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ABSTRACT Due to the unique channel characteristics of Terahertz (THz), comprehensive propagation
channel modeling is essential to understand the spectrum and develop reliable communication systems in
these bands. In this work, we propose the utilization of the hierarchical Dirichlet Process Gamma Mixture
Model (DPGMM) to characterize THz channels statistically in the absence of any prior knowledge. DPGMM
provides mixture component parameters and the required number of components. A revised expectation-
maximization (EM) algorithm is also proposed as a pre-step for DPGMM. Kullback-Leibler Divergence
(KL-divergence) is utilized as an error metric to examine the amount of inaccuracy of the EM algorithm
and DPGMM when modeling the experimental probability density functions (PDFs). DPGMM and EM
algorithm are implemented over the measurements taken at frequencies between 240 GHz and 300 GHz.
By comparing the results of the DPGMM and EM algorithms for the measurement datasets, we demonstrate
how well the DPGMM fits the target distribution. It is shown that the proposed DPGMM can accurately
describe the various THz channels as well as the EM algorithm, and its flexibility allows it to represent more
complex distributions better than the EM algorithm. We also demonstrated that DPGMM can be used to
model any wireless channel due to its versatility.

INDEX TERMS Terahertz communications, statistical channel modeling, expectationmaximization, Dirich-
let process, Gamma mixture model.

I. INTRODUCTION
The demand for high-bandwidth instant online connectivity
grows every day. That is prompting the emergence of new
data-hungry technological instruments, resulting in an ever-
lasting increase in wireless data traffic load [1], [2]. As a
result, both academia and the industry increased their interest
in higher frequency bands featuring wider bandwidths to
comply with the demand. The THzs band between 0.1 THz
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and 10 THz is one of the spectra that has been examined from
various perspectives recently [3], [4] and appears to have a
promising future. Since the THz band is not standardized
and allows bandwidths in the orders of 100 GHz, researchers
push for the design of THz wireless systems that will enable
communication [5]. Owing to its appealing features, the THz
band is expected to play a key role in sixth-generation (6G)
communication systems by providing data rates up to Terabit
per second levels [6].

Besides these, THz band comes at the cost of severe
losses such as propagation losses and molecular absorption.
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Because of these issues, THz band has distinct channel char-
acteristics than other commonly utilized frequency bands.
Even various THz sub-bands have different channel charac-
teristics, demonstrating the importance of channel modeling
in THz band and the requirement for a range of flexible
channel modeling approaches.

A. RELATED WORKS
Several works employing various approaches have been con-
ducted to achieve the goal of accurate channel modeling in
THz bands. Generally, channel models are divided into two
types i.e., deterministic and statistical.
In terms of deterministic channel modeling, ray-tracing is

frequently utilized. In [7], the frequency domain ray-tracing
approach is employed to estimate the THz indoor propagation
channel based on the measurements conducted at 275 to
325 GHz. In [8], the smart rail mobility channel is char-
acterized by ray-tracing at the 300 GHz band. Ray-tracing
based on a stochastic channel model of high data rate data
download at 220 GHz and 340 GHz is proposed in [9].
Deterministic modeling methods provide accurate channel
modeling results; however, the detailed geometric structure
of the propagation environment, as well as the transmitter
and receiver locations must be known beforehand, which
becomes a significant problem, especially in case of mobil-
ity. Furthermore, deterministic approaches suffer from high
computational complexity.

On the other hand, statistical modeling approaches can be
employed to estimate the THz propagation characteristics.
A statistical path loss model for 240 to 300 GHz band is pro-
posed in [10]. Furthermore, a two-slope statistical path loss
model for short-range THz communication links between
275 and 325 GHz based on real measurement results is
introduced in [11]. The suitability of the α − µ distribu-
tion for measurements taken at the different transmitter and
receiver configurations in a shopping mall, an airport check-
in area, and a university entrance hall was investigated in [12]
to model THz small scale fading accurately. In addition to
these works, the ergodic capacity of THz wireless systems is
evaluated in [13] by defining THz wireless channels with a
α − µ distribution. Statistical modeling techniques are able
to characterize THz channels in different environments rather
than assuming a specific place. Beyond this, the fundamen-
tal advantage of statistical channel modeling is the lower
complexity when compared to deterministic models, which
enables quick channel model generation based on essential
characteristics [14].

Contemporary THz band statistical channel modeling
approaches mostly assume that the channel can be character-
ized based on a single distributional representation. However,
taking into account the variable channel characteristics of
THz sub-bands, mixed models should be considered. In fact,
although the use of mixture models in density estimation
is common [15], [16], [17], [18], [19], it is rarely used
in studies to model wireless communication channels. For
example, [20] employed a mixture of Gamma distributions

to model the signal-to-noise ratio (SNR) of various wire-
less channels by matching PDFss and moment generation
functions (MGFs), and it enables the evaluation of chan-
nel capacity, outage, and error rate owing to its mathe-
matically tractable form and high accuracy representation.
Also, in [20], the required number of mixture components
is determined by checking values of mean squared error
and KL-divergences with the increasing number of mixture
components. In [21], shadow fading of the empirical results
collected in real scenario modeled with lognormal mixtures.
In [22], the Gaussian mixture model is used to describe
wireless channels, where the component parameters and the
number of required components are determined by EM and
Bayesian information criteria (BIC), respectively. When THz
bands are investigated, [23] proposed Gammamixture model
(GMM) for 240 to 300 GHz band characteristics and rep-
resented the bands accurately. In this work, EMs algorithm
is utilized to infer the parameters of Gamma distribution
components.

B. MOTIVATION
GMM provided a significant step forward for THz chan-
nel characterization, however there are major improvement
points in terms of applications since matching PDFs and
MGFs requires special parametrization for every distribution.
Moreover, the performance of the EM algorithm is highly
dependent on initialization parameters [24], [25] thus, it has
to be tuned every time with the required number of mixture
components to be provided a priori. To that end, BIC can
be utilized to determine the number of required mixture
components. However, in such a scenario, BIC should scan
all potential mixture component numbers to one with the
minimum BIC. This additional step should be repeated for
each different distribution. To overcome the impracticality of
this process, there a more generalized method is strived for.
Motivated by this requirement, in this work, the utilization of
a Dirichlet Process Mixture Model (DPMM) for THz band
small scale fading modeling is proposed.

DPMM is widely used in many fields involving non-
parametric Bayesian estimation problems such as classifi-
cation of brain tissues [26], protein fold [27], hyperspectral
images [28] and clustering of genes [29], texts [30], medical
images [31] and density estimation [32] of the relevant data in
many fields. DPMM has the ability to grow its representation
as more data are observed assuming that data come from
distinct sub-clusters, with each sub-cluster’s data described
by a separate probability density function. Without any prior
knowledge, it allows inferring the required number of clus-
ters and statistical properties of each corresponding clusters
as data observed. Because of these properties, DPMMs are
accurate and adaptable models, especially when the under-
lying distribution of the data is either known, or can be
closely approximated by the assumed model. As a result of
this, DPMM has gained considerable popularity in the field
of machine learning because of its flexibility, especially in
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TABLE 1. Distinguishing features and contributions of the paper.

unsupervised learning, due to its clustering and latent feature
extraction property.

The one important thing that has to be considered is clus-
ters in actual data do not always possess symmetric distribu-
tion like the Gaussian distribution. The Gamma distribution
is a versatile alternative to the Gaussian distribution, and
because of its skewness, it can describe both long-tailed and
asymmetric distributions. As a result, any arbitrary PDF can
be modeled by utilizing a Gamma mixture [32]. Because of
this, Gamma kernels are preferred in DPMM studies such
as [32], [33], [34], [31], to model the density of the real
data and their belonging clusters accurately. As previously
stated, due to its variety, also THz sub-bands do not always
have the same form and rarely follow a smooth distribution.
For these reasons, Gamma distribution is preferred as the
mixture kernel in our proposed model, and we denote it as the
DPGMMs. Unlike the previous mixture-based channel mod-
eling works, distribution parameters and the number of com-
ponents required for different channel types can be inferred
using a single DPGMM without any further processing and
prior knowledge. This allows a single DPGMM to be used to
describe various distributions from simple to complex.

C. CONTRIBUTIONS
• Motivated by the requirements described, EM algorithm
is revised in this work for GMM and as a follow up to
the works of [20], [21], [23] we proposed a flexible hier-
archical DPGMM for the THz band, which determines
the required number of mixture components and corre-
sponding mixture component parameters according to
the variable structure of THz channels. We clarified our
contributions on Table 1.

• To demonstrate the validity of the models, the proposed
DPGMM and EM algorithm are applied to several mea-
surements conducted between 240 and 300 GHz.

• The ability of the DPGMM and EM algorithm to
estimate experimental distributions is assessed by the
KL-divergence error metric, and results are illustrated.
Furthermore, an extensive comparison of the DPGMM
and EM algorithm for the GMM is carried out.

• The flexibility of DPGMM is validated, and its ability
to span a broad range on the positive axis is proven by
applying it to a very large measurement result. There-
fore, it is shown that DPGMM is not only applicable to
THz channels, but it can also be used to characterize

a wide variety of wireless communications channels,
including those with single distribution characteristics.
Finally, the python code for the developed model is also
made available1 for further research activities.

D. ORGANIZATION OF THE PAPER
This paper is organized as follows. Section II describes
the mathematical foundations of the signal model and the
GMM, as well as the expectation maximization algorithm for
the GMM. Section III firstly explains the Dirichlet process
(DP) and its construction with the stick-breaking process.
Then introduces the DPGMM by giving detailed information
about its hierarchical structure. Section IV provides detailed
information about the measurement dataset and simulation
settings. Following that, the performance of the DPGMM and
EM algorithms on the measurement dataset is shown, and
both models are contrasted. Finally, Section V concludes the
study.

II. PRELIMINARIES
A. SIGNAL MODEL
The signal collected at the receiver can be expressed in time
domain as

r(t) = Re
{[
xI (t)+ jxQ(t)

]
ej2π fct

}
, (1)

with fc being the carrier frequency of the transmitted signal, j
representing imaginary number

√
−1. xI (t) and xQ(t) define

the in-phase and quadrature parts of the received signal,
respectively. Re{·} represents the real-valued terms of the
complex baseband signal r(t).
The impulse response of the multipath channel at the pass-

band can be given as

h(t) =
L−1∑
l=0

alδ (t − tl), (2)

where L is the total number of multipath sources and δ is the
Dirac delta function. al and tl denote attenuation and delay
coefficients for the given l th multipath source. The corre-
sponding complex baseband representation of the multipath

1DPGMM source codes available to reproduce the results and further
research activities: https://github.com/erhankarakoca/DPGMM-Channel-
Modelling
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channel impulse response is

h(t) =
L−1∑
l=0

alδ (t − tl) e−j2π fctl . (3)

In the case of only the line-of-sight (LOS) component, L = 1
in Eq. (3) and LOS channel can be given as

h(t) = a0δ (t − t0) e−j2π fct0 , (4)

where a0 is amplitude and 2π fct phase of the channel. Propa-
gation delay; t0 = d/c, where d is the spacing between trans-
mitter and receiver and c is the speed of the light constant.

Measurement dataset [35] used in this study is obtained
in an anechoic chamber that only allows LOS propagation.
Even though this setting moves the measurements away from
rich scattering scenarios, the loss factors become a factor that
can be defined as misalignment between antennas, hardware
impairments, and path loss. Therefore, the received signal
representation can be simplified to a combination of distance
dependent path loss and misalignment between antennas.
The effect of these losses on channel amplitude a0 can be
expressed as

Prx = Ptx + 10n log10(d)+M , (5)

where Prx is the received power calculated as the change in
the power of the transmitted signal Ptx due to path loss. Path
loss exponent is denoted as n and M is the random antenna
gain due to the effect of misalignment between antennas.
Eq. (5) expresses the received signal power in the LOS con-
dition at the receiver that we are trying to model. Since the
signals under consideration are wideband and the channel is
varied at THz frequencies, Prx also fluctuates with frequency.
For this reason, in the next step, the GMM is explained to
better capture and model the power clusters and differences
in Prx .

B. GAMMA MIXTURE MODEL
Let us define two parameter α > 0 and β > 0. The Gamma
function 0(α) is defined as

0(α) =
∫
∞

0
xα−1e−xdx. (6)

If both sides of Eq. (6) are divided by 0(α) and by changing
of variables as x = βy follows

1 =
∫
∞

0

1
0(α)

xα−1e−xdx =
∫
∞

0

βα

0(α)
yα−1e−βydy. (7)

Then probability density function f (x|α, β) of Gamma distri-
bution can be defined as

f (x | α, β) =
βα

0(α)
xα−1e−βx , x ≥ 0, α > 0, β > 0,

(8)

where parameters shape α and rate β for all positive values
of x and it sums to one.

The finite GMM with K components can be written as

p (x|α1, β1, π1, . . . , αK , βK , πK ) =
K∑
k=1

πkG (αk , βk),

(9)

where x = {x1, . . . , xn} is the positive vector of observations,
πk mixing proportions or weights of the k th mixture compo-
nent that sum to one

∑K
k=1 πk = 1 and G denotes Gamma

distribution defined in Eq. (8) with parameters αk and βk
which are the shape and rate parameters of the k th mixture
component, respectively. The Gamma mixture was chosen
for this study because it has traceable cumulative distribution
function (CDF) and MGF, thus it can provide an approx-
imation for small-scale fading channels [20]. Furthermore,
by adjusting its parameters, a wide range of distributions can
be represented with high accuracy and as showed in [32],
arbitrary PDFs on (0,∞) can be modeled using Gamma
mixture. As a result, Prx = {x1, . . . , xn} can be modeled as
a Gamma mixture, so we will need to find the appropriate
number of Gamma clusters and their weights in addition
to the parameters associated with each Gamma cluster. For
ease of expression, the Gamma distribution parameters will
be expressed together as θk = {αk , βk} and throughout
the remainder of this study, methods are described to find
the Gamma mixture parameters in a way that models the
empirical distribution of Prx observation vector.

C. EXPECTATION MAXIMIZATION
When some data is absent or latent variables are present,
an iterative process called EM which is commonly used for
density estimation such as clustering for mixture models
is used to obtain the maximum likelihood estimates of the
parameters. In this context, EM algorithm is herein utilized to
fit the empirical PDFs and find Gamma mixture parameters
of the Prx measurements.
When the implementation of the EM algorithm is con-

sidered, it is observed that the number of Gamma compo-
nents to be used for modeling Prx measurements is a priori
information for its two-step process; expectation (E-step) and
maximization (M-step) [36]. EM iterates until it reaches the
desired convergence point, which may not be optimal [37],
updating the randomly assigned values for the parameters of
the mixture model θ1:M = (θ1, . . . , θM ) at each iteration.
The membership coefficients for the entire measurement set
(i = 1, . . . ,N ) and all mixture components (k = 1, . . . ,M )
are computed in the E-step using the current parameters θ1:M
as follows

φik =
πkpk (xi | θk)∑M
k=1 πkpk (xi | θk)

, (10)

where
∑M

k=1 φik = 1. Then, using the measurement data and
membership coefficients derived in the E-step, new parameter
values α, β, and π in the mixture model can be obtained
for each Gamma component by updating the equations in the
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M-step as follows [38]

πnewk =

∑N
i=1 φik

N
, (11)

E [Xk ]new =

∑N
i=1 φikxi∑N
i=1 φik

= αβ, (12)

Var [Xk ]new =

∑N
i=1 φik (xi − E [Xk ]new)2∑N

i=1 φik
= αβ2. (13)

Using the mixture parameters identified by Eq. (11), Eq. (12)
and Eq. (13) we can represent the Prx observation vector in
terms of a mixture of Gamma distribution.

III. DIRICHLET PROCESS GAMMA MIXTURE MODEL
A. DIRICHLET PROCESS
Dirichlet distribution is convenient in describing random
probability mass functions for finite categorical sets, and
it can be thought as a generalization of Beta distribution
for multivariate data sets. For K categorical event, Dirichlet
distribution denoted as Dir(a1, . . . , aK ) can be given as

f (x1, . . . , xK ; a1, . . . , aK ) =
0
(∑K

i=1 ai
)

∏K
i=1 0 (ai)

K∏
i=1

xai−1i ,

(14)

where xi represents a specific category,
∑K

i=1 xi = 1 and
xi ≥ 0 for all i ∈ {1, . . . ,K } also ai denotes the intensity
of the specified category.

The infinite dimensional extension of Dirichlet distribution
is a stochastic process called as DP, whose realizations are
probability distributions over some measurable set S. There-
fore, each draws from the DP, itself a distribution. This pro-
cess is denoted asDP(a,H ), whereH is the expected value of
the process called as base distribution and where a is positive
real number again describing the intensity of mass around
the mean called as concentration parameter. If G is a random
variable drawn from DP(a,H ), then it can be shown that
G (A1) , . . . ,G (An) ∼ Dir (aH (A1) , . . . , a H (An)), where
{Ai}ni=1 denotes any measurable finite partition of measurable
set S [39].
The distinctive characteristic of the DP is that the required

number of clusters is obtained from the process due to non-
parametric nature which makes it an ideal candidate for clus-
tering problems where the number of clusters in unknown a
priori. The DP is commonly used in non-parametric Bayesian
models as a prior on the distribution space, especially in
DPMM which is known as infinite mixture models. In our
analysis, we can use DP as a prior in distribution space to
obtain the underlying distributions of the Prx values and their
corresponding parameters.

B. STICK-BREAKING CONSTRUCTION OF DIRICHLET
PROCESS
DP can be built in a variety of methods such as the
Blackwell–MacQueen urn scheme, the Chinese restaurant
process, or the stick-breaking construction, and each of

them emphasizes a distinct aspect of the DP. In this study,
we employed the stick-breaking construction, which allows
expressing a sample from a DP; G ∼ DP(a,H ) as [40]

G =
∞∑
k=1

πkδθk (·), θk ∼ H , (15)

where θk represents atoms drawn independently from the
base distribution H , δθ point mass at θ and πk is the prob-
ability mass at atom θk . The probability masses also known
as weights and can be constructed as follows

πk = Vk
k−1∏
j=1

(
1− Vj

)
, Vk ∼ B(1, a), (16)

where Vi denotes a broken piece, a is the concentration
parameter and B denotes Beta distribution. This entire pro-
cess may be illustrated by first breaking a unit-length stick
randomly drawn by Beta distribution as, V1 and then continu-
ing to break the remaining portion of the stick 1−Vi randomly
drawn by Beta distribution as V2 . . .Vk . The weights are indi-
cated by the length of each broken piece as π1 = V1, π2 =
V2(1 − V1), . . . , πk = Vk (1 − Vk−1). Then atoms θk are
drawn from the base distributionH to associate theseweights.
Upon breaking the stick, it becomes shorter, and the length
of the higher indexed atoms decreases stochastically, whose
rate of decrease depends on the DP concentration parameter
a because it plays a key role in determining the weights in
each iteration. This procedure assures that

∑
∞

k=1 πk = 1.
Note that for G to be true from a DP, an infinite number
of weights and atoms must be drawn. However, in practice,
it is possible to truncate summation on Eq. (15) with only a
finite number of K draws while still providing a very good
approximation. In Section IV-D, we will go through how to
choose the truncation number.

C. DIRICHLET PROCESS GAMMA MIXTURE MODEL
Stick breaking construction of the DP shows that samples
from the process are discrete distribution. Thus, actually, DP
is not a proper prior for continuous distributions. Therefore,
in non-parametric density estimation DP is used indirectly by
supporting kernel function K(·) as described by

f (x) =
∫

K (x | θ)G(θ)dθ. (17)

Choosing a DP prior on G as Eq. (15) and using it in Eq. (17)
can be turned into a sum of the infinite mixture of kernels [41]

f (x) =
∞∑
k=1

πkK (x | θk), (18)

which can be denoted as DPMM. In Eq. (17) the summation
is set to infinity. This allows the model to describe new
mixture components that may occur as new classes are added
corresponding to the sampled atoms. However, it doesn’t
imply that infinitely many components are occupied.

Instead of simply sampling the data from the DP, sampling
themixture parameters θi from the DP and then utilizing these

VOLUME 10, 2022 84639



E. Karakoca et al.: Hierarchical Dirichlet Process Based Gamma Mixture Modeling

values as input in the continuous kernel functionK(·) enables
the construction of DPMM for non-parametric density esti-
mation as hierarchically defined below

xi ∼ K (θk),
θk ∼ G,

G ∼ DP (a,H). (19)

Thus, DPGMM can be defined by setting the kernel func-
tion K(·) as Gamma distributed

K(x | θk ) ≡ G(x | αk , βk ), (20)

then it gets into the form of

f (x) =
∞∑
k=1

πkG (x | αk , βk). (21)

In order to find Gamma mixture parameters θk , base distri-
bution H and its hyperparameters needs to be defined for
DPGMM. To that end a modified hierarchical model out
of [31] is utilized to estimate the mixture component param-
eters with fundamental modifications in terms of construc-
tion of DP, defining priors and hyperpriors, and computing
algorithm.

Assuming that α and β follow prior distributions; p(α) and
p(β), respectively depending on hyperparameters; λ, κ, ν, v.
In order to add more flexibility to the model, we assume
that also these hyperparameters follow some distribu-
tions; p(λ), p(κ), p(ν) and p(v) depending on hyper-priors;
ϑ,$, ς, ε, µ, ϑ, %.
The prior distributions for the mixture component param-

eters α and β are all assumed independent of each other. The
Inverse-Gamma distribution (IG) is used as a prior for the
shape parameter α, and hyperparameters with shape parame-
ter λ and ratio parameter κ are utilized for this prior

p (αk | λ, κ) ∼
κλα−λ−1k e−κ/αk

0(λ)
. (22)

An IG prior with hyperpriors ϑ and$ are employed for λ
and an exponential (Exp) prior with hyperprior ς is used for κ

p(λ | ϑ,$ ) ∼
$ϑe−$/λ

0(ϑ)λϑ+1
, (23)

p(κ | ς ) ∼ ζe−ςκ . (24)

With these above specifications for the hyperparameter α, its
posterior can cover a very large range in positive axis with
given vague hyperpriors on ϑ,$ , and ς .
Also, Gamma distribution is used as a prior for the rate

parameter β, and hyperparameters with shape parameter ν
and ratio parameter v are utilized for this prior

p (βk | ν, v) ∼
vν

0(ν)
βν−1k e−vβk . (25)

An IG prior with hyperpriors ε and µ is used for v and a G
prior with hyperpriors ϕ and % is used for ν

p(ν | ε, µ) ∼
µεe−µ/ν

0(ε)νε+1
, (26)

p(v | ϕ, %) ∼
vϕ−1%ϕe−%v

0(ϕ)
. (27)

Based on these specifications for the hyperparameter β,
its posterior can cover especially small values between 0
and 1 with given vague hyperpriors on ε, µ and ϕ, %, which
are specified in Section IV-B.

In addition to base distribution also concentration param-
eter a which also governs the distribution over the num-
ber of components K , has to be defined for the DPGMM.
In [31], Inverse-Gamma distribution was chosen as a prior
to a. However, utilization of IG leads to the inclusion of an
excessive number of mixture components in the estimation
process thus estimation flexibility becomes limited. Thus,
in this study, conjugacy of the Gamma distribution to the
B(1, a) is exploited to provide flexibility to the cluster sizes
and mixture weights. So, G(1, 1) is used as a prior for con-
centration parameter a, therefore it became possible to repre-
sent distributions using fewer components while maintaining
estimation accuracy. Please note that the proposed model’s
hierarchical structure allows flexibility and adaptability to a
wide range of data with various distributional characteris-
tics. Furthermore, finding robust parameters for models may
be challenging, and misspecified parameters may diminish
model performance; consequently, using a hierarchical model
alleviates this difficulty while also providing flexibility and
robustness to the model framework [42].

The structure of our model summarized in Fig. 1 and
DPGMM can be described all together hierarchically using
the previously mentioned structure of the weights, base
distribution, and the concentration parameter as described
below:

a ∼ G(1, 1), (28a)

V1, . . . ,VK ∼ B(1, a), (28b)

πk = Vk
k−1∏
j=1

(
1− Vj

)
, (28c)

λk ∼ IG(ϑ,$ ), (28d)

κk ∼ Exp(ς ), (28e)

νk ∼ G(ε, µ), (28f)

vk ∼ IG(ϕ, %), (28g)

αk ∼ IG(λk , κk | ϑ,$, ς ) (28h)

βk ∼ G(νk , vk | ε, µ, ϕ, %), (28i)

xi ∼
K∑
k=1

πkG (x | αk , βk). (28j)

Since our prior assumptions for mixture parameters inde-
pendent of each other, a draw from the base distribution
(αk , βk ) ∼ H (θk ) can be defined as

αk , βk ∼ IG(λk , κk | ϑ,$, ς )G(νk , vk | ε, µ, ϕ, %). (29)

We aim to find posterior distribution for the DPGMM.Amix-
ture model which gives the best evidence of assigning each
data point x = (x1, . . . , xi) to only one cluster, can be
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FIGURE 1. Hierarchical Dirichlet process Gamma mixture model structure.

found by selecting the model that maximizes the integrated
likelihood, which is [43]

f(x, z | ψ) =
∫
2

f(x, z | θ, ψ)p(θ | ψ)dθ, (30)

with

f(x, z | θ, ψ) =
n∏
i=1

f (xi, zi | θ, ψ), (31)

and

f (xi, zi | θ, ψ) =
K∏
k=1

(πkp (xi | θk , ψk))I(zi=k) , (32)

where 2 = {θ1:K , π1:K , ψ1:K } denotes parameter space of
the model, θk = {αk , βk} and ψk = {λk , κk , µk , νk} denotes
hyperparameters. In addition, zi is an indicator variable that
describes the assignment of the observation xi to a specific
mixture component between 1 and K . It is also known as a
latent variable or missing allocation variable introduced by
the nature of DP clustering property and its incidence repre-
sents formation of a new component on the mixture, which is
controlled by a. The indicator function for zi is denoted by I.
By following Eq. (31) and Eq. (32), the likelihood function
for the model can be given as

p(x, z | 2) =
n∏
i=1

K∏
k=1

(πk p (xi | θk , ψk))I(zi=k) , (33)

Hence by using the Bayes rule, the posterior probability is
equal to the likelihood times the prior divided by the evidence

p(2 | x, z) =
p(2)p(x, z | 2)∫
p(2)p(x, z | 2)d2

∝ p(2)p(x, z | 2).

(34)

Also, posterior density proportional to joint probability, p(2 |
x, z) ∝ p(x, z,2) where the marginal likelihood in the
denominator in Eq. (34), can be disregarded as it does not
depend on the model parameters. In a sense, determining
the joint probability function provides information on the
posterior density. We can define the joint probability of the

model taking into account hyperparameters and hyperpriors
as [44]

p (x, z1:K , θ1:K , π1:K , ψ1:K )

=

n∏
i=1

K∏
k=1

[πk p (xi | θk , ψk)]I(zi=k)

×

K∏
k=1

p (αk , βk | ψk)
K−1∏
k=1

B (1, a). (35)

When dealing with DPGMMs, the posterior distributions
and posterior of the model parameters are usually analyti-
cally intractable when a non-conjugate base distribution is
chosen for the mixture kernel due to Eq. (34) involves inte-
gration. However, by having p(x, z,2) as Eq. (35) we can
simulate our posterior distribution and model parameters 2,
rather than computing them. Hence, the inference is done
through computational Markov Chain Monte Carlo (MCMC)
simulations. To generate samples from DPGMM posterior
distributions, several MCMC simulation algorithms based
on Gibbs sampling, Metropolis-Hastings and Hamiltonian
Monte Carlo (HMC) have been developed, which can sub-
sequently be utilized for inference of all parameters and
posterior distribution.

Furthermore, the No-U-Turn Sampler (NUTS) [45] a vari-
ant of the HMC that is a newer and more efficient algorithm
than the others, can also be used for posterior sampling.
By leveraging first-order gradient information, NUTS and
HMC provide faster convergence than other sampling meth-
ods, especially in complex and high-dimensional datasets.
However, unlike HMC, NUTS contains many self-tuning
procedures for adaptively adjusting the tunable parameters
of HMC like step size and desired number of steps. We also
should mention that, the NUTS algorithm is available in
the PyMC3 [46] which is a python based probabilistic pro-
gramming package, and it allows fitting Bayesian models
with a variety of MCMC simulation algorithms. Moreover,
it provides extra advantages in gradient computation. For
these particular and distinctive reasons, the PyMC3 package
with the NUTS algorithm is applied to posterior sampling in
this study.
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FIGURE 2. DPGMM and EM Gamma mixture model for empirical PDFs (a) 20 cm, (b) 30 cm, (c) 40 cm, (d) 60 cm, (e) 80 cm.

IV. GAMMA MIXTURE MODEL FOR TERAHERTZ BAND
WIRELESS CHANNELS
In this section, first the measurement setup and the datasets
will be briefly described in Section IV-A. After explaining
pre-processing of the dataset and post-processing settings of
the DPGMM and EM algorithm in Section IV-B, we are
presented the error metric KL-divergence in Section IV-C to
quantify performance with respect to the experimental PDFs
with the proposed approaches driven by the simulation set-
tings. Finally, in Section IV-D, we will discuss and compare
the results of the DPGMM and EM algorithm.

A. MEASUREMENT DATASET
The measurements utilized in this paper were obtained at the
Turkish Science Foundation’s (TÜBİTAK) anechoic cham-
ber [47], which are also available at [35]. The data consist of
complex S21 parameters taken at five different points away
from the transmitter i.e., at 20 cm, 30 cm, 40 cm, 60 cm,
and 80 cm respectively. A laser-based system is used for
measurements to precisely align the transmitter and receiver,
ensuring LOS condition and measurement reliability. Mea-
surements cover the 60 GHz band between 240-300 GHz
with 4096 points of S21 measurements. The spectrum reso-
lution becomes 14.468 MHz with this configuration. Also,
IF bandwidth is set to 100 Hz for the measurements, which

allows for an increase in the observed dynamic range and
a decrease in the noise floor. Detailed information about
measurement setup can be found in [23].

One important thing to mention, due to the short
wavelengths of THz frequencies, smaller antennas will
be utilized, which will also result in an expansion of
communication applications in next-generation communica-
tion systems. One such application area is the microscale
communications [9]. Microscale communication includes
high-speed wireless connections between personal mobile
terminals, PC/kiosk/cloud servers, and wireless nanosensor
communications, which link tiny devices across considerably
shorter distances [48]. The measurements we employed in
this study are consistent with microscale THz communication
scenarios.

B. DATA PROCESSING AND SIMULATION SETTINGS
First, by using S21 parameters obtained from measurements,
the received power Prx is calculated by

Prx = |S21|2 Ptx , (36)

where Ptx power of the transmitted signal and |S21| is ampli-
tude response of transmission channel. Second, the proposed
models are used to estimate the underlying distributions of
empirical measurement PDFs, which are constructed from the
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TABLE 2. Mixture parameters and error metrics for PDF estimations at distinct distances.

histogram of Prx values. In EM, mixture component number
must be given a priori. However, because the required number
of mixture components is unknown beforehand, we used
the number of mixture components obtained from DPGMM
in EM as input to perform the EM algorithm. Note that
also, instead of starting from random points to run the EM
algorithm, the first estimate is obtained via k-means algo-
rithm, which is then used by the EM algorithm to run its
iterations [38]. Then EM Gamma mixture parameters can be
found by using Eqs. (11), (12), and (13) and with DPGMM,
parameters can be inferred using the hierarchical structure of
Eqs. (28) by sampling from posterior by NUTS. Also, vague
values given to the hyperpriors for DPGMM as ϑ = 1,$ =
1, ς = 0.001, ε = 1, µ = 1, ϕ = 1, % = 1.

C. ERROR METRIC
In this paper, KL-divergence is performed to compare the
experimental distributions with predicted distributions using
DPGMM and EM. The KL-divergence is a metric that is used

to assess the difference between two probability distributions
over the same probability space X . Let Q(x) be the distribu-
tion whose distance from the reference distribution P(x) is to
be measured, then KL-divergence can be given as

DKL(P‖Q) =
∑
x∈X

P(x) log
(
P(x)
Q(x)

)
, (37)

where Px represent experimental distribution and Qx repre-
sent predicted distributions via EM algorithm and DPGMM.

D. RESULTS AND COMPARISON
The results of the EM algorithm and DPGMM obtained by
using thePrx histograms are presented in this section. In order
to plot measurements and compare results, we transformed
Prx histograms to the empirical PDFs.

In Fig. 2 we showed estimated PDFs utilizing DPGMM
and EM algorithm to the Prx values for five distinct dis-
tances. Different histograms are used to illustrate the flexi-
bility and accuracy of the proposed model, with a variety of
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FIGURE 3. Empirical PDF for combination of all measurement data and Gamma mixture models.

distributions with different forms. As can be seen from Fig. 2,
the DPGMM and EM algorithm can describe all empirical
PDFs very well. Although the hyperprior values are not
reliant on the measurement data, they do incorporate the
distributions acquired from the sub-THz band observations.
It can also cover a large distribution space specified on the
positive axis.

Table 2 contains estimated parameter values of mixture
components and KL-divergence values for the DPGMM and
the EM algorithm. As shown in Table 2, although there is
a difference in the KL-divergence values for DPGMM and
EM algorithm, it is not significant because the values are
small and very close to each other. Furthermore, as seen
in Fig. 1, we may neglect these discrepancies because the
DPGMM and EM algorithm both match the empirical PDFs
fairly well. The important thing to be considered here is the
ability of the DPGMM to fit the empirical PDFs as much as
the EM algorithm, even if the required number of mixture
components is not known a priori.

Furthermore, we combined the Prx values of all mea-
surements collected at different distances and modeled the
obtained PDF using the proposed methods as shown in Fig. 3.
In our case, the performance of the EM algorithm decreases
when the data size and data dimensionality increase, as given
in Table 3. EM algorithmwas not able to model 0.5−0.7 mW
Prx region accurately, as can be seen in Fig. 3. One reason is
that the EM algorithm converges to the local maxima rather
than the global maxima. Also, the EM algorithm does not
always guarantee convergence to the local maxima, it only
guarantees convergence to a point with zero gradients accord-
ing to the parameters and depending on the initialization
step [25]. As a result, the EM algorithm might occasion-
ally become stuck at the saddle points [36], [37]. Besides,
DPGMM is able to model the combination of all Prx values
very well.

TABLE 3. Error metrics for all measurement data.

In addition to these, wemust address the truncation number
K . Normally DP consists of an infinite number of distribu-
tions however, for computational convenience, K should be
chosen in a way that can accurately describe the DP. It has
to be large enough to represent the empirical PDF of all
measurement data while being cost-effective for posterior
sampling. For our DPGMM, we choose K = 30, which
is sufficient for all measurement histograms. This does not
imply that the clusters occupy K components in the data
samples; instead, the model allows flexibility by introducing
new mixture components up to 30, if necessary, as samples
are added. As an illustration, for the empirical PDF of all Prx
data in Fig. 3, it is sufficient to use a maximum of 17 mixture
components with DPGMM as shown in Fig. 4.

Finally, one additional mixture component is added to the
number of mixture components that extracted using DPGMM
for each distance, and the EM algorithm is applied to the
Prx measurements with this mixture component number. The
KL-divergence values for EM obtained with these settings
are given in Table 4, along with the KL-divergence values
of DPGMM obtained previously. Although the number of
components increased by one, the KL-divergence values of
the EM algorithm vary very little, as shown in Table 4.
This demonstrates that the number of mixture components
provided by DPGMM is sufficient for modeling empirical
PDFs, and adding more components will not significantly
improve overall performance.
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FIGURE 4. Number of required components inferred with DPGMM for
empirical PDF of all measurement data combination.

TABLE 4. The comparison of error metrics of the DPGMM and EM
algorithm which is initialized with one additional number of mixture
component.

E. PROCESSING TIMES
SinceDPGMMuses aMCMCbased sampling algorithm, as a
result, we use this algorithm for a situation where we have no
prior knowledge, so we start solving the problem by consid-
ering certain points as the starting point. This initial state may
be close or far from the result, so we move posterior by taking
each sample and updating our estimates according to the
Bayesian probability with the observations. The processing
time of MCMC algorithms increases as the model parameters
increase, this is firstly because of the dimensionality, where
the volume of the sample space increases with the number of
parameters [49]. As a result, the MCMC algorithm is compu-
tationally heavier than the EM algorithm [50]. The processing
times are given in the Table 5. Note that, the dataset contains
all measurements consist of 10240 data points others are
2048 points.

However, it should also be taken into account that, in con-
trast to MCMC, for the EM algorithm we give the starting
points by using the k-means algorithm instead of giving
the starting points randomly so that it can converge to the

TABLE 5. Processing times of EM algorithm and DPGMM (with MCMC) for
different dataset.

target distribution faster with the number of mixture compo-
nents that should be given as a priori in the EM algorithm.
This allows the EM algorithm to run faster and guaran-
tees to convergence the result. Otherwise, the EM algorithm
cannot converge, or the density estimation performance is
insufficient.

To minimize calculation time, the variational inference
approach can be applied to the same model. Variational infer-
ence delivers solutions with equivalent accuracy to MCMC
sampling at a faster rate in many situations [51].

V. CONCLUDING REMARKS AND FUTURE WORKS
In this work, we proposed utilizing a flexible hierarchical
DPGMM for the sub-THz wide-band channel modeling. The
main reasons that Gamma distribution is chosen as a kernel
for the mixture are because of its flexibility, skewness, ability
the model tailed distributions and moreover its CDF, MGF
and moments are tractable. The proposed model is applied
to the measurement dataset, which is between 240 GHz
and 300 GHz. Also EM algorithm is utilized for the same
dataset in order to compare the parameter estimation perfor-
mance of DPGMM and EM algorithm. In the EM algorithm
the required number of mixture components must be known
a priori, however the proposed DPGMM is able to infer the
required number of mixture components and corresponding
component parameters. The simulation results reveal that
the proposed DPGMM can accurately describe the various
sub-THz channels that occur as a result of different scenarios,
as much as the EM algorithm. However, for the higher dimen-
sional histogram, DPGMM is able to describe underneath
distributions better than the EM algorithm. Due to the given
hyperprior specifications and hierarchical structure of the
model, it is shown that DPGMM can be used for any type
of wireless channel, not just for the THz band.

For Gamma mixture wireless channels, average channel
capacity, the outage probability, and the symbol error rate
were derived earlier. By making use of this provided knowl-
edge, analytical analyzes can be made as future work using
the mixture parameters given in this study. In addition to
future works, measurements taken in different scenarios such
as misalignment fading can also be modeled with given
DPGMM.We believe that this work paves the way for model-
ing and performance analysis of not only the THz band also
any kind of wireless communication channel in 5G and 6G
networks.
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