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ABSTRACT Resolution of the minimal solutions plays an important role in the research on fuzzy relation
equations or inequalities system. Most of the existing works focused on the general minimal solutions or
some specific minimal solutions that optimize particular objective functions. In a recently published work,
the restricted minimal solution of fuzzy relation inequalities with addition-min composition was studied.
Motivated by such an idea, we investigate the so-called upper bounded minimal solution of fuzzy relation
inequalities with max-min composition in this work. The upper bounded minimal solution is defined as the
minimal solution that is less than or equal to a given vector. Here, the given vector can be viewed as the upper
bound. The major content in this work consists of two components: the existence and the resolution of the
upper bounded minimal solution. First, we provide some necessary and sufficient conditions to determine
whether the upper bounded minimal solution exists with respect to a given vector. Second, when it exists,
we further develop two algorithms to search for the upper bounded minimal solution in a step-by-step
approach. The validity of our proposed Algorithms I and II is formally proved in theory. The computational
complexities of Algorithms I and II areO(mn) andO(mn2), respectively. Moreover, our proposed algorithms
are illustrated by some numerical examples.

INDEX TERMS Fuzzy relation inequality, fuzzy relation equation, max-min composition, minimal solution,
upper bounded.

I. INTRODUCTION
A. MAX-MIN FUZZY RELATION EQUATIONS
A crisp relation can be represented by a Boolean matrix,
in which the elements are either 0 or 1. As an extension
of a crisp relation, a fuzzy relation is usually represented
by a fuzzy matrix, with the entries belonging to the unit
interval [0, 1]. The most commonly used operations in fuzzy
algebra are the logical operators max (∨) and min (∧).
These two operations were widely applied in fuzzy com-
prehensive evaluation methods [2], [3], [4], replacing the
classical addition (+) andmultiplication (×). The fuzzy rela-
tion equation was indeed the inverse problem of the fuzzy
comprehensive evaluation method. The resolution of fuzzy
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relation equations was first investigated by Sanchez [1], with
application in medical diagnosis. In general, the mathemati-
cal formula of fuzzy relation equations with max-min com-
position is{

(ai1 ∧ x1) ∨ (ai2 ∧ x2) ∨ · · · ∨ (ain ∧ xn) = bi,
∀i = {1, 2, · · · ,m},

(1)

where aij, xj, bi ∈ [0, 1], i = 1, 2, · · · ,m, and j =
1, 2, · · · , n. One of the most important research issues with
regard to fuzzy relation equations is finding the entire solution
set. There are several methods for completely solving system
(1) [5], [6], [7], [8], [9], [10], [11], [12], [13], [14]. If a system
of max-min fuzzy relation equations is consistent (solvable),
then its solution set is usually composed of one maximum
solution and finitely many minimal solutions. The solution
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FIGURE 1. P2P (peer-to-peer) network system with n users.

set of system (1) can be written as⋃
x̌∈X̌ (A,b)

[x̌, x̂], (2)

where X̌ (A, b) represents the set of all minimal solutions of
system (1), and x̂ is the unique maximum solution. In fact,
the maximum solution x̂ can be obtained by direct calcula-
tion. Following the expression in (2), it is clear that the key
process for solving system (1) is to compute all its minimal
solutions [15], [16], [17], [18], [19], [20]. However, although
the number of minimal solutions should be finite, it might
increase exponentially with the growth of the problem size.
Solving all the minimal solutions of system (3) is highly
related to the set covering problem [25], [26], which is a
typical NP-hard problem. As a consequence, it is difficult
to compute all the minimal solutions of a system of fuzzy
relation equations.

B. MAX-MIN FUZZY RELATION INEQUALITIES AND THEIR
APPLICATION IN A P2P (PEER-TO-PEER) EDUCATIONAL
INFORMATION RESOURCE SHARING SYSTEM
Here, we would like to point out that the resolution approach
and structure of the solution set of a fuzzy relation equation
system are similar to those of a fuzzy relation inequality
system [24], [41], [42]. Wang et al. [24] first introduced the
conservative path approach for obtaining the minimal solu-
tion set of a system of fuzzy relation inequalities with max-
min composition. It was verified that each conservative
path corresponded to a unique minimal solution. In other
words, there existed a one-to-one correspondence between
the set of all conservative paths and the minimal solution
set. Based on the obtained minimal solution set, the optimal
solutions for minimizing a latticized linear objective function
subject to a system of fuzzy relation inequalities could be
further derived [24]. The fuzzy relation inequalities with

max-min composition were also studied in [21], [22], and
[23]. In [22] and [23], the conservative path was modified
to be the FRI (fuzzy relation inequality) path. These two
concepts are essentially identical. They are powerful tools for
computing all the minimal solutions.

The max-min fuzzy relation inequalities were recently
applied to the P2P educational information resource sharing
system [38], [39], [40] (see Fig. 1).

Assume that the educational information resources are
stored in some terminals in a P2P network system. All the
terminals are denoted by A1,A2, · · · ,An. Each terminal is
connected to any other terminal and free to download its
required educational information resources. There exists a
line with bandwidth between each pair of terminals. The
bandwidth between the terminals Ai and Aj is assumed to be
aij. That is, when the ith terminal Ai downloads its required
resources from the jth terminal Aj, the actual quality level is

aij ∧ xj,

where xj (measure: Mbps) denotes the quality level on which
Aj shares (sends out) its local resources. aij ∧ xj represents
the receiving quality level at Ai from Aj. In general, Ai will
select the terminal with the highest receiving quality level to
download the resources. For example, if

(ai1 ∧ x1) ∨ (ai2 ∧ x2) ∨ · · · ∨ (ain ∧ xn) = ai1 ∧ x1,

then Ai will select A1 to download its required resources.
Additionally, we assume that the download traffic require-
ment of Ai is no less than bi and no more than di. Then, such
a requirement can be represented by

bi ≤ (ai1 ∧ x1) ∨ (ai2 ∧ x2) ∨ · · · ∨ (ain ∧ xn) ≤ di.

Without loss of generality, we assume that some of the
terminals, denoted by {A1,A2, · · · ,Am}, have a download
traffic requirement. As a consequence, all the requirements
of {A1,A2, · · · ,Am} can be represented by the following
max-min fuzzy relation inequalities (after normalization):
b1 ≤ (a11 ∧ x1) ∨ (a12 ∧ x2) ∨ · · · ∨ (a1n ∧ xn) ≤ d1,
b2 ≤ (a21 ∧ x1) ∨ (a22 ∧ x2) ∨ · · · ∨ (a2n ∧ xn) ≤ d2,
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

bm ≤ (am1 ∧ x1) ∨ (am2 ∧ x2) ∨ · · · ∨ (amn ∧ xn) ≤ dm,
(3)

where aij, xj ∈ [0, 1], 0 < bi ≤ di ≤ 1, i ∈ I , j ∈ J , and

I = {1, 2, · · · ,m}, J = {1, 2, · · · , n}.

A solution of system (3) is indeed a feasible flow con-
trol scheme for the terminals in the P2P network sys-
tem. To decrease network congestion, a minimal solution is
usually required. Considering the fixed priority grade of all
terminals in a P2P network system, Ma et al. [40] studied
the lexicographic minimum solution to the corresponding
max-min FRIs. The authors proposed a detailed round-robin
algorithm for computing the lexicographic minimum solu-
tion. The computational complexity is polynomial. On the
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other hand, considering the stability of a given feasible flow
control scheme, Chen et al. [39] defined and investigated the
interval solution. The middle point of the widest interval
solution has the largest fluctuation range. Thus, it is the
most stable solution for the max-min FRIs. In addition,
the inconsistent max-min fuzzy relation equation system was
further considered in [38]. For such an inconsistent system,
the target is to find the approximate solution(s). By introduc-
ing an auxiliary parameter system, the authors designed an
effective algorithm to search for an approximate solution to
the inconsistent max-min system [38].

C. MOTIVATION AND CONTRIBUTIONS OF THIS WORK
In this work, we aim to define and investigate another kind
of specific minimal solution, namely, the upper bounded
minimal solution (see Definition 3 in Section 3). The concept
of the upper bounded minimal solution is motivated by the
recently published work [43]. In an FRI systemwith addition-
min composition, Li et al. [43] formally proved that there
exists a minimal solution x ′ such that x ′ is less than or equal
to a given solution x ′′. Moreover, they developed an efficient
algorithm to find such a minimal solution. Motivated by
the idea presented in [43], we attempt to study the upper
bounded minimal solution in an FRI system with max-min
composition, i.e., system (3).

In fact, an upper bounded minimal solution is actually
a minimal solution with an upper bound. In this work,
we always assume that

x̄ ∈ [0, 1]n

is a given vector. We aim to investigate the upper bounded
minimal solution x∗ with the upper bound x̄. Here, x∗ is a
minimal solution of system (3), satisfying x∗ ≤ x̄.

The contributions of this work can be summarized by the
following two points.

(i) The necessary and sufficient conditions are provided
for the existence of the upper bounded minimal solution with
respect to a given vector.

(ii) An effective approach is developed for solving the
upper bounded minimal solution when it exists.

D. ORGANIZATION OF THIS WORK
The rest of this work is organized as follows. Section 2
presents some necessary preliminaries. In Section 3, we dis-
cuss the consistency checking of system (3). In Section 4,
we develop two detailed algorithms, which contribute to
the resolution of the upper bounded minimal solution.
Section 5 presents the conclusion.

II. PRELIMINARIES
In this section, we present some basic concepts and results
pertaining to system (3). We will introduce three aspects
for system (3): (i) its maximum solution; (ii) the system
consistency check; and (iii) the structure of its solution set.

For arbitrary x, y ∈ [0, 1]n, x ≤ y (x = y) denotes xj ≤ yj
(xj = yj), ∀j ∈ J . Hence, the matrix form of system (3) is

bT ≤ A ◦ xT ≤ dT , (4)

where A = (aij)m×n, x = (xj)1×n, b = (bi)1×m, and
d = (di)1×m. Moreover, the solution set of the system can
be represented by

X (A, b, d) = {x ∈ [0, 1]n|bT ≤ A ◦ xT ≤ dT }, (5)

Definition 1: System (3) is called consistent (inconsistent)
if X (A, b, d) 6= ∅ (X (A, b, d) = ∅).
Definition 2: In system (3), a solution x̂ is called the max-

imum solution if x̂ ≥ x for any x ∈ X (A, b, d). A solution x̌ is
called a minimal solution if there exists some x ∈ X (A, b, d)
such that x ≤ x̌; then, we have x = x̌.
Let x ∈ X (A, b, d) be an arbitrary solution of system (3).

Then, it is obvious that

(ai1 ∧ x1) ∨ (ai2 ∧ x2) ∨ · · · ∨ (ain ∧ xn) ≤ di, ∀i ∈ I ,

(6)

That is,

aij ∧ xj ≤ di, ∀i ∈ I , j ∈ J . (7)

In fact, inequality (7) implies that

xj ≤ aij@di, ∀i ∈ I , j ∈ J , (8)

where

aij@di =

{
1, if aij ≤ di,
di, if aij > di.

(9)

Furthermore, inequality (8) is equivalent to

xj ≤
∧
i∈I

aij@di, ∀j ∈ J . (10)

Denote x̂ = (x̂1, x̂2, · · · , x̂n), where

x̂j =
∧
i∈I

aij@di, ∀j ∈ J . (11)

Then, by (10) and (11), we obtain the following Proposition 1.
Proposition 1: If x is a solution of system (3), then it holds

that x ≤ x̂.
According to Proposition 1, the vector x̂ can be viewed as

the potential maximum solution of system (3). In fact, it can
be used to check the consistency of system (3) as follows.
Theorem 1: System (3) is consistent if and only if x̂ ∈

X (A, b, d).
Following Proposition 1 and Theorem 1, system (3) is

consistent if and only if x̂ is its (unique) maximum solution.
Proposition 2: If x is a solution of system (3), then it holds

that [x, x̂] ⊆ X (A, b, d).
Proof: It follows from Proposition 1 that x ≤ x̂. Hence,

the notation [x, x̂] is meaningful. Taking an arbitrary y ∈
[x, x̂] and considering Theorem 1, we have x, x̂ ∈ X (A, b, d).
Therefore, it holds that

bi ≤
∨
j∈J

aij ∧ xj ≤ di, ∀i ∈ I ,

bi ≤
∨
j∈J

aij ∧ x̂j ≤ di, ∀i ∈ I . (12)
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Since x ≤ y ≤ x̂, we have

bi ≤
∨
j∈J

aij ∧ xj ≤
∨
j∈J

aij ∧ yj ≤
∨
j∈J

aij ∧ x̂j ≤ di, ∀i ∈ I .

(13)

This indicates that y is a solution of system (3), i.e., y ∈
X (A, b, d). The proof is complete.

The complete solution set of system (3) (when it is consis-
tent) can be characterized by the following Theorem 2.
Theorem 2: If system (3) is consistent, then its solution set

is

X (A, b, d) =
⋃

x̌∈X̌ (A,b,d)

{x|x̌ ≤ x ≤ x̂}.

Here, X̌ (A, b, d) represents the set of all minimal solutions,
while x̂ is the unique maximum solution of system (3).

III. EXISTENCE OF THE UPPER BOUNDED
MINIMAL SOLUTION
In this section, we define the concept of the upper bounded
minimal solution of system (3). Moreover, some approaches
for checking the existence of the upper bounded minimal
solution are provided.
Definition 3 (Upper Bounded Minimal Solution): In sys-

tem (3), a minimal solution x∗ is said to be an upper bounded
minimal solution (with respect to x̄) if it holds that x∗ ≤ x̄ for
the given vector x̄.

Adding the inequality x ≤ x̄ to system (3), we construct
the following system:

b1 ≤ (a11 ∧ x1) ∨ (a12 ∧ x2) ∨ · · · ∨ (a1n ∧ xn) ≤ d1,
b2 ≤ (a21 ∧ x1) ∨ (a22 ∧ x2) ∨ · · · ∨ (a2n ∧ xn) ≤ d2,
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

bm ≤ (am1 ∧ x1) ∨ (am2 ∧ x2) ∨ · · · ∨ (amn ∧ xn) ≤ dm,
x ≤ x̄.

(14)

According to Definition 3, the following Corollary 1 below
is self-evident.
Corollary 1: x∗ is an upper bounded minimal solution

of system (3) if and only if it is a minimal solution of
system (14).
Theorem 3: System (3) has an upper bounded minimal

solution with respect to x̄ if and only if system (14) is con-
sistent, i.e., there exists at least one solution of system (14).

Proof: (⇒) It is obvious according to Corollary 1.
(⇐) Let y be a solution of system (14). Then, it holds that

y ∈ X (A, b, d) and y ≤ x̄. Following Theorem 2, there exists
y̌ ∈ X̌ (A, b, d) such that y̌ ≤ y ≤ x̂. Therefore, y̌ is a minimal
solution of system (3), satisfying y̌ ≤ y ≤ x̄. It follows from
Definition 3 that y̌ is an upper bounded minimal solution of
system (3) with respect to x̄.
Theorem 4: System (3) has an upper bounded minimal

solution with respect to x̄ if and only if x0 = x̄∧x̂ is a solution
of system (3).

Proof: (⇒) According to Theorem 3, system (14) is
consistent. Suppose x is a solution of (14). Then, it holds
that x ∈ X (A, b, d) and x ≤ x̄. However, it follows from
Proposition 1 that x ≤ x̂. Therefore, we obtain

x ≤ x̄ ∧ x̂ ≤ x̂.

According to Proposition 2, it holds that x0 = x̄ ∧ x̂ ∈
X (A, b, d).

(⇐) Note that x0 = x̄ ∧ x̂ ≤ x̄. It is clear that x0 is a
solution of system (3) if and only if x0 is a solution of system
(14). Then, the rest of the proof is due to Theorem 3.
Lemma 1: For any i ∈ I , j ∈ J , it holds that aij ∧ x̂j ≤ di.
Proof: If aij ≤ di, then it holds that aij ∧ x̂j ≤ aij ≤ di.

Otherwise, if aij > di, then it follows from (9) that

x̂j =
∧
k∈I

akj@dk ≤ aij@di = di. (15)

Hence, aij ∧ x̂j ≤ aij ∧ di ≤ di.
Theorem 5: System (3) has an upper bounded minimal

solution with respect to x̄ if and only if for any i ∈ I , there
exists j ∈ J such that aij ∧ x̄j ∧ x̂j ≥ bi.

Proof: (⇒) Suppose system (3) has an upper bounded
minimal solution. It follows from Theorem 4 that x0 = x̄ ∧ x̂
is a solution of system (3). By system (3), we have∨

j∈J

aij ∧ (x̄j ∧ x̂j) ≥ bi. (16)

This indicates that for any i ∈ I , there exists j′ ∈ J such that

aij′ ∧ x̄j′ ∧ x̂j′ = aij′ ∧ (x̄j′ ∧ x̂j′ ) ≥ bi. (17)

(⇐) If for any i ∈ I , there exists j ∈ J such that aij ∧ x̄j ∧
x̂j ≥ bi, then we have∨

j∈J

aij ∧ x0j ≥ bi, ∀i ∈ I . (18)

However, since x0j = x̄j ∧ x̂j ≤ x̂j, ∀j ∈ J , it follows from
Lemma 1 that

aij ∧ x0j ≤ aij ∧ x̂j ≤ di, ∀i ∈ I , j ∈ J , (19)

That is, ∨
j∈J

aij ∧ x0j ≤ di, ∀i ∈ I . (20)

Inequalities (18) and (20) contribute to x0 = x̄ ∧ x̂ ∈
X (A, b, d). As a consequence, it follows from Theorem 4 that
system (3) has an upper bounded minimal solution.

IV. RESOLUTION OF THE UPPER BOUNDED
MINIMAL SOLUTION
In this section, we aim to provide an effective resolu-
tion approach for the upper bounded minimal solution of
system (3).

To obtain an upper bounded minimal solution with respect
to the given vector x̄, we construct n subproblems as follows,
based on the vector x0 = x̄ ∧ x̂.
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The first subproblem P1 is formulated as

P1
min x1
s.t. (x1, x2, · · · , xn) ∈ X (A, b, d),

x2 = x02 , x3 = x03 , · · · , xn = x0n . (21)

Suppose the optimal solution of the subproblem P1 is x∗1 .
Then, we further construct the second subproblem P2 as

P2
min x2
s.t. (x1, x2, · · · , xn) ∈ X (A, b, d),

x1 = x∗1 , x3 = x03 , x4 = x04 , · · · , xn = x0n . (22)

Thus, the j′th subproblem is

Pj′

min xj′

s.t. (x1, x2, · · · , xn) ∈ X (A, b, d),

x1 = x∗1 , · · · , xj′−1 = x∗j′−1,

xj′+1 = x0j′+1, · · · , xn = x0n , (23)

for j′ = 3, · · · , n. The last subproblem turns out to be

Pn
min xn
s.t. (x1, x2, · · · , xn) ∈ X (A, b, d),

x1 = x∗1 , x2 = x∗2 , · · · , xn−1 = x∗n−1. (24)

If all the above presented subproblems are solvable with
the optimal solutions x∗1 , x

∗

2 , · · · , x
∗
n , then there exists an

upper bounded minimal solution with respect to x̄. Moreover,
one is able to generate an upper bounded minimal solution by
these optimal solutions. Next, we present the related results.

A. RESOLUTION ALGORITHM FOR THE SUBPROBLEMS
Taking arbitrary k ∈ J , we consider the following problem:

min sxk
s.t. (x1, x2, · · · , xn) ∈ X (A, b, d),

xj = cj, j ∈ J , j 6= k, (25)

where cj is a given constant for any j ∈ J − {k}.
It is clear that each subproblem in {P1,P2, · · · ,Pn} can be

viewed as the above problem (25).
Theorem 6: Problem (25) is solvable (i.e., has an optimal

solution), if and only if

(c1, · · · , ck−1, x̂k , ck+1, · · · , cn) ∈ X (A, b, d).

Proof: (⇒) If Problem (25) has an optimal solution,
denoted by x∗k , then it is also a feasible solution. Following
the constraints of (25), we have

(c1, · · · , ck−1, x∗k , ck+1, · · · , cn) ∈ X (A, b, d). (26)

Since x̂ is the maximum solution of system (3), it follows that

(c1, · · · , ck−1, x∗k , ck+1, · · · , cn) ≤ x̂. (27)

This implies that

cj ≤ x̂j, ∀j ∈ J , j 6= k, (28)

and

x∗k ≤ x̂k . (29)

Therefore, we further obtain

(c1, · · · , ck−1, x∗k , ck+1, · · · , cn)

≤ (c1, · · · , ck−1, x̂k , ck+1, · · · , cn)

≤ x̂. (30)

Considering (26), it follows from Proposition 2 that
(c1, · · · , ck−1, x̂k , ck+1, · · · , cn) ∈ X (A, b, d).

(⇐) Suppose

(c1, · · · , ck−1, x̂k , ck+1, · · · , cn) ∈ X (A, b, d).

According to Theorem 2,

X (A, b, d) =
⋃

x̌∈X̌ (A,b,d)

[x̌, x̂].

X̌ (A, b, d) is the set of all minimal solutions of system (3).
Hence, there exists x̌ ′ ∈ X̌ (A, b, d), such that

x̌ ′ ≤ (c1, · · · , ck−1, x̂k , ck+1, · · · , cn) ≤ x̂. (31)

Let

X̌ k (A, b, d) = {x̌ ∈ X̌ (A, b, d)|x̌

≤ (c1, · · · , ck−1, x̂k , ck+1, · · · , cn)}. (32)

Then, it holds that x̌ ′ ∈ X̌ k (A, b, d) 6= ∅. In addition,
since system (3) has at most finitely many minimal solutions,
we have

1 ≤ |X̌ k (A, b, d)| <∞, (33)

i.e., X̌ k (A, b, d) is a nonempty finite set. Let

x̌mink = min{x̌k |(x̌1, x̌2, · · · , x̌n) ∈ X̌ k (A, b, d)}. (34)

Then, it is easy to verify that [x̌mink , x̂k ] is the feasible domain
of Problem (25). As a consequence, Problem (25) has an
optimal solution as x̌mink .
Corollary 2: Problem (25) is solvable if and only if cj ≤ x̂j

for any j ∈ J , j 6= k , and x̂k is a feasible solution of
Problem (25).
Corollary 3: Problem (25) is solvable if and only if it has

at least a feasible solution.
For arbitrary (x1, x2, · · · , xn), (y1, y2, · · · , yn) ∈ [0, 1]n,

we denote

(x1, x2, · · · , xn) ◦


y1
y2
...

yn


= (x1 ∧ y1) ∨ (x2 ∧ y2) ∨ · · · ∨ (xn ∧ yn). (35)
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Let

I k = {i ∈ I |(ai1, ai2, · · · , ain) ◦



c1
...

ck−1
0

ck+1
...

cn


< bi}. (36)

Lemma 2: Suppose Problem (25) is solvable. If I k 6=
∅, then for any i ∈ I k , it holds that aik ≥ bi.

Proof: Following Theorem 6,

(c1, · · · , ck−1, x̂k , ck+1, · · · , cn) ∈ X (A, b, d)

is a solution of system (3). Hence,

(ai1, ai2, · · · , ain) ◦



c1
...

ck−1
x̂k
ck+1
...

cn


≥ bi, ∀i ∈ I . (37)

Therefore, we have

(ai1, ai2, · · · , ain) ◦



c1
...

ck−1
x̂k
ck+1
...

cn


≥ bi, ∀i ∈ I k , (38)

That is,∨
j 6=k

(aij ∧ cj)

 ∨ (aik ∧ x̂k ) ≥ bi, ∀i ∈ I k . (39)

However, (36) shows that

(ai1, ai2, · · · , ain) ◦



c1
...

ck−1
0

ck+1
...

cn


< bi, ∀i ∈ I k , (40)

That is,∨
j 6=k

(aij ∧ cj)

 ∨ (aik ∧ 0) < bi, ∀i ∈ I k . (41)

Inequalities (39) and (41) contribute to

aik ∧ x̂k ≥ bi, ∀i ∈ I k . (42)

Hence, it holds that aik ≥ bi,∀i ∈ I k .

Theorem 7: Suppose Problem (25) is solvable. Then,

x∗k =

0, if I k = ∅,∨
i∈I k

bi, if I k 6= ∅, (43)

is the optimal solution (also the objective value) of
Problem (25).

Proof: (i) Feasibility.
Case 1. If I k = ∅, then x∗k = 0. According to (36), we have

(ai1, ai2, · · · , ain) ◦



c1
...

ck−1
x∗k
ck+1
...

cn


= (ai1, ai2, · · · , ain) ◦



c1
...

ck−1
0

ck+1
...

cn


≥ bi, ∀i ∈ I . (44)

Hence, (c1, · · · , ck−1, x∗k , ck+1, · · · , cn) ∈ X (A, b, d) is a
solution of system (3). This indicates that x∗k is a feasible
solution of Problem (25).

Case 2. If I k 6= ∅, then x∗k =
∨
i′∈I k

bi′ ≥ 0. For arbitrary

i /∈ I k , it follows from (36) that

(ai1, ai2, · · · , ain) ◦



c1
...

ck−1
x∗k
ck+1
...

cn


≥ (ai1, ai2, · · · , ain) ◦



c1
...

ck−1
0

ck+1
...

cn


≥ bi, ∀i /∈ I k . (45)

On the other hand, for an arbitrary i ∈ I k , it is obvious that

∨
i′∈I k

bi′ ≥ bi. (46)

Hence,

(ai1, ai2, · · · , ain) ◦



c1
...

ck−1
x∗k
ck+1
...

cn


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= (ai1, ai2, · · · , ain) ◦



c1
...

ck−1∨
i′∈I k

bi′

ck+1
...

cn


≥ aik ∧

 ∨
i′∈I k

bi′


≥ aik ∧ bi, ∀i ∈ I k . (47)

According to Lemma 2,

aik ≥ bi, ∀i ∈ I k . (48)

Therefore, we have

(ai1, ai2, · · · , ain) ◦



c1
...

ck−1
x∗k
ck+1
...

cn


≥ aik ∧ bi = bi, ∀i ∈ I k .

(49)

Inequalities (45) and (49) contribute to

(ai1, ai2, · · · , ain) ◦



c1
...

ck−1
x∗k
ck+1
...

cn


≥ aik ∧ bi = bi, ∀i ∈ I .

(50)

Hence, (c1, · · · , ck−1, x∗k , ck+1, · · · , cn) ∈ X (A, b, d) and x
∗
k

is a feasible solution of Problem (25).
(ii) Optimality.
Let yk be an arbitrary feasible solution of Problem (25).

Then,

(c1, · · · , ck−1, yk , ck+1, · · · , cn) ∈ X (A, b, d). (51)

According to system (3), we have

(ai1, ai2, · · · , ain) ◦



c1
...

ck−1
yk
ck+1
...

cn


≥ bi, ∀i ∈ I . (52)

This indicates

(ai1, ai2, · · · , ain) ◦



c1
...

ck−1
yk
ck+1
...

cn


≥ bi, ∀i ∈ I k , (53)

That is,∨
j 6=k

(aij ∧ cj)

 ∨ (aik ∧ yk ) ≥ bi, ∀i ∈ I k . (54)

However, it follows from (36) that

(ai1, ai2, · · · , ain) ◦



c1
...

ck−1
0

ck+1
...

cn


< bi, ∀i ∈ I k , (55)

That is, ∨
j 6=k

(aij ∧ cj) < bi, ∀i ∈ I k . (56)

Inequalities (54) and (56) contribute to

aik ∧ yk ≥ bi, ∀i ∈ I k . (57)

Hence,

yk ≥ aik ∧ yk ≥ bi, ∀i ∈ I k . (58)

Thus, yk ≥
∨
i∈I k

bi = x∗k .

Summarizing the above presented results, we obtain
the following Algorithm I regarding the resolution of
Problem (25)).

Algorithm I (For Solving Problem (25))
Step 1. According to (9) and (11), compute the potential

maximum solution x̂ of system (3).
Step 2. Check the consistency of system (3) by Theorem 1.

If system (3) is consistent, then continue to Step 3. Otherwise,
system (3) is inconsistent, i.e., X (A, b, d) = ∅. Problem (25)
does not have an optimal solution; therefore, stop.

Step 3. Determine whether Problem (25) is solvable by
Theorem 6. If Problem (25) is solvable, then continue to
Step 4. Otherwise, Problem (25) does not have an optimal
solution; therefore, stop.

Step 4. Compute the index set I k by (36).
Step 5. Compute the value of x∗k by (43). Then, x∗k is

the unique optimal solution of Problem (25). The optimal
objective function value is also x∗k .
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Example 1: Consider the max-min fuzzy relation inequal-
ity system

bT ≤ A ◦ xT ≤ dT , (59)

where

A =



0.6 0.7 0.4 0.8 0.6 0.7
0.8 0.7 0.4 0.2 0.4 0.8
0.7 0.6 0.7 0.4 0.5 0.5
0.4 0.3 0.5 0.6 0.5 0.6
0.6 0.5 0.7 0.4 0.8 0.3
0.5 0.4 0.4 0.8 0.9 0.5


,

x = (x1, x2, · · · , x6), b = (0.6, 0.5, 0.55, 0.55, 0.6, 0.6),
d = (0.7, 0.7, 0.6, 0.8, 0.9, 0.8). Suppose the solution set
of system (59) is X (A, b, d). Then, we attempt to find the
optimal solution of the following Problem (60)

min x6

s.t. (x1, x2, · · · , x6) ∈ X (A, b, d),

x1 = 0.4, x2 = 0.3, x3 = 0.6, x4 = 0.5, x5 = 0.6. (60)

Solution:
Step 1. According to (9) and (11), we are able to com-

pute the potential maximum solution of system (59) as x̂ =
(0.6, 1, 0.6, 0.7, 0.8, 0.7).

Step 2. After calculation, we obtain

A ◦ x̂T =



0.6 0.7 0.4 0.8 0.6 0.7
0.8 0.7 0.4 0.2 0.4 0.8
0.7 0.6 0.7 0.4 0.5 0.5
0.4 0.3 0.5 0.6 0.5 0.6
0.6 0.5 0.7 0.4 0.8 0.3
0.5 0.4 0.4 0.8 0.9 0.5


◦



0.6
1
0.6
0.7
0.8
0.7


=



0.7
0.7
0.6
0.6
0.8
0.8


.

It is clear that

bT =


0.6
0.5
0.55
0.55
0.6
0.6

 ≤

0.7
0.7
0.6
0.6
0.8
0.8

 ≤

0.7
0.7
0.6
0.8
0.9
0.8

 = dT .

Hence, following Theorem 1, system (59) is consistent, and
we continue to Step 3.

Step 3. After calculation, we obtain

A ◦ (c1, c2, c3, c4, c5, x̂6)T

=


0.6 0.7 0.4 0.8 0.6 0.7
0.8 0.7 0.4 0.2 0.4 0.8
0.7 0.6 0.7 0.4 0.5 0.5
0.4 0.3 0.5 0.6 0.5 0.6
0.6 0.5 0.7 0.4 0.8 0.3
0.5 0.4 0.4 0.8 0.9 0.5

◦

0.4
0.3
0.6
0.5
0.6
0.7

=

0.7
0.7
0.6
0.6
0.6
0.6

 .

It is clear that

bT =


0.6
0.5
0.55
0.55
0.6
0.6

 ≤

0.7
0.7
0.6
0.6
0.6
0.6

 ≤

0.7
0.7
0.6
0.8
0.9
0.8

 = dT .

Hence, following Theorem 6, Problem (60) is solvable, and
we continue to Step 4.
Step 4. Since

A ◦ (c1, c2, c3, c4, c5, 0)T

=


0.6 0.7 0.4 0.8 0.6 0.7
0.8 0.7 0.4 0.2 0.4 0.8
0.7 0.6 0.7 0.4 0.5 0.5
0.4 0.3 0.5 0.6 0.5 0.6
0.6 0.5 0.7 0.4 0.8 0.3
0.5 0.4 0.4 0.8 0.9 0.5

◦

0.4
0.3
0.6
0.5
0.6
0

=

0.6
0.4
0.6
0.5
0.6
0.6

 ,

we have I6 = {2, 4} by (36).
Step 5. Since I6 = {2, 4} 6= ∅, we have

x∗6 =
∨
i∈I6

bi = b2 ∨ b4 = 0.5 ∨ 0.55 = 0.55. (61)

Therefore, the optimal solution of Problem (60) is
x∗6 = 0.55. �

B. RESOLUTION ALGORITHM OF THE UPPER BOUNDED
MINIMAL SOLUTION
Proposition 3: If x0 ∈ X (A, b, d), then for any j′ ∈
{1, 2, · · · , n}, the subproblem Pj′ is solvable, i.e., has an
optimal solution.

Proof: Observing the constraints in Problem P1,
it follows from x0 = (x01 , x

0
2 , · · · , x

0
n ) ∈ X (A, b, d) that x

0
1 is

a feasible solution of Problem P1. According to Corollary 3,
Problem P1 is solvable.
Note that x∗1 is the optimal solution of Problem P1. It is

also a feasible solution. Thus, it holds that (x∗1 , x
0
2 , · · · , x

0
n ) ∈

X (A, b, d). This indicates that x02 is a feasible solution of
Problem P2. Again, by Corollary 3, Problem P2 is solvable.
In the same way, it is easy to verify that all the other

subproblems P3, · · · ,Pn are solvable.
For an arbitrary j′ ∈ {1, 2, · · · , n}, we construct the fol-

lowing problem corresponding to Problem Pj′ .

P≤j′
min xj′

s.t. (x1, x2, · · · , xn) ∈ X (A, b, d),

x1 = x∗1 , · · · , xj′−1 = x∗j′−1,

xj′+1 ≤ x
0
j′+1, · · · , xn ≤ x

0
n . (62)

In Problem P≤j′ , the decision variables can be viewed as
xj′ , xj′+1, · · · , xn.
Lemma 3: Problems Pj′ and P≤j′ have the same optimal

objective value.
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Proof: The optimal objective value of Problem Pj′ is x∗j′ .
Denote the feasible domains of Problems Pj′ and P

≤

j′ byD and
D≤. Comparing the constraints in these two subproblems, it is
easily found that D ⊆ D≤. Hence, if the optimal objective
value of Problem P≤j′ is x

≤

j′ , then it holds that x≤j′ ≤ x∗j′ . Next,
we must verify that x≤j′ = x∗j′ .

Assume (by contradiction) that x≤j′ 6= x∗j′ . Then, it turns out
to be

x≤j′ < x∗j′ . (63)

Since x≤j′ is the optimal objective value of Problem
P≤j′ , there exists a corresponding optimal solution, denoted by
(x≤j′ , x

≤

j′+1, · · · , x
≤
n ), satisfying x

≤

j′+1 ≤ x0j′+1, · · · , x
≤
n ≤ x0n

and

(x∗1 , · · · , x
∗

j′−1, x
≤

j′ , x
≤

j′+1, · · · , x
≤
n ) ∈ X (A, b, d). (64)

Note that x̂ is the maximum solution in X (A, b, d). It is clear
that

x≤j′+1 ≤ x̂j′+1, · · · , x
≤
n ≤ x̂n. (65)

It follows from Proposition 2 that

(x∗1 , · · · , x
∗

j′−1, x
≤

j′ , x̂j′+1, · · · , x̂n) ∈ X (A, b, d). (66)

This indicates that x≤j′ is a feasible solution of Problem Pj′ .
As a consequence, it holds that

x≤j′ ≥ x
∗

j′ , (67)

due to the optimality of x∗j′ . Inequalities (63) and (67) lead to
a contradiction.
Theorem 8: If x0 ∈ X (A, b, d) and x∗j′ is the optimal

solution of Problem Pj′ , for each j′ ∈ {1, 2, · · · , n}, then
x∗ = (x∗1 , x

∗

2 , · · · , x
∗
n ) is an upper bounded minimal solution

of system (3) with respect to x̄.
Proof: (i) x∗ ≤ x̄.

Since x0 = (x01 , x
0
2 , · · · , x

0
n ) ∈ X (A, b, d), observing the

constraints in Problem P1, we have x01 is a feasible solution
of Problem P1. Therefore, we obtain x∗1 ≤ x

0
1 .

Since x∗1 is the optimal solution of Problem P1, it is

clear that (x∗1 , x
0
2 , · · · , x

0
n ) ∈ X (A, b, d). This indicates

that x02 is a feasible solution of Problem P1. Therefore, we
obtain x∗2 ≤ x

0
2 .

Similarly, we obtain x∗j ≤ x0j , ∀j ∈ J . Consequently,
it holds that x∗ ≤ x0 = x̄ ∧ x̂ ≤ x̄.

(ii) x∗ is a minimal solution of system (3).
Since x∗n is the optimal solution of Problem Pn, it is also a

feasible solution. Hence, x∗ = (x∗1 , x
∗

2 , · · · , x
∗
n ) ∈ X (A, b, d)

is a solution of system (3).
Suppose y = (y1, y2, · · · , yn) ∈ X (A, b, d) is an arbitrary

solution of system (3) such that y ≤ x∗, i.e.,

yj ≤ x∗j , ∀j ∈ J . (68)

To check the minimality of x∗, we must verify that y = x∗.

Assume (by contradiction) that y 6= x∗. Considering y ≤
x∗, there exists j′ ∈ {1, 2, · · · , n} such that

y1 = x∗1 , · · · , yj′−1 = x∗j′−1, (69)

and

yj′ < x∗j′ . (70)

Inequality (68) indicates

yj′+1 ≤ x
∗

j′+1, · · · , yn ≤ x
∗
n . (71)

On the other hand, it has been proven in (i) that x∗ ≤ x0.
Hence,

yj′+1 ≤ x
0
j′+1, · · · , yn ≤ x

0
n . (72)

Considering y = (y1, y2, · · · , yn) ∈ X (A, b, d) and (69) and
(72), (yj′ , yj′+1, · · · , yn) is a feasible solution of Problem P≤j′
with objective value yj′ . Suppose the optimal objective value
of Problem P≤j′ is x

≤

j′ . Then it holds that yj′ ≥ x≤j′ . However,
it follows from Lemma 3 that x≤j′ = x∗j′ . Therefore, we obtain
yj′ ≥ x

≤

j′ .

yj′ ≥ x
∗

j′ . (73)

Inequalities (70) and (73) lead to a contradiction.

Algorithm II (For Solving the Upper Bounded Minimal
Solution of System (3))
Step 1. According to (9) and (11), compute the potential

maximum solution x̂ of system (3).
Step 2. Check the consistency of system (3) by Theorem 1.

If system (3) is consistent, then continue to Step 3. Otherwise,
system (3) is inconsistent, i.e., X (A, b, d) = ∅, it does not
have any upper bounded minimal solution; therefore, stop.

Step 3. Compute the vector x0 = x̄ ∧ x̂.
Step 4. Determine whether x0 is a solution of system (3).

If x0 ∈ X (A, b, d), then by Theorem 4, system (3) has
an upper bounded minimal solution with respect to x̄, and
we continue to Step 5. Otherwise, if x0 /∈ X (A, b, d), then
by Theorem 4, system (3) has no upper bounded minimal
solution with respect to x̄; therefore, stop.

Step 5. Let k := 1.
Step 6. Solving the subproblem Pk by Algorithm I, assume

that the obtained optimal solution of Problem Pk is x∗k .
Step 7. If k = n, then go to Step 8. Otherwise, if k < n,

then let k := k + 1 and return to Step 6.
Step 8. Generate the vector x∗ = (x∗1 , x

∗

2 , · · · , x
∗
n ) by the

optimal solutions of the subproblems P1,P2, · · · ,Pn. Then,
by Theorem 8, x∗ is an upper bounded minimal solution of
system (3) with respect to x̄.

Example 2: We still consider the max-min fuzzy relation
inequality system presented in Example (1), i.e., system (59).
For the given vector x̄ = (0.8, 0.5, 0.7, 0.55, 0.6, 0.4), find
an upper bounded minimal solution with respect to x̄.
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Solution:
Steps 1 & 2. It has been checked in Example (1) that x̂ =

(0.6, 1, 0.6, 0.7, 0.8, 0.7) and system (59) is consistent. Thus,
we continue to Step 3.

Step 3. Computing the vector x0, we have

x0 = x̄ ∧ x̂

= (0.8, 0.5, 0.7, 0.55, 0.6, 0.4)

∧ (0.6, 1, 0.6, 0.7, 0.8, 0.7)

= (0.6, 0.5, 0.6, 0.55, 0.6, 0.4). (74)

Step 4. After calculation, we obtain

A ◦ x0
T
=


0.6 0.7 0.4 0.8 0.6 0.7
0.8 0.7 0.4 0.2 0.4 0.8
0.7 0.6 0.7 0.4 0.5 0.5
0.4 0.3 0.5 0.6 0.5 0.6
0.6 0.5 0.7 0.4 0.8 0.3
0.5 0.4 0.4 0.8 0.9 0.5

◦

0.6
0.5
0.6
0.55
0.6
0.4

=

0.6
0.6
0.6
0.55
0.6
0.6

 .

It is clear that

bT =


0.6
0.5
0.55
0.55
0.6
0.6

 ≤

0.6
0.6
0.6
0.55
0.6
0.6

 ≤

0.7
0.7
0.6
0.8
0.9
0.8

 = dT .

This indicates that x0 = (0.6, 0.5, 0.6, 0.55, 0.6, 0.4) is a
solution of system (59). It follows from Theorem 4 that
system (59) has an upper bounded minimal solution with
respect to x̄.

Steps 5-7. For k = 1, the subproblem Pk is

P1
min x1
s.t. (x1, x2, · · · , x6) ∈ X (A, b, d),

x2 = 0.5, x3 = 0.6, x4 = 0.55, x5 = 0.6, x6 = 0.4, (75)

where X (A, b, d) represents the solution set of system (59).
Applying Algorithm I to solve Problem P1, we have x∗1 = 0.

For k = 2, the subproblem Pk is

P2
min x2
s.t. (x1, x2, · · · , x6) ∈ X (A, b, d),

x1 = 0, x3 = 0.6, x4 = 0.55, x5 = 0.6, x6 = 0.4. (76)

ApplyingAlgorithm I to solve Problem P2, we have x∗2 = 0.5.
For k = 3, the subproblem Pk is

P3
min x3
s.t. (x1, x2, · · · , x6) ∈ X (A, b, d),

x1 = 0, x2 = 0.5, x4 = 0.55, x5 = 0.6, x6 = 0.4. (77)

Applying Algorithm I to solve Problem P3, we have
x∗3 = 0.55.

For k = 4, the subproblem Pk is

P4
min x4
s.t. (x1, x2, · · · , x6) ∈ X (A, b, d),

x1 = 0, x2 = 0.5, x3 = 0.55, x5 = 0.6, x6 = 0.4. (78)

Applying Algorithm I to solve Problem P4, we have
x∗4 = 0.55.
For k = 5, the subproblem Pk is

P5
min x5
s.t. (x1, x2, · · · , x6) ∈ X (A, b, d),

x1 = 0, x2 = 0.5, x3 = 0.55, x4 = 0.55, x6 = 0.4. (79)

ApplyingAlgorithm I to solve Problem P5, we have x∗5 = 0.6.
For k = 6, the subproblem Pk is

P6
min x6
s.t. (x1, x2, · · · , x6) ∈ X (A, b, d),

x1 = 0, x2 = 0.5, x3 = 0.55, x4 = 0.55, x5 = 0.6. (80)

Applying Algorithm I to solve Problem P6, we have x∗6 = 0.
Step 8. It follows from Theorem 8 that x∗ = (0, 0.5,

0.55, 0.55, 0.6, 0) is an upper bounded minimal solution
of system (59) with respect to x̄ = (0.8, 0.5, 0.7, 0.55,
0.6, 0.4). �
Example 3: In this example, a P2P network system con-

sisting of 6 terminals {T1,T2, · · · ,T6} is considered (see
Fig. 2). In such a system, each pair of terminals is connected
with a directed line. Suppose the bandwidth is represented
by aij, i = 1, 2, · · · , 6, and j = 1, 2, · · · , 6. However,
the requirement of the highest download traffic to the ith
terminal, i.e., Ti, is assumed to be no less than bi and no
more than di. The quality level on which the jth terminal
shares (sends out) its local resources is denoted by xj. The
measurement unit of aij, bi, di or xj is Mbps (million bits per
second). The following Tables 1 and 2 store the values of all
the parameters aij, bi and di.
All the requirements of the terminals can be characterized

by the following inequalities system:

bT ≤ A ◦ xT ≤ dT , (81)

where A = (aij)6×6, b = (b1, b2, · · · , b6), and d =
(d1, d2, · · · , d6). Moreover, if we normalize all the parame-
ters and variables in system (81), dividing by 50 (Mbps), then
system (81) turns out to be a system of max-min fuzzy rela-
tion inequalities. After normalization, suppose the obtained
fuzzy relation system is

b′T ≤ A′ ◦ x ′T ≤ d ′T . (82)

Here, A′ = (a′ij), b
′
= (b′i), d

′
= (d ′i ), x

′
= (x ′j ),

a′ij =
aij
50
, b′i =

bi
50
, d ′i =

di
50
, x ′j =

xj
50
. (83)
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FIGURE 2. A P2P network system including 6 terminals.

TABLE 1. Value of aij (Measurement unit: Mbps).

TABLE 2. Values of bi and di (Measurement unit: Mbps).

We aim to find a minimal solution x∗ with the upper bound
x̄ = (45, 42, 40, 35, 34, 39).
Solution:
It is trivial to find the maximum solution of system (82).

After calculation, its maximum solution is

x̂ ′ = (0.88, 1, 0.92, 0.94, 1, 0.88).

As a consequence, the maximum solution of system (81) is

x̂ = (44, 50, 46, 47, 50, 44).

Therefore, we have

x0 = x̄ ∧ x̂ = (44, 42, 40, 35, 34, 39).

Following our proposed Algorithms I and II, an eligible
solution is

x∗ = (35, 42, 40, 0, 0, 39).

That is, the quality levels of T1,T2, · · · ,T6 are

35Mbps, 42Mbps, 40Mbps, 0Mbps, 0Mbps, 39Mbps,

respectively. �

V. DISCUSSION AND RESULT
A. COMPARISON WITH THE EXISTING WORKS
To embody the novelty and the technical contributions of this
work, we compare our studied problem to the related ones in
some existing works.

• Distinguishing from the objective
In the existingworks [27], [28], [29], [30], [31], although
the constraint (fuzzy relation systemwithmax-min com-
position) is the same as that in our work, the optimization
objective is much different from that in this work. The
objective (of the optimization problems) in [27], [28],
[29], [30], and [31] is a typical linear function, i.e.,

min c1x1 + c2x2 + · · · + cnxn.

By minimizing such an objective function under the
fuzzy relation constraints, one is able to find a minimal
solution. However, the objective of the problem in this
work is to find a minimal solution that is no more than a
given solution x̄, i.e.,

x ≤ x̄.

In addition, the constraint in [34], [35], [36], and [37]
is the same as that in this work. However, the objective
functions of the problems in these works turn out to be
linear.

• Distinguishing from the constraint
The objectives of the problems in [43] and this work
are identical, i.e., to find a minimal solution of a fuzzy
relation system such that it is no more than a given solu-
tion. However, their constraint systems are different. The
constraint system in [43] is composed of addition-min
operations, whereas the constraint system in this work
is composed of max-min operations. As shown in [15],
[16], and [45], the number and the resolution approach
of the minimal solutions to the max-min system are
much different from those to the addition-min system.
As a consequence, the resolution method in [43] is no
longer effective for our studied upper bounded minimal
solution to system (3).

B. ADVANTAGES OF OUR PROPOSED ALGORITHMS
• Computational complexity of Algorithm I
Step 1 in Algorithm I costs 2mn − n operations for com-

puting the potential maximum solution x̂. To examine the
consistency of system (3), Step 2 costs m(2n+ 1) operations.
Similarly, it costs m(2n + 1) operations for determining the
solvability of Problem (25). Computing the index set I k ,
it costs 2mn operations in Step 4. Finally, Step 5 costs m
operations for obtaining the optimal solution x∗k . As a result,
all steps in Algorithm I cost

2mn− n+ m(2n+ 1)+ m(2n+ 1)+ 2mn+ m

= 8mn+ 3m− n

operations in total. Hence, the computational complexity of
Algorithm I is O(mn). Algorithm I has a polynomial compu-
tational complexity.
• Computational complexity of Algorithm II
Similar to those in Algorithm I, Steps 1 and 2 in

Algorithm II cost 2mn− n and m(2n+ 1) operations, respec-
tively. Computing the vector x0 in Step 3, it costs n operations.
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Furthermore, determining whether the vector x0 is a solution
of system (3), it costsm(2n+1) operations in Step 4. Steps 5-8
have n loops of operations. They cost (2mn + m + 1) × n
operations in total. As a result, all steps in Algorithm II cost

2mn− n+ m(2n+ 1)× 2+ (2mn+ m+ 1)× n

= 2mn2 + 7mn+ 2m

operations in total. Hence, the computational complexity of
Algorithm II is O(mn2). Algorithm II has a polynomial com-
putational complexity.
• Comparing our proposed algorithms to the existing ones
In this paper, we proposed Algorithms I and II for obtain-

ing the upper bounded minimal solution. The problem for
solving the upper bounded minimal solution is separated
into n subproblems. Each subproblem can be solved by
Algorithm I, with a polynomial computational complexity.
Combining all the optimal solutions of these subproblems, the
upper bounded minimal solution can be generated following
Algorithm II. Next, we further compare our proposed algo-
rithms to the existing ones.

(i) In the existing works, some scholars have studied
optimization problems with a linear objective function and
fuzzy relation equation constraints [27], [28], [29], [30], [31],
[32], [33] or fuzzy relation inequality constraints [22], [23].
The original problem was separated into two subproblems.
Furthermore, one of the subproblems was equivalently con-
verted to a 0-1 integer programming problem. As a result, the
resolution of the subproblems is NP-hard. The computational
complexity is not polynomial. However, as demonstrated
above, solving the subproblems presented in this work has
polynomial computational complexity.

(ii) The approach to separate the main problem into some
subproblems was also adopted in the works [36], [37], [49],
[50]. The number of subproblems coincides with the number
of minimal solutions of a system of fuzzy relation equations
(or inequalities). However, it is well known that the number
of minimal solutions exponentially increases with the size of
the fuzzy relation equations. This indicates that the number of
subproblems is nonpolynomial. As a consequence, the com-
putational complexity of the resolution algorithms presented
in [36], [37], [49], and [50] is also nonpolynomial.

(iii) A genetic algorithm was introduced for dealing with
nonlinear or multiobjective programming problems subject
to fuzzy relation equations or inequality systems [34], [51],
[52], [53], [54]. However, applying the genetic algorithm, one
was only able to find an approximate optimal solution but not
an exact optimal solution. The convergence was not formally
proven in the works [34], [51], [52], [53], [54]. The error of
the approximate optimal solution and the convergence are
the significant defects of the genetic algorithm. However,
Algorithms I and II presented in our work enable us to find
the exact upper bounded minimal solution.

(iv) Similar to the resolution approach employed in
our work, the original optimization problem in [55], [56],
and [57] was also divided into n subproblems. Moreover,

an efficient algorithm with polynomial computational com-
plexity was developed for solving each subproblem. Finally,
an optimal solution of the original optimization problem can
be constructed by the optimal solutions of all these subprob-
lems. As mentioned above, the computational complexity of
the resolution algorithm for the subproblems is polynomial.
As a consequence, from the perspective of computational
complexity, the resolution algorithm in [55], [56], and [57]
has the same order efficiency as Algorithm II proposed in
this work. However, the fuzzy relation system employed in
[55], [56], and [57] is composed of addition-min operations.
However, the fuzzy relation system studied in our work is
composed of max-min operations. Due to the different com-
positions, the resolution algorithm in [55], [56], and [57] is
inapplicable to our studied problem.

C. GENERALIZATION OF THE UPPER BOUNDED MINIMAL
SOLUTION TO SYSTEM (3)
It is clear that system (3) consists of a group of fuzzy relation
inequalities with max-min composition. The corresponding
upper bounded minimal solution is defined and studied.
In system (3), the parameters are the common type-1 fuzzy
numbers. As an extension, one could further investigate the
upper bounded minimal solution to system (3) by represent-
ing the parameters as types of fuzzy numbers, such as interval
values, triangular fuzzy numbers, trapezoidal fuzzy numbers
and polygonal fuzzy numbers [46], [47], [48].

In addition, another generalization direction is to extend
the upper bounded minimal solution to the fuzzy relation sys-
temwith other kinds of compositions, such as max-product or
max-Łukasiewicz.

D. CHARACTERISTICS OF THE UPPER BOUNDED
MINIMAL SOLUTION TO SYSTEM (3)
To enable easy use of the upper bounded minimal solution
to system (3), we further depict its characteristics in this
subsection.

Following Definition 3, an upper bounded minimal solu-
tion to system (3), denoted by x∗, possesses the following
three characteristics:

(i) Feasible
x∗ should be a solution of system (3), i.e., x∗ ∈ X (A, b, d).
(ii) Upper bounded
x∗ has an upper bound x̄, i.e., x∗ ≤ x̄ holds for the given

solution x̄.
(iii) Minimal
x∗ is minimal, i.e., if there exists y∗ ∈ X (A, b, d) such that

y∗ ≤ x∗, then we have y∗ = x∗.

VI. CONCLUSION
In the fuzzy relation inequality system with addition-min
composition, the minimal solution, which is no more than a
given solution, was studied by Li and Wang [43]. Obviously,
it is a restricted minimal solution, different from the general
minimal solution. An effective resolution approach was pro-
posed by the authors for obtaining such a minimal solution
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of the addition-min system. In this paper, motivated by the
idea presented in [43], we extended the restricted minimal
solution to the fuzzy relation inequality systemwith max-min
composition, i.e. system (3).

In the max-min system (3), the upper bounded minimal
solution with respect to x̄ was defined as the minimal solution
that is no more than x̄. As a consequence, an upper bounded
minimal solution was indeed a minimal solution with a given
upper bound (denoted by x̄ in this work).

To generate an upper bounded minimal solution of system
(3) with the given vector x̄, we constructed n subproblems
based on system (3) and the vector x̄. Algorithm I was devel-
oped to search for the optimal solutions of the subproblems.
Furthermore, Algorithm II was proposed to find an upper
bounded minimal solution of system (3). Our proposed reso-
lution algorithms were illustrated by numerical examples.

As noted in Section V, the computational complexities
of Algorithms I and II are O(mn) and O(mn2), respec-
tively. Algorithm I is the foundation of Algorithm II.
Following Algorithm II, one is able to find the upper
bounded minimal solution exactly. Obviously, Algorithm II
has polynomial computational complexity. It is an efficient
algorithm. It can be applied to obtain the upper bounded
minimal solution with a large problem size.

In our future work, we will focus on other kinds of mini-
mal solutions to the fuzzy relation system with max-min or
addition-min composition. In addition, we will explore the
application of fuzzy relation inequalities in the supply chain
system [58], [59], [60] and the energy system [61], [62], [63],
[64], [65], [66]. Moreover, we may try to find the specific
solution by some machine learning techniques [67].
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