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ABSTRACT Depression (DP) and schizophrenia (SCZ) are both highly prevalent psychiatric disorders,
and their diagnosis depends on the examination of symptoms and clinical tests, which can be subjective.
As a measure of real-time neural activity, Electroencephalographic (EEG) has shown its usability to classify
people either as normal or as having DP or SCZ, but automatic classification between the three categories
(DP, SCZ and the normal) was rarely reported. Here, we propose an automatic diagnostic framework based
on a convolutional neural network called the Multi-Channel Frequency Network (MUCHf-Net), which
automatically learns feature representations of EEGs that characterize them as normal, DP, or SCZ. Two
EEG databases were used in this study, the first one contains EEGs from 300 individuals (DP: 100, SCZ: 100,
normal: 100) collecting from our hospital, and the second contains EEGs from 30 individuals (DP: 10, SCZ:
10, normal: 10) from public available datasets, and the spectrum matrices from these multi-channel EEGs
were feed into MUCH({-Net. The results showed that: (1) MUCH{-Net accurately distinguished normal EEGs
from DP or SCZ EEGs (accuracy: 91.12%; F1 score: 0.8947); (2) low-frequency bands (delta, theta, alpha)
contributed the most important information to the classification model; (3) features located in the frontal and
parietal lobes contributed more than other regions did; (4) MUCH{-Net fine-tuned on public datasets also had
high classification accuracy: 87.71% (triple: normal, SCZ or DP) and 79.27% (binary: psychiatric disorders
(DP or SCZ) or normal). Our study shows that deep learning has the potential to become an important tool
for assisting in the diagnosis of psychiatric disorders.

INDEX TERMS Electroencephalogram, depression, schizophrenia, deep learning, convolutional neural
network, power spectrum.
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I. INTRODUCTION

Depression (DP) is a severe psychiatric disorder that affects
about 4.4% of the world’s population [1]. It can cause
serious emotional abnormalities, such as low spirits, inat-
tention, poor self-esteem, and even suicidal tendencies [2].
Schizophrenia (SCZ) is another chronic and complex psy-
chiatric disorder, whose primary symptoms are hallucina-
tions, speech confusion, and cognitive decline, and which
can also lead to suicidal tendencies [3]. DP and SCZ are
both psychiatric disorders with high prevalence that can have
severely harmful impacts on a person’s health. Thus, accu-
rate and timely diagnosis is crucial for their treatment. The
most-used international standard is currently the Diagnostic
and Statistical Manual of Mental Disorders (Fourth Edition)
(DSM-1V), which depends primarily on an examination of
patient symptoms by a qualified doctor [4], [5], a process
that is inevitably subjective. Additionally, DP and SCZ have
many overlapping clinical symptoms, such as lack of energy,
social withdrawal, and unhappiness, which makes correct
diagnosis particularly difficult [6]. Therefore, finding objec-
tive biomarkers for diagnosing DP and SCZ remains an urgent
concern.

Neuroimaging methods, such as electroencephalo-
graphic (EEG) recordings [7], structural magnetic resonance
imaging (sMRI) [8] and functional MRI (fMRI) [9] are all
promising resources for diagnosing psychiatric disorders.
However, the data obtained from these imaging techniques
are complex and high-dimensional, and manual analysis is
time consuming. In recent years, researchers have applied
artificial intelligence (Al) to the detection of many psychiatric
disorders, including DP and SCZ, and the results show that
this approach can successfully discover correlations between
neuroimaging data and diseases [10], [11], [12]. In one
study, researchers used MRI data collected from sSMRI scans
and a support vector machine (SVM) to distinguish SCZ
patients from normal subjects, with an accuracy of 83.5%
[13]. In another study, task-related fMRI data were used to
distinguish between SCZ and DP in a paradigm that included
responses to self-assessment scales. This confirms that it is
possible to classify psychiatric disorders using brain signals
related to clinical evaluation tests [14].

Although sMRI and fMRI are considered to be good ways
to distinguish patients of SCZ and DP from normal subjects,
data acquisition is complex and expensive. In contrast, EEG
is cheaper, and more convenient to collect, at the same time
being just non-invasive and reflecting real-time neural activ-
ity. EEG has been widely used in the diagnosis of various
neurological diseases. In the past 10 years, analysis of EEG
data using machine learning (ML) or deep learning (DL)
method to detect neurological diseases, such as epilepsy [15],
Parkinson’s disease [16], and Alzheimer’s disease [17], [18],
has attracted an increasing amount of attention. EEG sig-
nals contain complex and comprehensive information about
the physiological activity of the brain, and the application
of Al increases the potential of EEG analysis for disease
diagnosis.
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In recent years, several studies have proposed computer-
aided diagnoses (CADs) and Al-based methods of analyzing
EEG to detect DP and SCZ. These studies focus primarily
on manually extracting EEG features and then using clas-
sifiers for disease diagnosis. Some EEG features that have
been commonly used to analyze DP and SCZ include non-
linear measures [19], brain networks [7], and information
entropy [20]. ML is the most popular classification method,
such as SVM, which is a technique used in many related
studies and showed excellent performance [20]. Recently,
neural networks (NN) have begun attracting the attention of
researchers when dealing with complex neuroimaging data
[7], [21], [22]. Compared with ML, DL can more conve-
niently analyze different forms of data, which can often lead
to better classification.

Although young people represent the largest group diag-
nosed with psychiatric disorders, the majority of studies [7],
[9], [20], [21], [22], [24], [25] have investigated middle-aged
groups. Additionally, previous studies have focused on using
EEG to distinguish people with either DP or SCZ from those
without any psychiatric disorders, but very few have tackled
the problem of classifying all three categories (DP, SCZ, and
normal) from the same sample. Furthermore, even though DL
models with automatic representational learning are usually
associated with more flexible analysis methods and stronger
adaptability, few researchers have combined spectrograms
with DL to classify people as normal or to determine their
psychiatric disorder. Therefore, the current study adopted DL,
specifically a deep neural network (DNN), as a means to
improve classification of EEG signals in a young population
as DP, SCZ, or normal.

Here, we developed a DL model for classifying samples
of EEG spectra obtained from patients who either had DP or
SCZ, or did not have any psychiatric disorders. The relative
power spectra of the EEG segments at rest were calculated
and used as input to the proposed model for classification.
Our contributions are as follows:

1) We propose a DL model that automatically extracts

features from EEG spectra and classifies them as DP,
SCZ, or normal.

2) Our results indicate that EEG signals combined with
deep neural networks (DNN) can be used to classify
people as normal or as having DP or SCZ. Additionally,
we verified the generalization of the proposed model on
data that was not used during model development.

3) We visualized important features in the power spectrum
for model decision and found that low-frequency (delta,
theta and alpha) EEGs recorded from the prefrontal and
parietal lobes provided the most important contribution
to classification. Our results are interpretable and pro-
vide guidance for clinical diagnosis.

4) We evaluated the generalization of the proposed model
on on an EEG database of patients with psychiatric
disorders of other ethnicities from abroad, and found
our method to be comparable with the latest methods
from other studies.
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Il. RELATED WORK

We focused on studies using DL or ML and EEG to diagnose
DP or SCZ, and Table 1 shows some recent studies that
have been widely referenced for the diagnosis of psychiatric
disorders. At present, traditional ML techniques are still the
mainstream to classify EEG of DP and SCZ, researchers
use ML classifiers to analyse manual features from EEG
recordings and classify them as different categories. The
frequency domain information of EEG are often of interest,
such as the power of different frequency bands, power asym-
metry between hemispheres, etc. Bose et al. [23] studied the
differences in EEG power spectrum between SCZ patients
and healthy subjects under rest, HV and PHYV, respectively.
They extracted the power of different frequency bands of
EEG under the three conditions as features to diagnose SCZ,
and found that combined features from rest, HV and PHV
produced the highest accuracy of 83.9%. Mumtaz et al. [24]
and Shalini et al. [25] further considered the contribution
of power asymmetry for the diagnosis of DP. Mumtaz et al.
studied using EEG interhemispheric alpha asymmetry and
the power of different frequency bands as features to distin-
guish major depressive disorder (MDD) patients and healthy
controls, and Shalini et al. used interhemispheric theta asym-
metry and different frequency band power for the diagnosis
of DP. Their results indicate that power asymmetry is of
great value in diagnosing DP. The analysis of EEG entropy
features is another important aspect, such as the studies of
Acharya et al. [19] and Chu et al [20]. Acharya et al. pro-
posed a novel Depression Diagnosis Index (DDI) to diag-
nose DP by combining sample entropy (SampEnt) and other
nonlinear features such as fractal dimension (FD), largest
lyapunov exponent (LLE), et al. They reported the highest
classification accuracy of 98% yielded by SVM when feeding
these features into the ML classifier. Chu et al. calculated
three kinds of entropy of five frequency bands of EEG sig-
nals to analyze the difference between DP patients and the
normal. Other non-linear feature extraction methods, such as
Empirical Mode Decomposition (EMD) [26], [27] and high
order statistical parameters [28], have also proved valuable to
diagnose DP or SCZ.

Recently NN has become increasingly popular among
researchers because of its good performance and flexibility
in data analysis. Researchers have applied NN to evaluate
the performance of using spectral, spatial, and time-domain
information to diagnose DP or SCZ [22]. More importantly,
NN is able to deal with graph data and sequence data in a
more flexible way than ML. Danish et al. [7] used 3D Convo-
lIutional Neural Network (3D-CNN) to deal with the effective
connectivity matrices of the brain to classify subjects as MDD
or healthy controls, and Sharma et al. [29] used CNN for
time domain learning, and long short-term memory (LSTM)
structure for sequence learning in their proposed hybrid neu-
ral network to screen DP. The time-domain signals of EEG
has always been considered difficult to analyze, but some
researchers have demonstrated that DNN can learn distin-
guishable patterns from them, such as Acharya et al. [21] and
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Oh et al. [30]. In addition, some studies fused multi-modal
features to classify EEG samples based on NN, such as
Phang et al. [31] who designed a novel DNN architecture
called the multi-domain connectome CNN (MDC-CNN) that
allows the fusion of the time-domain, frequency-domain and
topological measures of brain connectivity for classification
SCZ patients and healthy controls.

IIl. MATERIALS AND METHODS
A. EEG RECORDINGS
1) EEG DATABASE OBTAINED FROM OUR HOSPITAL
The first EEG database were provided by the Men-
tal Health Center in the Second Outpatient Department
of West China Hospital at Sichuan University, China.
The samples included 100 patients with DP (mean age:
25.38 + 5.42 years, 50 males), 100 with SCZ (mean age:
25.34 £+ 5.40 years, 50 males) and 100 without any psy-
chiatric diseases (normal; mean age: 25.38 4 5.42 years,
50 males). Each participant was diagnosed by a pro-
fessional physician according to DSM-IV and signed an
informed consent form. A 16-channel EEG collection sys-
tem (NATTON8128W, Shanghai Nuocheng Electric Co., Ltd.,
China) with a sampling rate of 128 Hz was used to record
EEG signals. EEG electrodes were placed according to the
international 10-20 electrode positioning system (Fig. 1).
EEG acquisition was carried out in a quiet room. Before
data collection, participants were given a 10-s period of quiet
and asked to stay relaxed. During collection, they were asked
to cyclically keep their eyes open (7 s) and then closed
(7 s) according to doctor’s prompt. This process was per-
formed three times for each participant, and thus generated
six 7-s EEG recordings for each person (2 eye conditions x 3
repetitions).

2) PUBLICLY AVALIABLE EEG DATABASE
The EEG public database used in this study consists of two
open datasets, one containing EEG from patients with para-
noid SCZ and healthy controls and the other containing EEG
from patients with MDD and healthy controls. The first open
dataset [32] is collected from the Institute of Psychiatry and
Neurology in Warsaw, Poland, and consists of 14 patients
(average age: 28.1 £ 3.7, 7 males) with paranoid SCZ and
14 healthy controls (average age: 27.8 & 3.2, 7 males). The
EEG signals was recorded for 12 min with each participant
having their eyes closed and in a relaxed state at a sam-
pling rate of 250 Hz. The second dataset [33] consists of
EEG signals of 34 DP patients (17 males and 17 females,
mean age: 40.3+12.9) and 30 healthy controls (21 males and
9 females, mean age: 38.3+£15.6) and the EEG signals were
collected when participants closed their eyes for five minutes.
EEG recordings in the two open datasets were collected in
accordance with the International 10-20 system and total
19 channels of EEG signals were considered.

Manual screening was performed to removed subjects
whose recordings contains too much interference, and EEG

VOLUME 10, 2022
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TABLE 1. A list of published works on the automatic diagnosis of DP and SCZ using EEG signals.

Authors

Number of subjects

Method

Conclusion

Bose et al. [23]

Mumtaz et al. [24]

Shalini et al. [25]

Chu et al. [20]

Danish et al. [7]
Acharya et al. [19]

Bairy et al. [28]

Siuly et al. [27]

Shen et al. [26]

Acharya et al. [21]

Sharma et al. [29]

Lietal.

Phang et al. [31]

Ohetal. [30]

® 57 patients with SCZ
® 24 normal subjects

® 33 patients with DP
® 30 normal subjects

® 34 patients with DP
® 30 normal subjects

® 17 patients with DP
® 10 normal subjects

® 30 patients with DP
® 30 normal subjects
® 15 patients with DP
® 15 normal subjects
® 15 patients with DP
® 15 normal subjects

® 49 patients with SCZ
® 32 normal subjects

® Dataset 1: 81 patients with
DP, 89 normal subjects

® Dataset 2: 160 patients with
DP, 116 normal subjects

® Dataset 3: 105 patients with
DP, 109 normal subjects

® Dataset 4: 105 patients with
DP, 70 normal subjects

® 15 patients with DP

® 15 normal subjects

® 21 patients with DP
® 24 normal subjects
® 24 patients with DP
® 27 normal subjects

® 45 patients with SCZ
® 39 normal subjects

® 14 patients with SCZ
® 14 normal subjects

® Absolute band power during rest,
hyperventilation and post-hyperventilation

e SVM

o Different frequency band power and alpha
interhemispheric asymmetry

® Logistic regression (LR), SVM and Naive
Bayesian (NB)

o Different frequency band power and theta

asymmetry

® Multi-Cluster Feature Selection (MCFS)

® SVM, LR, NB and Decision Tree (DT)

® approximate entropy (ApEn), permutation
entropy (PE) ,amplitude-aware PE (AAPE)

e SVM

® Brain default mode network (DMN)

e 3D-CNN

® Nonlinear features

e SVM

® Linear prediction coding and nonlinear

features

® Bagged tree

® Empirical mode
Kruskal Wallis Test

® DT, k-NN, SVM and ensemble bagged tree

® Improved EMD method

e SVM

decomposition (EMD),

® Time domain signal
e CNN

® Time domain signal
® CNN and LSTM

® Spectral, spatial, and  time-domain
information
o CNN

® Time-domain vector auto-regressive (VAR)
model coefficients, the frequency-domain

partial directed coherence (PDC), the
complex network (CN) measures

e CNN

CNN

Combined features from rest,
HV and PHV produces the
highest accuracy of 83.9%

Ten features from Power and
Asymmetry, SVM produces the
highest accuracy rate of 98.4%

Alpha2 band provides the
highest classification accuracy of
88.33% with SVM

® Normal subjects vs. Obvious
disease group: 81.58%

® Normal subjects vs. Moderate
disease group: 70.4%

® Obvious disease group Vvs.
Moderate disease group: 67%

Highest accuracy: 100%

Average accuracy: 98%

Highest accuracy: 94.3%

EBT produces a classification
accuracy of 93.21%

® Accuracy of dataset 1: 83.27%
® Accuracy of dataset 2: 85.19%
® Accuracy of dataset 3: 81.98%
® Accuracy of dataset 4: 88.07%

Highest accuracy of 95.96%
using  EEGs
hemisphere

Highest accuracy: 99.10%

from  right

Highest accuracy: 85.62%

CNN based on the weighted-
averaged fusion achieved the
best accuracy of 91.69%

® Non-subject based
98.07%

® Subject based testing: 81.26%

testing:

recordings of 10 SCZ patients and 10 healthy subjects were
retained. In order to balance the numbers of subjects in dif-
ferent categories, 10 DP patients were selected. The EEG
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data of these 30 subjects (DP: 10, SCZ: 10, Normal: 10)
formed a new dataset. All EEG recordings were manually
preprocessed described as section III (B) and segmented into
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7s EEG segments. In order to balance the number of sam-
ples of different types, EEG recordings only between 1 and
6 minutes (5 minutes in total) were reserved and transformed
to frequency domain described as section III (C) for SCZ
patients. We randomly selected samples of three subjects
from each category to form a test set, and those of the other
subjects form a training set.

B. EEG PRE-PROCESSING

Raw EEG recordings were first segmented according to eye
state (open/closed), which generated 1800 EEG segments
(eyes open: 3 x 300, eyes closed: 3 x 300). Subsequently,
we only considered the 900 eyes-closed segments for analy-
sis. The average reference at each electrode was calculated for
each EEG segment, and a 0.3-45 Hz band-pass filter was then
applied to remove frequencies that we were not our focus.
When dealing with artifacts in EEG segments, we used inde-
pendent component analysis (ICA) and manually checked
each EEG segment to ensure that the obvious artifacts (eye
movements and head movements) were removed. The entire
process is shown in Fig. 1.

C. POWER SPECTRA

After manual cleaning, EEG segments were transformed into
frequency spectra. The Welch method (1-s window length,
50% overlap) was used to obtain the 1-45 Hz spectra for
each electrode channel, which generated a 45 x 16 spectrum
matrix (45 frequencies x 16 electrodes) for each EEG seg-
ment. Because individual variation in the range of spectrum
values can be high, we calculated the relative power spec-
trum of each channel to reduce this imbalance, according to
formula 1:

ey

where P represents the value in the spectrum of the i-th
frequency of the c-th channel. After data processing and
spectrum calculation, we obtained 825 spectrum samples
from the 300 participants (DP: n = 277, SCZ: n = 271,
normal: n = 277). All samples were processed in the same
way using Brainstorm software [34]. Among the 825 sam-
ples, we randomly chose 130 samples from 45 participants
(n = 15 for DP, SCZ and normal, respectively) for testing
the generalization of the Multi-Channel Frequency Network
(MUCH(f-Net) model after training. The other 695 samples
were used for model training and validation.

D. MODELS

MUCHf{-Net is a neural network developed by the authors.
It comprises five convolutional layers, two average pooling
layers, and two fully connected layers (Fig. 2), and was
designed to extract distinguishable patterns from the spectra
of multi-channel EEG signals. Assuming that the spectrum of
a multi-channel signal was X € (F, C), F represents the fre-
quency dimension and C represents the channel dimension.
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The output of the MUCH{f-Net was Y € N, where N is
the number of predicted categories. The structure of the
MUCHf{-Net can be divided into four parts:

1) The frequency convolutional layer: This layer deals
with the spectra of all channels, with 1D convolution
being applied to each channel’s spectrum. The convo-
lution kernels slide in each channel from low frequency
to high frequency to aggregate frequency features. For
each input X € (F, C), a feature map X; € (K, F, C)
was obtained after frequency convolution, where K1
is the number of feature extractors in the frequency
convolutional layer.

2) The spatial convolutional layer: Correlation usually
exists between multiple channels of a signal, and spa-
tial convolution builds relationships between multi-
channel features by combining them. The size of the
convolution kernel was set to (1, C) to cover all chan-
nels, where C is the number of channels. For input
X1 € Ky, F, C), a feature map Xo € (Kp, F, 1)
was obtained after spatial convolution, where K is the
number of feature extractors.

3) The feature integration layer: Deeper feature extrac-
tion can usually discover more complex patterns. Here,
successive 2D convolution was applied to obtain more
advanced patterns. For each input feature map X, €
(K2, F, 1), X, was first reorganized into a new feature
map of size (1, F, K;) and then processed further with
successive convolution filters. The successive convo-
lution filters were applied to increase the range of the
receptive field.

4) The classification layer: This layer comprised two
densely connected layers, which generated prediction
scores for each category by feeding in the feature maps
obtained from previous feature extractors.

To sum up, the frequency convolutional layers learn the
power features by sliding over the spectrum of each channel
using 1-dimensional convolution, and the spatial convolu-
tion layer aggregates features from different channels by the
cross-channel convolution. A feature integration layer is used
to further extract features from the output of spatial convo-
lution and feed them into the classification layer. We chose
the best network structure and parameters by trial-and-error
strategy, the number of neurons in each layer, filter size, and
step length are summarized in Table 2.

E. MODEL TRAINING
Samples from 255 (85 x 3) subjects were involved during
model training, and five-fold cross-validation was used to
test the performance of the model trained after each run.
Subjects from each category were randomly divided into
5 parts. In each run, four parts of them were used to train the
model, and the remaining was used to test the performance of
the model.

The initial learning rate of the MUCHf-Net was set to
1 x 107*, the fixed epoch decay strategy and a batch size of

VOLUME 10, 2022
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EEG collection system. For each channel, we removed bad segments from the raw EEG by visual inspection.
Average references were calculated at all electrodes for each EEG segment, and then a 0.3-45 Hz
band-pass filter was applied to the EEG segments to remove frequencies that were not our focus.

We performed ICA using Brainstorm software to remove artifacts from the signal, and finally transformed
the cleaned EEG segments to frequency spectra to generate power spectrum matrices (45 x 16).
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FIGURE 2. MUCHf-Net frame diagram.

32 were applied to the learning rate adjustment when training
the model. A cross-entropy cost function was applied to eval-
uate the performance of the model, the Adam optimizer was
used to adjust the parameters of the network, and five-fold
cross-validation was applied to train the model. L2 regulariza-
tion is applied to the parameters of the model during training,
and the most appropriate number of iterations was chosen by
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45x1
| 23x1  23x16
S
Conv2d AvgPool Reshape
Ch—Conv
23x16 23x16
e

Convad AvgPool

Feature integration

observing training cost function curves of the model to reduce
over-fitting caused by over-training.

F. EVALUATION METRICS

Accuracy, F1 score, sensitivity and specificity were cal-
culated separately as measures of test performance. Accu-
racy was calculated as the proportion of samples that were
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TABLE 2. Network framework of MuMUCHf-Net.

Block Layers Output size Note
Input — (1,F, C) F: Frequency dimension, set to 45
C: Number of channels, set to 16
Frequency convolution layer Conv2d 3x1 (K, F,C) K;: Number of convolution
ReLU (K, F, C) filters, set to 16
Conv2d 3x1 (K, F, C)
BatchNorm (K, F, C)
ReLU (K, F, C)
Spatial convolutional layer Conv2d_1xC (K,, F, 1) K,: Number of convolution
BatchNorm (K, F, 1) filters, set to 16
ReLU (Ky, F, 1)
AvgPool 2x1 Ky, F/2, 1)
Feature integration layer Reshape (1, F/2,Ky) K3, K4: Number of convolution
Conv2d 3x3 (K;, F/2, K») filters, set to 32 and 16
ReLU (K3, F/2,Ky)
DropOut (K3, F/2, Ky) Dropout rate: 0.4
Conv2d 3x3 (K4, F/2, Ky)
ReLU (K4, F/2,Ky)
AvgPool 2x2 (K4,F/4,K/2)
Classification layer Flatten K4 xF/4xK,/2
Dropout K4xF/4xK,/2 Dropout rate: 0.4
Dense 256
Dense 3
Softmax 3

correctly classified. The F1 score can be regarded as a har-
monic average of the model’s precision and recall, which can
be written as:

precision - recall

Fl=2 —————, (2)
precision + recall
TP
Recall = ———, 3)
TP + FN
.. TP
Precision = ————, 4)
TP + FP

where TP is the true positive, FN is the false negative, FP is
the false positive, and TN is the true negative. Sensitivity and
specificity reflect the model’s ability to predict positive and
negative samples, respectively. Sensitivity is calculated the
same as recall, and specificity can be written as:

TN

Specificity = 'IN——|—FP’

)
G. VISUALIZATION OF IMPORTANT INPUT REGIONS FOR
MODEL PREDICTION

To explore how the model used inputs to generate deci-
sions, Gradient-weighted Class Activation Mapping (Grad-
CAM) [35] was applied to generate visual heat maps of
input regions that were important for model prediction. This
process employs visual explanation technology for decisions
made by CNN-based models and uses the back-propagated
gradient of the predicted scores for the specified category to
generate a location map that highlights the input regions that
are important for the decision.

Grad-CAM uses the gradient information that flows into
the last convolutional layer of the CNN to understand the
importance of each neuron in making the decision. Given an
image and a target category, the model generates a prediction
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score for this target category through forward propagation.
Then, the scores of the target category are backpropagated
to the feature maps of the last convolutional layer of the
model to calculate the gradients of these feature maps, and
the gradient value indicates the importance of the feature map
for classification. Combining the feature maps and gradients
can generate a rough positioning heat map, which indicates
the important regions in the input.

In this study, each sample of dataset from 300 subjects
were fed to MUCHIf-Net to generate a prediction score for
the sample, and the score was backpropagated to the last
convolutional layer of the model to generate a Grad-CAM.
We calculated Grad-CAMs for all samples separately, and
then calculated an average Grad-CAM for each category.
These average Grad-CAMs were used to visualize important
regions in the inputs for model predictions.

IV. RESULTS
A. MODEL TRAINING AND TESTING
Following a five-fold cross-validation protocol, MUCH{f-Net
was fed with training samples and then its performance was
validated on the validation samples. In each run, the model
was trained for 100 epochs because it has been observed
to converge after 100 epochs. Fig. 3(a) shows one of the
training and validation cost-function curves that was obtained
after one repetition. Fig. 3(b) shows validation accuracy after
each cross-validation repetition; the average accuracy for the
validation set is about 76%. Additionally, accuracy differed
for the three categories, with normal samples being identified
with the highest accuracy (95.76%), and both DP and SCZ
with accuracy slightly less than 75%.

One-hundred and thirty spectrum samples (DP: 44, SCZ:
41, HC: 45) from test set were used to test how well the
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FIGURE 3. (a) Training cost curves produced by the MUCHf-Net. (b) Classification accuracy of five-fold cross-validation. The
dotted lines show the classification accuracy for each sample type (normal, DP, SCZ) and the solid line shows the overall
accuracy after each repetition. (c) Confusion matrix for the classification of the test set. (d) ROC curves for the classification

on the test set.

TABLE 3. Classification performance of the MUCHf-Net on the training, validation and test set.

Models Labels Sensitivity Specificity F1 score Overall accuracy
DP 0.8027+0.021 0.8928+0.014 0.7931+0.015
Training MUCHf{-Net SCz 0.8011+0.029 0.9044+0.013 0.8094+0.018 0.8410+0.018
Normal 0.9441+0.012 0.9644+0.009 0.9354+0.011
DP 0.7045+0.027 0.8837+0.017 0.7233+0.014
Validation MUCHf{-Net SCZ 0.7173+0.021 0.8426+0.014 0.7318+0.018 0.7574+0.023
Normal 0.89724+0.025 0.9287+0.010 0.9006+0.016
DP 0.6818 0.8604 0.7046
MUCH{-Net SCz 0.7073 0.8426 0.7149 0.7769
Normal 09112 0.9565 0.8947
Test DP 0.4772 0.7816 0.4999
RF classifier SCz 0.5476 0.7977 0.5542 0.6412
Normal 0.8889 0.8837 0.8420

Note: The performance of MUCH{f-Net on the training and validation sets during the five-fold cross-validation is reported as

the mean =+ std.

proposed system could generalize to new participants. The
trained MUCH{-Net was used to predict whether any of the
45 individuals from test set had DP, SCZ, or did not have any
psychiatric disorder. At the same time, an RF classifier was
trained on the training samples with grid search technology
and tested on the same test set to make a comparison with the
performance of MUCH{-Net.

Table 3 reports the performance of MUCHf-Net and RF
classifier on the training samples, validation samples, and
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test set. The performance of MUCHf-Net on the training
samples is significantly better than that on the validation
samples and the test set, which may be caused by individual
specificity of EEG. Many studies have reported the impact
of individual differences on EEG classification [36], [37],
but we have observed that the classification between nor-
mal subjects and those with psychiatric disorders has not
been greatly affected. In validation sets and the test set,
MUCH(f-Net can distinguish between normal samples and
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The average importance scores for each channel in the alpha and delta bands were calculated
and are displayed on the topographic map of the brain (bottom).

those with psychiatric disorder with high accuracy in most
cases. Figure 3(d) shows the receiver operating characteris-
tic (ROC) curves of MUCH{f-Net on the test set. It can be
seen that the normal samples reaches an area under curve
(AUC) of 0.98. In addition, the low accuracy for DP and
SCZ both on validation samples and test set indicates that
the classification between the two categories is more difficult.
This phenomenon can be seen more clearly in the confusion
matrix produced from the test performance (Fig. 3c) that
misjudgments are more likely to occur between DP and SCZ.
Table 3 shows the performance of the RF classifier on the
same test set, what can be found is that MUCHTf-Net shows
a significant advantage (more than 13% accuracy) over RF
classifiers when analyse samples from new individuals.

B. VISUALIZATION OF IMPORTANT FREQUENCY AND
BRAIN REGIONS

Fig. 4 shows the average Grad-CAMs and the distribution of
classification importance by brain topological region for each
category. From this analysis of the Grad-CAMs, we found
that the low-frequency bands of the EEGs (delta, theta, and
alpha) produced high importance scores, with delta and alpha
frequency bands being the highest. Brain topology maps
of classification importance showed higher scores for that
signals from prefrontal and parietal lobe channels. Thus, the
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prefrontal and parietal lobes may be of great significance in
the diagnosis of DP and SCZ.

C. CLASSIFICATION PERFORMANCE OF DIFFERENT
FREQUENCY BANDS

To determine the classification performance of each fre-
quency band, an RF classifier was used to classify the three
sample types using the spectral features of different fre-
quency bands. The whole spectrum was divided into five
parts according to five frequency bands (delta, theta, alpha,
beta, and gamma), and the multi-channel spectrum for each
frequency band was reorganized to a one-dimensional vector
and input into the RF classifier.

Fig. 5 shows the accuracy of RF classifier for each of the
five frequency bands. In all frequency bands, classification
of normal samples was highly accurate (up to 91.53%).
In contrast, accuracy for SCZ and DP was unsatisfactory (less
than 50% in most frequency bands). Nevertheless, the dotted
line in Fig. 5 indicates an obvious increase in accuracy as
the frequency band expands from delta to alpha. It is easy to
infer that the spectra of low-frequency bands might contribute
more significantly to the classification than do the other fre-
quency bands. This phenomenon confirms the importance of
the low-frequency bands in distinguishing these three types of
EEGs from each other. Another interesting phenomenon was
that as the frequency increased, accuracy at classifying DP
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followed an upward trend, while SCZ classification accuracy
decreased.

D. PERFORMANCE ON PUBLIC EEG DATABASES

Two experiments were performed to test the performance of
MUCH(-Net on the new test set: 1) Test the classification per-
formance of the earlier MUCHf-Net trained in Section IV(A)
on the new test set. 2) Fine-tune the parameters of earlier
trained MUCHTf-Net on the new training set, and then test
its performance on the new test set. Table 4 shows the test
accuracy of MUCH{-Net in the two experiments, together
with classification accuracy of some latest studies to identify
DP on the identical public dataset for DP or to identify SCZ
on the identical public dataset for SCZ.

The overall accuracy of MUCH{f-Net in experiment 1 is
only 70.15%. This result is not satisfactory because we have
observed that similar studies on the same public database
show classification accuracy of even exceed 90%. But it is
worth emphasizing that the model had never been trained on
public datasets in experiment 1. We know that EEG signals
are complex, and many factors, such as individual speci-
ficity and differences in acquisition equipment, will affect
the results of this study. Despite the low accuracy, we still
gain from it: 1) Similar to the results in section IV(A), the
accuracy of samples from normal subjects is significantly
higher than that from patients with DP or SCZ, which means
that normal subjects is easier to distinguish from patients
with psychiatric disorders. 2) The classification accuracy of
samples from patients with DP or SCZ was still significantly
higher than the random probability (33.3%), implying that
MUCHf{-Net is helpful in predicting whether a patient has DP
or SCZ. As expected, the results of experiment 2 have been
significantly improved compared to experiment 1, which
proves that further optimization of the model’s parameters
on the dataset can improves the overall accuracy, as it may
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mitigate the impact of differences in devices and acquisition
paradigms. In addition, the accuracy between the normal
samples and those from patients who has psychiatric disorder
is up to 87.71%, which is close to the results of binary
classifications between normal subjects and patients with DP
or between normal subjects and patients with SCZ in some
studies reported in Table 4. It is worth mentioning that the
experiment of triple classification is more difficult than that
of binary classification, because the added category will sig-
nificantly increase the probability of misjudgment, especially
between DP and SCZ. Nevertheless, we still obtained perfor-
mance close to binary classification. Among Table 4, it can be
observed that our results are better than Mahato’s who used
frequency band power and power asymmetry as classification
features and ML classifiers, indicating that MUCHF-Net is
superior to ML algorithms.

V. DISCUSSION

As two highly prevalent psychiatric disorders with overlap-
ping symptoms, the clinical diagnosis of DP and SCZ has
always been a challenge. The standard diagnosis depends
on patient self-reports and examination by a psychiatrist.
However, this method depends on doctor experience and
lacks objective standards. Because EEGs reflect brain activ-
ity, it has the potential for use in an objective method for
diagnosing psychiatric disorders. Comparative studies of psy-
chiatric disorders including DP and SCZ [44], [45] have
focused on analyzing EEG differences at the group level, and
distinguishing between different disorders has rarely been
considered. In this study, we fed DP, SCZ, and normal EEG
spectra into a DL model and tested its ability to classify
them. The results indicate that our model can efficiently and
accurately distinguish the spectra of healthy individuals from
those with either DP or SCZ.
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TABLE 4. Summary of automated diagnosis of DP and SCZ on public dataset.

Authors Number of participants Techniques Accuracy
Ke et al. [38] ® 34 DP patients CNN 98.59%
® 30 normal subjects
Mabhato et al. [39] ® 34 DP patients Linear features and non-linear features 93.33%
® 30 normal subjects Multi Layered Perceptron Neural Network (MLPNN), Radial
Basis Function Network (RBFN), Linear Discrimination Analysis
(LDA) and Quadratic Discriminant Analysis
Mabhato et al. [25] ® 34 DP patients Power spectrum and power asymmetric 88.33%
® 30 normal subjects SVM, LR, NB and DT
Saeedi et al. [40] ® 34 DP patients Brain network analysis 99.24%
® 30 normal subjects CNN and LSTM
Jahmunah et al. [41] @ 14 SCZ patients Non-linear features 92.91%
® 14 normal subjects DT, LDA, k-NN, Probabilistic NeuralNetwork (PNN) and SVM
Ohetal. [31] ® 14 SCZ patients CNN 81.26%
® 14 normal subjects
Buettner et al. [42] ® 14 SCZ patients ® Power spectrum 100%
® 14 normal subjects ® RF
Krishnan et al. [43] ® 14 SCZ patients ® Multivariate empirical mode decomposition (MEMD) 93%
® 14 normal subjects ® SVM
Ours (experiment 1) @ 3 DP patients ® Power spectrum Overall accuracy: 70.15%
® 3 SCZ patients ® CNN (DP: 63.72%, SCZ:
® 3 normal subjects 64.87%, Normal: 80.44%)
Ours (experiment 2) @ 14 DP patients ® Power spectrum Overall accuracy: 79.27%
® 14 SCZ patients ® CNN (DP: 77.67%, SCZ:

® 14 normal subjects

75.38%, Normal: 87.71%)

DL has become an attractive tool for developing automatic
methods of diagnosing psychiatric disorders because it can
process complex medical data better than traditional ML.
In the current study, we developed a DL model that learned
the characteristic features of EEG spectra taken from three
types of individuals. We found that DL model performed
about 13% better than ML. A DNN performs adaptive rep-
resentation learning and can discover more discriminative
patterns. It can be seen from the classification of new samples
that our DL model was more adaptable than the ML classifier.
The DL model still achieves good performance on dataset
from public databases, and test results show that the proposed
model of tripe classification is competitive compared to meth-
ods of binary classification proposed in other studies.

From the average Grad-CAMs depicted in Fig. 4, we can
see that the low-frequency bands (delta, theta, and alpha)
were more important for classification than the higher fre-
quency bands (beta and gamma), particularly the delta and
alpha frequency bands. Previous studies have shown that psy-
chotic disorders may be related to changes in low-frequency
power [44], [45]. Thus, we can infer that differences in
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low-frequency bands might have particular significance when
diagnosing DP and SCZ. Although the MUCH{f-Net distin-
guished normal participants and those with psychiatric disor-
ders very accurately, it was prone to mistakes when judging
g between DP and SCZ.

There are also many disadvantages: 1) The amount of
data is not sufficient. The EEG database from our hospi-
tal contains only 100 subjects per category, and more seri-
ously, the amount of data for a single individual is grossly
insufficient, with only 21s (3 x 7s) of resting-state EEG
recordings being available. 2) The EEG feature analyzed are
relatively single. In this study we only considered the power
information of subjects’ EEG, however, the differentiated
EEG features of psychiatric disorders are complex and using
only power information may not be sufficient to diagnose
diseases. 3) Although the algorithm proposed in this study
is able to accurately classify normal individuals and patients
with psychiatric disorders, the classification between DP and
SCZ is still a challenge as it can not accurately classify
the power information of both using EEG. 4) In the results
section we explored brain regions with high contribution to
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classification, such as the prefrontal and parietal lobes. How-
ever, we have not explored the neural mechanisms involved
more deeply, nor have we integrated these findings with the
clinical analysis of these diseases.

In future studies, we hope that multi-center EEG data
can be utilized to study in depth the differences between
schizophrenia and depression. It is necessary for disease
diagnosis to consider combined features such as abnormal
functional connections between brain regions, EEG power
asymmetry and other popular EEG features. In addition,
incorporating the insights of senior clinicians is beneficial,
we hope to use clinician knowledge to guide the development
of Al diagnostic algorithms and interpret the findings of Al
algorithms.

VI. CONCLUSION

EEG power spectra can be very useful for analyzing abnormal
states of the brain. In this study, we input EEG power spectra
into a DL model, which then learned how to classify the
samples as DP, SCZ, or normal. We tested how well the model
could generalize by observing how it classified EEG data
from previously unknown participants. Results showed that
the proposed model can accurately classify samples as normal
or not normal, but was less accurate at distinguishing between
DP and SCZ samples. We also analyzed the EEG frequencies
and found that the MUCH{-Net classification relied more on
information from the low-frequency bands (delta, theta, and
alpha) than from the high-frequency bands. Analysis of brain
topology then revealed that MUCHf-Net deemed the EEG
spectral information from the prefrontal and parietal lobes of
the brain to contain critical information for classification that
was not present in the other regions of the brain.

DP and SCZ are two psychiatric disorders with high preva-
lence and similar symptoms. A multi-classification model
involving DP, SCZ, and normal EEGs should be developed
instead of using two binary classification models that dis-
tinguish between normal and DP and between normal and
SCZ. Al-assisted diagnosis is a rapidly developing technol-
ogy and has considerable potential for diagnosing psychiatric
disorders.
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