] J. Petäjäjärvi, K. Mikhaylov, R. Yasmin, M. Hämäläinen, and J. Iinatti,
‘‘Evaluation of LoRa LPWAN technology for indoor remote health
and wellbeing monitoring,’’ Int. J. Wireless Inf. Netw., vol. 24, no. 2,
pp. 153–165, Jun. 2017.

[74] H. Mousavi, I. S. Amiri, M. A. Mostafavi, and C. Y. Choon, ‘‘LTE physical
layer: Performance analysis and evaluation,’’ Appl. Comput. Informat.,
vol. 15, no. 1, pp. 34–44, Jan. 2019.

[75] R. C. Streijl, S. Winkler, and D. S. Hands, ‘‘Mean opinion score (MOS)
revisited: Methods and applications, limitations and alternatives,’’ Multi-
media Syst., vol. 22, no. 2, pp. 213–227, Mar. 2016.

[76] M. Suryanegara, D. A. Prasetyo, F. Andriyanto, and N. Hayati, ‘‘A 5-
step framework for measuring the quality of experience (QoE) of Inter-
net of Things IoT) services,’’ IEEE Access, vol. 7, pp. 175779–175792,
2019.

[77] V. Vasilev, J. Leguay, S. Paris, L. Maggi, and M. Debbah, ‘‘Predicting QoE
factors with machine learning,’’ in Proc. IEEE Int. Conf. Commun. (ICC),
May 2018, pp. 1–6.

[78] B. Hou and J. Zhang, ‘‘QoE estimation of DASH-based mobile video
application using deep reinforcement learning,’’ in Algorithms and Archi-
tectures for Parallel Processing, M. Qiu, Ed. Cham, Switzerland: Springer,
2020, pp. 633–645.

[79] M. Min, L. Xiao, Y. Chen, P. Cheng, D. Wu, and W. Zhuang,
‘‘Learning-based computation offloading for IoT devices with energy
harvesting,’’ IEEE Trans. Veh. Technol., vol. 68, no. 2, pp. 1930–1941,
Feb. 2019.

[80] O.-K. Shahryari, H. Pedram, V. Khajehvand, and M. D. TakhtFooladi,
‘‘Energy and task completion time trade-off for task offloading in fog-
enabled IoT networks,’’ Pervas. Mobile Comput., vol. 74, Jul. 2021,
Art. no. 101395.

[81] H. Nashaat, E. Ahmed, and R. Rizk, ‘‘IoT application placement algorithm
based on multi-dimensional QoE prioritization model in fog computing
environment,’’ IEEE Access, vol. 8, pp. 111253–111264, 2020.

[82] R. Mahmud, S. N. Srirama, K. Ramamohanarao, and R. Buyya, ‘‘Quality
of experience (QoE)-aware placement of applications in fog comput-
ing environments,’’ J. Parallel Distrib. Comput., vol. 132, pp. 190–203,
Oct. 2019.

[83] M. Carvalho and D. F. Macedo, ‘‘QoE-aware container scheduler for co-
located cloud environments,’’ in Proc. IFIP/IEEE Int. Symp. Integr. Netw.
Manage. (IM), May 2021, pp. 286–294.

[84] L. Dinh-Xuan, M. Seufert, F. Wamser, and P. Tran-Gia, ‘‘QoE aware
placement of content in edge networks on the example of a photo album
cloud service,’’ in Proc. IEEE 6th Int. Conf. Commun. Electron. (ICCE),
Jul. 2016, pp. 443–448.

[85] W.-Y. Chen, P.-Y. Chou, C.-Y. Wang, R.-H. Hwang, and W.-T. Chen,
‘‘Live video streaming with joint user association and caching placement
in mobile edge computing,’’ in Proc. Int. Conf. Comput., Netw. Commun.
(ICNC), Feb. 2020, pp. 796–801.

[86] J. Luo, F. R. Yu, Q. Chen, and L. Tang, ‘‘Adaptive video streaming
with edge caching and video transcoding over software-defined mobile
networks: A deep reinforcement learning approach,’’ IEEE Trans. Wireless
Commun., vol. 19, no. 3, pp. 1577–1592, Mar. 2020.

[87] P.-Y. Chou,W.-Y. Chen, C.-Y.Wang, R.-H.Hwang, andW.-T. Chen, ‘‘Deep
reinforcement learning for MEC streaming with joint user association
and resource management,’’ in Proc. IEEE Int. Conf. Commun. (ICC),
Jun. 2020, pp. 1–7.

[88] Y. Chen, K. Wu, and Q. Zhang, ‘‘From QoS to QoE: A tutorial on
video quality assessment,’’ IEEE Commun. Surveys Tuts., vol. 17, no. 2,
pp. 1126–1165, 2nd Quart., 2015.

[89] T. Abar, A. Ben Letaifa, and S. El Asmi, ‘‘Machine learning based QoE
prediction in SDN networks,’’ in Proc. 13th Int. Wireless Commun. Mobile
Comput. Conf. (IWCMC), Jun. 2017, pp. 1395–1400.

[90] M. Lopez-Martin, B. Carro, J. Lloret, S. Egea, and A. Sanchez-Esguevillas,
‘‘Deep learning model for multimedia quality of experience prediction
based on network flow packets,’’ IEEE Commun. Mag., vol. 56, no. 9,
pp. 110–117, Sep. 2018.

[91] X. Huang, K. Xie, S. Leng, T. Yuan, and M. Ma, ‘‘Improving quality of
experience in multimedia Internet of Things leveraging machine learn-
ing on big data,’’ Future Gener. Comput. Syst., vol. 86, pp. 1413–1423,
Sep. 2018.

[92] G. Miranda, D. F. Macedo, and J. M. Marquez-Barja, ‘‘A QoE inference
method for DASH video using ICMP probing,’’ in Proc. 16th Int. Conf.
Netw. Service Manage. (CNSM), Nov. 2020, pp. 1–5.

[93] G. Miranda, D. F. Macedo, and J. M. Marquez-Barja, ‘‘Estimating
video on demand QoE from network QoS through ICMP probes,’’
IEEE Trans. Netw. Service Manage., vol. 19, no. 2, pp. 1890–1902,
Jun. 2022.

[94] G. Miranda, E. Municio, J. M. Marquez-Barja, and D. F. Macedo,
‘‘Machine learning-based end-to-end QoE monitoring using active net-
work probing,’’ in Proc. 25th Conf. Innov. Clouds, Internet Netw. (ICIN),
Mar. 2022, pp. 40–47.

[95] R. Ul Mustafa, D. Moura, and C. E. Rothenberg, ‘‘Machine learning
approach to estimate video QoE of encrypted DASH traffic in 5G net-
works,’’ in Proc. IEEE Stat. Signal Process. Workshop (SSP), Jul. 2021,
pp. 586–589.

[96] S. C. Madanapalli, A. Mathai, H. H. Gharakheili, and V. Sivaraman,
‘‘ReCLive: Real-time classification and QoE inference of live video
streaming services,’’ in Proc. IEEE/ACM 29th Int. Symp. Quality Service
(IWQOS), Jun. 2021, pp. 1–7.

[97] S. C. Madanapalli, A. Mathai, H. H. Gharakheili, and V. Sivaraman,
‘‘Modeling live video streaming: Real-time classification, QoE inference,
and field evaluation,’’ 2021, arXiv:2112.02637.

[98] F. Laiche, A. Ben Letaifa, and T. Aguili, ‘‘QoE-aware traffic monitoring
based on user behavior in video streaming services,’’ Concurrency Com-
put., Pract. Exp., Nov. 2021, Art. no. e6678, doi: 10.1002/cpe.6678.

[99] P. Zhou, Y. Xie, B. Niu, L. Pu, Z. Xu, H. Jiang, and H. Huang, ‘‘QoE-aware
3D video streaming via deep reinforcement learning in software defined
networking enabledmobile edge computing,’’ IEEE Trans. Netw. Sci. Eng.,
vol. 8, no. 1, pp. 419–433, Jan. 2021.

[100] M. Tabassum, K. M. Tikoicina, and E. Huda, ‘‘Comparative analysis of
queuing algorithms and QoS effects on the IoT networks traffic,’’ in Proc.
8th IEEE Int. Conf. Control Syst., Comput. Eng. (ICCSCE), Nov. 2018,
pp. 88–92.

[101] P. Orosz, P. Varga, G. Soos, and C. Hegedus, ‘‘QoS guarantees
for industrial IoT applications over LTE—A feasibility study,’’ in
Proc. IEEE Int. Conf. Ind. Cyber Phys. Syst. (ICPS), May 2019,
pp. 667–672.

[102] S. Smiri, A. Boushaba, R. Ben Abbou, and A. Zahi, ‘‘Geographic and
topology based routing protocols in vehicular ad-hoc networks: Perfor-
mance evaluation and QoS analysis,’’ in Proc. Int. Conf. Intell. Syst.
Comput. Vis. (ISCV), Apr. 2018, pp. 1–8.

[103] R. Basir, S. B. Qaisar, M. Ali, M. Naeem, K. C. Joshi, and J. Rodriguez,
‘‘Latency-aware resource allocation in green fog networks for industrial
IoT applications,’’ in Proc. IEEE Int. Conf. Commun. Workshops (ICC
Workshops), Jun. 2020, pp. 1–6.

VOLUME 10, 2022 84619

http://dx.doi.org/10.1002/cpe.6678

B. Saovapakhiran et al.: QoE-Driven IoT Architecture: A Comprehensive Review on System and Resource Management

[104] C. Desogus, M. Anedda, M. Murroni, D. D. Giusto, and G.-M. Muntean,
‘‘ReMIoT: Reputation-based network selection in multimedia IoT,’’ in
Proc. IEEE Broadcast Symp. (BTS), Oct. 2019, pp. 1–6.

[105] S. Katre, A. Goswami, P. Mishra, J. Bapat, and D. Das, ‘‘Impact of
variable MTU size of voice packet to reduce packet loss in bandwidth con-
straint military network,’’ in Proc. IEEE 5th Int. Conf. Converg. Technol.
(I2CT), Mar. 2019, pp. 1–5.

[106] A. Mukhopadhyay, ‘‘QoS based telemedicine technologies for rural
healthcare emergencies,’’ in Proc. IEEE Global Humanitarian Technol.
Conf. (GHTC), Oct. 2017, pp. 1–7.

[107] M. Asif-Ur-Rahman, F. Afsana,M.Mahmud,M. S. Kaiser, M. R. Ahmed,
O. Kaiwartya, and A. James-Taylor, ‘‘Toward a heterogeneous mist, fog,
and cloud-based framework for the Internet of Healthcare Things,’’ IEEE
Internet Things J., vol. 6, no. 3, pp. 4049–4062, Jun. 2018.

[108] I. U. Rehman, M. M. Nasralla, A. Ali, and N. Philip, ‘‘Small cell-based
ambulance scenario for medical video streaming: A 5G-health use case,’’
in Proc. 15th Int. Conf. Smart Cities, Improving Quality Life Using ICT
IoT (HONET-ICT), Oct. 2018, pp. 29–32.

[109] M. Z. Hasan and H. Al-Rizzo, ‘‘Optimization of sensor deployment for
industrial Internet of Things using amultiswarm algorithm,’’ IEEE Internet
Things J., vol. 6, no. 6, pp. 10344–10362, Dec. 2019.

[110] S. Katre, A. Goswami, P. Mishra, J. Bapat, and D. Das, ‘‘Improved
connectivity using differential priority assignments in military network,’’
in Proc. 5th Int. Conf. Parallel, Distrib. Grid Comput. (PDGC), Dec. 2018,
pp. 381–386.

[111] K. M. Besher, S. Beitelspacher, J. I. Nieto-Hipolito, and M. Z. Ali,
‘‘Sensor initiated healthcare packet priority in congested IoT networks,’’
IEEE Sensors J., vol. 21, no. 10, pp. 11704–11711, May 2020.

[112] M. T. Abbas and W.-C. Song, ‘‘Infrastructure-assisted hybrid road-aware
routing and QoS provisioning in VANETs,’’ in Proc. 19th Asia–Pacific
Netw. Oper. Manage. Symp. (APNOMS), Sep. 2017, pp. 370–373.

[113] X. Zhang and Q. Zhu, ‘‘Hierarchical-caching based statistical QoS provi-
sioning over 5G multimedia big-data mobile wireless networks,’’ in Proc.
IEEE Mil. Commun. Conf. (MILCOM), Oct. 2018, pp. 480–485.

[114] N. Abbas, F. Yu, and U. Majeed, ‘‘Reliability and end-to-end delay
evaluation of outdoor and indoor environments for wireless multimedia
sensor networks,’’ in Proc. 2nd IEEE Adv. Inf. Manag., Communicates,
Electron. Autom. Control Conf. (IMCEC), May 2018, pp. 764–768.

[115] R. S. Auliva, R.-K. Sheu, D. Liang, and W.-J. Wang, ‘‘IIoT Testbed: A
DDS-based emulation tool for industrial IoT applications,’’ in Proc. Int.
Conf. Syst. Sci. Eng. (ICSSE), Jun. 2018, pp. 1–4.

[116] A. Zhang, H. Sun, and Y. Zhan, ‘‘Service allocation based on QoS eval-
uation in military organization cloud cooperation,’’ J. Syst. Eng. Electron.,
vol. 27, no. 2, pp. 386–394, Apr. 2016.

[117] Z. Yang and Z. He, ‘‘Application of improved genetic algorithm in vehicle
networked cloud data platform,’’ in Proc. Int. Conf. Intell. Transp., Big
Data Smart City (ICITBS), Jan. 2018, pp. 5–8.

[118] A. H. Sodhro, M. S. Obaidat, Q. H. Abbasi, P. Pace, S. Pirbhulal,
A.-U.-H. Yasar, G. Fortino, M. A. Imran, and M. Qaraqe, ‘‘Quality of
service optimization in an IoT-driven intelligent transportation system,’’
IEEE Wireless Commun., vol. 26, no. 6, pp. 10–17, Dec. 2019.

[119] M. Kuzlu and M. Pipattanasomporn, ‘‘Assessment of communication
technologies and network requirements for different smart grid applica-
tions,’’ in Proc. IEEE PES Innov. Smart Grid Technol. Conf. (ISGT),
Feb. 2013, pp. 1–6.

[120] M. Kuzlu, M. Pipattanasomporn, and M. Rahman, ‘‘Communication
network requirements for major smart grid applications in HAN, NAN and
WAN,’’ Comput. Netw., vol. 67, pp. 74–88, Jul. 2014.

[121] L. Skorin-Kapov and M. Matijasevic, ‘‘Analysis of QoS requirements for
e-Health services and mapping to evolved packet systemQoS classes,’’ Int.
J. Telemed. Appl., vol. 2010, pp. 1–18, Jan. 2010.

[122] J. Mocnej, A. Pekar, W. K. G. Seah, and I. Zolotova, ‘‘Network
traffic characteristics of the IoT application use cases,’’ School Eng.
Comput. Sci., Victoria Univ. Wellington, Wellington, New Zealand,
Tech. Rep., 2018. [Online]. Available: https://books.google.co.th/books?
id=yfV_zQEACAAJ

[123] P. Schulz, M. Matthe, H. Klessig, M. Simsek, G. Fettweis, J. Ansari,
S. A. Ashraf, B. Almeroth, J. Voigt, I. Riedel, A. Puschmann, A.Mitschele-
Thiel, M. Muller, T. Elste, and M. Windisch, ‘‘Latency critical IoT appli-
cations in 5G: Perspective on the design of radio interface and network
architecture,’’ IEEE Commun. Mag., vol. 55, no. 2, pp. 70–78, Feb. 2017.

[124] P. Papadimitratos, A. D. L. Fortelle, K. Evenssen, R. Brignolo, and
S. Cosenza, ‘‘Vehicular communication systems: Enabling technologies,
applications, and future outlook on intelligent transportation,’’ IEEE Com-
mun. Mag., vol. 47, no. 11, pp. 84–95, Nov. 2009.

[125] G. Baranwal, R. Yadav, and D. P. Vidyarthi, ‘‘QoE aware IoT application
placement in fog computing usingmodified-TOPSIS,’’Mobile Netw. Appl.,
vol. 25, pp. 1–17, Oct. 2020.

[126] A. Tsipis, K. Oikonomou, V. Komianos, and I. Stavrakakis, ‘‘QoE-aware
rendering service allocation in fog-assisted cloud gaming environments,’’
in Proc. 5th South-East Eur. Design Autom., Comput. Eng., Comput. Netw.
Social Media Conf. (SEEDA-CECNSM), Sep. 2020, pp. 1–8.

[127] J. Luo, X. Deng, H. Zhang, and H. Qi, ‘‘QoE-driven computation offload-
ing for edge computing,’’ J. Syst. Archit., vol. 97, pp. 34–39, Aug. 2019.

[128] S.-T. Hong and H. Kim, ‘‘QoE-aware computation offloading scheduling
to capture energy-latency tradeoff in mobile clouds,’’ in Proc. 13th Annu.
IEEE Int. Conf. Sens., Commun., Netw. (SECON), Jun. 2016, pp. 1–9.

[129] H. Lu, X. He, M. Du, X. Ruan, Y. Sun, and K. Wang, ‘‘Edge QoE:
Computation offloading with deep reinforcement learning for Internet of
Things,’’ IEEE Internet Things J., vol. 7, no. 10, pp. 9255–9265, Oct. 2020.

[130] X. He, H. Lu, Y. Mao, and K. Wang, ‘‘QoE-driven task offloading with
deep reinforcement learning in edge intelligent IoV,’’ in Proc. IEEEGlobal
Commun. Conf. (GLOBECOM), Dec. 2020, pp. 1–6.

[131] L. Caviglione, M. Gaggero, M. Paolucci, and R. Ronco, ‘‘Deep reinforce-
ment learning for multi-objective placement of virtual machines in cloud
datacenters,’’ Soft Comput., vol. 25, pp. 1–20, Oct. 2020.

[132] P. Lai, Q. He, G. Cui, X. Xia, M. Abdelrazek, F. Chen, J. Hosking,
J. Grundy, and Y. Yang, ‘‘QoE-aware user allocation in edge computing
systems with dynamic QoS,’’ Future Gener. Comput. Syst., vol. 112,
pp. 684–694, Nov. 2020.

[133] X. He, K. Wang, and W. Xu, ‘‘QoE-driven content-centric caching with
deep reinforcement learning in edge-enabled IoT,’’ IEEE Comput. Intell.
Mag., vol. 14, no. 4, pp. 12–20, Nov. 2019.

[134] Y. Wang, C. Feng, T. Zhang, Y. Liu, and A. Nallanathan, ‘‘QoE
based network deployment and caching placement for cache-enabling
UAV networks,’’ in Proc. IEEE Int. Conf. Commun. (ICC), Jun. 2020,
pp. 1–6.

[135] W. Wu, Y. Gao, T. Zhou, Y. Jia, H. Zhang, T. Wei, and Y. Sun, ‘‘Deep
reinforcement learning-based video quality selection and radio bearer
control for mobile edge computing supported short video applications,’’
IEEE Access, vol. 7, pp. 181740–181749, 2019.

[136] Y. Han, D. Guo, W. Cai, X. Wang, and V. Leung, ‘‘Virtual machine place-
ment optimization in mobile cloud gaming through QoE-oriented resource
competition,’’ IEEE Trans. Cloud Comput., early access, Jun. 12, 2020,
doi: 10.1109/TCC.2020.3002023.

[137] W. Zhang, Y. Wen, Z. Chen, and A. Khisti, ‘‘QoE-driven cache manage-
ment for HTTP adaptive bit rate streaming over wireless networks,’’ IEEE
Trans. Multimedia, vol. 15, no. 6, pp. 1431–1445, Oct. 2013.

[138] B. Li, W. Dong, G. Guan, J. Zhang, T. Gu, J. Bu, and Y. Gao, ‘‘Queec:
QoE-aware edge computing for IoT devices under dynamic workloads,’’
ACM Trans. Sensor Netw., vol. 17, no. 3, pp. 1–23, Jun. 2021.

[139] X.-Q. Pham, T. Huynh-The, and D.-S. Kim, ‘‘A QoE-based optimization
approach to computation offloading in vehicle-assisted multi-access edge
computing,’’ in Proc. Int. Conf. Inf. Commun. Technol. Converg. (ICTC),
Oct. 2021, pp. 131–133.

[140] J. Park and K. Chung, ‘‘Resource prediction-based edge collaboration
scheme for improving QoE,’’ Sensors, vol. 21, no. 24, p. 8500, Dec. 2021.

[141] X. Dai, K. Ota, and M. Dong, ‘‘Deep reinforcement learning based
multi-access edge computing schedule for internet of vehicle,’’ 2022,
arXiv:2202.08972.

[142] F. Poltronieri, M. Tortonesi, C. Stefanelli, and N. Suri, ‘‘Reinforcement
learning for value-based placement of fog services,’’ in Proc. IFIP/IEEE
Int. Symp. Integr. Netw. Manage. (IM), May 2021, pp. 466–472.

[143] J. Zhang, S. Chen, X. Wang, and Y. Zhu, ‘‘DeepReserve: Dynamic
edge server reservation for connected vehicles with deep reinforcement
learning,’’ in Proc. INFOCOM IEEE Conf. Comput. Commun., May 2021,
pp. 1–10.

[144] I. Alqerm and J. Pan, ‘‘DeepEdge: A new QoE-based resource allocation
framework using deep reinforcement learning for future heterogeneous
edge-IoT applications,’’ IEEE Trans. Netw. ServiceManage., vol. 18, no. 4,
pp. 3942–3954, Dec. 2021.

[145] A. Mseddi, W. Jaafar, H. Elbiaze, and W. Ajib, ‘‘Intelligent resource
allocation in dynamic fog computing environments,’’ in Proc. IEEE 8th
Int. Conf. Cloud Netw. (CloudNet), Nov. 2019, pp. 1–7.

[146] Y. Liu, Q. He, D. Zheng, X. Xia, F. Chen, and B. Zhang, ‘‘Data caching
optimization in the edge computing environment,’’ IEEE Trans. Services
Comput., vol. 15, no. 4, pp. 2074–2085, Jul. 2020.

[147] X. Xu, C. Feng, S. Shan, T. Zhang, and J. Loo, ‘‘Proactive edge caching
in content-centric networks with massive dynamic content requests,’’ IEEE
Access, vol. 8, pp. 59906–59921, 2020.

84620 VOLUME 10, 2022

http://dx.doi.org/10.1109/TCC.2020.3002023

B. Saovapakhiran et al.: QoE-Driven IoT Architecture: A Comprehensive Review on System and Resource Management

[148] H. Tian, X. Xu, T. Lin, Y. Cheng, C. Qian, L. Ren, and M. Bilal, ‘‘DIMA:
Distributed cooperativemicroservice caching for Internet of Things in edge
computing by deep reinforcement learning,’’ World Wide Web, pp. 1–24,
Aug. 2021.

[149] F. Wang, F. Wang, J. Liu, R. Shea, and L. Sun, ‘‘Intelligent video
caching at network edge: A multi-agent deep reinforcement learning
approach,’’ in Proc. INFOCOM IEEE Conf. Comput. Commun., Jul. 2020,
pp. 2499–2508.

[150] B. Guo, X. Zhang, Q. Sheng, and H. Yang, ‘‘Dueling deep-Q-network
based delay-aware cache update policy for mobile users in fog radio access
networks,’’ IEEE Access, vol. 8, pp. 7131–7141, 2020.

[151] Y. Wei, F. R. Yu, M. Song, and Z. Han, ‘‘Joint optimization of
caching, computing, and radio resources for fog-enabled IoT using natural
actor–critic deep reinforcement learning,’’ IEEE Internet Things J., vol. 6,
no. 2, pp. 2061–2073, Apr. 2018.

[152] L. Lu, Y. Jiang, M. Bennis, Z. Ding, F.-C. Zheng, and X. You, ‘‘Dis-
tributed edge caching via reinforcement learning in fog radio access net-
works,’’ in Proc. IEEE 89th Veh. Technol. Conf. (VTC-Spring), Apr. 2019,
pp. 1–6.

[153] B. Dai and W. Yu, ‘‘Joint user association and content placement for
cache-enabled wireless access networks,’’ inProc. IEEE Int. Conf. Acoust.,
Speech Signal Process. (ICASSP), Mar. 2016, pp. 3521–3525.

[154] X. He, K. Wang, H. Lu, W. Xu, and S. Guo, ‘‘Edge QoE: Intelligent big
data caching via deep reinforcement learning,’’ IEEE Netw., vol. 34, no. 4,
pp. 8–13, Jul. 2020.

[155] Y. Liu, Y. Han, A. Zhang, X. Xia, F. Chen, M. Zhang, and Q. He,
‘‘QoE-aware data caching optimization with budget in edge computing,’’
in Proc. IEEE Int. Conf. Web Services (ICWS), Sep. 2021, pp. 324–334.

[156] J. Li, B. Zhao, and D. Liu, ‘‘DMPP: Differentiable multi-pruner and pre-
dictor for neural network pruning,’’ Neural Netw., vol. 147, pp. 103–112,
Mar. 2022.

[157] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam,
and D. Kalenichenko, ‘‘Quantization and training of neural networks
for efficient integer-arithmetic-only inference,’’ in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit., Jun. 2018, pp. 2704–2713.

[158] S. Siddegowda, M. Fournarakis, M. Nagel, T. Blankevoort, C. Patel,
and A. Khobare, ‘‘Neural network quantization with AI model efficiency
toolkit (AIMET),’’ 2022, arXiv:2201.08442.

[159] Y. Wang, J. Wang, W. Zhang, Y. Zhan, S. Guo, Q. Zheng, and X. Wang,
‘‘A survey on deploying mobile deep learning applications: A systemic
and technical perspective,’’ Digit. Commun. Netw., vol. 8, no. 1, pp. 1–17,
Feb. 2022.

[160] J. Frankle and M. Carbin, ‘‘The lottery ticket hypothesis: Finding sparse,
trainable neural networks,’’ 2018, arXiv:1803.03635.

[161] X. Hu and H. Wen, ‘‘Research on model compression for embedded
platform through quantization and pruning,’’ J. Phys., Conf., vol. 2078,
no. 1, Nov. 2021, Art. no. 012047.

[162] P. Singh, Deploy Machine Learning Models to Production. Cham,
Switzerland: Springer, 2021.

[163] S. Raschka, ‘‘Model evaluation, model selection, and algorithm selection
in machine learning,’’ 2018, arXiv:1811.12808.

[164] A. Huet, A. Saverimoutou, Z. B. Houidi, H. Shi, S. Cai, J. Xu, B.Mathieu,
and D. Rossi, ‘‘Deployable models for approximating web QoE metrics
from encrypted traffic,’’ IEEE Trans. Netw. ServiceManage., vol. 18, no. 3,
pp. 3336–3352, Sep. 2021.

[165] E. Breck, N. Polyzotis, S. Roy, S. Whang, and M. Zinkevich, ‘‘Data
validation for machine learning,’’ in Proc. 2nd SysML Conf. MLSys, 2019,
pp. 1–14.

[166] E. Caveness, G. C. P. Suganthan, Z. Peng, N. Polyzotis, S. Roy, and
M. Zinkevich, ‘‘TensorFlow data validation: Data analysis and validation
in continuous ML pipelines,’’ in Proc. ACM SIGMOD Int. Conf. Manage.
Data, Jun. 2020, pp. 2793–2796.

BOONYARITH SAOVAPAKHIRAN received the
B.Eng. degree in electrical engineering from
Mahidol University, Thailand, in 1998, the M.S.
degree in electrical engineering from the Univer-
sity of Southern California, USA, in 2009, and the
Ph.D. degree in computer engineering from North
Carolina State University, USA, in 2013.

He is currently a Researcher and a member of
the Internet Innovation Research Team, National
Electronics and Computer Technology Center

(NECTEC), Thailand. His research interests include network design and
optimization, the Internet of Things, data mining, and artificial intelligence.

WIBHADA NARUEPHIPHAT received the B.S.
and M.S. degrees in telecommunication engineer-
ing from the Suranaree University of Technology,
Nakhon Ratchasima, Thailand, in 2008.

Since 2008, she has been a Research Assistant
with the Internet Innovation Team, National Elec-
tronics and Computer Technology Center, Pathum
Thani, Thailand. Her research interests include
network technology and system performance. Her
current research works are focused on adaptive

sampling rate for vehicle tracking and object detection for smart parking in
smart city project.

CHALERMPOL CHARNSRIPINYO received the
B.S. degree in computer science from Thammasat
University, Thailand, in 1992, the M.S. degree in
electrical engineering from George Washington
University, USA, in 1998, and the Ph.D. degree
in telecommunications from the University of
Pittsburgh, USA, in 2003.

He is currently a Senior Research Specialist
and the Head of the Internet Innovation Research
Team, National Electronics and Computer Tech-

nology Center (NECTEC), under the National Science and Technology
Development Agency (NSTDA), Thailand. His current research interests
include network design and optimization, network security andmanagement,
network virtualization, the Internet of Things, cloud, fog and edge comput-
ing, and data service platform.

SEBNEM BAYDERE (Member, IEEE) received
the B.Sc. and M.Sc. degrees in computer engi-
neering fromMETU, Ankara, Turkey, in 1984 and
1987, respectively, and the Ph.D. degree in com-
puter science from the University College London
(UCL), U.K., in 1991.

She is currently a Full Professor with the
Department of Computer Engineering, Yeditepe
University, Istanbul, Turkey. Her current research
interests include QoS architectures, the Internet of

Things, fog computing, wireless sensor networks, and distributed algorithms.

SUAT ÖZDEMIR (Member, IEEE) received the
M.Sc. degree in computer science from Syra-
cuse University, Syracuse, NY, USA, in August
2001, and the Ph.D. degree in computer science
from Arizona State University, Tempe, AZ, USA,
in December 2006.

He is currently with the Department of Com-
puter Engineering, Hacettepe University, Ankara,
Turkey. His current research interests include
the Internet of Things, data analytics, artificial
intelligence, and network security.

VOLUME 10, 2022 84621

