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ABSTRACT Developing software-intensive embedded systems is a significant challenge as embedded
systems have become more complex and dynamic for integrating various constraints (e.g., real-time perfor-
mance, design, and functional safety). In general, software practitioners reuse code to reduce development
time for implementing required functionalities. However, embedded software development still lacks code
reuse on a large scale due to its intricate constraints. This paper presents an approach to identifying reusable
functions and their relationships from the legacy embedded software for faster development reducing
functionality testing time. A python tool is developed to automatically extract the reusable functions and
present them in a feature model. The search time for finding reusable functions speeds up when they are
placed as features in a feature model. We conducted experiments on three GitHub embedded software
projects (elevator, infotainment, and health monitoring systems). The experimental results find that our
proposed approach reduces the feature search time by 59.0%, 49.8%, and 74.5%, respectively, compared
to the manual searching approach for 50 features.

INDEX TERMS Embedded software, reusability, feature model.

I. INTRODUCTION
Modern embedded software development includes a wide
variety of constraints that need to be satisfied when they
are configured. Networked systems for medical devices, anti-
lock braking systems (ABS) in automotive applications and
industrial control systems are examples of diverse embedded
systems with varying software design requirements. Due to
complex relationships among hardware and software com-
ponents [1], it is difficult to introduce new changes to an
application. Building embedded software from scratch is
time-consuming, and it requires skilled developers to under-
stand the software requirements. Therefore, there is a need
for new approaches that facilitate reuse in embedded systems.
Reusing legacy code has many benefits, including shorter
time-to-market and improved quality.

Although code reuse is a common practice in software
development, little attention has been paid to reusing code in
embedded software systems. To facilitate code reuse, we need
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to apprehend different constraints (e.g., resource alloca-
tion, timing, and safety) in developing embedded software.
According to [2], highly configurable systems (e.g., embed-
ded software) contain various constraints, and it requires
extracting these constraints from software code to design
valid configurations. This raises the need for a model that
displays embedded software’s integrated variants and con-
straints details to facilitate the functions verification and
validation effort [3]. There are studies, e.g., [4], [5], [6]
indicating that the constraints of embedded software are effi-
ciently manageable and easily expressible with the help of a
feature model. As prescribed by the ISO 26262 standard [7],
the feature model can lift implementation-level dependencies
to the level of features to understand the functional safety and
feature variability of embedded software. Moreover, embed-
ded software differs from traditional software for different
characteristics such as interrupt handling using interrupt ser-
vice routine (ISR), periodic timer requests, task schedul-
ing, and language dependence. The existing studies [8], [9]
show that over 80% of all embedded systems are developed
using C procedural and function-oriented language. In many

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 88595

https://orcid.org/0000-0003-3973-9147
https://orcid.org/0000-0003-3181-4480


M. A. Maruf et al.: Facilitating Reuse of Functions in Embedded Software

cases, it is assumed that other languages are too memory
or resource-intensive to be effectively deployed in bare-
metal development. Furthermore, many embedded software
source codes are publicly-accessible but do not have proper
documentation for understanding the requirements to reuse.
Therefore, developers often avoid reusing existing embedded
software codes that are available in public repositories such
as GitHub.

In recent years, many software engineering techniques
such as programming language constructs or product line
visualization have used object-oriented structures to develop
software. However, embedded software largely concentrates
on function-oriented design and development to perform its
dedicated tasks. Existing studies show [10], [11] embedded
software usually performs its specialized tasks in the form
of functions that frequently interact with other functional
units. For instance, the adaptive cruise control function of
automotive embedded systems is distributed over multiple
Electric Control Units (ECUs), and it repeatedly interacts
with other functions spread across numerous ECUs [12].
Identifying these reusable functions is challenging when they
appear in different locations of the code without follow-
ing proper coding practices. Recent software reuse studies
[13], [14] identify these functions as features for reuse in new
software of interest. A feature is defined as a reusable func-
tion that satisfies any functional or non-functional require-
ments [15], [16] of a specific task. However, there is a lack of
approaches that automatically extracts features from embed-
ded source code. For example, recent approaches [13], [17],
[18], [19], [20], [21], [22] manually extract features from
the source code. It becomes a time-consuming and error-
prone task while the feature details for large-scale embedded
software are absent.

Therefore, this paper presents an approach to automati-
cally identify reusable functions that pertain to implementing
embedded software features. It uses a function call graph to
rank the program functions and extracts calling relationships
between subroutines, including function dependencies and
constraints. Automatic identification of reusable functions
benefits understanding software requirements and supports
faster development with minimized risks than writing soft-
ware from scratch. As identified functions are already tested
for a legacy application, they will be less error-prone than the
newly developed version.

The compact representation of the identified reusable func-
tions assists more in apprehending the software requirements
when we place them as features in a feature model. A feature
model defines the features and their dependencies in a tree
structure [23]. This model-based software development helps
to visualize required features in a tree structure consider-
ing various aspects, including testability, code generation,
traceability, reusability, testing workflow, constraints veri-
fication, and validation. The feature model allows feature-
to-artifact mappings to illustrate how the system functions are
implemented in terms of relationships, dependencies, behav-
iors, and constraints [24]. It supports reusability to improve

development time (e.g., feature search time, verification),
which are major bottlenecks of releasing embedded software
even after following agile methodology.

We have developed a python tool [25] that implements
our approach to identify reusable functions from embedded
source code and present them in a feature model using our
proposed level-based model construction algorithm. It cap-
tures the application’s available features and constraints to
be considered for reuse. We apply our approach to different
open-source C projects (vehicle’s software controller [26],
elevator [27], and health monitoring [27]) and evaluate it by
comparing the search time needed to find a function with
traditional approaches. The results show that searching for
a feature in the feature model using our approach takes less
time than searching it directly from the source code. Themain
contributions of this paper are:
(a) Using call graph to identify reusable functions for a given

embedded software program.
(b) Constructing an embedded software feature model by

creating relationships among reusable functions.
In summary, this paper contributes to the design and

development of feature models from legacy code to improve
embedded software’s reusability. As traditional embedded
software manufacturers require consolidating various fea-
tures and constraints from scratch, our approach assists in
reducing the development cycle by automatically extract-
ing feature requirements from legacy software repositories.
Designers and developers will be able to reuse the required
functions with valid configurations and bring the product
early to the market. Moreover, embedded functions’ reusabil-
ity can be beneficial by increasing productivity, accelerating
development, and lowering operational costs.

The remainder of this paper is organized as follows.
Section II defines the problem statement and Section III
explains the system model and assumptions. Section IV
demonstrates the details of the proposed method. To explain
the proposed approach, we provide an illustrative example in
Section V. In addition, Section VI presents the experimental
results and analysis. SectionVII states the relatedwork of fea-
ture modeling in software engineering. We discuss the threats
to validity in Section VIII. Finally, Section IX concludes the
paper.

II. PROBLEM STATEMENT
Developing embedded software from scratch becomes chal-
lenging when there is a lack of understanding and visualizing
system input, output, architecture, and function config-
urations. Thus, the current research necessitates finding
reusable functions and creating a model representing their
relationships. Our paper facilitates reuse in embedded
systems by:
(a) Reusable functions identification: Find reusable func-

tions from legacy embedded software source code.
(b) Function relationships identification: Identify relation-

ships of reusable functions, including constraints to
design and configure them in a feature model.
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In identifying the reusable functions, it reuses embedded
code that is publicly available in the embedded and IoT
community. The process requires extracting functions that
act independently and contribute to constructing features in
embedded software. Therefore, we record function calls using
a call graph and map their relations to configure them cor-
rectly in the feature model.

A. GOAL
The main goal of this paper is to enable the reusability of
embedded software using the feature model. To achieve this
goal, our process entails dividing it into smaller sub-goals by
answering the following questions.
1) How to model the relationships among reusable func-

tions?: This paper intends to identify function relation-
ships and their dependencies, including constraints for
correct configuration. Therefore, we construct a feature
model to represent the commonality and variability of
embedded software functions.

2) Does the feature model speed up the feature search
time?: By constructing a feature model from legacy
embedded software, this paper also aims to show the
benefit of using this model to improve the software
development time (e.g., feature search for locating
erroneous code).

III. SYSTEM MODEL AND ASSUMPTIONS
An embedded system performs periodic or aperiodic tasks
satisfying different system constraints. Each task is moni-
tored and controlled by the software components. We define
a task as a set of jobs that jointly perform some actions
to produce the expected output. Thus, a job is a unified
piece of work or function that performs particular action of
a task. These jobs are implemented based on the application
requirements. Each job can be divided into multiple sub-jobs,
where a sub-job is a continuation of its parent job. These
jobs are repeatedly used to meet the application’s functional
(e.g., anti-lock brake system) and non-functional (e.g., per-
formance) requirements.

We assume a feature is equivalent to a job ji that is reused
more than a threshold value (>=1) in embedded software.
However, we consider that the domain expert sets a threshold
value, and it defines the minimum number of reuse of a func-
tion to be considered a feature. A function implements the
functional (e.g., correct output) and non-functional require-
ment (e.g., constraints or quality attributes) requirements of a
feature. If a feature is called inside another feature, we define
it as a sub-feature of that parent feature. Thus, each feature
can have multiple sub-features. The inclusion/exclusion of
sub-features depends on integrating their parent features in
the feature model. Here, each feature fi is defined as: fi =
(f tpi , f sfi ,Vi[],CLi[]), where
• f tpi is the type of feature relation [e.g., mandatory, or,
optional, alternative, or equivalent],

• f sfi is the list of sub-features if any,
• Vi is the list of required variables and constants, and
• CLi is the constraint list or property of feature fi.

FIGURE 1. A sample representation of a feature model.

As a prerequisite to identifying reusable functions,
we assume that the legacy source code of embedded soft-
ware is given and the legacy code is a set of related
versions of embedded software. We consider a function
reusable if it has already been reused in the current code.
We characterize the individual reusable function or fea-
ture as fi ∈ F(set of features) and use regular expressions
to extract the function’s name, global definitions, variables,
constants, callee functions, caller functions, and the nature
of the function calls (direct, transitive and recursive). The
features are distributed into different levels of a tree based on
our proposed level-based model construction steps discussed
in subsection IV-C. Figure 1 shows an example of a feature
model (FM) where the level identifies the number of incom-
ing function calls of a feature. Therefore, the root feature has
a minimum and the leaf feature has the maximum incoming
calls.

IV. PROPOSED APPROACH
The proposed approach finds reusable functions and presents
them in a feature model using the following steps:
• Identifying the reusable functions: It identifies the
reusable functions from legacy embedded software
code.

• Identifying the function relationships: It determines the
function type and dependencies.

• Feature model construction: A new level-based feature
model construction algorithm is described to map all the
reusable functions as features in the feature model.

A. IDENTIFYING THE REUSABLE FUNCTIONS
In the reusable functions identification process, we generate
a function call graph from a given legacy embedded software
using GNU’s cflow graph generator [28]. The control flow
graph extracts the functions invocation relationships and sub-
routine information of the program. After that, we retrieve
the number of functions, the signature of each function, the
function’s definition, the location and the depth of function
calling modifying pycparser python library [29]. A flow
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graph can be very large because of a potentially long sequence
of function calls (e.g., recursive function call). Thus, the depth
of the function is labeled at which the flowgraph is cut off.
To handle the recursive function as a typical function call,
we place an extra ‘R’ symbol beside the function’s name. Our
approach applies both static and dynamic analysis for build-
ing the control flow graph. The program’s variables, constants
and constraints are obtained through a static analysis where
function callee dependencies are retrieved using dynamic
analysis. We conduct dynamic analysis using GCC com-
piler [30] that records the execution traces of the functions.
In addition, we extract the internal, external, and static data
tokens like keywords, operators, constants, and identifiers of
the C program.
• Identify reusable functions: We identify a function if
it appears more than a threshold number in a pro-
gram. To visualize the reusable functions, we keep
an optional threshold value: a positive integer number
(e.g., value ≥ 1). Developers can modify the threshold
value and limit the function list to visualize from differ-
ent abstraction levels. In this step, the process:
– Finds the list of functions, including their parame-

ters, variables and constants. A function is mapped
to a standard form of fi→ fj, one-to-one correspon-
dence with the source code.

– Identifies the constraints analyzing different condi-
tional statements such as if-else, while loop, switch
condition and attribute’s properties from the Code
and developer’s comments.

Listing 1. C code 1.

We only retrieve the user-defined functions and skip the
library functions by checking their function definitions to
simplify our approach. The tool retrieves all the available
functions as features by default if the developers do not set
the threshold value. We show an example of C codes in
Listing 1 and 2 to understand how a function is selected as
feature. In these listings, let us assume that any function that
appears more than once in the program is named a reusable

Listing 2. C code 2.

feature. Since navigate(), and gps_tracker() are called more
than once in this example, they are features. Similarly, if we
assume takeoff () and landing() are both called more than
once elsewhere in the code, they will be considered features
too. Beside, we retrieve the constraints for feature takeoff ()
and landing(). For example, the variables sp,mode, and rotate
are involved in validating certain constraints through if-else
or switch statements to call other sub-features.

FIGURE 2. Feature types and relationships.

B. IDENTIFYING THE FUNCTION RELATIONSHIPS
In this step, the proposed approach defines different types of
functions and their relationships. The process transforms the
corresponding functions into features in the feature model of
an embedded software. We demonstrate the relationships in
Figure 2 for better visualization.
• Mandatory: A function is called a mandatory feature
if and only if its parent node requires to execute it all
the time. All its mandatory child features must also be
included (n from n) in a parent feature. As an exam-
ple, set_direction() and fly_normal() is a mandatory
feature for navigate() in Listing 1 where gps_tracker()
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and safe_return() are two mandatory sub-features under
landing().

• Optional: A function is an optional feature if it is
selected with other available functions. It means an
optional feature can frequently appear along with a par-
ticular feature, but it may appear with other features
too. Any number of features can be added (m from n,
0 ≤ m ≤ n) under a parent feature. For example,
fly_normal() is an optional feature to set_direction()
which is shown in Figure 2.

• Alternative (XOR): A function is in alternative (XOR)
feature group if it only gets selected among other func-
tions based on certain conditions. In the case of alter-
native/XOR relationship, exactly one feature must be
selected from a group of alternative features (1 from n).
Thus, features takeoff (), landing(), and fly_normal of
Listing 1 are in XOR relationship (because of the switch
statement).

• OR: A function is inOR relationship if its parent function
selects at least one function out of multiple functions
(m from n, m>1). Thus, navigate() and gps_tracker()
are in OR relationship in takeoff ().

• Equivalent: A function is equivalent to another function
or combination of other functions when it shows the
similar functionalities that exist in other features. Please
refer to Figure 2.

• Exclude: If a particular function is selected from a group,
other functions from the same group cannot be selected.
In this relation, one function eliminates another function
for selection.

• Requires: A requires relation indicates the dependency
of one function (source) to another (target) function.

Moreover, we reorder the function relationships to
make them more manageable for adapting to a fea-
ture model. For example, Listing 1 and 2 show that
navigate() is a reusable feature and it is connected with
other mandatory (e.g., set_direction()) and optional features
(e.g., fly_normal()). Therefore, the partial feature model is as
follow:

F ′ = (navigate()← set_direction() ∧ fly_normal())

∨navigate()← set_direction() ∧ ¬fly_normal())

Let us consider a case where fly_normal() is considered as
optional feature. In Listing 1, it is shown that fly_normal()
appears with a mandatory feature set_direction() but with
XOR relation in Listing 2. Thus, we define fly_normal() as
an optional sub feature of set_direction().
While both navigate() and takeoff () features show the

possibility of reuse as combined or in an alternative to each
other, we define them with a OR relationship. To define a OR
relation, we assign the features under its parent feature, which
is shown in the following partial model.

F ′ = takeoff ()← (navigate() ∨ ¬navigate())

∧gps_tracker())

Furthermore, the dependencies among the features are
simplified in tree-structured child-parent relationships. As an
example, Figure 3(i) shows that feature main() has two
mandatory features controller() and landing() where fea-
ture landing() is also a mandatory feature of controller().
Therefore, we define the tree as main() → controller() →
landing().

FIGURE 3. Simplification of function relationships for feature model.

However, a combination of multiple independent features
can form another new feature.We define them as sub-features
of the new feature in a sub-tree. In such a case, we assign the
relation of that independent feature with the new feature using
Requires. In Figure 3(ii), cal_altitude() is identified as an
independent feature of a sub-tree where feature gps_tracker()
is a part of the main tree.When the feature cal_altitude() calls
gps_tracker(), it gets connected with Requires relationship.

C. FEATURE MODEL CONSTRUCTION
To construct the feature model, we propose a level-based
algorithm that shows how the features are placed into differ-
ent levels and what information is required for implementing
a particular application. We implement a python tool for
automating the proposed level-based feature model construc-
tion algorithm where a list of features is distributed with their
associate feature types and constraints. At the beginning of
this process, we determine the level of each feature using
the call graph. Thus, features are mapped at each level based
on the number of incoming function calls in the program.
The hierarchy of function calls specifies the parent and child
relationship. This relationship is identified from the caller and
callee function list of the call graph. To find out the num-
ber of incoming function calls of each feature, we define a
matrix named F in. As an example, the matrix F in represents a
n-by-n matrix where n is the number of features. The degree
of incoming function calls of each feature from every other
feature is denoted by dij. It stores the corresponding degree of
incoming function calls to feature fi from fj. To simplify the
feature model, we set the number of incoming calls to equal
one for any recursive function.
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After that, we count the total incoming calls of each
feature, adding all the corresponding row values using
Equation 1.

f ini =
n∑
j=1

dij;wheredij =

{
x, if x ≥ 1
0, otherwise

(1)

FIGURE 4. An implementation concept of feature model construction.

Finally, we use the following steps to construct the feature
model in a tree structure.
• First, we assign the function as a root feature that has
a minimum incoming or maximum outgoing function
calls in the program and does not have any parent.

• Second, we place all the features at different levels
according to the number of incoming calls. Therefore,
the root feature is placed at level 0, intermediate fea-
tures are between level 0 to L, and the leaf features
with maximum incoming calls are placed into the last
level L.

• Third, if any child feature is mandatory and located at
a different level than the subsequent level of its parent,
we can not include it in an alternative (XOR) relation-
ship.We set the feature as a dummy feature forXOR rela-
tion under its parent feature. In Figure 4, we present an
example for creating a dummy feature f ′2() that replicates
the mandatory feature f2() at Level L.

• Fourth, if any feature is in OR relationship, we can not
put it under the XOR relationship in a different place.
To combine it with the XOR relationship, we define it
as a dummy feature that replicates the original feature.
The created dummy feature f ′4() with an XOR relation is
shown in Figure 4.

• Fifth, if we create a dummy feature to build an OR/XOR
relationship, we introduce their parent as dummy and
make it as an optional feature to other features.

During the feature model construction, we traverse all the
features from the lowest level L to the highest level 0. The
distinct features of the lowest levels are considered leaf nodes
in the feature model. We gradually decrease the level value
to find the corresponding features mapped with its child
features (callee function). The relation of each child feature
is characterized by considering the feature types. Moreover,
the requires and excludes relationships are identified from

Algorithm 1 Find the Levels of Reusable Functions and
Their Parent-Child List
Input : Source code of embedded software
Output: Features levels including parent-child information
/* functions of embedded software */

1 featureList []= Extract functions from call graph
2 G = nx.DiGraph() /* call graph */
3 fm = nx.DiGraph() /* feature model */
/* finds the levels of features */

4 level_list[][] = List of features at each level
5 for each feature i in range(len(featureList)) do
6 s=featureList[i];

/* finds the level of a feature */
7 k=int(re.search(r′ \ d+′, s).group())
8 level_list .append(k)
9 end
/* finds the parents of features */

10 pr = [[] for x in range(len(featureList))]
11 for each feature i in range(len(featureList)) do

/* check the parent of a feature */
12 nd = [x for x,y in G.nodes(data=True) if

y[′value′]==featureList[i]];
13 for j in range(len(nd)) do
14 for k in G.predecessors(nd[j]) do
15 pr[i].append(G.nodes[k][′value′])
16 end
17 end
18 end

/* finds the child of features */
19 ch = [[] for x in range(len(featureList))]
20 for each feature i in range(len(featureList)) do
21 nd = [x for x,y in G.nodes(data=True) if

y[′value′]==featureList[i];
22 for j in range(len(nd)) do
23 for k in G.successors(nd[j]) do
24 ch[i].append(G.nodes[k][′value′])
25 end
26 end
27 end
28 buildFeatureModel(featureList , level_list , ch, pr);

the sub-feature model relation. A feature is connected with
requires relation if the feature is a mandatory feature at any
level but also appears as a mandatory to a different level
of another feature. On the other hand, the excludes relation
identifies the feature that never appears with a specific feature
that likely appears with all the common features.

The overall process of the level-based feature modeling
is demonstrated in Algorithm 1 and 2. Algorithm 1 extracts
the reusable functions as features through the call graph and
then identifies each feature’s level from the call graph. The
parent and child feature list is classified considering the caller
and callee relationship. After that, we add the feature relation
and constraints to build the valid configurations in the feature
model. Finally, Algorithm 2 builds the feature model in a tree
format.

V. AN ILLUSTRATIVE EXAMPLE
To apply our proposed approach, we select a GitHub
project ‘‘Software controller for vehicles’’ [26] written in
C programming language. This GitHub project is the demo
implementation of a car’s software systems, and we use it to
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FIGURE 5. Feature model creation from GitHub project ‘‘Software controller for vehicles’’ [26].

Algorithm 2 Build Feature Model
Input : featureList [], level_list[][], ch[], pr[], G, fm
Output: Feature model

1 Procedure buildFeatureModel(Input)
2 for each level l in range(len(level_list)) do
3 for each feature i in level l do
4 G.add_node(i,value=level_list[l][i])
5 if level (l − 1) finds child in list ch then
6 fm.add_node(level_list[l][i])
7 fm.add_edge(i,level_list[l-1][i])
8 else
9 fm.add_node(i,level_list[l][i])
10 end
11 end
12 end
13 for i in fm.edges.data() do

/* return relation type */
14 k=find_relation(i[0],i[1])

/* return constraints if any */
15 c=find_constraint(i[0],i[1])
16 fm.edges[i[0],i[1]][′relation′]=k
17 fm.edges[i[0],i[1]][′constraint ′]=c
18 end

/* display feature graph */
19 drawNetwork(fm);
20 return

demonstrate our proposed method. To obtain each function’s
information, we run the function flow graph generator cflow
and extract the function list, including the depth of each call.
The C keywords and library functions (e.g., malloc, fopen,
printf) are ignored to simplify the process.

From the function list, we extract 38 reusable functions
as features for the implementation of a car’s software sys-
tems. According to our proposed approach, initially, we find
the mandatory and optional features where we retrieve 21
mandatory features and eight optional features. For example,
feature ‘car_software’ has one mandatory feature ‘system’
and one optional feature ‘test’. After that, we identify the
feature relationships defined in subsection IV-B and we get

four alternatives, four OR, and one equivalent feature rela-
tionships. The maximum level of each feature is extracted
from the call graph and determines the potential parent and
child list for each feature using Algorithm 1. After that,
we apply the feature model construction actions discussed in
subsection IV-C to update the placement of features in dif-
ferent levels if required. For example, the ‘auto_set’ feature
under ‘light_controller’ calls three other features that together
perform the same task. Therefore, these features are set under
the equivalent features.

The output of our proposed approach for software reposi-
tory [26] is shown in Figure 5. To beautify the visualization
of the feature model, we use the java feature IDE, which is
a feature modeling tool focusing on the java language. These
features with relationships are fed into the java feature IDE
tool and the final visualization is shown in Figure 5. The fig-
ure shows the association of each feature with its parent and
child nodes. The parent-child relation hierarchy is displayed
based on the level of each feature, where ‘car_software’ is
placed at Level 0 as a root node. Besides, we find the requires
and excludes relationships to understand the dependency of
the features. To test the feature called ‘vehicle_velocity’,
it needs requires relation with another feature ‘wheel’ that
counts the wheels’ rotation. Similarly, ‘manual’ and ‘auto-
matic’ features are mutually exclusive. One feature excludes
other features. In the case of the equivalent feature, ‘auto_set’
is considered an equivalent feature to a combined three fea-
tures like ‘side_light’, ‘low_beam’, and ‘high_beam’. The
equivalent feature performs the same operations, but it may
offer a different implementation.

A feature may have or may not have constraints. We use
the C parser pycparser to generate the Abstract Syntax
Tree (AST) and extract the code artifact along with con-
stants, variables, as well as constraints. As an example,
‘infotainment’ systems and ‘light_controller’ are features
without constraints. These features may be called period-
ically/aperiodically with user inputs. On the other hand,
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features with constraints are ‘engine’, ‘gear_shift’, ‘airbag’,
‘brake’, etc. These features require validating certain con-
straints to ensure the safety of the system. The necessary test
cases need to be executed before adding any feature in the
model to satisfy the constraints.

Table 1 shows the list of features and their properties. The
variables and constraints are retrieved from each feature’s
implementation. As an example, the constraints are extracted
from the conditional statement. The variable lists provide
insight into understanding the inputs/outputs passed in the
network’s communication messages. The features include
their types and their relations that are defined in subsec-
tion IV-B. The requires and excludes feature relations can
limit the possible choices of a set of features in the tree.
In addition, Table 1 shows the list of sub-features. The
sub-features are the list of features that are called inside of
a feature to produce the expected output.

VI. EXPERIMENTAL RESULTS AND ANALYSIS
To evaluate the performance of the proposed approach,
we compare the feature search time in the feature model
to understand how quickly a feature can be located in the
code.

Feature Search TimeAnalysis:Tomeasure the time com-
plexity of the proposed approach, we compare the traditional
searching approach with the feature modeling approach for
searching a feature. In the case of feature searching, the
worst-case time complexity is O(n), where the best case is
O(1). Here, n represents the number of features identified
in embedded software. In the experiment, we collect three
different GitHub projects which a) smart elevator system,
b) infotainment system, and c) health monitoring system.
We create an individual feature model for each application
and calculate the search time to find a feature located in
the deepest leaf node. The main reasons behind selecting
these projects are the availability of source code and typi-
cal embedded software systems accepted by the community.
Figure 6 shows the comparison of search time among these
three different GitHub embedded systems projects. In all
three projects, we observe that the search time for finding a
selected feature using the feature model is much lower than
the manual search in the codebase. The manual search reads
the codebase sequentially, starting from the first line to the
end. In Figure 6, the x-axis represents the number of features
and the y-axis represents the required search time for finding
a feature over a varying number of features.

Moreover, the experiment result states that the searching
times vary for changing the number of features. Although the
search time for a small embedded system application does
not differ much, our approach outperforms the manual search
approach for a large-scale project with a large number of
features. In our approach, the feature search times for three
different projects (smart elevator system [27], infotainment
system [31], and health monitoring system [32]) get reduced
by 59.0%, 49.8%, and 74.5% for 50, 25, and 50 number of
features, respectively.

VII. RELATED WORK
Although many techniques are used mainly for identifying
reusable units and requirements for developing an applica-
tion from legacy code, the requirements are provided ahead
as inputs or manually specified by users [16], [36]. A few
approaches have focused on semi-automated feature extrac-
tion. However, they do not consider embedded software’s
constraints and language dependency (e.g., written in C). Ste-
fan Fischer et al. [37] presents an Eclipse-based framework
to support the practice of ‘‘clone and own’’ by automatically
extracting the reusable features from java applications. The
clone and own process has three steps which are extraction,
composition and compilation. The authors proposed auto-
mated extraction and composition to help the developer to
point out the potential artifacts from previously developed
products and map the relationship among those artifacts as
well as store those information in a database for the com-
position of a new product. Moreover, for the compilation
stage developer gets a hint from this tool if there is a lack
of connection between two features.

In [18], a three-step process is introduced in the paper to
identify features from the source code of product variants
by using reverse engineering. In the first step, the product
model is reverse engineered from the source code to reduce
the noise which is created because of the different implemen-
tations of the same feature. Then each product model divides
into a set of small pieces. In the second step, an algorithm
is implemented to identify identical features. In the final
step, manually eliminate the non-relevant candidates and add
the missing features, if any. In another work, Omar Alam
et al. propose [38] a concern-driven software development
where they create a feature model considering the variability
of the interfaces of the concerns (e.g., unit of modulariza-
tion) instead of focusing on the functional definition of any
component.

Jessie et al. [39] highlight the limitations of basic feature
models also called boolean feature models which only repre-
sent boolean features. That means it only identifies if a char-
acteristic is present or not in a software system. The authors
proposed an extension of the existing boolean variability
model that considers multivalued attributes or UML-like car-
dinalities to support variability modeling in complex product
lines. Complex variability extraction algorithms are based on
two mathematical frameworks: formal concept analysis and
pattern structures. Finally, comparison matrices are imple-
mented to represent the complex descriptions of software
system families. The authors claim that their method is free
from scalability issues and extracts all the potential rela-
tionships. It also contains numerous unexpected connections
that require filtering. To compare our proposed approach
with the existing related works, we present a comparison
table in Table 2 specifying the research idea, input, output,
techniques, language dependency, and application domain.
We find most of the related works focus on object-oriented
software (e.g., Java), but Muller et al. [13] shows how to
extract features from C source code against a user given
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TABLE 1. Extracted features and their properties for GitHub project ‘‘Software Controller for Vehicles’’ [26].

query input (e.g., related term) employing natural language
processing. However, our approach just depends on source
code and automatically identifies the highly reused functions.

VIII. THREATS TO VALIDITY
To understand the scope of our work, we report threats to the
validity of our proposed approach.
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FIGURE 6. Search time comparison for finding a feature (deepest leaf node) among different GitHub embedded systems projects.

TABLE 2. Comparison of different reverse engineering approaches for identifying features.

External validity (Can we generalize the results for all
embedded software?): We target only the embedded software
written in C. In addition, the proposed method uses a func-
tion call graph as its principal to find reusable functions.
Therefore, this approach is applicable to all function-oriented
embedded software.
Internal validity (Does this approach identify all the neces-

sary features?): The proposed approach identifies only those
functions reused more than once in the code. Hence, there
can be potential functions that are not reused in the code, but
they could be a candidate for future reuse. These functions are
skipped by our approach to identify only the highly reusable
functions. However, our approach has the option to set the
threshold value to aminimum for considering all the available
functions in the code.

IX. CONCLUSION
Developing embedded software requires extensive testing
to ensure the quality of the software by satisfying dif-
ferent constraints. Reusing legacy embedded software can
improve the development process of finding reusable units.
Therefore, this paper presents a new technique for faster
development by identifying reusable functions from legacy
software code. In addition, it shows the relationships plac-
ing the reusable functions as features in a feature model to
visualize the application requirements. This work contributes
toward the reverse-engineering of reusable function identi-
fication from large-scale embedded systems projects. The
experimental results show that the generated feature model
can drastically reduce the search time compared to traditional
approaches.
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