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ABSTRACT This paper presents the computation of feasible paths for mobile robots in known and unknown
environments using a QAPF learning algorithm. Q-learning is a reinforcement learning algorithm that has
increased in popularity in mobile robot path planning in recent times, due to its self-learning capability
without requiring a priori model of the environment. However, Q-learning shows slow convergence to the
optimal solution, notwithstanding such an advantage. To address this limitation, the concept of partially
guided Q-learning is employed wherein, the artificial potential field (APF) method is utilized to improve
the classical Q-learning approach. Therefore, the proposed QAPF learning algorithm for path planning can
enhance learning speed and improve final performance using the combination of Q-learning and the APF
method. Criteria used to measure planning effectiveness include path length, path smoothness, and learning
time. Experiments demonstrate that the QAPF algorithm successfully achieves better learning values that
outperform the classical Q-learning approach in all the test environments presented in terms of the criteria
mentioned above in offline and online path planning modes. The QAPF learning algorithm reached an
improvement of 18.83% in path length for the online mode, an improvement of 169.75% in path smoothness
for the offline mode, and an improvement of 74.84% in training time over the classical approach.

INDEX TERMS Path planning, Q-learning, artificial potential field, reinforcement learning, mobile robots.

I. INTRODUCTION
The path planning problem is a fundamental issue in mobile
robot navigation because of the need of having algorithms to
convert high-level specifications of tasks from humans into
low-level descriptions of how to move [1]. There are some
good reasons to develop efficient planning algorithms. For
example, the necessity to get machines that can solve some
tasks that are difficult to solve for humans involves model-
ing planning problems, designing efficient algorithms, and
developing robust implementations. Another reason is that
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planning algorithms have been successfully used in various
industries and academic disciplines like robotics, manufac-
turing, and aerospace applications, among others [2].

The path planning problem consists in how the mobile
robot (MR) determines to move in an environment to its
predefined goal point without colliding with the obstacles
presented in the environment. This concerns the computa-
tion of a collision-free path between the start point and the
goal point [3]. Path planning varies according to different
environments that the MR faces, such as a known environ-
ment, partially known environment, or unknown environ-
ment. Among the types of environments, the partially known
environment is themost practical where some areaswithin the
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environment have already been known before the navigation.
Furthermore, path planning can be classified into static and
dynamic, depending on the nature of the obstacles. In static
path planning, the position and orientation of the obstacles
are unchanged with time, while in dynamic path planning,
the obstacles are free to move in the environment [4].

The path planning problem solution has been addressed
from diverse methods [5]. One approach is reinforcement
learning, due to it can be employed for MR path planning
for known and unknown environments. Q-learning is a rein-
forcement learning algorithm that uses a scalar reinforcement
signal or a reward to interact with a complex environment [6].
Q-learning maps situations to actions, to maximize a numer-
ical reward through systematic learning. To obtain its own
experience, the agent offers a trade-off between exploration
and exploitation, so it not only has to exploit what it already
knows through greater action in the current experience,
but also must explore what action will work better in the
future [7]. The mobile robot (MR) which is known as the
agent receives a reward for collision-free action and receives
a penalty when it collides with the obstacles [5].

In Q-learning, the reward concept is a key difference
concerning both supervised and unsupervised solutions. The
reward is less informative than it is in supervised learning,
where the agent is given the correct actions to perform.
Unfortunately, information regarding correct actions is not
always available. However, the reward is more informative
than unsupervised learning, where no explicit comments are
made regarding performance [8].

Q-learning has been employed in mobile robot path plan-
ning due to its self-learning capability without requiring a pri-
ori model of the environment. Although, Q-learning presents
slow convergence to the optimal solution, notwithstanding
such an advantage [9]. To address this limitation, the concept
of partially guided Q-learning through the APF weighting is
employed wherein, the artificial potential field (APF) method
is utilized to improve the classical Q-learning approach.
The APF method is employed in path planning due to its
effectiveness to provide smooth and safe paths. However,
it presents disadvantages like the local minima problem,
or the goal non-reachable with obstacles nearby, among oth-
ers [10]. Therefore, the proposed QAPF learning algorithm
for path planning can enhance learning speed and improve
final performance using the combination of Q-learning and
the APF method. In this manner, the QAPF learning algo-
rithm overcomes or mitigates the disadvantages presented by
both conventional methods.

The main contribution of this paper is the development
of a new robust algorithm based on Q-learning and the
APF method to solve path planning problems for mobile
robots. The proposed QAPF learning algorithm presents
short, smooth, and collision-free paths. The proposed QAPF
learning algorithm is extensively validated against a path
planning algorithm based on the classical Q-learning (CQL)
approach. Both planning algorithms are tested in benchmark
environments and compared concerning measures such as

path length, path smoothness, and computation time. The
contributions of this paper can be summarized as follows:

• A reinforcement learning-based algorithm combined
with the artificial potential field method called QAPF
learning algorithm is proposed to solve mobile robot
path planning problems.

• The QAPF learning algorithm includes three opera-
tions: exploration, exploitation, and APF weighting to
overcome the limitations presented by the classical
Q-learning approach in path planning.

• A set of experiments and studies demonstrate that the
proposed QAPF learning algorithm successfully solves
diverse path planning problems arising from numerous
complex environments that the mobile robot can face.

The organization of this paper is as follows. Section II
summarizes the literature review and related work. Section III
describes the path planning problem, the Q-learning algo-
rithm, and the APF method. Section IV explains in
detail the proposed QAPF learning algorithm. Section V
presents the results of simulations that demonstrate the appli-
cability of the proposal. Finally, the conclusions of this paper
are drawn in Section VI.

II. RELATED WORK
In the literature, there are several proposals to address path
planning problems using reinforcement learning [11], [12].
Some proposals based on reinforcement learning have been
combined with other techniques to improve performance.
In [13], the combination of reinforcement learning with an
improved artificial potential field is presented to solve path
planning problems. Another example, now combining rein-
forcement learning with a metaheuristic can be found in [14].
In that work, a reinforcement learning-based grey wolf opti-
mizer (RLGWO) algorithm is presented to solve unmanned
aerial vehicles (UAVs) path planning problems.

Furthermore, there are numerous proposals to address path
planning problems using Q-learning. A few of them, which
are worth mentioning, are described next. In [15], a modified
Q-learning algorithm is presented to solve the path planning
problem in product assembly. In that work, the proposed algo-
rithm speeds up the convergence speed by adding a dynamic
reward function, optimizes the initial Q table by introducing
knowledge and experience through the case-based reasoning
algorithm, and prevents entry into the trapped area through
the obstacle avoiding method.

Another example is presented byMaoudj and Hentout [16]
They propose an efficient Q-learning (EQL) algorithm to
overcome the limitations of slow and weak convergence and
ensure an optimal collision-free path in less possible time.
In this regard, in that work a reward function is proposed to
initialize the Q table and provide the robot with prior knowl-
edge of the environment, followed by an efficient selection
strategy proposal to accelerate the learning process through
search space reduction while ensuring a rapid convergence
toward an optimized solution.
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In [17], a flexible Q-learning-based model is proposed
to handle continuous space problems for decentralized
multi-agent robot navigation in cluttered environments.
In that research, an agent-level decentralized collision avoid-
ance low-cost model is presented. Furthermore, a method to
merge non-overlapping Q-learning features is employed to
reduce its size significantly andmake it possible to solvemore
complicated scenarios with the same memory size.

Bulut proposed an improved epsilon-greedy Q-learning
(IEGQL) algorithm to enhance efficiency and productiv-
ity regarding path length and computational cost [18]. The
IEGQL presents a reward function that ensures the envi-
ronment’s knowledge in advance for a mobile robot, and
mathematical modeling is presented to provide the optimal
selection besides ensuring a rapid convergence.

Some proposals have combined Q-learning with other
algorithms to improve performance. An example is found
in [19], where a combination of the Manhattan distance and
Q-learning (CMD-QL) is presented to improve the conver-
gence speed. In the CMD-QL, the Q table is firstly initialized
with Manhattan distance to enhance the learning efficiency
of the initial stage of Q-learning; secondly, the selection
strategy of the ε-greedy action is improved to balance the
exploration-exploitation relationship of the mobile agent’s
actions. The CMD-QL was tested under known, partially
known, and unknown environments, respectively. The results
revealed that the CMD-QL can converge to the optimal path
faster than the classical Q-learning method.

An example, now combining Q-learning with a meta-
heuristic can be found in [20], Sadhu et al. proposed a modi-
fication of the Firefly Algorithm by including the Q-learning
framework into it, called QFA. The QFA has been employed
to plan the path of the robot arm end-effector such that it can
reach a pre-assigned goal position by traversing the minimum
possible distance while dodging the obstacles present in the
environment.

Another work is presented by Low et al. [5]. They present
an improved Q-learning based on the Flower Pollination
Algorithm (FPA) for mobile robot path planning. Through
the integration of the prior knowledge obtained from the FPA
into the classical Q-learning, the initialization of the Q-values
serves as a good exploration foundation to accelerate the
learning process of the mobile robot.

There are some proposals employing deep Q-learning like
in [21]. Where, Wu et al. presented a tailored design of state
and action spaces and a dueling deep Q-network. That work
consists of a deep reinforcement learning method for the
autonomous navigation and obstacle avoidance of unmanned
surface vehicles. In that work, the proposal outperforms
related methods in the efficiency of exploration and the speed
of convergence in static and dynamic environments.

III. PRELIMINARIES
In this section, we present the problem definition and the
fundamentals of the proposed QAPF learning algorithm for
mobile robot path planning. We start with a general definition

FIGURE 1. Path planning problem definition.

of the path planning problem. Next, we explain in detail the
Q-learning algorithm. Last, we conclude this section with the
fundamentals of the artificial potential field method.

A. PATH PLANNING PROBLEM DEFINITION
Path planning is a problem that requires finding a continu-
ous path, QG, between a given start point, q0, and the goal
point, qf , for a particular system, subject to a variety of
constraints [22]. Under this general definition, in this paper,
we have defined the problem in a simplified form, which is
described as follows.

The mobile robot (MR) environment is defined as a
two-dimensional map that includes a set of obstacles Oj,
j = 1, 2, . . . , n, where n is the number of the obstacles
in the environment. The instantaneous position of the MR
is denoted by q, which is represented by its coordinates,
physical radius, and the angle of orientation, i.e., q(x, y, φ, θ ).
In this definition, we have assumed a circular occupancy area
for the MR. The path planning goal is to find a feasible
sequence QG of configurations that can drive the MR from
a start point, q0, to a goal point, qf , in the x-y plane. Fig. 1
depicts the definition.

B. Q-LEARNING
Reinforcement learning, inspired by animal learning in psy-
chology, learns optimal decision-making strategies from
experience. It defines any decision maker as an agent and
everything outside the agent as the environment. The agent
aims to maximize the accumulated reward and obtains a
reward value as a feedback signal for training through inter-
action with the environment [23]. Reinforcement learning
is categorized into two groups: model-based methods and
model-free methods.

For the model-based methods, always utilize a model of
the environment to predict rewards for unseen state-action
pairs. For the model-free methods, we can divide into two
branches: policy-based methods and value-based methods.
Specifically, the policy-based methods aim to generate a
policy, in which the input is a state, and the output is an action.
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These works apply deterministic policies, which generate
an action directly. For value-based methods, the action with
maximum Q-value over all the possible actions is selected as
the best action [24]. Therefore, Q-learning is a value-based
method. During the learning, the agent performs an action
with the highest expected Q-values to estimate the optimal
policy [14].

Q-learning [25] is model-free reinforcement learning,
which combines theories, including the Bellman equa-
tions and Markov decision process (MDP), with temporal-
difference (TD) learning. It is a way for agents to learn how
to act optimally in controlled Markovian domains. Its form is
one-step Q-learning, which is defined by Eq. (1).

Q(s, a) = (1− α)Q(s, a)+ α(r + γ max(Q(s′,∀a′))) (1)

where Q(s, a) estimates the action value after applying an
action a in state s, α is the learning rate, γ is the discount
factor, and r is the immediate reward received [26]. The
Q-learning main components are as follows.

1) Agent: The learner that can interact with the environ-
ment via a set of sensors and actuators.

2) Environment: Everything that interacts with an agent,
i.e., everything outside the agent.

3) Policy: A mapping from perceived states set, S, to the
actions set, A.

4) Reward function: A mapping from state-action pairs to
a scalar number.

5) Q-value: The total amount of reward an agent can
expect to accumulate over the future, starting from that
state.

Q-learning works by successively improving its evalua-
tions of the quality of actions at particular states. Learning
proceeds similarly to Sutton’s method of temporal differ-
ences: an agent tries an action at a particular state and eval-
uates its consequences in terms of the immediate reward or
penalty it receives and its estimate of the value of the state
to which it is taken. By trying all actions in all states repeat-
edly, it learns which are best overall, judged by long-term
discounted reward [25].

In Q-learning, the agent’s experience consists of a
sequence of distinct stages or episodes. In the nth episode,
the agent:

1) Observes its current state st
2) Selects and performs an action at
3) Observes the subsequent state st+1
4) Receives an immediate payoff rt
Then, the agent adjusts its Q values using a learning rate

α, according to: note that this description assumes a look-up
table representation for the Qm×n(st , at ).
A learning agent is composed of two fundamental parts,

a learning element, and a performance element. The design
of a learning element is dictated by what type of performance
element is used, which functional component is to be learned,
how that functional component is represented, and what kind
of feedback is available [8].

C. ARTIFICIAL POTENTIAL FIELD
The main idea of the artificial potential field (APF)
method [27] is to establish an attractive potential field force
around the goal point, as well as to establish a repulsive
potential force around obstacles [28]. By this idea, the APF
method employs attractive and repulsive components to draw
the MR to its goal while keeping it away from obstacles.

Therefore, the total artificial potential field,U (q), includes
two terms, the attractive potential function, Uatt (q), and
the repulsive potential function, Urep(q). The total artificial
potential field, U (q), is then the sum of these two potential
functions, as indicated in Eq. (2).

U (q) = Uatt (q)+ Urep(q) (2)

The attractive potential function is described by Eq. (3),
where q represents the current MR position. The goal point
is represented by qf and katt is a positive scalar-constant that
represents the attractive proportional gain of the function.

Uatt (q) =
1
2
katt (q− qf )2 (3)

The repulsive potential function is denoted by Eq. (4),
where ρ0 represents the limit distance of influence of the
repulsive potential field and ρ is the shortest distance from the
MR to the obstacle. The influence of the repulsive potential
field, Urep(q), is presented in two cases. The first case is
presented when theMR is under the influence of the obstacle,
that is, if the distance from the robot to the obstacle, ρ, is less
or equal to the limit distance of influence, ρ0. Otherwise,
in the second case, the repulsive potential field will be zero
and the MR will be free of the influence of that obstacle. The
selection of the distance ρ0 depends on the MR maximum
speed. The krep is a positive scalar-constant that represents
the repulsive proportional gain of the function. Therefore, the
repulsive potential function has a limited range of influence,
and it prevents the movement of the MR from being affected
by a distant obstacle [29].

Urep (q) =

{
1
2krep(

1
ρ
−

1
ρ0
)2, if ρ ≤ ρ0

0, if ρ > ρ0
(4)

The artificial potential field method is widely employed in
path planning for mobile robots due to its simplicity, mathe-
matical elegance, and effectiveness in providing smooth and
safe planning [10]. Therefore, in this paper, the artificial
potential field method is utilized to improve the classical
Q-learning approach. In that sense, the proposed QAPF learn-
ing algorithm for path planning can enhance learning speed
and improve final performance using the combination of
Q-learning and the APF method.

IV. QAPF LEARNING ALGORITHM FOR PATH PLANNING
To improve the disadvantage of slow convergence in the clas-
sical Q-learning, the QAPF learning algorithm is proposed
in this work, which includes three operations: exploration,
exploitation, and APF weighting.
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The proposed QAPF learning algorithm combines
Q-learning and the artificial potential field (APF) method to
improve performance of the MR path planning. The objective
of this section is to explain in detail the proposed QAPF
learning algorithm. Therefore, firstly the classical Q-learning
(CQL) pseudocode (Algorithm 1) is presented. Then, the pro-
posedQAPF learning pseudocode (Algorithm 2) is explained.
Lastly, the path generator pseudocode (Algorithm 3) is pro-
vided. Both the CQL algorithm and the QAPF learning
algorithm employ Algorithm 3 to generate the path.

A. Q-LEARNING ALGORITHM
Algorithm 1 presents the CQL pseudocode for MR path plan-
ning. The CQL algorithm employs the next input parameters:
the goal point, qf , and the environment information, Oj. The
objective of the CQL algorithm is to obtain the learning values
Qm×n to build the path, QG, through the Algorithm 3. The
parameter that Algorithm 1 returns is the array Qm×n.
Algorithm 1 in line 1 initializes to zero the learning values

Qm×n. From lines 2 to 11, there is the learning iterative
process. The stop condition for the learning iterative process
is presented when the maximum number of episodes, Nep,
is reached.

Algorithm 1 CQL
Input: goal point qf and environment information Oj
Output: learning values Qm×n

1 initialize Qm×n(st , at )← {0}
2 for each episode do
3 set st ← a random state from the states set S
4 while st 6= qf and safe do
5 choose the best at in st by using Qm×n
6 perform action at and receive reward r
7 find out the new state st+1
8 update Qm×n(st , at ) using Eq. 1
9 st ← st+1
10 end
11 end
12 return Qm×n

In line 3, a random state is assigned to the current state, st .
From lines 4 to 10, the explore-exploit process is performed.
The stop condition is presented when the current state, st ,
is equal to the goal point, qf , or the Boolean flag safe is False.
The objective of the flag safe is to serve as a stop condition
if a collision is presented with the obstacles or when the MR
steps into the limits of the workspace.

In line 5, the best at in st is chosen using Qm×n. In line 6,
the action, at , is performed and a reward is received. Next,
in line 7, the new state, st+1, is computed. Then, in line 8,
the learning value, Qm×n(st , at ), is updated using Eq. 1. Last,
in line 9. The new state, st+1, is assigned to the current
state st . In the end, the Algorithm 1 returns the resultant
learning values Qm×n to build the path, QG, through the
Algorithm 3.

B. QAPF LEARNING ALGORITHM
Algorithm 2 presents the QAPF pseudocode for MR path
planning. The QAPF learning algorithm employs the next
input parameters: the goal point, qf , that theMRmust achieve
and the environment information, which is composed of n
rectangular obstacles in Oj(xj, yj, lj,wj) format. The main
objective of the proposed QAPF learning algorithm is to
obtain the learning values Qm×n to build the path, QG =
[q0, q1, . . . , qf ], through theAlgorithm 3, i.e., a collision-free
path that will drive the MR to achieve the goal point with the
minimumpath length. The parameter that Algorithm 2 returns
is the array Qm×n.

Algorithm 2 in line 1 initializes to zero the learning values
Qm×n. From lines 2 to 21, there is the learning iterative pro-
cess of the proposed QAPF algorithm to find the learning val-
ues Qm×n to generate the path through the Algorithm 3. The
stop condition for the learning iterative process is presented
when the maximum number of episodes, Nep, is reached.

Algorithm 2 QAPF
Input: goal point qf and environment information Oj
Output: learning values Qm×n

1 initialize Qm×n(st , at )← {0}
2 for each episode do
3 set st ← a random state from the states set S
4 while st 6= qf and safe do
5 if ζ < uniform random number then
6 compute probability pi using Eq. 5
7 compute APF weighting using Eq. 6
8 choose at in st by using APF weighting
9 else

10 if ζ < uniform random number then
11 choose the best at in st by using Qm×n
12 else
13 choose random at in st
14 end
15 end
16 perform action at and receive reward r
17 find out the new state st+1
18 update Qm×n(st , at ) using Eq. 1
19 st ← st+1
20 end
21 end
22 return Qm×n

In line 3, a random state is assigned to the currentMR state,
st . From lines 4 to 20, there is the decision iterative process to
operate on artificial potential field (APF) weighting, exploita-
tion, or exploration. The stop condition for the decision pro-
cess is presented when the current state, st , is equal to the goal
point, qf , or the Boolean flag safe is False. Themain objective
of the flag safe is to serve as a stop condition if a collision is
presented with the obstacles or when the MR steps into the
limits of the workspace.
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In line 5, a uniform random number is generated. If the
uniform random number is greater than the decision rate,
ζ ∈ (0, 1], the APF weighting procedure will be performed.
Otherwise, the explore-exploit approach will be performed.

For the APF weighting, we are going to employ the Moore
neighborhood, which is defined on a two-dimensional square
lattice and is composed of a central cell, in this case, the
current MR state st , and the eight cells that surround it.
The probabilities assigned to the neighbor cells of st are

inversely proportional to their total artificial potential field.
A neighbor cell with the lowest total artificial potential field
has the greatest probability of being assigned to st+1, while
the neighbor cell with the highest total artificial potential field
has the lowest probability of being assigned to st+1. A random
number determines which neighbor cell is selected.

Line 6 computes the probability pi for i = 1, . . . , k , where
k is the number of neighbor cells. The probability pi is defined
by Eq. (5) that computes the inverse of the total artificial
potential field, Eq. (2), for the state of each neighbor cell qi.

pi =
1

U (qi)
(5)

In line 7, the standard (unit) APF weighting function is
computed. The APF weighting function σ : Rk

→ (0, 1)k

is defined by Eq. (6) for i = 1, . . . , k and p = (p1, . . . , pk ) ∈
Rk .

σ (p)i =
pi∑k
j=1 pj

(6)

The cumulative probabilities obtained by the APF weight-
ing function are used in choosing the action at in the state
st (line 8). First, the probabilities contained by p are sorted.
Then, a random number between zero and one is generated.
Starting at the top of the list, the first neighbor cell with a
cumulative probability that is greater than the random number
is selected for the state st+1.

If the APF weighting procedure is not executed, the
explore-exploit approach will be performed (line 9).
In line 10, a uniform random number is generated. If the
uniform random number is greater than the decision rate, ζ ,
the exploitation procedure will be performed. Otherwise, the
exploration procedure is performed.

Exploitation highlights the direction of search to control
the search within the neighborhood of the best solutions
obtained by exploration. In that sense, in line 11, the best
action, at , in the state, st , is chosen using the learning values,
Qm×n.

If the exploitation procedure is not executed, the explo-
ration approach will be performed (line 12). Exploration
involves the process of determining different candidate solu-
tions by randomly exploring the search space. In that way,
in line 13, a random action, at , in the state, st , is executed.

Once the action, at , has been chosen through the APF
weighting, exploitation, or exploration procedure. In line 16,
the action, at , is performed and a reward is received. The
agent’s sole objective is to maximize the total reward that

FIGURE 2. Generalized framework of the proposed QAPF learning
algorithm.

it receives over the long run. The reward signal thus defines
what are the good and bad events for the agent [30].

Next, in line 17, the new state, st+1, is computed using
Eq. 7. Each action, at , when applied from the current state, st ,
produces a new state, st+1, as specified by the state transition
function, f , that is f (st , at ) = st + at , in which st ∈ S and
at ∈ A.

st+1 = f (st , at ) (7)

Then, in line 18. The learning value, Qm×n(st , at ),
is updated using Eq. 1. Where, Qm×n(st , at ) estimates the
action value after applying an action at in state st . Last,
in line 19. The new state, st+1, is assigned to the current state
st to continue with the iterative process until the goal point,
qf , is reached or an unsecured condition occurs.
In the end, the Algorithm 2 returns the resultant learning

values Qm×n to build the path QG through the Algorithm 3.
Fig. 2 summarizes the process described by Algorithm 2.

The learner and decision maker is the mobile robot (MR).
Everything outside the MR is considered as the environment.
These interact continually, the MR selecting actions through
the operations of exploration, exploitation, or APFweighting,
and the environment responding to these actions and present-
ing new situations to the MR. The environment also gives
rise to rewards, special numerical values that the MR seeks
to maximize over time through its choice of actions [30].

The classical Q-learning approach employs random num-
bers or zeros to initialize the learning values Qm×n. In this
work, we use zeros for both, the CQL algorithm and the
QAPF learning algorithm. Therefore, the learning efficiency
in the initial stage is low. Moreover, the balance between
exploration and exploitation of actions is a fundamental factor
affecting the convergence speed of the classical Q-learning
approach. If the exploration rate is too high, it will cause
some high-value behaviors not to be effectively used and
affect the path planning; while the exploration rate is too
low, it will make some high-value behaviors unable to be
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effectively trained in a short time and slow down the learning
convergence [19]. To overcome this problem, the proposed
QAPF learning algorithm employs the concept of partially
guided Q-learning through the APF weighting to virtualize
the a priori environment into a total artificial potential field
and compute the appropriate learning values, Qm×n. In con-
sequence, to speed up the convergence.

The convergence is presented when the learning values
Qm×n remain unchanged or are under a certain bound set in
advance. In that sense, the stop condition in this work for the
learning process is presented when the maximum number of
episodes, Nep, is reached. Therefore, the convergence of the
learning values Qm×n means that the MR can plan a feasible
path based on its experience [9]. However, the MR will not
necessarily find the global shortest path. It will find a nearly
optimal or optimal path in the best of cases. Consequently,
the shortest path is defined on the basis of the experience the
MR has.

C. PATH GENERATOR ALGORITHM
The MR uses Algorithm 3 to generate the path from the
start point, q0, to the goal point, qf , under a known, partially
known, or unknown environment. Algorithm 3 uses the learn-
ing values Qm×n to generate the best path, QG, in the offline
and online path planning modes. During the path generation,
the environment is verified to see if new obstacles not con-
sidered at the beginning were added or dynamic obstacles
have changed their position. If the environment change, the
environment information, Oj, is updated.

Algorithm 3 Path Generator
Input: start point q0, goal point qf , environment

information Oj, and learning values Qm×n
Output: path QG

1 i← 0
2 set st ← q0
3 while st 6= qf and safe do
4 i← i+ 1
5 verification of the environment
6 if environment has changed then
7 update environment information Oj
8 end
9 choose the best at in st by using Qm×n
10 perform action at
11 find out the new state st+1
12 st ← st+1
13 qi← st
14 end
15 QG← [q0, q1, . . . , qi]
16 return QG

Algorithm 3 employs the input parameters: the start point,
q0, the goal point, qf , the environment information, Oj, and
the learning values Qm×n. The objective of the path gener-
ator algorithm is to build the path, QG, that is composed

of objective points from the start point to the goal point.
Therefore, the parameter that Algorithm 3 returns is the array
QG = [q0, q1, . . . , qf ].
Algorithm 3 in line 1 initializes to zero an index, i, that

will be employed by the objective points. In line 2, the start
point, q0, is assigned to the current state st . From lines 3 to 14,
there is the path generator iterative process to build the path
QG. The stop condition is presented when the current state,
st , is equal to the goal point, qf , or the Boolean flag safe is
False.

In line 4, the index, i, is increased by one. Next, the
verification of the environment is performed (line 5). If the
environment has changed, then the environment information,
Oj, is updated (line 7). In line 9, the best action, at , in the cur-
rent state, st , is chosen using the learning values,Qm×n. Once
the action, at , has been chosen, the action, at , is performed
(line 10). Now, in line 11, the new state, st+1, is computed
using Eq. 7. Last, in line 12. The new state, st+1, is assigned
to the current state st , and the current state is assigned to the
objective point qi (line 13). In the end, the Algorithm 3 returns
a collision-free path between the start point, q0, and the goal
point, qf , if the flag safe remains True. And, an effective path,
if the current state, st , is equal to the goal point, qf in the end.

V. EXPERIMENTS AND RESULTS
In this section, we describe the experiments, and we present
the results of a comparative study of the proposed QAPF
learning algorithm versus the CQL algorithm in a set of
ten test environments to evaluate the performance of both
planning algorithms in terms of path length, path smooth-
ness, learning time, and path planning time in offline mode
for known environments and online mode for unknown or
partially unknown environments.

A. TEST CONDITIONS
In all the experiments, we considered that the MR config-
uration is defined as q(x, y, φ, θ ), where x and y are the
coordinate points, φ = 0.2 is the physical radius of the MR in
meters, and θ is the angle of orientation that is always oriented
to the next coordinate point to visit. Hence, the initial point
is centered over the starting point q0 and oriented to the first
coordinate to visit.

Table 1 presents the test environments configuration. The
table contains the goal point, qf , that the MR must attain
and the test environment layout. Each test environment is
configured by n rectangular obstacles Oj(xj, yj, lj,wj), for
1 ≤ j ≤ n, where the left-bottom vertex of each obstacle
is placed at the coordinate points (xj, yj) and its length and
width are indicated by lj and wj, respectively. These test
environments were designed to evaluate the performance and
accuracy of the QAPF learning algorithm. The benchmark
maps presented in [31] inspired the test environments, and
it has been labeled as Map01, Map02, . . . , and Map10.

The test environments Map01 to Map10 cover well-known
difficult path planning problems, e.g., path-following predic-
tion problems, problematic areas to reach because the goal
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TABLE 1. Test environments configuration with the goal point and obstacles information.

is too close to an obstacle, and trap sites due to local min-
ima, among other problems [32], [33]. The test environments
described in Table 1 can be graphically observed in Fig. 3,
where each test environment is configured with rectangular
obstacles in red and a blue dot indicating the goal point
qf , as well as its corresponding APF surface aside. These
environments present challenging problems for testing path-
planning algorithms; thereby we used them in this work to
evaluate the QAPF learning algorithm. These test environ-
ments represent just a sample of the types of environments
that theMR can expect to find in typical real-world scenarios.
All the test environments have a physical dimension of 10×
10 meters and the input coordinates (x, y) are quantized into
161× 161 = 25, 921 states. Hence, each state in the grid has
a physical separation of 0.0625 meters.

In this work, all the experiments were carried out on an
Intel Core i9 CPU (3.60 GHz) with 16 GB of RAM running
the Ubuntu Focal Fossa distribution of Linux with Python
3.7, and OpenCV 4.5. The experiments are composed of a
learning phase and a testing phase. To make a fair comparison
among the algorithms, we set the same parameters.

For the learning phase, we have the following remarks:
Remark 1: The reward function is defined by Eq. (8).

Where the reward is r = 100 when the agent arrives at goal
state qf . The reward is r = −1 when the agent collides with
obstacles or when it steps into the limits of the workspace,
and then in both cases, the agent will be instantly reset to
a valid random state. For other steps, the agent receives a
reward r = 0.

r =


100, if st = qf and safe = True
−1, if st 6= qf and safe = False
0, otherwise

(8)

Remark 2:The learning rate, α ∈ (0, 1), regulates the range
of the latest received data that will override the previous data.
When α = 0, the MR will learn nothing, whereas the MR
will only read the latest received information when α = 1 [5].
When the value of α is relatively small, Q-value in the func-
tion Q(s, a) will eventually converge to the optimal Q-value,

Q* after the MR has traveled all the states and considered all
the possible actions in the given environment [25]. As such,
the learning rate, α, is empirically set to 0.3 in this work.
Remark 3: The discount factor, γ ∈ [0, 1), determines the

type of reward that the MR receives. When γ = 0, the MR
will only consider immediate reward, whereas the MR will
consider future reward when γ approaches 1. In that sense,
the discount factor, γ , is set to 0.8 in this work, following [5],
[34].
Remark 4: The decision rate, ζ ∈ (0, 1], determines the

process involved to choose the action at in the state st .
These processes include the APF weighting procedure, and
the explore-exploit approach explained in Section IV. The
decision rate, ζ , is empirically set to 0.2 in this work.
Remark 5: The APF weighting employs the total artificial

potential field in its process. Therefore, the attractive and
repulsive proportional gains, {ka, kr | 0 < ka, kr < 10} [29],
are defined as follow. The attractive proportional gain, ka,
is empirically set to 0.25 as well the repulsive proportional
gain, kr , is empirically set to 0.60 in this work.

And for the testing phase, we have the following remarks:
Remark 6: The path length dist is defined as the sum of

distances between the configuration states from the start point
q0 to the goal point qf [35], and it is calculated by Eq. (9).

dist =
Nconf−1∑
i=0

L(i, i+ 1) (9)

where, L(i, i + 1) =
√
(xi+1 − xi)2 + (yi+1 − yi)2 is the

distance between configuration states i = (xi, yi) and i+ 1 =
(xi+1, yi+1), the number of configuration states is Nconf .
Remark 7: Path smoothness, smooth, has as goal to mea-

sure how much snaky is the path, and it is calculated by
Eq. (10).

smooth =
1

Nconf

Nconf−1∑
i=0

|β(i, i+ 1)| (10)

where, β(i, i + 1) is the angle in every change of direc-
tion θ between configuration states i = (xi, yi) and
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FIGURE 3. Test environments with rectangular obstacles in red and a blue dot indicating the goal point, each one is presented in an area of
10 × 10 and their correspondent APF surface aside.
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TABLE 2. Results in terms of path length (distance in meters) for the learning phase considering a different number of episodes, the best result (lower is
the best) for each test environment is in bold. For ‘- - -’ the learning algorithm was unable of achieving a feasible result.

FIGURE 4. Learning results comparative. Each map shows the best path QG obtained by the CQL algorithm and the QAPF learning
algorithm for 5 × 104, 1 × 105, 5 × 105, 1 × 106, and 2 × 106 episodes respectively from left to right.

i + 1 = (xi+1, yi+1). If the direction θ has no change
β(i, i+ 1) = 0, otherwise, β(i, i+ 1) = arctan 2((yi+1 − yi),
(xi+1 − xi)).

B. LEARNING PHASE RESULTS
To assess the learning performance of the proposed QAPF
learning algorithm versus the CQL algorithm, Table 2
presents the results in terms of path length for a different
number of episodes employed during the learning phase in
each test environment. For the learning phase were employed
from 5×104 to 3×106 episodes to reach the best results, after
3×106 episodes no better results or improvement is obtained
in any of the test environments employed.

The Eq. (9) was employed to compute all the results in
Table 2. The results show that the QAPF learning algorithm
presents better performance in terms of path length in the
learning phase over the CQL algorithm in all the test envi-
ronments. For example, for the QAPF learning algorithm
in Map10, the shortest path length is 9.0078 meters which
is reached with 1 × 106 episodes of training. However, for
the CQL algorithm at the same number of episodes the path
length reached is 9.9915 meters. The difference between
the results is 0.9837 meters, which represents an important
advantage of the QAPF learning algorithm. The advantage of
the QAPF learning algorithm can be observed in the results
presented in Table 2. Therefore, it can be concluded that the
QAPF learning algorithm outperforms the CQL algorithm in
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FIGURE 5. Best results (lower is the best) for the learning phase in a
single mission in each test environment.

most of the stages of learning in terms of path length in the
training phase.

Fig. 4 shows a visualization of the learning results pre-
sented in Table 2 for the CQL algorithm and the QAPF learn-
ing algorithm through the different number of episodes in
Map10. It can be observed that for 5× 104 episodes the CQL
algorithm is unable to find a path, instead, the QAPF learning
algorithm reaches a feasible solution with the same number
of episodes. Also, it can be observed that each algorithm
improves its solution through the increase in the number of
episodes, finding that the QAPF learning algorithm presents
better results for most of the stages of learning.

Fig. 5 shows an overall view of the best results presented in
Table 2 for the learning phase in terms of path length, smooth-
ness, and training time. In Fig. 5(a), it can be observed that
the QAPF learning algorithm overcomes the CQL algorithm
in all the test environments. To obtain the results presented in
Fig. 5(b), the Eq. (10) was employed. The path smoothness
results show a better performance for the QAPF learning
algorithm over the CQL algorithm, whereas for the two first
test environments the QAPF learning algorithm shows a wide
advantage. Fig. 5(c) presents the training time results for
a single episode. The mean and the standard deviation are

lower for the QAPF learning algorithm in all the test environ-
ments. It can be concluded that the QAPF learning algorithm
presents an efficient performance for the learning phase due
to better results presented in all the test environments.

In summary, for the learning phase results that are shown in
Fig. 5. Regarding path length, the CQL algorithm achieves an
average of 14.7104 meters and the QAPF learning algorithm
achieves an average of 13.8469 meters. Therefore, the dif-
ference is 0.8635 meters, reaching a 6.24% of improvement
with the QAPF learning algorithm. Regarding path smooth-
ness, the CQL algorithm achieves an average of 7.4297 units
and the QAPF learning algorithm achieves an average of
2.9360 units. Therefore, the difference is 4.4937 units, yield-
ing a 153.05% of improvement with the QAPF learning
algorithm. Finally, regarding training time, the CQL algo-
rithm achieves an average of 5.35 ms and the QAPF learning
algorithm achieves an average of 3.06ms for a single episode.
Therefore, the difference is 2.29 ms, yielding a 74.84% of
improvement with the QAPF learning algorithm.

C. TESTING PHASE: OFFLINE PATH PLANNING RESULTS
In offline path planning, the aim is to find a feasible
collision-free path between the start point q0 and goal point
qf , in a known static environment composed of obstacles. The
environments described in Table 1 were used to test the QAPF
learning algorithm in offline path planning mode. Fig. 6
shows the best path QG obtained in each test environment
from Map01 to Map10. These paths have the shortest path
length obtained by theQAPF learning algorithm as it is shown
in Table 2, where the best results (shortest path) are in bold.
For a quantitative comparison between the proposed QAPF

learning algorithm and the CQL algorithm in offline path
planning mode, for each test environment, twenty different
path planning problems were generated by modifying the
start point at random. Fig. 7 shows an example of the offline
path planning for twenty different random start points in
Map10.

Fig. 8 shows the offline path planning results for twenty
different missions (in which each one has a different start
point) in terms of path length, path smoothness, and com-
putation time for each test environment. In Fig. 8(a), it can
be observed that the QAPF learning algorithm overcomes the
CQL algorithm in all the test environments. Also, the path
smoothness results (Fig. 8(b)) show a better performance for
the QAPF learning algorithm over the CQL algorithm, in this
case, the QAPF learning algorithm shows a wide advantage
in most of the test environments. Fig. 8(c) presents the path
planning computation time results for twenty different mis-
sions in each test environment. The mean and the standard
deviation are slightly lower for the QAPF learning algorithm
in all the test environments. It can be concluded that theQAPF
learning algorithm presents an efficient performance for the
testing phase in offline path planning due to better results
presented in all the test environments.

In summary, for the testing phase in offline mode results,
which are shown in Fig. 8. Regarding path length, the
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FIGURE 6. Path planning results for the different test environments. Each map shows the best path QG obtained by the QAPF learning
algorithm in offline path planning mode.

FIGURE 7. Offline path planning for twenty different random start points
in Map10. The map shows the paths QG obtained by the QAPF learning
algorithm, the different start points in blue, and the goal in green.

CQL algorithm achieves an average of 9.2027 meters
and the QAPF learning algorithm achieves an average of
8.5599 meters. Therefore, the difference is 0.6428 meters,
reaching a 7.51% of improvement with the QAPF learning
algorithm. Regarding path smoothness, the CQL algorithm
achieves an average of 15.9806 units and the QAPF learning
algorithm achieves an average of 5.9242 units. Therefore, the
difference is 10.0564 units, yielding a 169.75% of improve-
ment with the QAPF learning algorithm. Finally, regarding
path planning computation time, the CQL algorithm achieves
an average of 6.56 ms and the QAPF learning algorithm
achieves an average of 6.28 ms. Therefore, the difference is
0.28 ms, reaching a 4.46% of improvement with the QAPF
learning algorithm.

D. TESTING PHASE: ONLINE PATH PLANNING RESULTS
In real-world missions, the MR commonly faces unknown or
partially known environments. These environment conditions

FIGURE 8. Offline path planning results (lower is the best) for twenty
different missions in each test environment.

require that the MR can respond and take decisions, a task
that is called online path planning. Fig. 9 exemplifies the
online path planning experiment considering three new static
obstacles. For this experiment, the test environment Map01 is
employed, see Fig. 9(a). First, the path planning is performed
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FIGURE 9. Online path planning.

FIGURE 10. Online path planning with dynamic obstacles.

in offline mode because we know the environment informa-
tion described by the original test environment Map01, see
Fig. 9(b). The minimum path length found to reach the target
position is 7.0418 meters, using the best results, as described
in Table 2. At position (6.0800, 6.0000), a new static obstacle
is added to change the environment configuration. After a
while, when the MR has moved 2.8472 meters, it reaches the
position (5.6875, 6.5000). The MR senses the new obstacle;

it calculates the obstacle position to update the environment
layout map, as shown in Fig. 9(c). The MR path planning
algorithm based on the QAPF learning algorithm now has
a different environment layout. Therefore, it is necessary to
update the path and continue with the movement to reach the
goal point.

Next, at position (6.8000, 4.9800), a second new static
obstacle is added to change the environment configuration.
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After a while, when the MR has moved an additional distance
of 1.7393 meters, it touches the position (6.6250, 5.5625).
The MR senses the second new obstacle; it calculates the
obstacle position to update the environment layout, as shown
in Fig. 9(d). Then, at position (5.9800, 4.0000), a third new
static obstacle is added to change the environment config-
uration. After a while, when the MR has moved an addi-
tional distance of 2.6339 meters, it touches the position
(6.5625, 4.0000). The MR senses the third new obstacle; it
calculates the obstacle position to update the environment
layout, as shown in Fig. 9(e). Finally, the MR follows the
new path to reach the goal point. The complete path to
accomplish the goal point is shown in Fig. 9(f). The total
path length from the original start point to the goal point is
2.8472+1.7393+2.6339+2.5955 = 9.8159 meters.
Now, we are going to present an experiment where the

QAPF learning algorithm will be employed for online path
planning dealing with new dynamic obstacles. This experi-
ment looks at the case of new dynamic obstacles that can be
persons or other mobile robots moving through the environ-
ment. Contrarily to the case of the unknown static obstacles,
here the new obstacle will not remain static, it will be moving
with a defined trajectory that is unknown to the MR.

For this experiment, we are going to use the test environ-
ment Map03, see Table 1. Fig. 10 shows the online path plan-
ning experiment considering unknown dynamic obstacles.
First, the path planning is performed in offline mode because
we have the environment information described by the orig-
inal test environment Map03, see Fig. 10(b). The minimum
path length found to achieve the goal point is 8.1516 meters,
using the QAPF learning algorithm, see Table 2. Now theMR
navigation can start. After a while, when the MR has traveled
0.7955 meters, it reaches the position (5.5625, 8.4375). The
MR senses a new obstacle (first mobile robot in red), which is
located at (5.9800, 7.9400) at that moment, theMR calculates
the obstacle position to update the environment layout map,
as shown in Fig. 10(c).

The MR now has a different environment layout. Con-
sequently, it is necessary to update the path to achieve
the goal point. After a while, when the MR has traveled
3.4893 meters, it reaches the position (7.1250, 6.4375). The
MR senses the second new dynamic obstacle that is located
at (7.1000, 5.7600) at that moment. The MR calculates the
obstacle position to update the environment layout, as shown
in Fig. 10(d). Then, when theMR has traveled 4.2722 meters,
it reaches the position (6.5000, 4.0000). The MR senses
a third new dynamic obstacle, located at (5.8800, 3.9600)
at that moment. The MR calculates the obstacle position
to update the environment layout, as shown in Fig. 10(e).
Finally, the MR follows the new path to reach the target
position; the complete path is shown in Fig. 10(f). The total
path length from the original start point to the goal point is
0.7955+3.4893+4.2722+1.8258 = 10.3828 m.
Fig. 11 shows the online path planning results in terms

of path length, path smoothness, and computation time
for twenty different missions in each test environment.

FIGURE 11. Online path planning results (lower is the best) for twenty
different missions in each test environment.

In Fig. 11(a), it can be observed that the QAPF learning algo-
rithm overcomes the CQL algorithm in all the test environ-
ments. Besides, the path smoothness results (Fig. 11(b)) show
a better performance for the QAPF learning algorithm over
the CQL algorithm, in this case, the QAPF learning algorithm
shows a wide advantage in most of the test environments.
Fig. 11(c) presents the path planning computation time results
for twenty different missions in each test environment. The
mean and the standard deviation are slightly lower for the
QAPF learning algorithm in all the test environments. It can
be concluded that the QAPF learning algorithm presents
an efficient performance for the testing phase in online
path planning due to better results presented in all the test
environments.

In summary, for the testing phase in online mode results,
which are shown in Fig. 11. Regarding path length, the
CQL algorithm achieves an average of 9.4827 meters
and the QAPF learning algorithm achieves an average of
7.9800 meters. Therefore, the difference is 1.5027 meters,
reaching an 18.83% of improvement with the QAPF learning
algorithm. Regarding path smoothness, the CQL algorithm
achieves an average of 24.5259 units and the QAPF learning
algorithm achieves an average of 10.3578 units. Therefore,
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the difference is 14.1681 units, reaching 136.79%of improve-
ment with the QAPF learning algorithm. Finally, regarding
path planning computation time, the CQL algorithm achieves
an average of 8.56 ms and the QAPF learning algorithm
achieves an average of 7.33 ms. Therefore, the difference is
1.23 ms, reaching a 16.78% of improvement with the QAPF
learning algorithm.

VI. CONCLUSION
In this work, the proposed QAPF learning algorithm suc-
cessfully solves path planning problems in offline and online
modes for known and unknown environments. The combi-
nation of the Q-learning approach and the APF method can
get over the drawback of the classical Q-learning approach,
such as slow learning speed, time consumption, and impos-
sible learning in known and unknown environments. All the
simulation results demonstrate that the proposedQAPF learn-
ing algorithm can enhance learning speed and improve path
planning in terms of path length and path smoothness.

For the training phase, the QAPF learning algorithm
reached an improvement of 6.24% in path length, 153.05%
in path smoothness, and 74.84% in training time over the
classical approach. For the testing phase in offline mode, the
QAPF learning algorithm reached an improvement of 7.51%
in path length, 169.75% in path smoothness, and 4.46% in
path planning computation time over the classical approach.
And, for the testing phase in online mode, the QAPF learning
algorithm reached an improvement of 18.83% in path length,
136.79% in path smoothness, and 16.78% in path planning
computation time over the classical approach. The effects of
the APF weighting in the results of the QAPF learning algo-
rithm are beneficial over the classical Q-learning approach
due to the advantages presented by the APF method such as
the effectiveness in providing smooth and safe planning.

We employed different test scenarios to evaluate the
QAPF learning algorithm. The results obtained in the dif-
ferent known and partially unknown environments show that
the proposed QAPF learning algorithm achieves the three
requirements efficiently to solve the path planning problem:
safety, length, and smoothness, whichmakes the QAPF learn-
ing algorithm appropriate to find competitive results for MR
navigation in complex and real scenarios.

The path planning results demonstrate that the QAPF
learning algorithm produces better solutions in all the test
environments. Furthermore, the path planning results are
achieved with a lower number of episodes in the learn-
ing phase when the QAPF learning algorithm is employed.
Another advantage of the proposed QAPF learning algorithm
is low variability in training time, making it highly reliable
for MR path planning.

In this regard, the QAPF learning algorithm could be
useful for many applications in MRs for local and global
path planning, including industrial and domestic MRs, self-
driving cars, exploration vehicles, unmanned aerial vehicles,
and autonomous underwater vehicles.

There are several possible directions to extend this work in
the future. Firstly, it could be motivating to focus on multi-
agent (multi MR) path planning in complicated dynamic and
uncertain situations. Secondly, other types of reinforcement
learning can be considered as Deep Q-Networks, through
the combination of reinforcement learning and deep neural
networks it can be possible to solve a wide range of path
planning problems. Lastly, the QAPF learning algorithm can
be extended to work in a 3D space that could be useful for
many applications for gathering information (i.e., drones),
disaster relief, and exploration.
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