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ABSTRACT Most existing evolutionary approaches to satellite range scheduling seek optimal solution in
terms of the request satisfaction. The scheduling demand of managing ground station resource is seldom
considered, which restricts their real-world applications. To effectively generate a set of more rational
satellite range schedules, this paper establishes the multi-objective satellite range scheduling mathematical
model. Unlike existing approaches, we propose a general population generation approach to solve the
problem without relying on any specific kind of evolutionary algorithm, so different types of evolutionary
algorithms can be extended to satellite range scheduling without modifying the original framework and
search strategy. The idea is to utilize the request satisfaction and resource utilization knowledge learnt
from parent schedules to guide the generation and updating of new solutions. Furthermore, an iterative
rewriting operator is designed to guide a biased faster convergence towards the low request failure region
in objective space. The proposed approach has been applied to five different types of classical and state-of-
the-art evolutionary algorithms and examined on benchmark problems. Experimental results illustrate the
search efficiency enhancement and good adaptability to different evolutionary algorithms, which show the
broad application prospect for satellite range scheduling.

INDEX TERMS Satellite range scheduling, multi-objective optimization, evolutionary algorithm, learning-
guided.

I. INTRODUCTION
Satellite system plays an important role in military and civil-
ian fields, such as military reconnaissance, marine surveil-
lance, disaster forecasting, precise navigation, telecommuni-
cations, etc. To support the normal operation and application
of onboard satellites, the ground stations perform the tasks of
satellite tracking, telemetry, data transmission and command
betting. All these satellite management activities rely on
the communications between satellites and ground stations.
The scheduling process of allocating specific ground sta-
tion resource to establish satellite-ground communication is
named satellite range scheduling problem (SRSP). The main
goal of SRSP is to maximize the communication requests
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satisfaction under time and resource constraints. But the
expanding satellite system types and scales intensifies the
contradiction between the increasing satellite requests and
limited ground station resource. Therefore, rationally allo-
cating the ground station resource to satisfy more requests
and improve the resource management efficiency is of great
signficance.

In SRSP, the satellite measurement, control and data trans-
mission resource should be appropriately assigned to the
requests. The different types of ground station resources can
only serve the request if the requested satellite is visible, and
this time interval is named the visible time window (VTW).
In this paper, we uniformly describe different types of
resources as satellite-ground visible time window resources.
The SRSP need to determine the time window and execution
time to support the requests. During the scheduling process,
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the situations where several satellites visible simultaneously
and several ground station resource available contempora-
neously could occur, making the VTW highly overlapped.
The SPSP has been proven a NP-complete problem with
combinational characteristic [1], [2].

Previous literatures mainly focus on the oversubscribed
characteristic of SRSP, where not all the requests can be
served due to the available time window conflicts. The ear-
liest studies on satellite range scheduling are performed by
researchers at the Air Force Institute of Technology to address
the insufficient measurement and control resources in the
1990s [3], [4]. Over the years, a large number of algorithms
have been proposed to explore the highly constrained search
space and find the optimal solution. Based on the exactness,
the algorithms can be classified into two groups: the deter-
ministic algorithm and random search algorithm [5].

The deterministic algorithms explore the entire solution
space by mathematical programming approaches, such as
branch and cut [6], exact polynomial time algorithm [7],
dynamic programming [8]. The deterministic algorithm can
obtain the optimal or nearly-optimal solution with a poly-
nomial time. But the search space of the problem grows
exponentially as the problem size increases, leading to an
inacceptable computational burden. To decrease the com-
plexity of the problem and improve the search efficiency in
large-scale request scenarios, several problem decomposition
methods, for example the column generation [9], Lagrange
relaxation [10] and cut plane [11] are adopted to find the tight
bounds of the problem.

Different from the deterministic algorithms, the random
search algorithms only search a limited part of the solution
space, thus achieving more efficiency in finding a feasi-
ble solution. The random search approaches can be further
divided into local search and evolutionary search. The local
search algorithm searches from an initial solution and is
capable to construct a high-quality solution in a short time.
In local search algorithms, the feature knowledge of the
feasible solution and problem is utilized to guide the ini-
tial schedule construction and search process. Based on the
conflict information between requests, Luo et al. [12] first
construct an elite initial solution by prescheduling and then
iteratively improve the solution in a subspace of feasible
solutions. The greedy algorithm adopts a simple heuristic
which always replaces the current solution if a better solu-
tion is found. The results in [2] illustrate that the simple
greedy heuristic failed to show competitive performance on
large scale instances. Although the greedy heuristic suffers
from premature convergence in finding optimal solution, it is
still a simple but efficient method to construct elite initial
schedule [13]. To avoid being trapped in the local optima,
Han [14] and Sarkheyli [15] utilize simulated annealing and
tabu search to improve the possibilities to accept worse solu-
tion. Based on heuristic rules, Chen et al. [16] restart the
search process from the current solution.

Due to the excellent global search capability and
broad applicability, the evolutionary computation has been

extensively used in scheduling domains [17], [18], [19].
The evolutionary algorithms that are commonly adopted
to solve SRSP include genetic algorithm (GA) [20], ant
colony optimization (ACO) [21], [22], [23]. Some researchers
also hybrid the evolutionary algorithms with different
search operators to improve optimization efficiency, such as
GA-ACO [24], GA-PSO [25] and ACO-Tabu [26].

Most of the previous literatures make efforts to sched-
ule as much requests as possible, which can be classified
as single-objective optimization approach. In recent years,
multi-objective satellite scheduling problem is derived in
order to consider multiple scheduling criterions simulta-
neously. In earth observation satellite scheduling problem,
Yang et al. [27] optimize the number of observed targets and
overall image quality. Xiong et al. [28] proposed a coop-
erative coevolutionary multi-objective algorithm to produce
high-quality solutions in Chinese Navigation Satellite System
Project. In [29], [30], and [31], the researchers formulate
the SPSP as a many-objective problem which contains win-
dows fitness, clashes fitness, time requirement fitness, and
resource usage fitness. Petelin et al. [32] utilized six different
evolutionary algorithms to obtain the trade-off solutions of
the problem. The comparison with weighted-sum approach
indicates that the evolutionary algorithms always manage
to obtain as good solution as the weighted-sum, while the
other non-dominated solutions give the decision makers more
additional alternatives. Song et al. [33] optimized the overall
profit and task failure rate with an improved NSGA-II. Most
of these optimization objectives are still designed from a
satellite user view, i.e., to serve more requests.

However, from the perspective of resource management
department, constructing a schedule with better ground sta-
tion resource management is another important task during
the scheduling process. For example, the better antenna load
balance degree represents a relatively balanced antennawork-
ing time, which can prolong the overall service life of the
equipment and improve the response capability to emergency
tasks. Therefore, it is necessary to solve SRSP considering
the scheduling needs of both satellite users and resource
managers, which is one of the motivations of our proposed
approach.

Over the past two decades, a great deal of researches
on evolutionary algorithms have been proposed to solve
multi-objective optimization problems, proven effective
on benchmark instances and real-world applications [34],
[35], [36]. Compared to traditional mathematical program-
ming approaches, the multi-objective evolutionary algo-
rithms (MOEAs) can obtain a set of non-dominated solutions
in a single run. However, randomly generated population in
original MOEAs suffers from poor efficiency due to the com-
binational and highly-constrained characteristics of SRSP.

Apart from the population-based evolution algorithms,
the memetic algorithm (MA), which combines the evo-
lutionary operators with local search, has shown promis-
ing performance for solving scheduling problems. For
flow-shop scheduling problem, Wang et al. [37] explore the
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solution space with two collaborative populations, and sev-
eral problem-specific operators are incorporated to intensify
the local search capability. For job-shop scheduling problem,
Gong et al. [38] designed a similarity-based crossover oper-
ator to reduce the ineffective crossover and search space in
late optimization phase. Du et al. [39] proposed a general
memetic algorithm frame work for satellite range scheduling
problem, in which two heuristic operators are designed and
tabu search is utilized as local operators. Memetic algorithms
enhance the search capability through the combination of
global and local search, where the local search operators
start the optimization from the place that the evolutionary
operators have found promising in previous iterations.

Motivated by the scheduling need of both satellite
user and ground station resource manager, we focus
on the multi-objective satellite range scheduling prob-
lem (MOSRSP). Inspired by the successful application of
MOEAs and the hybrid idea of memetic algorithms, in this
paper, a learning-guided population generation approach is
proposed to enhance the performance of MOEAs and solve
the problem more efficiently. The main contributions of this
paper can be enumerated as follows:

• Amulti-objective SRSPmathematical model that allows
the decision makers to find a set of potential satellite
range schedules. These Pareto-optimal schedules should
satisfy the requests of satellite users with more rational
ground station resource utilization.

• A learning-guided population generation approach,
which learn the request satisfaction and antenna load
balance knowledge from parent schedules, is proposed
to enhance the performance of MOEAs on solving
the MOSRSP without modifying the original algorithm
frameworks and search strategies.

• An iterative rewriting operator that guides the population
further exploit the low request failure region in objective
space and accelerate the convergence speed.

• Experiments that investigate feasibility and efficiency
the proposed approach as well as the adaptability to
different types of evolutionary algorithms.

The remainder of this paper is organized as follows.
In Section II, we describe the MOSRSP and formulate the
mathematical model. The proposed approach is described in
detail in Section III, Section IV and Section V shows the
experimental design and result comparison. The conclusions
of the study would be discussed in the last part.

II. PROBLEM FORMULATION
A. PRELIMINARIES
The ground stations monitor the satellite current status,
upload command and receive data to support the satel-
lite daily and emergency requests. The multi-satellite range
scheduling problem is to obtain a rational dispatch of the
ground station resource to satisfy the satellite requests within
the time range.

FIGURE 1. Satellite range scheduling problem.

In essence, it can be described as a visible time window
allocation problem under the time and resource constraints.
During scheduling process, the decision makers are con-
cerned with the request satisfaction and resource utiliza-
tion to determine a final schedule. Considering the limits
of equipment capacity and satellite-ground station visibility,
these problems of optimizing a schedule with more than two
objectives can be depicted by a multi-objective optimization
problem under equality and inequality constraints.

As shown in Fig. 1, the problem involves multiple satellites
and multiple ground stations. When the satellites pass over
the ground station, the visible time window resource could
be used to establish the satellite-ground communication. For
low-earth-orbit (LEO) satellites, the requested communica-
tion time may last for the entire time window due to the short
time window duration. If the entire time window is utilized
for communication, scheduling LEO satellite requests is sim-
ilar to the job scheduling problem [40]. For high-earth-orbit
(HEO) satellites, the available time window in longer than
the requested duration, which means both the time window
and the exact execution time should be determined. The
crucial point to obtain an ideal schedule is to handle the
conflict between satellite requests (multi-satellite simultane-
ously pass, e.g., s1 and s2 in Fig. 1) and competition between
ground station antennas (multi-antenna simultaneously avail-
able, e.g., a1 and a2 in Fig. 1) during the scheduling process.
With reference to previous researches and engineering

experiences, we make the following assumptions to convert
the SRSP problem into a scientific problem [41]:

• Precedence: there is no predefined execution sequence
relationship between requests.

• Preemption: preemption is not allowed. The ground sta-
tion antenna cannot be released until the current com-
munication finished. Once an execution starts, it should
be finished without interruption.
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• Duration: the requested duration time of each request is
fixed.

• Uncertainty: the uncertain factors are not considered.
All the resources and requests are known before schedul-
ing. The equipment is reliable, and no operation accident
would occur during the scheduling.

• Availability: each request has at least one available time
window to be served.

• Energy: the ground stations have abundant power, stor-
age and other resources.

B. NOTATIONS
1) INPUT
In general, the MOSRSP can be described by:

MOSRSP = {R,A, S,TW } (1)

where,
• R = {1, 2, . . . , |R|} denotes the set of |R| requests. Each
request r = {sID, erst, duet, dur, p} is specified by its
requested satellite identification, earliest possible start
time erst , due time duet , requested duration dur , and the
priority weight p measuring its importance.

• A = {1, 2, . . . , |A|} denotes |A| ground station antennas.
Each antenna a = {aID, swi} is determined by the
antenna identification and the switch time swi to serve
next reques.

• S = {1, 2, . . . , |S|} is the set of |A| satellites.
• TW = {1, 2, . . . , |TW |} is the set of |TW | time
windows. More specifically, for each request r , the
ground station antennas have K time windows twr =
{twkr,a | k = 1, 2, . . .K }. ∀twkr,a ∈ twr , twkr,a =

{r, a, k, st, et}. It indicates twkr,a is the k-th time window
that antenna a can support request r from start time st to
end time et . Noted that a in twkr,a epresents the specific
antenna that provides the k-th time window, rather than
the k-th visible time window on a.

2) OUTPUT
The output corresponding to request r in final schedule
should include:
• xkr,a: a binary variable determines whether to execute
request r on k-th feasible time window twkr,a. x

k
r,a = 1 if

selected, or xkr,a = 0 otherwise. R = {1, 2, . . . , |R|}
denotes the set of |R| requests. Each request r =
{sID, erst, duet, dur, p} is specified by its requested
satellite identification, earliest possible start time erst ,
due time duet , requested duration dur , and the priority
weight p measuring its importance.

• estr : the start time to execute request r . Once the exact
start time is determined, the end time entr can be
obtained by entr = estr + durr .

C. MATHEMATICAL MODEL
During the scheduling process, the satellite users focus on the
request satisfaction, while the resource manage departments

pay more attention to resource utilization. From the schedul-
ing demand of both satellite user and resource manager,
we formulate the satellite range scheduling problem as a
multi-objective minimization problem under resource and
time constraints:

min f1 = 1−

 |R|∑
r=1

xkr,a · pr

/ |R|∑
r=1

pr (2)

f2 =

{∑|A|
a=1 (L(a)− L(A))

2

Na − 1

}1/2/
L(A) (3)

s.t.
K∑
k=1

xkr,a ≤ 1, r ∈ R (4)

|T |∑
t=1

|S|∑
s=1

x ts,a ≤ 1, t ∈ T , s ∈ S, a ∈ A (5)

|T |∑
t=1

|A|∑
a=1

x ts,a ≤ 1, t ∈ T , s ∈ S, a ∈ A (6)

sti ≤ esti < enti ≤ eti, i ∈ R (7)

[str , etr + swia] ∩ [str ′ , etr ′ + swia] = ∅,

r 6= r ′, a ∈ A (8)

where (2) and (3) represent the optimization objectives:
• Weighted request failure rate: Weighted request fail-
ure rate of a schedule presents the punishment from
unscheduled requests, which intuitively reflects the dis-
satisfaction degree from satellite users;

• Antenna load imbalance degree: Equation (3) evaluates
the load imbalance degree between each ground station
antenna, which reflects the demand for ground station
resource management. L(a) denotes the total working
time of antenna a, and L(A) is the mean working load
of ground station antennas.

And a feasible schedule should satisfy constraint (4)-(8):
• Execution uniqueness: Constraint (4) ensures each
request is to be served at most once;

• Satellite uniqueness: Constraint (5) describes one satel-
lite can interact with at most one antenna simultane-
ously, where x ts,a = 1 denotes satellite s communicates
with antenna a at time t , or x ts,a = 0 otherwise;

• Antenna uniqueness: Similar to constraint (5), con-
straint (6) ensures one-to-one interactions between the
satellites and antennas, the main difference lies in the
aggregation method of x ts,a;

• Execution feasibility: Constraint (7) indicates the execu-
tion time should be located within the time window.

• Switch time: For the requests served on the same
antenna, constraint (8) restricts the execution time inter-
val to be longer than the switch time.

III. PROPOSED METHOD
The goal of the above-formulated two-objective satellite
range scheduling problem is to find the optimal schedule
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FIGURE 2. Relationships among the learning-guided variation, iterative rewriting and two-phase decoding.

which meets the demand of satellite user and resource
management department. To optimize the request failure
rate and load imbalance degree resulted from request con-
flict and antenna competition, multi-objective evolutionary
algorithms are commonly used approaches. However, con-
ventional randomly-generated population suffers from low
efficiency due to the combinational and highly-constrained
characteristic of MOSRSPs. To improve the overall perfor-
mance of MOEAs on handling MOSRSPs, we propose a
learning-guided population generation approach, which gen-
erate the final offspring solution by two-phase decoding and
rewriting (2D&R). In this section, an overview of the frame-
work is first given, and then, the key components of the
proposed method are illustrated in the following parts.

A. FRAMEWORK
Algorithm 1 presents the proposed evolutionary algorithm
framework based on learning-guided population generation.
Firstly, an initial population P0 consisting of N solutions is
randomly generated, the length of each solution is |R| (line
2). In each generation, the request satisfaction and resource
utilization knowledge learnt from the parent schedule is intro-
duced to guide the evolutionary variation operation (line 4).
Due to the existence of time and resource constraints, the ini-
tial offspring solution could be an infeasible solution. A two-
phase decoding strategy is adopted in Line 5 to repair the
infeasible solution and improve population diversity. Then,
an iterative rewriting strategy is utilized to rewrite the solu-
tion gene components while ensuring optimizing the request
failure rate, where δ is the probability of performing rewriting

Algorithm 1 General Framework
Require: Request size |R|, Population size N , Rewriting

probability δ
Ensure: Final population Ptmax
1: t ⇐ 1
2: P0 ⇐ Initialize a random population
3: while termination criterion not met do
4: St ⇐ Learning-guidedVariation(Pt )
5: Qt ⇐ Two-phaseDecoding(Pt , St )
6: Q

′

t ⇐ IterativeRewriting(Qt , δ)
7: Pt ⇐ Pt ∪ Q

′

t
8: Pt + 1⇐ Environmentalselection(Pt ,N )
9: t ⇐ t + 1

10: end while
11: Return Ptmax

(line 6). A larger δ indicates a more biased search behavior
towards the low request failure rate objective space. Once
the parent population is updated (line 7), the environmental
selection would determine the parent population for next
generation based on the fitness value (line 8). Fig. 2 shows
the relationships between the learning-guided variation, two-
phase decoding, iterative rewriting and environmental selec-
tion for better understanding.

B. SOLUTION ENCODING
A schedule corresponding to the input request set should
decide two variables: (1) xkr,a, whether to serve request r
on its k-th feasible time window twkr,a and (2) str , the exact
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FIGURE 3. Solution encoding.

start time to execute request r . As discussed in Section II,
a longer the time window indicates more execution oppor-
tunities and potential conflicts, leading to a rapid growth in
the search space and complexity of the problem. To reduce
the search space, we build a dual decision-making model of
satellite range scheduling, where the time window allocation
is encoded in each solution and the execution start time is
decided in decoding phase.

A solution x is encoded by the following integer array:

x = {x1, x2, . . . , x|R|} (9)

xr =


k arg(xkr,a = 1 ∧

∑
k∈K

xkr,a = 1)

0
∑
k∈K

xkr,a = 0
(10)

Each gene site corresponds to a request, and each request is
sorted by earliest possible start time. The length of the solu-
tion is the size of the request set. The 0 value of xr indicates
request r would be cancelled in the schedule (request 5 in
Fig. 3). Otherwise, xr indicates the selected time window.

Fig. 3 gives an example of a solution encoding. There
are six requests to be scheduled in total. Request 1-4 and
6 is assigned the 4th, 1st, 4th, 2nd and 3rd time window,
request 5 would not be served. Noted that the a of twkr,a is
utilized to specify the exact antenna providing the time win-
dow resource, which is useful in conflict detecting procedure.
The upper bound for each gene is the number of feasible
time windows for request r . Equation (10) indicates each
request corresponds no more than one time window, hence
the execution and satellite uniqueness constraint (constraint
(4)-(5)) would be naturally satisfied.

C. LEARNING-GUIDED VARIATION
1) MUTATION OPERATOR
The mutation updates the value of multiple gene site within
the lower and upper bound. The mutation probability for
each gene site is pm/D, where pm and D is the input muta-
tion probability and number of decision variables, respec-
tively. A random number set of size [1,D] is compared with
mutation probability to determine whether to perform muta-
tion. The polynomial mutation [42] is employed to obtain
the updated value of selected mutation site. The mutation

FIGURE 4. The mutation operation.

operator includes two different methods, which utilize differ-
ent types of knowledge learnt from parent schedule:

1) Request-based mutation
The mutation probability for the unscheduled request ur in

parent schedule is pm;
2) Antenna-based mutation
We give priority to mutate the requests which are served on

the antenna with high load imbalance degree. First, the load
imbalance degree of antenna a is calculated by:

lid(a) =
|L(a)− L(A)|∑

a∈A
|L(a)− L(A)|

(11)

where L(a) is the load of antenna a and L(A) denotes themean
working load of antenna set A. And lid(a) implies the load
imbalance degree of each antenna in parent schedule.

Next, the two antennas with the largest lid value, namely,
the antenna with the highest and lowest working load are
selected. Then, the gene sites of the requests which can be
supported by the selected antennas are attached a higher
mutation probability of pm.

Fig. 4 give a demonstration of the mutating the solution
in Fig. 3 under different rules. Assume all the requests are
successfully executed on the assigned time windows and
the requested durations are of the same length. The gene
site marked by the arrow represent the request given higher
mutation probability, and the green square shows the final
mutated gene. In request-based mutation, the unscheduled
request 5 has more tendency to be served in next iteration,
while other requests (e.g., request 2) are still likely to be
mutated under influence of randomness factor.

Suppose all the requested durations are 10 minutes. The
working load for each antenna is [10, 0, 10, 30]. Then, the
load imbalance degree for the five antennas is [0.07, 0.36,
0.07, 0.5]. Therefore, the requests which can be served on
antenna 2 and 4 would be mutated with a higher possibility.

The mutation operation would be conducted before
crossover, and the mutated solution are also preserved in
offspring population, which can be regarded as a local search
from parent solution.

2) CROSSOVER OPERATOR
The crossover operation is performed to exchange the
selected genes between the two parent solutions. For
each gene site in generation t , the crossover probability
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FIGURE 5. The crossover operation.

can be obtained by:

pc = pcl + (pcu − pcl) ·
Gen− t
Gen

(12)

where pcl and pcu are predefined lower and upper bound of
crossover probability; Gen denotes the maximum number of
generations. Similar to the mutation operator, the correspond-
ing genes of unscheduled requests have a higher crossover
probability of 2pc. As shown in Fig. 5, the multiple genes
of the parent solutions would be exchanged in the randomly
selected sites. The crossover operation is an effective mech-
anism to prevent the population from being trapped in local
optimum, thus to improve the global search capability.

The learning-guided variation operators incorporate the
objective-specified knowledge, i.e., the request satisfaction
and antenna working load information of parent solution
for improving the search efficiency, while the randomness
inherited from the original evolutionary variation operators
is another factor to improve the population capability of
jumping out of the local optimum. The contributions of each
operator during the optimization process would be further
discussed in Section V.

D. TWO-PHASE DECODING STRATEGY
The encoding of each individual in the population repre-
sents the allocation of time window resource. Having gen-
erated the new time window schedule in variation operation,
the exact start time to serve the request would be determined
in decoding phase.

The encoded genes of each solution can be regarded
as an initial time window allocation schedule. Due to the
antenna uniqueness and switch time constraint, only one
request might be successfully scheduled between conflicting
requests. For preemption is not allowed, sequential decoding
the solution based on the request ID would always cancel the
requests that arrives later, indicating the loss of potential high-
quality solutions. Observing the limitations, we propose a
two-phase decoding strategy to repair the infeasible solution
and improve the population diversity. The variated gene sites
in variation procedure, denoted by vx, are adopted to decide
the decoding sequence. The main steps are as follows:

(1) Split solution x into x1 and x2 based on the variated
flag vx:

x1 =
⋃
r∈R

xr 1 (13)

x2 =
⋃
r∈R

xr 2 (14)

where x1 and x2 denotes the decision variables that would
be decoded in the first and second phase, respectively. And
the decision variable for each gene site in the sub-solution is
decided by:

xr 1 =

{
xr vxr = 1
0 vxr = 0

(15)

xr 2 =

{
xr vxr = 0
0 vxr = 1

(16)

where vxr = 1 represents the variation occurred in the gene
site corresponding to request r , or vxr = 0 otherwise.

(2) Initialize the solution final schedule p = {sr, fr, usr}
and occupied antenna resource OAR = {oara | a ∈ A},
where sr , fr and usr denotes the set of scheduled, failed
and unscheduled requests; oara is the occupied resource on
antenna a.

(3) Next, decide the exact start time to serve the requests
scheduled in x1 based on the task-time window selection
algorithm (TTSA) with top position arrangement strategy
in [33].Within each time window, the earliest executable time
window position is selected as the service start time.

(4) Find the requests that are successfully served in original
schedule and remain unvaried in offspring solution, detect
the conflict between these requests and current OAR. If not
conflicting, add these requests to sr , update OAR and set the
corresponding gene of x2 to 0.
(5) Based on the current schedule, and antenna resource

occupation status, we decode x2 to obtain the final schedule.
Fig. 6 gives a schematic diagram of the two-phase decod-

ing. Suppose the requests scheduled on the same antenna
are conflicting. Decoding the same individual, the proposed
decoding approach would construct different final schedule
under different variated flag, thus improving the population
diversity. In addition, the requests, which are unscheduled or
assigned to the high load imbalance degree antenna in parent
schedule, are attached higher possibility to be variated in
variation procedure. Hence, prioritizing the variated requests
could lead to a better population performance in objective
space.

E. ITERATIVE REWRITING STRATEGY
In multi-objective optimization, each objective is mathemati-
cally equivalent. As shown in Fig. 7, the solutions are roughly
divided into three groups based on the performance in objec-
tive space. Both the solutions with low request failure rate
and low load imbalance degree are necessary to describe the
entire Pareto front (PF). Whereas in context of satellite range
scheduling, a solution located in the low request failure region
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FIGURE 6. The comparison between sequential decoding and two-phase decoding under different variated flag.

FIGURE 7. Distribution of solutions to approximate the PF of MOSRSP.

(e.g., x1) is preferred than that in low load imbalance region
(e.g., x2).
Hence, we perform iterative rewriting on the selected off-

spring solutions for a faster convergence to the low request
failure region. The rewriting strategy iteratively modifies
genes corresponding to the unscheduled requests in initial
offspring schedule to generate a neighboring solution. Based
on the knowledge learnt from the initial offspring solution,
the rewriting path is defined by:

(1) For each unscheduled request, update the current feasi-
ble time window tw′r according to constraint (7). Obtain the
current load L(A) of the antenna set.

(2) Calculate the rewriting priority. Considering the
antenna load, request weight and flexibility, we define the
rewriting priority indicator as:

plr =
wr

min(L ′r,a) · f lr
(17)

where L ′r,a is the current load of the remaining antennas that
are still capable to serve request r ; wr is the input weight of

request r ; flr denotes the schedule flexibility of r :

f lr =

K ′∑
k=1
|twkr,a|

durr
(18)

where |twkr,a| and durr denotes the length of each available
time window and requested duration, respectively.

In our priority indicator, both the load, weight and flex-
ibility are considered. A higher flr means more freedom in
choosing execution time window and start time. The initial
schedule of the request with lower available antenna load,
higher weight and less flexibility would be rewrite first. Noted
that all the different scaled factors are normalized into [0,1]
before calculation.

(3) Using roulette to select a request r according to the
rewriting priorities.

(4) Select the time window resource and execution start
time. If the request is successfully scheduled, add r to sched-
uled request set sr , delete r in unscheduled request set ur ,
rewrite the gene value corresponding to request r with the
selected time window number k and update the occupied
antenna resource set OAR. If failed, delete r in ur and rewrite
the corresponding gene to be 0.

(5) Repeat (1)-(4) until ur is empty or no feasible time
window left.

IV. EXPERIMENTAL DESIGN
This section is devoted to the experimental design for investi-
gating the performance of the proposed heuristic population
generation approach. First, the test problem, performance
indicators and algorithms employed to incorporate 2D&R are
briefly introduced; then, the investigation into parameter set-
tings is conducted; finally, the main tasks of the experimental
design is described.

A. TEST PROBLEM AND PERFORMANCE INDICATORS
The Air Force Institute of Technology (AFIT) benchmark
suit (http://www.cs.colostate.edu/sched/data.html) consisting
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of seven problem instances is utilized for comparative study.
Each AFIT problem represents actual 24 hours request data
and visible time windows from AFSCN. The ground station
antennas are globally distributed and the requests involves
both high-orbit requests and low orbit requests. The total
number of the requests to be scheduled in the seven problems
are 322, 302, 300, 316, 305, 298, and 297 respectively. To test
the ability of each algorithm in scheduling more requests,
we set all the request weight to be 1.

The performance indicators are needed to quantitively
analysis the performance of different algorithms. In this
paper, the widely used IGD [43], DM [44] and HV [45]
indicators are adopted. The metric IGD and DM measures
the convergence and diversity of the final non-dominated
solution set respectively, while HV evaluate the both in a
sense. The knowledge of the true PF is not required for
the calculation of HV, which is hard to obtain in practice.
Hence, HV is adopt as the primary comparison criterion.
The reference point is set, as recommended in [46], to be
[1.1, 1.1]. A larger value of HV indicates better performance.
In addition, the final non-dominated solution set that all the
algorithms obtained is utilized as an approximation to the true
PF to evaluate IGD and DM.

B. ALGORITHM SELECTION
To verify the proposed 2D&R, the following five differ-
ent types of algorithms are selected to incorporate 2D&R:
1) MaOEADPP [47], a novel approach using a repulsive
point process to identify high-quality solutions based on the
decomposition of the kernel matrix; 2) MOEA/D-DU [48],
a decomposition-based algorithm that update the K nearest
parent solutions based on the perpendicular distance from a
solution to the weight vector for a better trade-off between
convergence and diversity; 3) NSGA-II [49], a classical
Pareto dominance-based approach with elite mechanism
and maintain diversity through crowding distance sorting;
4) NSGA-III [50], a reference point-based algorithm; 5)
1by1EA [51], a niche-based MOEA which selects the off-
spring individuals one-by-one based on the convergence
indicator.

C. EXPERIMENTAL SETTINGS
The general settings and parameter settings are listed as
follows:
• Termination criterion: The termination criterion is set
in the form of maximum number of evaluations, and
the specific number is assigned to 30000 after the pre-
experiment.

• Number of runs: Each algorithm is run 10 times inde-
pendently for each test.

• Rewriting probability δ: The threshold δ to determine
whether to perform rewriting is set to 0.3, and the influ-
ence of different δ on the algorithm performance would
be further investigated in Section V.

• Platform: All the experiments are carried out in
PlatEMO [52] using Matlab R2019b.

FIGURE 8. Mean performance of HV values under different crossover and
mutation probability.

To determine the appropriate parameters for crossover and
mutation, we conduct a preliminary experiment on AFIT3
using MaOEADPP-2D&R.

The upper bound of mutation probability is set to 0.9.
The mean algorithm performance in 5 independent runs in
shown in Fig. 8. The result indicates that the influence of
different variation probability on the algorithm performance
is not fixed. According to the HV value, we set the mutation
and crossover probability to 0.2 and 0.4 in the following
experiments.

D. RESEARCH TASKS AND QUESTIONS
To validate the 2D&R performance, the main tasks of
the experimental design is to answer the following four
questions:
• Feasibility: Is the 2D&R-incorporated algorithms capa-
ble to obtain a final non-dominated solution set with
good convergence and diversity?

• Effectiveness: Can the 2D&R improve the convergence
speed and degree of the existing evolutionary algo-
rithms, especially to the low request failure region?

• Sensitivity: How does the rewriting probability δ influ-
ence the algorithm performance?

• Contribution: Which heuristic operator contribute the
most to the optimization process?

V. EXPERIMENTAL RESULTS AND ANALYSIS
In this section, the research questions raised in the previous
section is to be validated. Correspondingly, our experiment
can be divided into four parts. We compare different types of
MOEA-2D&Rs with the original algorithms on benchmark
instances, analysis the convergence speed with respect to the
performance indicators, and discuss the influence of different
rewriting probability. Furthermore, the contributions of each
operator are evaluated based on the total amount of generated
novel non-dominated solutions.

A. FEASIBILITY VERIFICATION
1) OVERVIEW
An overall analysis ofMaOEADPP,MOEA/D-DU,NSGA-II,
NSGA-III, 1by1EA, and the corresponding 2D&R version,
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FIGURE 9. Non-dominated solutions found by different algorithms in 10 runs on AFIT1-AFIT7.

on solving multi-objective satellite range scheduling problem
is described in this section. Fig. 9 shows the distribution
of final non-dominated solutions that different algorithms
obtained in 10 independent runs. Each row presents different
algorithms to solve the same problem, and each column plots
the final solution set that each algorithms obtained. In each
subplot, the x-axis and y-axis denote the request failure
rate (f1) and antenna load imbalance degree (f2), respec-
tively. The blue dotted line is all the final non-dominated
solutions that the ten algorithms obtained on solving the

same problem. It is adopted as an approximation to the
true PF.

From the result comparisons, we can obtain the following
observations for the proposed 2D&R:

1) It is evident from Fig. 9 that the MOEA-2D&Rs are
capable to obtain a final solution set with better distribution.
The incorporation of 2D&R improves the population distri-
bution on all instances, which indicates that 2D&R could
generate solutions with more diversified performance for the
algorithm to select. For decision-makers, this means more
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FIGURE 10. The comparisons of the best values for different algorithms on AFIT1-AFIT7.

diversified schedules with different request failure rate and
load imbalance degree to choose from.

2) In terms of convergence, the 2D&R-incorporated algo-
rithm could obtain the non-dominated solutions which are
closer to the PF on most instances. The results imply that
the introduction of heuristic information could effectively
enhance the efficiency of generating the solutions with better
convergence. In some instances, the original algorithms find
the solutions with lower load in some areas (for example
NSGA-III on AFIT7), which shows that the original algo-
rithms could find the non-dominated solution using random
operators, but with lower efficiency.

3) Among the algorithms, MaOEADPP-2D&R outper-
forms other algorithms on the tested instances. In the
final non-dominated solution set on each instance, most
of the solutions with the lowest load are obtained by
MaOEADPP-2D&R, which shows that the algorithm has
good ability of exploring the objective space. Moreover,
though in some instances, the final non-dominated solutions
of other algorithms cannot approximate the PF as well as
the MaOEADPP-2D&R does, all these solutions are located
at the left part of the PF. In satellite range scheduling, the
above biased population distribution means assigning more
computational resource to explore the low request failure rate
region in objective space.

4) In some instances, the original algorithms show similar
performance to the 2D&R-incorported algorithms in terms
of the load imbalance degree (e.g., MaOEADPP, NSGA-II,
NSGA-III on AFIT6). However, these solutions are located
on the high request failure rate part of the PF. In the low
request failure region, the 2D&Rs always perform better than
the original algorithms.

To further analyze search ability of 2D&R of generating
extreme solutions, the comparisons of the best values for
different algorithms on AFIT1-AFIT7 are shown in Fig. 10.
A smaller value of each objective function indicates better

performance. All the MOEA-2D&Rs manage to find the
solution whose request failure rate is less than 4% in each
run on the seven instances, while the best load imbalance

degree ranges from 0.11 to 0.23. In term request failure
rate, the introduction of 2D&R can significantly improve the
efficiency of generation solutions with lower request failure.
For antenna load balancing performance, the 2D&R can still
find the solution with lower load imbalance degree. Whether
the decision maker requires a schedule with lower request
failure rate or lower antenna load imbalance degree, 2D&R
could generate the solution which satisfy the preference.

2) NUMERICAL ANALYSIS
In this section, the IGD [43], DM [44] andHV [45]are utilized
to quantitively analysis both the algorithm performance and
2D&R performance. Five different types of algorithms are
selected for comparison, including the classical reference
point-based, decomposition-based, niche-based, dominance-
based algorithms and a novel proposed determinantal point
process-based algorithm. The mean results of the perfor-
mance indicators for each algorithm in ten runs are listed
in Table 1. The ‘/’ denotes the original algorithms and
the ‘2D&R’ denotes the improved algorithms. The best
performance is highlighted in bold and the better perfor-
mance between the MOEA and MOEA-2D&R is marked in
underline.

As the results in Table 1 illustrate, the 2D&R shows a
promising result in most benchmark instances. Moreover,
the 2D&R results show good adaptation capability, where
the performance of all incorporated algorithms have been
significantly improved. In terms of mean IGD value, the
convergence degree of all algorithms to the PF is effectively
improved.

The 2D&R performs much more stable than random popu-
lation generation since the latter obtains quite many solutions
distant to the PF. With regard to DM performance, it can
be observed that the MOEA-2D&R is clearly better than
the original algorithms in exploring the objective space. The
overall performance comparison results prove the scheduling
capability enhancement for each algorithm in terms of the HV
value.
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TABLE 1. Comparison of mean IGD, DM and HV values for different algorithms on AFIT1-AFIT7 problems.Best and better performance are shown in bold
and underline respectively.

Based on the above results, we introduce a performance
indicator to give an intuitive comparison on the algo-
rithm performance [53]. Suppose there are NA algorithms
Alg1,Alg2, . . . ,AlgN , where Algi,Algj ∈ Alg ∧ i 6= j. The
performance indicator ∂i,j is determined as:

∂i,j =

{
1 Algj significantly outperforms Algi
0 otherwise

(19)

Then, the performance score of algorithm Algi can be
defined by:

p(Algi ) =
NA∑
j=1

∂i,j (20)

The p(Algi) means the number of the algorithms which are
significantly better than Algi. A lower value of this indica-
tor indicates better performance. The Wilcoxon signed-rank
test [54] at a 5% signficance level is conducted to measure the
statistical signficance. Fig. 11 gives a summary of the average
performance score comparison in terms of IGD, DM and HV
values.

From Fig. 11, MaOEADPP shows best overall perfor-
mance on all the considered instances. Moreover, it also
ranks the best among the original algorithms. The out-
standing results indicate the repulsive point process adapted
in MaOEADPP works well on diversity maintenance and
objective space exploration. MOEA/D-DU is the second-best
algorithm, and the performance rank is improved from the

FIGURE 11. Mean performance score comparison over AFIT1-AFIT7.

fourth to the second. Guided by the knowledge of parent
solution, the 2D&R can generate diversified offspring solu-
tion for MOEA/D-DU to update the population, thus effec-
tively improves the efficiency of the decomposition-based
algorithm.

The overall performance of NSGA-II and NSGA-III
is close. On AFIT1 and AFIT7, NSGA-III manages to
obtain better results. 1by1EA could not obtain satisfying
results in several instances. The overall performance of
1by1EA-2D&R on solving AFIT2 is not as good as that of
original MaOEADPP and NSGA-III, where 1by1EA could
only cover a limited proportion of the PF for 4 times out
of 10 runs. In 1by1EA, part of the solutions is pre-selected
based on an updating penalty threshold. Pre-selecting these
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FIGURE 12. The convergence performance comparison on AFIT1. The x-axis denotes the number of the evaluations, y-axis represents the request failure
(f1) and load imbalance (f2) respectively.

solutions could accelerate approaching to the PF, while the
possibility of diversity lost would also increase.

B. EFFICIENCY ANALYSIS
In this section, we compare the 2D&R with original algo-
rithms to analysis the optimization efficiency improvement.
The best objective values that each algorithm obtained during
the iteration is adopted to represent the convergence effi-
ciency. The convergence performance comparison on AFIT1
is shown in Fig. 12. Each column represents different algo-
rithm, and each row denotes the optimization objective. The
gray dotted line represents the best value obtained by each
algorithm in 10 runs.

In terms of the request failure, it can be observed that the
convergence speed of each algorithm has been significantly
improved, which proves the efficiency of the proposed 2D&R
to generate the solution with low request failure rate. For
antenna load imbalance degree, the convergence speed of
2D&R is similar to that of the original algorithm, but the best
fitness value of 2D&R in each run is lower. In summary, the
2D&R can accelerate the population converging to the low
request failure rate region, and search for the schedule with
low load imbalance degree within this region.

Moreover, the mean computational time consumed by ten
algorithms on AFIT1-AFIT7 in 10 runs is summarized in
Fig. 13. It can be observed that the MOEA-2D&Rs use less
computational time than the original MOEAs. The reason is
that in the implement of 2D&R, we construct the offspring
schedule on the basis of parent schedule in decoding proce-
dure, rather than decode the decision variables one-by-one
as the original algorithms does. More details of the offspring
decoding are described in Section III-D.

C. INFLUENCE OF PARAMETER δ

In this section, the influence of parameter δ on the algorithm
performance would be investigated. The rewriting strategy
is designed to guide a biased population generation towards
the low request failure rate region. And the introduction of

FIGURE 13. Mean computational time (in minutes) consumed by different
algorithms on AFIT1-AFIT7.

parameter δ aims tomaintain a balance between biased search
and global search. As discussed in Section IV-A, the HV
indicator is utilized to measure the overall performance.

Fig. 14 shows how the algorithms performance varies with
the change of δ. We vary δ between [0,0.3,0.5,0.7,1], where
δ = 0 and δ = 1 means the entire population are generated
with two-phase decoding and rewriting respectively. It can be
observed that:

1) Compared with δ = 0, the introduction of rewriting
would improve the algorithm performance.

2) δ = 1 would be a better choice than 0, but the overem-
phasized rewriting may lead to premature convergence
to the local optima.

3) The best δ for different algorithms varies. δ = 0.3 is best
MaOEADPP and NSGA-III, and 1by1EA get better
performance with δ = 0. NSGA-II and MOEA/D-DU
are more robust over different δ values.

Then, the convergence performance with varied δ values is
further discussed. Fig. 14(b) shows the comparison result of
MaOEADPP-2D&R. The original MaOEADPP is adopted as
the baseline. It can be observed that, the heuristic information
introduced in the two-phase decoding strategy (δ = 0) would
enhance the convergence performance, while the rewriting

84676 VOLUME 10, 2022



M. Xiong et al.: Evolutionary Multiobjective Satellite Range Scheduling

FIGURE 14. Representative examination of the influence of δ on HV for AFIT5. The figures show the average HV of 10 independent runs each.

TABLE 2. Operator contributions to generating novel non-dominated
solutions.

strategy would further accelerate the convergence (δ > 0).
More detailed comparison with different δ values is depicted
in Fig. 14(c). In this paper, we set the δ value to be 0.3.

D. OPERATOR CONTRIBUTION ANALYSIS
In this section, the contribution that each operator devotes
to the population evolution are analyzed, which is indicated
by the number of novel non-dominated solutions found by
each operator. The novel means the non-dominated offspring
solution is different to the current parent population either in
objective space or decision space.

Table 2 presents the comparison results, where all the
values are normalized into [0,1] and expressed by percent-
age. The strategy and operator that contributes the most is
highlighted in bold and underline respectively. As can be
seen, the rewriting strategy (R) contributes over 50% in all
five types of the algorithms, revealing that rewriting can
update the population more efficiently. The request-based
mutation operator (Mutation-r) and antenna-based mutation
operator (Mutation-a)make similar contributions. The overall
contributions of the mutation operators are greater than the
crossover operator. This result indicates that the heuristic
information introduced in the mutation process could effec-
tively enhance the quality of the generated offspring solution.
Based on the above analysis, it can be concluded that each
operator designed in 2D&R managed make contribution to
the population evolution.

E. DISCUSSION
In summary, the experimental results show a promising per-
formance both in accelerating the convergence and maintain-
ing diversity by using the 2D&R. The improvement should
be attributed to the following characteristics of the 2D&R:

1) Combination: the 2D&R combines the idea of global
optimization and local search into the population gener-
ation, which is similar to the idea ofmemetic algorithm.
The original evolutionary algorithms explore the objec-
tive space based on the randomly generated solutions,
which would lead to poor efficiency in MOSRSPs.
We combine the solutions generated both by the muta-
tion and crossover operation. The variatied gene sites
in mutation operation are fewer than that in crossover,
which can be considered as a local search from current
solution. Furthermore, part of the population would
be rewrite for a biased further exploitation in the low
request failure objective space. The main difference
between 2D&R and memetic algorithm is the local
search strategy. In memetic algorithms, the local search
is conducted after the evolutionary operations with a
fixed neighborhood size. Then replace the current solu-
tion with neighboring solution if the replace criterion is
satisfied. In 2D&R, the parent solution is mutated with
a certain probability, and all the new neighbor solutions
would participate in environmental selection.

2) Iterative: iteration is a key mechanism in evolution-
ary operations, where offspring solutions are generated
from the areas found promising by the parent solu-
tions. Based on the 2D&R, the population generation
would be guided by the heuristic information learnt
from parent solution (variation and two-phase decod-
ing) and original offspring solution (rewriting). The
request satisfaction and load imbalance are different
for different solutions, hence the learnt knowledge is
diversified. The 2D&R is not concerned to find an
optimal solution in a single search as the local search
does, but to generate possible better solutions during
each iteration, and the optimization occurs as the search
and selection progresses.

3) Probabilistic: basic iterative improvement from cur-
rent solution could lead to local optima, not neces-
sarily converging to the global Pareto front. To avoid
being trapped in a low-quality local optimum, several
advanced local search algorithms, such as the simu-
lated annealing and tabu search, assign probability to
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choose a neighbor solution even if its performance is
worse than the current solution. In 2D&R, we introduce
the heuristic information in a probabilistic manner.
Moreover, the randomness of evolutionary operations
is another factor for the population to explore new
areas. The randomly generated variation sites for other
genes can be regarded as the points to restart the search
from the current solution.

F. LIMITATIONS OF OUR APPROACH
There are two main limitations to our approach:

(1) The request failure of the solution found by our
algorithm is lower than the known best value found by
single-objective optimization [12]. The reason is that we set
the start time of each request as early as possible to simplify
the problem, which may sometimes prune too much search
space;

(2) Some real-world constraints are not taken into account.
For example, the request types are not considered, which
may influence the request priority and restrict the request
execution order. These limitations would be solved in our
future work.

VI. CONCLUSION
In this paper, we address the problem of multi-objective
satellite range scheduling, which optimizes the request failure
and antenna load imbalance. The goal is to find a set of
satellite range schedules which can satisfy the input requests
with more rational resource utilization. Instead of relying on
a specific evolutionary algorithm, a general learning-guided
population generation approach, named 2D&R, is proposed
to overcome the low convergence rate of evolutionary algo-
rithms for solving MOSRSPs. In variation phase, the request
satisfaction and resource utilization knowledge learnt from
the parent solutions is used to attach different variation prob-
abilities to each gene site. The variated gene sites can then be
used as the flags to start the two-phase decoding, intending
to improve the population diversity. Finally, the rewriting
process is conducted with probability to guide the popula-
tion further exploit within the low-request failure region in
objective space.

We have applied our approach on five different types of the
MOEAs, including the DPP-based, Pareto dominance-based,
reference point-based, niche-based and decomposition-based
MOEAs. Experimental results show the good adaptability to
different evolutionary algorithms. The comparison results on
real-word problem instances reveal that the proposed 2D&R
could enhance the performance of original MOEAs in terms
of exploration capability and convergence efficiency.

In future studies, we will further analysis the popula-
tion generation behavior of 2D&R, for example, the perfor-
mance on instances of different scales. Furthermore, more
constraints reflecting the real-world situations would be
taken into account, such as request types and uncertainty.
This paper focuses on analyzing and comparing the per-
formance enhancement to different evolutionary algorithms.

The comparison with existing multi-objective satellite range
scheduling approaches would be conducted in future work.
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