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ABSTRACT Understanding protein subcellular localization is vital and indispensable in proteomics
research. Molecular biology and computer science developments have enabled the use of computational
approaches to identify proteins in cells. An excellent method for locating proteins is confocal microscopy,
used by the Human Protein Atlas (HPA). By categorizing human proteins, it can assist researchers in better
comprehending human pathophysiology and assist doctors in automating medical image interpretation.
Human protein Atlas comprises millions of images annotated with single or multiple labels. However,
only a few methods for automated prediction of protein localization have been developed, and they mostly
concentrate on single-label classification. Therefore, a recognition system for multi-label classification of
HPA with acceptable performance should be developed. Hence, this study aims to develop a deep learning-
based system for the multi-label classification of HPA. Specifically, two architectures have been proposed
in this work for automatically extracting features from the images and predicting the localization of the
proteins in 28 subcellular compartments. First, a convolutional neural network has been proposed, which
has been trained from scratch and second an ensemble-based model using transfer learning architectures
has been proposed. The results demonstrate that both models are effective in classifying proteins according
to their location in the major cellular organelles. Yet, in this study, the proposed convolutional network
outperforms the ensemble model in classification of images with multiple simultaneous protein localizations.
Three performance metrics standards—recall, accuracy, and f1-score—were used to assess the models. The
proposed convolutional neural network beats the ensemble model by achieving recall of 0.75, precision of
0.75 and f1-score of 0.74.

INDEX TERMS Biomedical image analysis, convolutional neural network, deep learning, human protein
atlas image classification, protein subcellular localization prediction.

I. INTRODUCTION are segregated into various subcellular compartments. Each
Proteins are the primary building block of cells, accounting compartment has a different physiochemical environment
for most of the cell’s dry mass. Within the cell, proteins required for the proteins to function correctly. Protein syn-
thesis occurs in one of the subcellular compartments called

The associate editor coordinating the review of this manuscript and the cytoplasm, and freshly generated proteins are transferred
approving it for publication was Rajeeb Dey . to their appropriate compartment to carry out their function.
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Thus, proteins should be transported to the correct subcel-
lular compartment for its proper functioning [1]. The mis-
localization of proteins results in functional loss or disruption
of cells, contributing to various diseases [2], including cardio-
vascular, neurodegenerative [3], [4], [5], and cancer [6], [7].
Thus, identifying protein localization within cellular com-
partments is often essential in proteomics research.

The Human Protein Atlas (HPA) initiative is currently
dedicated to annotating the location of every human protein
within a cell utilizing a diverse set of biotechnologies and
techniques [8]. HPA captures images using fluorescence-
based microscopy techniques. They are the most extensively
utilized and recognized tool for predicting the protein’s cel-
lular location. [9]. These methods improve the visibility of
intracellular proteins, either by producing fluorescent fusion
proteins or by detecting target proteins with fluorophore-
detected antibodies. Recent advancements have made it pos-
sible to visualize all human proteins in cells in a systematic
and high-throughput manner. However, analyzing and visu-
alizing such a vast number of protein localizations currently
necessitates the development of more robust, high-throughput
approaches. Regardless of the advantages of the present stud-
ies, there is still a need for more significant research in identi-
fying protein localization in specific cell types and states and
how localization varies over time and across disease states.
Furthermore, the amount of protein localization imaging data
to be collected in future research is expected to rise consid-
erably. Thus, high-throughput analysis methods for automat-
ically categorizing protein locations in microscopic images
are required.

Deep Learning breakthroughs have enabled a slew of
successful real-world applications. These includes image
identification [10], gamification [11], and autonomous
cars [12]. Deep neural architectures, specifically Convolu-
tional Neural Network (CNNs), have already been com-
monly used in classification of images [13], [14], [15] and
segmentation applications [16], [17], [18]. CNN frequently
starts with raw images and learns end-to-end hierarchical
feature representations, allowing the model to extract cellular
localization patterns effectively. Several cutting-edge CNN
networks with outstanding performance have been devel-
oped, including VGG16 [19], Resnet [20], Xception [21],
ShuffleNet [22], MobileNet [23], and others. The effective-
ness of deep learning techniques has also been proved useful
in various public competitions that rely on crowdsourcing to
find successful computational solutions for specific objec-
tives [24], [25], [26]. The phenomenal achievements in deep
learning have resulted in making the conventional feature-
based machine learning technique practically obsolete in
huge data requiring application. Deep learning approaches
are likely to perform well in protein localization since imag-
ing data, together with annotation from the HPA project,
provides a rich source of training data.

Protein localization through microscopic images presents
aunique machine learning challenge, specifically how to deal
with weakly annotated data. The issue is that rather than
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labelling individual instances (in this case cells), a group of
instances have been labelled. Each of those instances may
shed light on the proper classification. This contrasts with
the object recognition issue settings in MNIST, CIFAR, and
ImageNet, where an image often clearly represents a class.
The ideal solution to protein localization would be a general,
resilient, and fully automated workflow that is as accurate as
human experts, if not more so. Even more ideal would be
a platform for uploading and automatically annotating high
throughput images. Whereas the state-of-the-art in protein
localization entails professionals fine-tuning the segmenta-
tion algorithm, cell crop extraction, and then applying Deep
Learning to those with allegedly inferior performance to
human experts. In this research, a general approach has been
developed that accepts inputs of any size, does not require
segmentation, but instead works on complete images, and
performs at the level of human specialists or even higher.
We hypothesize that by increasing the amount and diversity
of training sets, the suggested architectures might be utilized
to localize proteins in images from various biotechnological
devices, cell lines, and laboratories. Therefore, this research
helps understand an automated classification approach for the
multi-label HPA problem. Following are the contributions of
the author in the study:

i. A Convolutional Neural Network-based architecture was
proposed and trained from scratch to classify protein’s
mixed patterns in subcellular compartments.

ii. An ensembled learning-based model was also proposed
to compare the performance of proposed CNN with
ensemble model.

iii. The proposed CNN architecture was rigorously tested
with different input shapes, filter sizes and different
hyperparameters.

iv. The proposed model’s performance was evaluated using
precision, recall and fl-score and compared with the
proposed ensemble model and the state-of-art.

The remainder of the paper will be delivered in the fol-
lowing manner: Section 2 emphasized the contributions of
various researchers in the prediction of protein subcellular
location. In section 3, the dataset used for this study has
been described, followed by proposed model’s architecture
and the experimental setup used for training the proposed
CNN model. The results of the experiments performed on the
suggested model are detailed in Section 4. Lastly, in section 5,
limitations of the work and future work have been discussed.

Il. RELATED WORK

The researchers have employed various approaches using
machine and deep learning techniques for identification of
subcellular location and patterns of proteins within human
cells. Several machine learning-based methods integrating
microscopy with pattern recognition have been created over
the past decade to analyze proteins’ location in cultured cells
[27], [28]. These methods extract the subcellular location fea-
tures from the microscopic images, which are then analyzed
to find patterns [29]. In addition to morphological aspects,
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SLFs include features like Haralick, Wavelet, and Zernike
features, which quantitatively describes the subcellular loca-
tion of proteins. Thus, it is possible to utilize SLFs to train
classifiers to discriminate distinct protein patterns once they
have been retrieved from the images.

Although machine learning approaches have effectively
addressed the protein localization problem, extracting dis-
criminant features from images is time-consuming. Deep
learning eliminates the need for feature extraction by
allowing the system to learn visual features indepen-
dently. Recently, CNN-based approaches for categoriz-
ing protein subcellular distribution have been successfully
applied.

Sullivan et al. [30] utilized a neural network to recognize
and classify the protein patterns in microscopic imaged of
Hela cells. Huang and Murphy [31] introduced a classifier
based on SVM and ensemble method for recognizing pro-
tein in 2-dimensional and 3-dimensional microscopic images.
Newberg et al. [32] proposed two new classifiers based
on SVM and random forest, which significantly improved
the accuracy of detecting subcellular locations of proteins.
Two new datasets were created from microscopic images
by Coelho er al. [33] to automate the prediction of pro-
tein’s subcellular location through CD-tagging. Additionally,
they devised a novel technique integrating K-means and
SVM, which helped in better feature extraction and clas-
sification. Lu et al. developed a successful self-supervised
technique for learning image representations in individual
cells from microscope images, attaining a 55% accuracy [34].
Liimatainen et al. [35] examined two widely used deep
learning-based techniques, CNN and FCN (Fully Connected
Network), for identifying the protein locations in 13 subcel-
lular compartments using microscopic images. FCN outper-
formed CNN, achieving an F1-score of 0.696 to CNN’s 0.676.
Li et al. [36] suggested a model with a macro Fl-score of
0.706 that was built using pre-trained model Inception V3.
Shwetha et al. [37] used two distinct strategies to classify
images from Human Protein Atlas database. The first strategy
entails feature extraction and classification using the Random
Forests classifier. The second approach utilized two distinct
CNN-based architectures — Xception and ResNet 50 — to
extract features and classify them into 15 distinct categories.
The Hybrid Xception model achieved a higher F1-score of
0.69 than with the standard approach’s 0.61. Pdarnamaa and
Parts [38] classified microscopic fluorescent images collected
from the HPA dataset using a combination of two approaches.
First, they hosted an online video game image classifica-
tion competition, resulting in 33 million protein location
annotations. Then an automated program called Loc-CAT
was developed that utilized the results obtained from online
video game competition to classify the protein locations in
29 sub-compartments. Both techniques were then integrated
using transfer learning to produce a model with an F1 score
of 0.72 for classifying protein patterns. Kraus et al. [39]
developed an 11-layer CNN (DeepLoc) to evaluate protein
localization of yeast protein, reaching a prediction accuracy
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of 72.3% for proteins located in ten subcellular sites inside
the cell.

While the approaches developed for automatic determi-
nation of the subcellular protein localization using micro-
scopic images is accurate, present techniques struggle to
match the same level as humans. This work investigates
and addresses the problem of predicting the localization of
proteins in human subcellular compartments. In this work,
images acquired from HPA have been classified in 28 distinct
cell phenotypes for the presence of protein. In addition, a fast
and accurate approach for classifying human protein labels is
described without the need for tedious feature selection and
extraction.

IIl. MATERIALS AND METHODS

A. DATASET DESCRIPTION

The database utilized in this study was obtained through
a crowdsourcing competition, titled 'Human Protein Atlas
Image Classification’, held on Kaggle in 2019 [41]. This
dataset was acquired using a highly uniform imaging tech-
nique known as confocal microscopy. There are 31,072 sam-
ples in the database. Each sample contains 4 high-resolution
images marked with a different fluorescent protein, including
the targeted protein (green) and 3 cellular landmarks (red,
yellow, and blue), as illustrated in Figure 1. In this study, three
channels (red, blue, and green) were used. Due to diverse
range of cell forms, types, spatial relationships in the data
set, identifying proteins in specific cellular compartments
becomes difficult.

The protein distribution in cells is broken down into
28 major organelles in this dataset. Hence there are 28 dif-
ferent labels, and each image may belong to a single label or
multiple labels. Therefore, this is a multi-label classification
problem, and proteins may localize in more than one subcellar
compartment or organelles in a single sample image. The
name of the labels are given in Table 1. Dataset was prepared
by combining the three channels, red, green, and blue, for
each sample. Sample images from the dataset belonging to
single or multiple labels are shown in Figure 2. Data was split
into 3 parts: Train (80%), Validation (10%) and Test (10%).
Distribution of number of samples for each label in training,
test and validation set is given in Table 1.

B. DATASET PRE-PROCESSING

Resizing and normalization of images have been done in data
pre-processing. Original images of size 512 x 512 pixels
were fed as an input to the proposed CNN model. Images
were also resized to128 x 128 pixels and 256 x 256 pixels to
test the model’s performance with varied input shapes of the
image. The dataset also had the version of images with reso-
lution 2048 x 2048 and 3072 x 3072 pixels, but due to the
massive size of the dataset and the resulting memory shortage,
images of size 512 x 512 pixels were used. For ensemble
learning model, the images were resized to 224 x 224 pixels
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FIGURE 2. Sample images from the dataset belonging to single or multiple labels [41]: (a) Nucleoplasm, (b) Golgi Apparatus, Nucleoplasm, Nuclear
membrane, Nucleoli, (c) Cytosol, Nucleoli, (d) Intermediate Filaments, Cytosol, (e) Nuclear Speckles, (f) Nuclear Bodies, (g) Endoplasmic reticulum,
(h) Cytokinetic bridge, Endoplasmic reticulum, (i) Cell Junctions, Nucleoplasm, (j) Peroxisomes, Endosomes (k) Lysosomes, (I) Intermediate filaments,
(m) Actin filaments, (n) Focal adhesion sites, (0) Nucleoli, Nucleoplasm, Centrosome (p) Microtubule End, (q) Nucleoplasm, Plasma Membrane, Focal
adhesion sites, (r) Mitotic Spindle, (s) Cytosol, Microtubule organizing center, (t) Centrosome.

since the ensemble consist of pre-trained architectures whose
maximum acceptable input image size is 224 x 224 pixlels.

The pixel values of the image were rescaled from 0O
to 1 using normalization. Data normalization is an important
step that assures that each input parameter (or pixel) has a
consistent data distribution. As a result, the network gets
trained faster and more efficiently. Each pixel value was
normalized by multiplying it by 1/255.
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C. DATA AUGMENTATION

Data augmentation is the technique used to increase the size
of the dataset. Here, increasing the size of the dataset does
not mean increasing the number of samples but to diversify
the images to make our model more generalizable. Gen-
eralizability means the mismatch tween the output of the
model based on previously seen data and unseen data. In data
augmentation, there is a wide range of transformations that

VOLUME 10, 2022



S. Aggarwal et al.: CNN-Based Framework for Classification of Protein Localization Using Confocal Microscopy Images

IEEE Access

TABLE 1. Distribution of samples for each label in training, test and
validation set.

Label Label Name Total Train Validation = Test

No.

0 Nucleoplasm 12,885 10,436 1160 1289

1 Nuclear 1,254 1007 112 135
Membrane
Nucleoli 3,621 2913 324 384

3 Nucleoli 1,561 1,275 142 144
Fibrillar
Centre

4 Nuclear 1,858 1848 205 195
Speckles

5 Nuclear 2,513 2034 226 253
Bodies

6 Endoplasmic 1,008 823 91 94
Reticulum

7 Golgi 2,822 2,282 253 287
Apparatus

8 Peroxisomes 53 42 5 6

9 Endosomes 45 36 4 5

10 Lysosomes 28 22 3 3

11 Intermediate 1,093 892 99 102
Filaments

12 Actin 688 562 63 63
Filaments

13 Focal 537 442 49 46
Adhesion
Sites

14 Microtubules 1,066 856 95 115

15 Microtubule 21 17 2 2
End

16 Cytokinetic 530 423 47 60
Bridge

17 Mitotic 210 165 18 27
Spindle

18 Microtubule 902 721 80 101
Organizing
Centre

19 Centrosome 1,482 1,196 133 153

20 Lipid 172 140 16 16
Droplets

21 Plasma 3,777 3,073 341 363
Membrane

22 Cell 802 658 73 71
Junctions

23 Mitochondria 2,965 2,396 266 303

24 Aggresome 322 256 28 38

25 Cytosol 8,228 6636 737 855

26 Cytoplasmic 328 265 29 34
Bodies

27 Rods and 11 9 1 1
Rings

can be applied to the original images to create additional
training samples while maintaining their original labels. The
transformations applied to the images in this research include
random rotation of the image in the range of 30 to 60 degrees,
zoom in the range of 0.2 and vertical flip and horizontal flip.
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The sample images obtained after applying these transforma-
tions are shown in Figure 3.

D. THE PROPOSED CNN ARCHITECTURE

This research proposes an extensive Convolutional Neural
Network with outstanding recognition performance for HPA
images. The block diagram of the developed model is pre-
sented in Figure 4. The proposed model’s details and its
related configurations are summarized in Table 2.

The base architecture of proposed CNN model consists of
4 convolution blocks. Each block is created using a series
of convolutional layers followed by a max-pooling layer.
The network’s depth was determined by experimenting with
depths ranging from four to twelve convolutional layers.
Following each convolution block, the number of filters was
doubled. For instance, the first convolution block contains
four convolution layers, each with 32 filters; the second block
contains 64 convolution layers; the third convolution block
contains 128 filters, and the fourth convolution block contains
256 filters.

Additionally, normalization of batch was performed
between each layer of convolutional and activation. It is a
technique which improves the neural network’s performance
by normalizing the inputs in each layer such that the mean
activation at the output is O and deviation is 1.

Following the final convolutional block, a fully connected
network was constructed consisting of two Dense Layers, the
first with 128 nodes and the second with 28 nodes predicting
the output values. Each convolution layer was activated with
rectified linear unit (ReLU) function, except last layer, which
used sigmoid activation to get the output between 0 and 1.

E. THE PROPOSED ENSEMBLE LEARNING MODEL
Ensemble learning refers to the process of generating and
combining several models, such as classifiers or experts,
to address specific computational intelligence challenges.
Ensemble learning is typically employed to boost a model’s
efficiency or lessen the probability of selecting a poor one.
One common strategy of ensembling different models is
called the stacked ensemble approach. A stacking model’s
architecture consists of two or more base models, also known
as level-0 models, and a meta-model that aggregates the
predictions of the base models, also known as a level-1 model.
The base models are the models that are fitted to the training
data and whose predictions are compiled, while the meta-
models are the models that learn how to integrate the base
models’ predictions in the best way possible. The meta model
is trained on the predictions made by the base models on the
validation data set. That means, the data samples which have
not been used to train the base models are fed to the base
models, predictions are made, and these predictions, along
with the predicted outputs, form the input and output pairs of
the training dataset used to fit the meta-model.

Three transfer learning models, ResNet102 [20],
DenseNet201 [43], and VGG19 [19], were utilized as base
learners in this study. The chosen transfer learning models
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FIGURE 3. Sample images after applying data augmentation transformations.
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FIGURE 4. Block diagram of proposed CNN architecture.

were fine-tuned and trained separately on the training dataset.
Fine-tuning of the models was done by replacing the original
fully connected layers with a new set of layers comprising of
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Global Average Pooling Layer followed by a Dense layer of
1024 neurons. The models were saved and utilized to form a
stack ensemble once they were trained.
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FIGURE 5. Proposed ensemble learning model.

The initial layer of input data is duplicated and distributed
across the three base learners. After the images have been
delivered through the pipeline of each base learner, a pre-
diction vector for the input data is formed. The prediction
vectors of all three base learners are then concatenated and
used as a feature in the meta learner. Finally, the meta-learner
attempts to better classify the input data. The meta-learner
chosen has a significant impact on the ensemble model’s
performance. In our research, we used a fully connected
network as a meta-learner. To reduce generalization error and
enhance predictions, the base models were frozen, and only
the meta-learner is trained on the predictions made by the
base models on the validation dataset. The proposed stacked
ensemble model is shown in Figure 6. The fully connected
meta-learner is made up of two dense layers with 512 and
128 neurons, respectively, followed by a prediction layer with
28 neurons and sigmoid function for classification.

F. EXPERIMENTAL SETUP

Additional to the architecture of network, it is essential to
understand the model’s implementation and performance,
which includes the intricacies of the training process itself.
When training deep neural networks, several parameter
choices were made. The network was created from scratch
without the use of pre-trained models. Experimentation led
to the selection of training hyperparameters. The model was
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FIGURE 6. Confusion matrix.

run for 30 epochs. Initially, weights of the model were
established using Golort initialization [44]. Next, the Adam
optimizer was used, with the default parameters provided in
the original Adam paper [44]. 0.001 was used as an initial
rate of learning. After five consecutive epochs, if the loss
did not improve, the learning rate was adjusted to decrease
by a factor of 1/10 dynamically. Binary cross-entropy loss
function was chosen based on the multi-label structure of
the data. Batch size of 32 was selected because it was the
maximum batch size that could be implemented with the
available GPU memory. A TensorFlow backend was utilized
to implement the models in Python with the Keras pack-
age [45], and GPUs were employed to speed up training. The
sigmoid activation function after the final layer ensures that
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TABLE 2. Configuration of training parameters.

Hyperparameters Values
Mini Batch size 32

Initial Learning Rate 0.001
Weight Decay 107 {-8}
Beta 0.9, 0.999
Adam True

output values are constantly between zero and one. Table 2
shows the training parameters, as well as the settings for the
optimizer. Hyperparameters were chosen by tuning the model
by applying different optimizers, batch size and learning rate.
Results obtained for hyperparameter tuning are discussed in
Section I'V.

In case of ensembled approach, hyperparameter tuning was
done with similar parameters for the ensembled network. But
for the independent base-learners, first the only the new fully
connected layers of the model were trained for 15 epochs at a
learning rate of 0.001 by keeping the base layers frozen, and
then for fine-tuning of the models, the complete model was
trained for another 30 epochs at a learning rate of 0.00001.

IV. RESULTS AND DISCUSSION

This section discusses the performance metrics employed to
evaluate the model. The results obtained from the various
experiments done on the proposed models are presented in
detail in this section.

A. PERFORMANCE METRICS

Precision, f1 Score and recall were used from the scikit-learn
to assess the model’s performance on multi-label classifi-
cation. Proposed model’s performance is quantified using
four metrics: true positive = TP, true negative = TN, false-
positive = FP, and false negative = FN. These four metrics are
obtained using confusion matrix. Confusion matrix is shown
in Figure 5.

Three criterions have been provided to evaluate theave
been provided to evaluate th proposed model in comparison
to existing methods:

Precision: It is a measure that describes true positive
predicted labels from all the positive labels.

. TP
Precision = ——— (D
TP + FP

Recall: Tt is also called sensitivity and it determines the true
positive labels out of all the predicted positive labels.

TP
Recall = —— 2)
TP + FN

F1-Score: F1-score considers both recall and precision and is
given by:
2 % Precision * Recall
F1 — Score = — 3
Precision + Recall

In a multi-label classification problem, precision, recall, and
F1-score can be obtained for each label independently, also
combined results across labels can also be calculated.
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Since the dataset used in this study is highly imbalanced,
hence it is crucial to consider the number of samples for each
label while calculating the above-mentioned performance
criterions. Hence weighted average of precision, recall and
F1-score across all labels has also been calculated as shown
in Figures 6 and 8.

Although the major performance parameters to evaluate
the proposed models are precision, recall and f1-score. But
further the performance of the proposed models can also
be evaluated on other metrics like Specificity, True Positive
Rate, False Positive Rate and Receiving Operating Character-
istic (ROC) curve with Area under the ROC curve i.e., AUC
score.

Specificity is also called True Negative Rate and it gives the
proportion of negatives that have been predicted as negatives
from the true negatives.

N

False Positive Rate (FPR) gives the proportion of how many
true negatives were predicted as positives. It is given by the
formula:

_FP

~ FP+1TN
Similarly, False Negative Rate (FNR) defines how many true

positives have been predicted as negatives. Its is given by the
formula:

FPR (5)

_FN
" TP+ FN

Specificity, FPR and FNR have been calculated using con-
fusion matrix. Another important metric that can be used to
evaluate a model is the AUC-ROC curve. ROC curve gives
the performance of the model at different thresholds. It is
the plot between False Positive Rate (FPR) and True Positive
Rate (TPR) also called Sensitivity. The formula for FPR and
True Positive Rate (TPR) is given in Equation (5) and (2).
Threshold values have been taken from O to 1 at an equal
interval of 0.1. AUC gives the area under the ROC curve.

FNR (6)

B. PERFORMANCE OF PROPOSED ENSEMBLE LEARNING

MODEL

The proposed ensemble learning model consists of 3 inde-
pendent pre-trained models, namely, VGG19, ResNet102 and
DenseNet201. Firstly, the performance parameters namely,
precision. Recall and f1-score were obtained for these 3 pre-
trained models as shown in Figure 7. It can be inferred from
Figure 7 that VGG19 performed best among all the three
models with an fl-score of 0.65. When the ensemble of three
models was made, then it can be seen from Figure 7, that
the ensembled model outperformed the three individual pre-
trained models by achieving an fl score of 0.68. Precision,
recall and fl-score for each label are given in Table 3 and
their weighted average value of precision, recall and f1-score
is given in Figure 7. Apart from the precision, recall and
fl-score, other parameters like specificity, FPR and FNR have
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TABLE 3. Performance metrics of proposed ensemble model for individual labels.

Label No.  Precision Recall Fl-score  Specificity FPR FNR AUC Score
0 0.81 0.87 0.84 0.85 0.148 0.13 0.93
1 0.77 0.65 0.70 0.99 0.007 0.35 0.91
2 0.68 0.77 0.72 0.95 0.050 0.23 0.93
3 0.46 0.42 0.44 0.98 0.025 0.58 0.87
4 0.80 0.62 0.70 0.99 0.010 0.38 0.91
5 0.62 0.43 0.51 0.98 0.023 0.57 0.84
6 0.47 0.61 0.53 0.98 0.021 0.39 0.92
7 0.66 0.62 0.64 0.97 0.030 0.38 0.90
8 0.03 0.17 0.05 0.99 0.012 0.83 0.89
9 0.04 0.40 0.08 0.99 0.015 0.60 0.95
10 0.25 0.33 0.29 1.00 0.001 0.67 0.99
11 0.77 0.52 0.62 0.99 0.005 0.48 0.89
12 0.71 0.48 0.57 1.00 0.002 0.52 0.91
13 0.71 0.48 0.57 1.00 0.003 0.52 0.92
14 0.85 0.77 0.81 0.99 0.005 0.23 0.96
15 0.00 0.00 0.00 1.00 0.005 1.00 0.61
16 0.08 0.27 0.12 0.94 0.061 0.90 0.71
17 0.17 0.15 0.16 0.99 0.006 0.85 0.83
18 0.41 0.41 0.41 0.98 0.020 0.59 0.82
19 0.45 0.44 0.45 0.97 0.027 0.56 0.84
20 0.68 0.77 0.72 1.00 0.000 0.88 0.87
21 0.58 0.73 0.65 0.93 0.070 0.27 0.91
22 0.51 0.45 0.48 0.99 0.010 0.55 0.85
23 0.72 0.72 0.72 0.97 0.030 0.28 0.94
24 0.74 0.61 0.67 1.00 0.003 0.40 0.89
25 0.63 0.78 0.70 0.83 0.175 0.22 0.88
26 0.32 0.26 0.29 0.99 0.006 0.74 0.79
27 0.00 0.00 0.00 1.00 0.002 1.00 0.99
g
09
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FIGURE 7. Performance of proposed ensemble learning model.

also been calculated using a confusion matrix for each label
as shown in Table 3. The confusion matrix obtained for each
label for the proposed ensemble learning model is shown in
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Figure 8. AUC-ROC curve at different thresholds is shown in
Figure 9. AUC score obtained for each label is also given in

Table 3.
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FIGURE 9. ROC curve for the proposed ensemble model.

C. PERFORMANCE OF PROPOSED CNN MODEL

The proposed CNN model was tested rigorously with differ-
ent input shapes and filter sizes. The hyperparameter tuning
was performed to select the set of optimal hyperparameters
for the training of the model. The results obtained have been
discussed one by one in this section.

1) PERFORMANCE ANALYSIS BASED ON INPUT IMAGE SIZE
A comparative test with three different scales of the input
image (512 x 512,256 x 256, and 128 x 128) was conducted
to evaluate the model’s performance. Loss and accuracy plots
obtained from the performed experiments are presented in
Figure 10. Highest training accuracy of 97.7% and valida-
tion accuracy of 97% was obtained using an input image of
shape 512 x 512. Decrease in training and validation loss
to 0.06 and 0.08, respectively, was observed for the model
fed with an input shape of size 512 x 512 as shown in
Figure 10(b) and 10(d).

Average recall, Precision and F1-score obtained for dif-
ferent input image sizes are shown in Figure 11. From
Figure 11 it can be inferred that the best results were attained
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when model was fed with an input image of shape 512 x
512 with recall, precision, and Fl-score of 0.75, 0.75 and
0.74, respectively.

2) PERFORMANCE ANALYSIS BASED ON FILTER SIZE
Experiments with different filter sizes were also conducted to
present the proposed CNN model’s effectiveness and analyze
the model’s performance in extracting features from protein
atlas images. These experiments were conducted on images
of size 512 x 512. The performance of the model was evalu-
ated based on 3 different sizes of the filters (3 x 3,5 x 5 and
7 x 7). Figure 13 presents accuracy and loss plots obtained
with different filter sizes. Clearly, from Figure 13, it can be
inferred that the maximum accuracy and minimum loss for
both train and validation sets were obtained with the filter size
of 3 x 3. With increasing filter size, the model’s performance
decreases.

Average precision, recall and F1-score obtained using dif-
ferent filter sizes has been compared in Figure 13. Figure 13
confirms that the best results were achieved with a 3 x 3 filter
size. With the increase in filter size to 7 x 7, F1-score reached
0.68 as compared to (.74 obtained using a 3 x 3 filter size.
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FIGURE 11. Comparison in the performance of the model based on different input image size.

3) PERFORMANCE ANALYSIS WITH DATA AUGMETATION

The performance metrics of the proposed CNN model was
also obtained with and without data augmentation. Trans-
formations applied for data augmentation have been shown
in Figure 3. The precision, recall and fl-score obtained by
the model with and without data augmentation is shown in
Figure 14(a). It can be concluded from Figure 14(a) that the
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proposed CNN model performed better with data augmenta-
tion with an f1-score of 0.74.

4) HYPERPARAMETER TUNING

Hyperparameter tuning was done to select the set of optimum
parameters for the training of the model. The performance of
the model was measured by tuning vatrious hyperparameters
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FIGURE 13. Comparison in the performance of the model based on different filter size.

as shown in Figure 14(b)-(c). The hyperparameter tuning was
done by varying the following parameters:

(a) Batch Size: Batch size is the number of training samples
used in one iteration. Results of the proposed CNN were
obtained on batch size of 8, 16 and 32. Batch size couldn’t
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be increased after 32 because of the low memory space.
As shown in Figure 14(d), with increase in batchsize the
performance of the proposed model increased.

(b) Optimizers: In artificial neural networks, an optimizer
is an algorithm that adjusts parameters like weights and
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TABLE 4. Performance metrics of proposed CNN model for individual labels.

Label No.  Precision Recall Fl-score  Specificity FPR FNR AUC Score

0 0.83 0.87 0.85 0.88 0.123 0.13 0.94
1 0.90 0.81 0.86 1.00 0.004 0.19 0.99
2 0.90 0.76 0.82 0.99 0.012 0.24 0.95
3 0.84 0.64 0.73 0.99 0.006 0.36 0.97
4 0.81 0.82 0.81 0.99 0.013 0.18 0.97
5 0.68 0.67 0.68 0.97 0.027 0.33 0.94
6 0.62 0.60 0.61 0.99 0.011 0.40 0.94
7 0.84 0.66 0.74 0.99 0.012 0.34 0.94
8 0.44 0.67 0.53 1.00 0.002 0.33 0.99
9 0.80 0.80 0.80 1.00 0.000 0.20 1.00
10 0.50 1.00 0.67 1.00 0.001 0.00 1.00
11 0.77 0.61 0.68 0.99 0.006 0.39 0.91
12 0.76 0.54 0.63 1.00 0.004 0.46 0.96
13 0.55 0.57 0.56 0.99 0.007 0.43 0.94
14 0.90 0.82 0.85 1.00 0.004 0.18 0.98
15 1.00 1.00 1.00 1.00 0.00 0.00 1.00
16 0.41 0.28 0.34 0.99 0.008 0.72 085
17 0.28 0.44 0.34 0.99 0.010 0.56 0.94
18 0.53 0.47 0.49 0.99 0.014 0.53 0.92
19 0.56 0.52 0.54 0.98 0.021 0.48 0.90
20 0.19 0.38 0.25 1.00 0.003 0.88 0.96
21 0.61 0.72 0.66 0.93 0.070 0.27 0.93
22 0.62 0.39 0.48 0.99 0.010 0.55 0.94
23 0.84 0.78 0.81 0.97 0.030 0.28 0.97
24 0.86 0.63 0.73 1.00 0.002 0.39 0.93
25 0.62 0.82 0.71 0.83 0.175 0.22 0.89
26 0.48 0.44 0.46 0.99 0.006 0.74 0.92
27 1.00 1.00 1.00 1.00 0.002 1.00 1.00

learning rate. Therefore, it contributes to better accuracy and (SGD), Root Mean Squared Propagation (RMSProp), Adap-
less overall loss. Different optimizers were used to check tive Gradient (AdaGrad) and Adaptive Moment Esetima-
the model’s performance like Stochastic Gradient Descent tion (Adam). Average precision, recall and fl-score for the
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TABLE 5. Comparison of the proposed model with the sate-of-the-art.

Reference No.

Technique

Dataset Used

F1-score

[35]

[36]

[37]

[38]

[39]

[40]
Proposed CNN Model

FCN

CNN

Inception V3

Hybrid Xception

CNN based tool Loc-CAT
DeepLoc

ResNet

CNN

HPA Dataset

HPA Dataset
HPA Dataset
HPA Dataset
Yeast FGP Dataset
HPA Dataset
HPA Dataset

0.696
0.676
0.706
0.69
0.72
0.72
0.3459
0.74

10 4
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— 7 (AUC:0.94)
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FIGURE 16. ROC curve for the proposed CNN model.

aforementioned optimizers is shown in Figure 14(c). It can be
inferred from Figure 14(c) that the best results were obtained
for Adam otimizer with an F1-score of 0.74.

(c) Learning Rate: In an optimization technique, the learn-
ing rate is a tunable parameter that affects the size of the

83606

T T

08 10

step taken during each iteration on the path to the mini-
mal of a loss function. Model’s performcance was checked
on different learning rates of 0.01, 0.001 and 0.0001 as
shown in Figure 14(b). It can be seen from the figure that
the best results were obtained for learning rate of 0.001.
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FIGURE 17. Examples of successful classification. Original images along with their actual labels are given in the left column, and the
right column presents probabilities and the predicted labels obtained from the model.

It is important to select an optimal learning rate bcause if
learning rate is too high then model may show an unde-
sirable divergent behaviour during gradient descent, and if
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learning rate is too low, then model will train very slowly
and model may fail to reach optimum minimal of the loss
function.
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5) PERFORMANCE METRICS OF THE PROPOSED CNN
MODEL

After selecting the appropriate input image size, filter size and
optimum hyperparameters, the performance of the proposed
CNN model was obtained. Precision, recall and fl-score
obtained across each label on the test dataset are shown in
Table 4. Average precision, recall and f1-score obtained from
the model is 0.75, 0.75 and 0.74 respectively. Other perfor-
mance parameters like specificity, FPR and FNR have also
been calculated using confusion matrix shown in Figure 15.
The value of these parameters across each label are shown
in Table 4. From confusion matrix in Figure 15 and Table 4,
it can be seen that for some labels classification was done
very accurately. Like, for label 15 and 27, all the samples in
test dataset were classified accurately with zero false positive
and false negative rate and precision of 1.00. While some
labels despite of having sufficient number of samples were
not classified accurately. The reason of misclassification can
be due to the overlapping location of proteins in subcellu-
lar compartments. AUC-ROC curve for each class obtained
using test dataset is shown in Figure 16.

D. VISUALIZATION OF CORRECTLY CLASSIFIED SAMPLES
To demonstrate the proposed CNN architecture’s perfor-
mance, Figure 17 shows examples of successful classifica-
tions made by the model. Since the last layer of our model
is a sigmoid layer, a threshold value was required to obtain
the output probabilities from this layer. The threshold was
changed from O to 1, with the 0.5 threshold yielding the
best results. If the output probabilities surpass the threshold,
the predicted value was assigned to the corresponding label
(or several labels). Notably, the proposed model produces a
higher likelihood for the target protein. Furthermore, as illus-
trated in Figure 17(a)-(e), more confident prediction results
have been obtained for the majority classes like class-0 and
class-25. Also, the model gives a more confident prediction
for class-25, as shown in Figure 17(a) and (d).

E. VISUALIZATION OF MIS-CLASSIFIED SAMPLES

Figure 18 shows some examples of unsuccessful classifi-
cation done by the model. Majority classes like class-0
was usually classified correctly by the model as shown in
Figure 18(a)-(e). However, there were many sample images
for which the model predicted new labels which were not
present in their true labels. For example, in Figure 18(d), the
true labels are 18 and 25, but the model predicted presence
of protein in class 17. Similarly, in Figure 18 (e), proteins are
present in subcellular compartments with classes 0, 2 and 23,
but the models predicted presence of protein under class 0 and
class 18. More examples of incorrect classification are given
in Figure 18.

F. COMPARISON WITH THE STATE-OF-ART
The proposed model was compared with the present state of
the art, as shown in Table 5. In addition, the proposed model
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was compared with the existing models based on F1-score,
considering both precision and Recall. Table 5 shows that the
technique which is proposed performed better in comparison
with the other techniques. It achieved an F1- score of 0.74,
which is 0.2 more than the existing methods.

V. CONCLUSION

A deep neural network has been presented for automatically
classifying human proteins in the Human Protein Atlas in
this research. Specifically, a CNN-based model has been
proposed to classify the patterns of protein in subcellular
compartments. To illustrate the efficacy of the proposed sys-
tem, various experiments were done on the proposed CNN
model. The model was tested with different input shapes,
filter sizes, and hyperparameter combinations to get the best
results. Furthermore, F1-score of 0.74 was achieved with the
proposed model for the multi-label classification problem,
while most of the work in the literature focused on single-
label classification. Only a few research teams have demon-
strated an exceptional strategy for classifying proteins with
multiple labels. Unlike prior classification algorithms, the
suggested method automatically extracts features from the
Human Protein Atlas images and performs multi-label HPA
classification.

Furthermore, in order to compare the performance of pro-
posed CNN model with more competitive emerging models,
we have proposed another model using ensembling tech-
nique. A stacked ensemble of three fine-tuned transfer learn-
ing models, VGG19, DenseNet121 and ReNet102 has been
presented. Performance metrics was obtained for both the
proposed models and the results shows that the CNN made
from scratch outperformed the ensemble model.

Class imbalance is one of the critical difficulties encoun-
tered during the experiment, causing significant complica-
tions, and impairing the model’s effectiveness. As a result,
future work will focus on applying data balancing strategies
to enhance model performance and mitigate the effect of
imbalanced sample sizes in each class. More number of sam-
ples could be collected for minority classes to obtain more
accurate prediction results.
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