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ABSTRACT Current guidelines from the World Health Organization indicate that the SARS-CoV-2
coronavirus, which results in the novel coronavirus disease (COVID-19), is transmitted through respiratory
droplets or by contact. Contact transmission occurs when contaminated hands touch the mucous membrane
of the mouth, nose, or eyes so hands hygiene is extremely important to prevent the spread of the SARS-CoV-2
as well as of other pathogens. The vast proliferation of wearable devices, such as smartwatches, containing
acceleration, rotation, magnetic field sensors, etc., together with the modern technologies of artificial
intelligence, such as machine learning and more recently deep-learning, allow the development of accurate
applications for recognition and classification of human activities such as: walking, climbing stairs, running,
clapping, sitting, sleeping, etc. In this work, we evaluate the feasibility of a machine learning based
system which, starting from inertial signals collected from wearable devices such as current smartwatches,
recognizes when a subject is washing or rubbing its hands. Preliminary results, obtained over two different
datasets, show a classification accuracy of about 95% and of about 94% for respectively deep and standard

learning techniques.

INDEX TERMS COVID-19 prevention, handwashing recognition, machine learning, wearable sensors.

I. INTRODUCTION

The World Health Organization (WHO) indicates that hands
hygiene is extremely important to prevent the transmission
of bacteria and viruses by avoiding its transfer from contam-
inated surfaces to the mucous membrane of the mouth, nose,
or eyes. Also with regard to COVID-19 disease, it is estimated
that a non-negligible part of infections occurs due to contact,
through our hands, with contaminated surfaces [1]. For these
reasons, one of the most important measures which any per-
son can put in place to prevent the transmission of harmful
germs is to take care of hands hygiene. To ensure proper hands
hygiene, WHO suggests that one should follow either han-
drub, using an alcohol-based formulation, or handwash with
soap and water. The two suggested procedures, described
in Figure 1, entail different steps with different duration.
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In particular, water and soap handwashing comprises eleven
steps and should last between 40 to 60 seconds while han-
drubbing only includes 8 steps with a duration of about 20 and
30 seconds. WHO also suggests that alcohol-based handrub
should be used for routine decontamination of hands, while
handwash with soap and water is recommended when hands
are visibly soiled.

Despite the proven effectiveness of these two procedures,
most ordinary people ignore or simply do not follow them
due to their non-trivial implementation. This results in a
significant number of persons that limits themselves to wash-
ing/rubbing their hands as they have always been accus-
tomed to.

Wearable devices, such as modern smartwatches, are
equipped with several sensors capable of continuously mea-
suring characteristic parameters of our body movement. For
instance, Wang et al. in 2020 have measured the accuracy
of some wearable bracelets, equipped with accelerometers,
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FIGURE 1. WHO suggested procedure to accomplish handwashing (a) and handrubbing (b).

gyroscopes, and electrodes for surface electromyography
(sEMG), in identifying and monitoring the handwash-
ing/handrubbing procedures suggested by WHO reaching an
accuracy of over 96% in recognizing the hands activity [2].
Before them, several authors have demonstrated the effec-
tiveness of wearable devices in the classification and identifi-
cation of general human activities such as running, walking,
climbing/descending stairs, jumping, and sitting [3]-[8].

Moreover, the availability of very large data sets in human
activity recognition and in medicine in general, together with
the recent developments in deep learning, have led to impres-
sive results in achieving human (or even superhuman) per-
formance. Furthermore, current machine learning techniques
have given a further boost to these studies by significantly
increasing their classification accuracy which, for general
macro-activities, now reaches values up to 99% [9]-[12].
These extraordinary performances together with the avail-
ability of a large amount of sensitive data have led to the birth
of new ethical issues that cannot be neglected [13].

When no WHO procedures are followed, the activity of
washing one’s hands is executed in a very personal way
involving some totally arbitrary steps so that it can be defined
as completely “‘unstructured”. Moreover, unlike activities
that involve the whole body, such as walking, running, climb-
ing stairs, etc., handwashing involves micro-movements of
highly specialized segments of the body (such as fingers),
the activity of which is not taken for granted that it can
be recognized starting from signal collected, for example,
on the subject’s wrist by means of a common smartwatch.
This high level of signals indirection together with the strong
inter-subject variability which characterizes the unstructured
handwashing can prevent the traditional machine learning
tools from accurately recognizing it. For this reason, in this
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work, we focus on the recognition of unstructured handwash-
ing/handrubbing with the aim to investigate the classification
accuracy of an automatic smartwatch-based system capable
to monitor hands hygiene in the greater part of common
people.

In particular, in this article, we introduce an extensive
experimental study aimed at evaluating the ability of an
automatic machine learning based system to distinguish the
handwashing and handrubbing gestures from the rest of the
activities that each person performs every day without the use
of invasive instruments but relying only on commonly used
wearable devices such as commercial smartwatches. Exper-
imental results conducted on two different human activity
recognition datasets across different machine learning models
provide evidence of the effectiveness of this tool, which could
potentially enable automatic and continuous indirect moni-
toring of hands hygiene of users, in an attempt to reduce the
diffusion of COVID-19 and other diseases due to pathogens
transmissible through direct contact.

The paper is organized according to the following struc-
ture: in Section II we describe state-of-the-art approaches
related to our work, according to the scientific literature; in
Section III we report a background description of the pro-
posed machine learning tools; in Section IV we illustrate the
proposed method and the related design choices; in Section V
we present the results of the experimental evaluation; in
Section VI we report some conclusive remarks.

II. RELATED WORK

At present there are no scientifically validated devices or
applications that are able to recognize the activity of wash-
ing/rubbing hands by means of wearable tools. A com-
mercially available system called SureWash, produced by
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GLANTA Ltd, is able to detect the hands’ movements of
the hospital staff, through the use of video cameras, in order
to provide information about the correct execution of the
procedure defined by WHO [14]. Detecting the handwashing
activity by means of video data has been investigated by
several authors, for instance, Zhong et al. in 2020 presented
a multi-camera system that uses video analytics to recognize
seven specific actions within the hand-hygiene period [15].
More recently, Yue et al. use a pre-trained machine learning
tool for gesture recognition called YOLO v3 to successfully
identify and detect the seven steps hand-washing method pre-
scribed by several hospitals [16]. However, one of the main
problems facing camera-based systems is privacy, as such
systems inevitably require the installation of cameras in sev-
eral rooms, and, second, it is non-ubiquitous (it is not possi-
ble to monitor self-washing/rubbing by means, for instance,
of sanitizing gel).

An orthogonal approach focuses on recognizing the hand-
washing activity by means of wearable inertial sensors. Here
the relevant scientific contributions are reduced to a few units
and most of them are based on multiple sensors with very high
sensitivity and accuracy typical of scientific instrumenta-
tion [17]-[19]. In this case, even if no video data are acquired,
some privacy issues should be taken into account when
designing wearable applications. In fact, several authors have
shown that accelerometer data can reveal the personal iden-
tity by the way each individual moves (i.e., reveal their
gender, age, and other identity markers) [20], [21]. From
the recognition capability point of view, these preliminary
works show that the automatic classification of handwashing
activity, through the use of inertial sensors (accelerometers
and gyroscopes), is a feasible task but, on the other hand,
they do not study the potential of commercial smartwatches
in common use, nor the application of modern deep-learning
techniques.

Only a few relevant works which make use of commercial
smartwatches have been published from 2015 to today. The
first one, presented by Moldol et al. in 2015, describes a
handwash monitoring and reminder system which interacts
with a Bluetooth-enabled soap dispenser to recognize the start
of the washing procedure [22]. Thanks to these broadcast
advertisements, the smartwatch can easily start processing
accelerometer and gyroscope data in order to recognize each
procedure step as described by WHO.

In 2020, Mondol et al., and Banerjee et al. present
two robust solutions to check the WHO compliance of
the handwashing activity starting from IMU sensors signals
[23], [24]. In particular they can easily identify if a component
of the WHO recommendations is missing or if it is not exe-
cuted as expected. More recently, also Samyoun et al. present
a handwashing quality assessment system based on smart-
watch [25]. Here the authors measure the handwashing qual-
ity in terms of likeness with the standard guidelines of WHO
where the start and the end of the washing events are marked
with the help of the voice interaction with the user facilitating
the recognition of the activity [26]. In 2022 Wahl et al.,

VOLUME 10, 2022

present a detection system based on commercially available
wearable device which can distinguish enacted compulsive
handwashing from WHO routine [27].

Also different combined approaches have been proposed
in the last years, for instance, Wu et al. in 2021 present a
prototype for autonomous hand hygiene tracking combining
different [oT technologies such as IMU, video cameras, and
smart dispensers which can provide prompt feedback if the
handwashing is not performed as suggested by WHO. Finally,
in 2022, Fagert et al. introduce a new sensing modality
for handwashing monitoring by measuring the handwashing
activity-induced vibration responses of sink structures [28].

Although in recent years several studies concerning hand-
washing recognition have been proposed, none of these cover
all the issues addressed in the present work. In particular, the
contributions of the article can be summarized as follows:

« we evaluate the feasibility of IMU sensors embedded on
common smartwatches in recognizing the handwashing
activity

« we focus on unstructured handwashing rather than trying
to recognize WHO suggested procedure steps

o we try to distinguish between handwashing and han-
drubbing

e we compare traditional machine learning techniques
with the most modern deep learning.

Ill. BACKGROUND

In this section, we report some background information about
the machine learning tools investigated with the proposed
method. In particular two standard machine learning tools
and two deep learning tools have been tested. For what
concerns standard learning, we evaluated Support Vector
Machines (SVM) and Ensemble subspace with k-nearest
neighbors (ES-KNN), while, in the deep-learning domain we
have considered a Convolutional Neural Network (CNN) and
a Long short-term Memory network (LSTM).

A. ENSEMBLE SUBSPACE WITH K-NEAREST

NEIGHBORS (ES-KNN)

The k-nearest neighbors (KNN) is one of the most simple and
easy to implement supervised machine learning algorithms
that can be used in regression and classification problems.
It assigns an unknown observation to the class most common
among its k nearest neighbors observations, as measured by
a distance metric, in the training data [29], [30]

Despite its simplicity, KNN gives competitive results and
in some cases even outperforms other complex learning algo-
rithms. However, one of the common problems which affect
KNN is due to the possible presence of non-informative
features in the data which can increase miss-classification
errors. This is more likely in the case of high-dimensional
data.

To improve KNN classification performances, ensemble
techniques have been proposed in the literature. In general,
the ensemble method entails the process of creating multiple
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models and combining them (for instance by averaging) to
produce the desired output, as opposed to creating just one
model. Several studies show that, frequently, an ensemble of
models performs better than any individual model, because
the various errors of the models average out [31].

One way to generate an ensemble in machine learning is
to train the classifiers on different sets of data, obtained by
creating several subsets from the original training set. This
technique, which is commonly called Ensemble subspace has
been widely explored by several authors among which the
contributions of [32] and [33], which are known respectively
as bagging and boosting subspace ensemble, certainly stand
out.

In this work, we focus on a particular class of ensemble
subspace tools applied to KNN algorithms which are called
Ensemble Random Subspace KNN (ERS-KNN). According
to this technique, the features are randomly sampled, with
replacement, for each learner forcing it to not over-focus
on features that appear highly predictive/descriptive in the
training set, but which can fail in unknown data [34], [35].

B. SUPPORT VECTOR MACHINES (SVM)

SVM is another class of supervised learning models tradi-
tionally used for regression and classification problems with
a reduced number of samples.

An SVM model represents the input data as points in space,
in such a way that the data belonging to the different classes
are separated by a margin as large as possible. The new data
are then mapped in the same space and the prediction of the
category to which they belong is made on the basis of the side
on which it falls. From the practical point of view, an SVM
defines a hyperplane that best divides the dataset into the
desired classes.

Moreover, in addition to a simple linear classification,
it is possible to make use of the SVM to effectively carry
out nonlinear classifications using nonlinear kernel methods
which implicitly map input data in a multi-dimensional fea-
ture space [36].

C. CONVOLUTIONAL NEURAL NETWORK (CNN)

A CNN is actually a kind of multi-layer neural network
following a computer vision approach to make use of any
spatial or temporal information in the data. The CNN, in fact,
was inspired by the biological process that occurs in the
animal visual cortex, where neurons handle responses only
from separate regions of the visual field. In the same way,
CNN makes use of convolving filters to handle local regions
within the data. A CNN is mainly composed of an input
layer, several convolutional layers, pooling layers, and fully
connected layers. The input layer has the task of collect-
ing data and of forwarding it to the subsequent layer. The
convolutional layer represents the main core of a CNN as
it contains several convolution filters, called kernels, which
convolve with the input data. The operation of convolution
automatically extracts useful features from the input data
and reduces its dimension. Moreover, the pooling layer, also
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called subsampling layer, is also inserted to further reduce the
number of parameters and the resulting computational cost.
It includes max-pooling and/or average-pooling operations
which sample, respectively, the max and the average value
from the input. Finally, one or more fully connected layers
act as a traditional Perceptron network which takes as input
the features that originated from the previous layer.

A CNN is traditionally built using several layer batteries
and it is used in the deep-learning approach also thanks to
its characteristic of eliminating the requirement of feature
extraction and feature selection often at the cost of an increase
in computational complexity and memory usage [37].

D. LONG SHORT-TERM MEMORY (LSTM)

Long short-term memory (LSTM) is an artificial recurrent
neural network (RNN) architecture used in the field of deep
learning. LSTM networks are mostly designed to recognize
patterns inside sequences of data such as numerical time
series. RNN and LSTM differ from classical artificial neural
networks due to the fact that they have a temporal dimension
and they can not only process single data points, such as
images, but also entire sequences of data such as speech or
video.

A common LSTM unit is composed of a cell, an input gate,
an output gate and a forget gate. The cell remembers values
over arbitrary time intervals and the three gates regulate the
flow of information into and out of the cell. It also makes
decisions about what to store, and when to allow reads, writes,
and erasures, via gates that open and close [38].

LSTM networks are well-suited to classifying, processing,
and making predictions based on time series data, and they
have been used in many complex problems such as handwrit-
ing recognition, language modeling and translation, speech
synthesis, audio analysis, and protein structure prediction,
and many others [39].

IV. THE PROPOSED METHOD

In this work, we evaluate the suitability of four different
supervised classification methods, namely SVM, ERS-KNN,
CNN, and LSTM, for classifying handwashing and handrub-
bing activities starting from gyroscopic and accelerometer
data sampled in real-life conditions by means of common
smartwatches.

A. EXPERIMENTAL PROTOCOL AND DATA GATHERING
The classification accuracy of the proposed machine learning
models has been evaluated on top of two different datasets
which are an ad-hoc collected dataset and the Daily Living
Activities (DLA) dataset [40], [41].

The need for ad-hoc collecting data is due to the fact that
to date there is no publicly available dataset for handwashing
and handrubbing quality assessment through accelerometers
and gyroscopic signals. For this reason, we collected sen-
sors data from a wearable Inertial Measurement Unit (IMU)
positioned on the wrist of the dominant hand of four partici-
pants during real-life activities. In particular, each subject was
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asked to annotate the start and the end of each handwashing or
handrubbing activity performed during the day. Each subject
was wearing the IMU sensor for several hours during different
days leading to a total of about 40 hours of recording contain-
ing about 1 hour and 40 minutes of total time spent washing
hands and about 2 hours and 10 minutes of time spent in
rubbing. The wearable device was programmed to sample its
triaxial accelerometer and gyroscope at a frequency of 100 Hz
and to store the collected data on the internal SD card. In order
to remove sensors bias, the device was calibrated once at the
start of the study by placing it on a stable surface and the
accelerometers and gyroscopic measurements were recorded
for 30 seconds.

Notice that the subjects were not instructed on how to wash
or rub their hands leaving them completely free to use their
usual way so to collect data about the unstructured way people
normally use to wash their hands. Table 1 shows the average
duration, together with the standard deviation, of each activity
performed by the four subjects.

TABLE 1. Recorded activities duration in seconds.

subject handwashing handrubbing
0 66.68s £ 18.69s  23.66s £ 6.26s
1 31.92s £8.97s  26.09s £ 3.67s
2 39.47s + 8.52s 19.18s £ 4.29s
3 30.54s £6.17s  25.44s £ 8.59s

avg 50.92 £ 22.29 23.59+7.33

As we collect data in an unstructured way, the aver-
age duration and repeatability of each activity significantly
depend on the subject. If this can represent an advantage in
recognizing a particular subject, since her/his way of washing
the hands could represent a kind of fingerprint, it could also
represent a problem by reducing the ability to generalize the
true activity recognition.

To collect data about daily activities we use a Shimmer3
IMU unit equipped with triaxial accelerometers and gyro-
scope [42]. This unit is a reference prototype designed for
wearable applications frequently used in activity monitoring
and sports science and it is representative of the IMU family
that currently equips commercial smartwatches.

The internal accelerometer is a wide range sensor sampled
at 14 bits which can be configured to operate in a full-scale
range from +2.0 g up to £16.0 g with a resulting sensitivity
from 1 mg/LSB in the 2.0 g range up to 12 mg/LSB in the
+16.0 g range typical of a sensor which most smartwatches
are equipped with.

Finally, in order to further evaluate the ability to generalize
of the proposed classification models we conduct a set of
experiments starting from the DLA dataset which is one of
the few public datasets available that contains handwashing
data sampled through inertial sensors. This dataset is based on
samples recorded from different parts of the body and using
different wearable sensors. In particular, data are recorded
on the wrist, hip, and ankle while 8 healthy volunteers, aged
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between 23-37, perform 17 different daily-life activities but,
since our purpose is to evaluate the ability to classify hand-
washing through a smartwatch, in our experiments, we have
used only the data collected on the person’s wrist. For the
same reason, the activities that involve the whole body, such
as walking, upstairs, downstairs, etc, have been removed so
that only the ‘“hands activities” such as handwriting, hand-
washing, sweeping, etc., have been used for our experiments.

Notice that, this dataset does not contain data sampled
during handrubbing and, moreover, the sensor placed on the
person’s wrist was not equipped with a gyroscope. Thanks
also to these differences, this experiment can be very useful in
demonstrating the generalization capabilities of the proposed
models and in evaluating the usefulness of the signals coming
from the gyroscope in handwashing recognition.

B. SIGNAL WINDOWING

The recorded tracks, composed of six distinct signals (i.e.
3 accelerometer and 3 gyroscope waveforms) for the ad-hoc
dataset, and of only three accelerometer signals in the case
of DLA dataset, have been divided into time windows and
each of these has been considered as a sample to be used
to train and test the classifiers. Furthermore, each sample
has been labeled using the annotations provided by each
subject in accordance with the following three categories:
washing, rubbing, and other, for the first dataset, and with
the following ten handwriting, handwashing, facewashing,
teethbrush, sweeping, vacuuming, eating, dusting, rubbing,
and other in the case of DLA dataset.

Obviously, deciding the size of the time window is a
non-trivial task because it can influence the performance of
classification models in different ways. In fact, it must be
large enough to capture the “fingerprint” of the particular
activity that we want to recognize, but it must not be too large
to include consecutive activities. For what concerns human
activity recognition (HAR), different window lengths have
been used in the literature: starting from 1s up to 30s [9],
[11], [12]. In particular, for what concerns the handwashing
recognition both [19] and [25] use a very tiny time window
(only 0.06 seconds), with 70% overlap between subsequent
windows, due to the fact that they aim at recognizing each step
of the structured handwashing procedure. In 2015, both [17]
and [22] use a larger window respectively of 0.5 and 1 second
while [2] found that a window with 0.2 seconds of amplitude
and 75% overlap gave the best classification accuracy. To
better highlight the impact of the window length on the
overall classification performance, we present in this work an
extensive sensitivity analysis of the classifiers with respect to
this parameter.

Notice that, due to the proposed gathering protocol,
which plans to continuously record sensors data during real-
life activity, the number of samples containing non wash-
ing/rubbing events is much greater than that which contains
them. For this reason, the samples labeled as other have been
randomly undersampled in order to rebalance the occurrence
of each class.
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C. THE CLASSIFIERS

As machine learning classifier models we used multi-class
SVM and ERS-KNN, CNN and LSTM (for neural networks).
For what concerns the SVM tool, a cubic polynomial kernel
has been choosen for performance reasons [36]. We also
considered other kernels (i.e. linear, quadratic, or Gaussian
functions), however, these did not reach the performances of
the cubic kernel.

In order to train and test the classification accuracy of
standard (i.e. not based on neural network approaches)
machine learning tools, the input signal needs to be pro-
cessed to extract synthetic features. In particular, in this
work, for each window three sets of descriptors have been
computed. The first set, hereafter referred to as Base, con-
tains basic statistical descriptors aimed at capturing data
tendency and variability. These are the following classi-
cal descriptors: i) average; ii) maximum value; iii) stan-
dard deviation; iv) median value. The second set contains
the so called Hjorth parameters which are: i) activity;
i1) mobility; iii) complexity. Finally, the last set is built with
Kurtosis and Skewness parameters aimed at capturing the
Shape of the data.

While the Base set easily describes the sample tendency,
Hjorth parameters can capture the main characteristics of the
signal in the frequency domain. In fact, Hjorth activity repre-
sents the power of the signal, the mobility its mean frequency,
and the complexity measures its change in frequency [43].

Kurtosis and Skewness are used to describe, respectively,
the degree of dispersion and symmetry of the data. In particu-
lar, Kurtosis is a measure of whether the data are heavy-tailed
or light-tailed relative to a normal distribution while Skew-
ness measures how much data differ from a completely sym-
metrical distribution [44].

The architecture of the CNN and LSTM networks are
presented, respectively in Figure 2.(a) and Figure 2.(b). In the
case of deep learning approaches no feature extraction is
needed and the samples of the signals, that make up the time
window, can be directly used as input for the classification
tool. In the case of CNN, which is commonly applied to ana-
lyzing visual imagery and which has been designed to work
properly with bidimensional data, a preprocessing step has
been added to represent time series data by means of visual
cues. This possibility has recently attracted widespread atten-
tion so that in literature we can count several strategies aimed
atre-coding time series into images to enable computer vision
techniques and to perform classification [45]-[47]. In this
paper, in particular, we investigate the method proposed
by [45] which encodes time series as images called Gramian
Angular Summation/Difference Field (GASF/GADF). This
method represents time series in a polar coordinate system
instead of the typical Cartesian coordinates with the advan-
tage of preserving spatial and temporal relations. Because
this method leads to the production of two distinct images:
one for the Gramian Angular Summation (GASF) and one for
the Gramian Angular Difference (GADF), in the case of the
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ad-hoc dataset, we obtain 12 images (six from the accelerom-
eter and six from the gyroscopic data), which reduce to only
six for DLA dataset.

As a consequence, the CNN model takes in input a
12-channel or a 6-channel square image, depending on the
dataset used, reconstructed starting from these data, whose
height and width depend on the chosen window processing
size (WS). The image is then convolved by four subsequent
convolutional layers with decreasing size and numbers of
filters. Furthermore, each convolutional layer is followed by
a batch normalization layer and by a rectified linear activation
function (ReLu). Batch normalization is used to standardize
the input before forwarding it to the following layer and it has
the effect of stabilizing the learning process and reducing the
number of training epochs required to train the network [48].
The results of the ReLu layer are then processed by a subse-
quent pooling layer which selects the most activated features
(max pooling). At the end of the convolutional structures,
three fully connected layers, with decreasing number of neu-
rons, have been added. The output of the last layer is then
processed by a softmax function which assigns to each class
a probability proportional to the output signal.

The LSTM network, on the other hand, receives in input six
(three for DLA) sequences extracted from the original time
series the length of which is the size of the window processing
(WS). The input is then processed by three subsequent LSTM
layers with decreasing number of hidden units. The output of
the last LSTM layer is then forwarded to three fully connected
layers as in the case of CNN.

D. CLASSIFICATION PERFORMANCE METRICS
For the proposed classifiers we calculate several performance
metrics, together with the standard deviations, during a k-
fold cross-validation test with k = 5. Dealing with multi-class
classifiers, entails the evaluation of the following quantities
for each of the N classes (i € [1---N] is an index that
identifies a specific class): TP;, the number of true positives
predicted for class i; TN;, the number of true negatives pre-
dicted for class i; F'P;, the number of false positives predicted
for class i; FN;, the number of false negatives predicted for
class i.

Subsequently, these indicators have been used to compute
the following metrics (corresponding to the so called macro-
averaging measures) [49]:

=

. 1 TP;
Precision = — e — (1)
N o1 TP; + FP;
N
1 TP;
Recall = — — ()
N P TP; + FN;
Flscore — 2.- Prec'is.ion~Recall 3)
Precision + Recall
N
1 TP; + TN;
Accuracy = — Z il 4)
N P TP; + TN; + FP; + FN;
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FIGURE 2. The architecture of the proposed CNN (a) and LSTM (b) networks.

V. RESULTS AND DISCUSSION
In this section, we report and discuss the obtained results.
First of all, we show the best classification metrics calculated
with the four machine learning tools described in section IV-C
on the ad-hoc built dataset. Then, for each classifier, we report
the sensitivity analysis with respect to the processing window
length and the feature selection results for SVM and ERS-
KNN.

Finally, in the last part of the section, we show the results
obtained while running two sets of experiments starting from
the publicly available DLA dataset.

A. CLASSIFICATION RESULTS

In this section, the results related to the classification of the
human activity and of the subject identity obtained on the
ad-hoc built dataset are reported.

1) HUMAN ACTIVITY CLASSIFICATION

Table 2 reports the best value of the classification metrics
obtained when using the four proposed models. These values
refer to the higher results obtained for each model when
varying the window processing size and, for the standard
learning tools, also the number of selected features. Each
value is reported as the average value calculated during the
5-fold cross-validation test. For each metric, the highest value

TABLE 2. Best activity classification results obtained with the proposed
models.

SVM ERS-KNN LSTM  CNN

Accuracy  0.942 0.946 0.947  0.909
Precision  0.936 0.941 0.911  0.898
Recall 0.934 0.932 0.908 0.917
Fl-score  0.935 0.936 0.910 0.908
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obtained ever is highlighted in bold. For instance, the SVM
classifier obtains the highest Recall value (about 0.934) while
the ERS-KNN shows the highest Precision and F1-score
(respectively 0.941 and 0.936). LSTM, on the other hand,
reaches the best accuracy value of about 0.947. This suggests
that the classification of the handwashing/handrubbing activ-
ities using signals gathered from a common smartwatch is
a well feasible task which can be accomplished both with
standard or deep learning techniques. Notice that, the best
results reported here have been obtained with the following
size of the processing window: SVM = 12s; ERS-KNN = 8s;
LSTM = 2s; CNN = 6s. Moreover, in the case of SVM and
ERS-KNN tools, all the proposed features have been used.

Figure 3 reports the average confusion matrices calcu-
lated on top of the results obtained during the 5-fold cross-
validation tests. All four models used show a great ability to
correctly classify the other activity. For instance, the LSTM
network reaches the higher value of about 97.2%. Further-
more, also the washing activity has been correctly classified
reaching the higher values of about 95% using standard tools
while deep learning models do not exceed 91%. The rubbing
activity, on the other hand, appears to be the most difficult
to classify with a lower value of about 82% obtained with
the CNN model. Here, in fact, the rubbing class has been
misclassified as other about 16% of the time. This is probably
due to the fact that handrubbing is a less dynamic activity
with respect to hand washing which therefore produces fewer
accelerations and rotations of the wrist. Furthermore, the use
of running water for washing could introduce vibrations that
are more easily identifiable by the classifiers.

2) SUBIJECT CLASSIFICATION
The second set of classification experiments has been carried
out aimed at identifying the person washing or rubbing their
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FIGURE 3. Average confusion matrices calculated on the 5-fold cross-validation test.

hands instead of the performed activity. For this purpose, each
sample related to the other activity has been removed from
the database while washing and rubbing samples have been
merged into a single class to which a label containing a unique
person identifier has been added.

TABLE 3. Best subject classification results obtained with the proposed
models.

SVM  ERS-KNN LSTM CNN

Accuracy  0.991 0.988 0.966  0.958
Precision  0.990 0.985 0.959  0.945
Recall 0.989 0.986 0.956  0.952
Fl-score  0.990 0.985 0.957  0.948

Table 3 shows the best value of the classification metrics
obtained with the four models. Also in this case, the best
results have been obtained with the following size of the
processing window: SVM = 12s; ERS-KNN = 8s; LSTM =
2s; CNN = 6s. In the case of standard tools, all the proposed
features have been used. As expected, recognizing the person
who is washing/rubbing the hands is a much easier task thanks
to the fact that the ad-hoc dataset contains data collected in an
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unstructured way where each subject is free to wash its hands
as he/she is used to. Our results, with the higher accuracy of
about 0.99 obtained with the SVM classifier, in fact, suggest
that the hand washing/rubbing activity can represent a kind
of subject fingerprint. Another interesting result from this
experiment concerns the fact that SVM and ERS-KNN seem
to exceed the deep learning methods by almost 5 percentage
points.

B. MEMORY FOOTPRINT AND TIMING

In order to indirectly evaluate the complexity of the proposed
machine learning models, during each experiment, we mea-
sured the timing performances and the memory footprint of
each classifier. In particular, each classifier has been imple-
mented on Matlab2021a® platform by means of Machine
Learning tools and get executed on Intel® Core i9 desktop
PC equipped with 32GB of RAM and with an NVIDIA®
Quadro® RTX " 4000 GPU. Both training and inference
phases have been conducted by setting GPU as the execution
environment in order to fully exploit the CUDA® parallelism
of the video adapter.
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TABLE 4. Timing performance and memory footprint.

SVM  ERS-KNN LSTM CNN
Training time (s) 7.191 5.803 472.069 299.551
Inference time (ms) 0.016 0.331 1.749 0.505

Memory footprint (MB)  4.168 41.996 5.569 6.389

Table 4 shows the timing performance and the memory
footprint of each model with highlighted the best values.
As expected the training phase of deep learning models is
the most time expensive phase with a maximum value of
about 470 seconds measured in the LSTM network. On the
other hand, the training phase of the ERS-KNN results to be
the fastest with only about 5.8 seconds. From the inference
time point of view, the SVM significantly exceeds other
models performances as it needs only about 160 p seconds
to infer a label. In particular, it results in an improvement in
performance in the order of about 20x, 100x, and 40x with
respect to, respectively, ERS-KNN, LSTM, and CNN. Notice
that, the reported inference time for SVM and ERS-KNN
also includes the feature extraction time. If in the cloud-based
approaches the computational cost of the training phase can
be easily overcome by resorting to powerful GPU/TPU, the
inference phase, on the other hand, should be done directly
on the wearable device to explore several appealing benefits.
For instance, executing the inference phase on the edge node
avoids latency issues due to communications to and from
the cloud, it enables higher levels of privacy and security by
keeping most of the data on remote devices, and, finally, it can
improve energy efficiency by trading off computation and
communication energy requirements. From this point of view,
Table 4 shows that SVM, thanks to its low memory footprint
and low inference time, can be the most suitable model for a
real-time wearable application.

C. SENSITIVITY TO THE WINDOW LENGTH

The size of the processing window influences the perfor-
mance of the classification models in several ways. In this
section, the results of the in-depth analysis of this dependence
are reported. In particular, Figure 4 plots the classification
metrics obtained by the four classifiers when varying the
size of the processing window. Notice that, in each exper-
iment, we use a processing window with 75% of overlap
which leads to a total number of samples ranging from more
than 200,000 to about 17,000 when the window increases
from 2 to 20 seconds. Each point represents the average value
together with the standard deviation calculated over a 5-fold
cross-validation test. Both SVM and ERS-KNN (Figure 4.(a)
and Figure 4.(b)) show an almost flat trend of the measured
accuracy even if at some point the other metrics (precision,
recall, and f1-score) begin to deteriorate as the window size
increases. In particular, the SVM classifier increases its per-
formance until when using a window of about 12 seconds.
Further increasing the size of the window leads to an average
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decrease in Precision, Recall, and F1-score and to more unsta-
ble results (higher standard deviations).

Similarly, the performances of ERS-KNN increase until a
window size of about 8 seconds beyond which they markedly
decrease together with results stability.

An opposite trend is found, however, regarding the results
obtained by the two deep learning classifiers (Figure 4.(c)
and Figure 4.(d)). In this case, in fact, the four performance
metrics show an almost monotonous decreasing trend for
increasing values of the window size. Moreover, for the CNN
classifier, we found a local maximum at a window size of
about 6 seconds.

D. NON-PARAMETRIC SIGNIFICANCE TESTS

In order to statistically assess whether the accuracies of the
four classification models are different, three variations of
the McNemar test have been performed: i) asymptotic test;
ii) exact-conditional test; iii) mid-p-value test [50]. These
tests compare two classifiers by analyzing their predicted
labels against the true labels and then detect whether the
difference between the misclassification rates is statistically
significant.

Table 5 reports the results of the three tests conducted
for each couple of classifiers. The possible combinations of
the four classifiers produce a symmetric matrix which, for
readability, is reported only in its upper part. In the same way,
the comparison between the classifiers and itself has not been
carried out (the matrix diagonal) for the obviousness of the
results.

For each test, the logical value # is reported which repre-
sents the test decision when testing the null hypothesis that
the two classifiers have equal accuracy for predicting the true
class. So, a false value indicates that the null hypothesis is
not rejected with a confidence level of 95% (p < 0.05).
Moreover, also the p value is reported which represents how
strong is the evidence to reject or not the null hypothesis.

For instance, when comparing ERS-KNN with SVM, the
three variants of the McNemar test agree not to reject the
null hypothesis while, for both ERS-KNN Vs LSTM and
ERS-KNN Vs CNN, the null hypothesis needs to be rejected
so that the accuracies of the two classification models can not
be considered equivalent. Furthermore, in these cases, the p-
value for each test is close to zero, which indicates strong
evidence to reject the null hypothesis that the two classifiers
have equal predictive accuracies.

Also the comparison between SVM and LSTM, SVM and
CNN, and LSTM and CNN, lead to strong rejections of the
null hypothesis with p-values very close to zero so that, in this
scenario, only standard machine learning tools, namely SVM
and ERS-KNN, can be considered statistically equivalent
from the classification performance point of view.

E. FEATURE SELECTION RESULTS

In order to evaluate the relative influence of the proposed fea-
tures on the classification performances, we use the forward
feature selection method [51]. Forward feature selection is
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FIGURE 4. Performances of the proposed classifiers when varying the size of the processing window.

based on an objective function (e.g. the accuracy) which is
used as a criterion to evaluate the impact of adding a feature
from a candidate subset, starting from an empty set until
adding other features doesn’t induce any improvement in the
objective function. We applied this strategy to highlight how
the proposed features contribute to the overall performance
of the two standard classifiers. In particular, each group of
features, namely Base (B), Hjorth (H), and Shape (S) has been
treated as an atomic unit that can be added or removed as a
whole. First of all, we tested each classifier using only one
of the three groups, and then we added the other groups to
explore all possible combinations.

Table 6 shows the activities classification performances,
together with its standard deviations, of the SVM when
varying the adopted features. For each performance met-
ric, the maximum value achieved has been highlighted
in bold. All metrics showed a monotone increasing trend
when consecutively adding one of three groups of fea-
tures reaching the higher performances when all the pro-
posed features are used together (Base+Hjorth-+Shape).
This suggests that all features provide original information
content useful for the classification process. Furthermore,
the Hjorth group seems to contain the most informa-
tive group of features producing the highest classification
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performance with respect to the other groups when tested
alone.

The same experiment conducted with the ESR-KNN clas-
sifier produces comparable results, reported in Table 7, with
the only difference that, in this case, the measured perfor-
mances are slightly higher.

Notice that, for both classifiers, these results suggest that
a good trade-off between classification performances and
real-time computation complexity can be represented by the
design choice of calculating only Base+Hjorth giving up only
about 0.2% of classification performance decrease. More-
over, if for the purpose of a particular real-time application,
an accuracy of about 92% could be considered acceptable,
it even would be sufficient to calculate the Hjorth features,
saving many computational resources and power.

F. CLASSIFICATION RESULTS ON DLA DATASET

The models described in the previous sections have been
trained and tested on the publicly available DLA dataset.
A first set of experiments has been made to classify the
following ten activities: handwriting, handwashing, face-
washing, teethbrush, sweeping, vacuuming, eating, dusting,
rubbing, other, and, a second set has been made in order to
recognize the 8 subjects of the dataset.
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TABLE 5. Results of three variations of the McNemar test.

SVM LSTM CNN
| b p | B P | b P
asymptotic | false 0.65 | true 4.14 x 1025 | true  2.04 x 10—21
ERS-KNN | mid-p false  0.65 | true 1.33x 10725 | true 3.12 x 10727
exact false 0.69 | true 1.82x 10732 | true 1.12 x 10722
asymptotic true  3.94 x 10795 | true  4.53 x 10722
SVM mid-p true  3.87 x 107%% | true 1.27 x 1078
exact true  4.46 x 10795 | true  3.43 x 10722
asymptotic true  1.23 x 10725
LSTM mid-p true  5.13 x 1072°
exact true  2.26 x 1024
TABLE 6. Results of the forward feature selection method applied to SVM classifier.
Accuracy Precision Recall Fl-s
B 0.901 £ 0.007 0.892 £ 0.008 0.891 £ 0.014 0.891 £ 0.006
H 0.923 £ 0.003 0.912 £ 0.005 0.913 £ 0.006 0.891 £ 0.005
S 0.339 £ 0.098 0.500 £ 0.069 0.480 £ 0.067 0.490 £ 0.067
B+H 0.941 +£ 0.006 0.932 £ 0.008 0.932 £ 0.006 0.932 £ 0.006
B+S 0.916 £ 0.004 0.910 £ 0.006 0.906 £ 0.010 0.908 £ 0.006
H+S 0.926 £ 0.011 0.917 £ 0.009 0.921 £ 0.067 0.919 £ 0.010
B+H+S 0.942+0.008 0.936+0.008 0.934+0.006 0.935+0.007
TABLE 7. Results of the forward feature selection method applied to ERS-KNN classifier.
Accuracy Precision Recall F1-score
B 0.904 £ 0.007 0.899 £ 0.003 0.873 £ 0.009 0.886 £ 0.002
H 0.908 £ 0.004 0.908 £ 0.005 0.889 £ 0.006 0.886 £ 0.005
S 0.719 £ 0.007 0.683 £ 0.010 0.674 £ 0.009 0.678 £0.010
B+H 0.944 £ 0.002 0.937 £ 0.003 0.929 £ 0.002 0.933 £ 0.002
B+S 0.908 £ 0.006 0.909 £ 0.006 0.886 £ 0.009 0.897 £ 0.007
H+S 0.922 £ 0.004 0.920 £ 0.006 0.902 £ 0.009 0.911 £ 0.006
B+H+S 0.946 £0.003 0.941+0.003 0.932+0.003 0.936 +0.003

1) HUMAN ACTIVITY CLASSIFICATION

Table 8 reports the classification results obtained with the
models configuration and parameters used in section V-Al.
Each value is reported as the average value calculated during
the 5-fold cross-validation test. For each metric, the highest
value obtained ever is highlighted in bold.

TABLE 8. Best activity classification results obtained with the proposed
models on DLA dataset.

SVM  ERS-KNN LSTM  CNN

Accuracy  0.891 0.914 0.866  0.923
Precision  0.907 0.931 0.882 0.939
Recall  0.867 0.914 0.874  0.925
Fl-score  0.886 0.922 0.878 0.932

In this experiment, the CNN outperforms other models
in each of the calculated metrics. Regarding the ERS-KNN
performance, the gap is about 1% or 2% (depending on the
considered metric) while, it increases up to 6% for some
metrics calculated for SVM and LSTM models Despite this,
the performance of ERS-KNN and CNN remains well above
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91% in each computed metric demonstrating a high capabil-
ity in classifying wrist human activities using signals from
wearable IMU devices.

Compared to the performances of the experiment con-
ducted on the ad-hoc dataset, the average values suffered a
decrease of about 1% or 2% for ERS-KNN and CNN and
of about 7% and 8% for SVM and LSTM. A generalized
decrease in classification performance is certainly due to the
greater number of classes used in this second dataset, which
can lead to a greater dispersion of the results. Furthermore,
the lack of gyroscopic signals may have had a significant
impact on classification capabilities, especially for SVM and
LSTM which show the lowest values.

Figure 5 reports the average confusion matrices calcu-
lated on top of the results obtained during the 5-fold cross-
validation tests. ERS-KNN and CNN demonstrate a great
ability to correctly classify the activity of interest (i.e. the
handwashing). For instance, CNN correctly recognizes it
over 95% of the time while the ERS-KNN about 94% of the
time. On the other hand, for the SVM and LSTM models, this
rate decreases up to 88% and 87% respectively. Moreover, the
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FIGURE 5. Average confusion matrices calculated on the 5-fold cross-validation test on DLA dataset.

remaining wrong classifications of the handwashing activity
are due overall to its misclassification as other and they are
not due to another wrist activity in particular, effectively
representing false negatives.

2) SUBIJECT CLASSIFICATION

As for the subject classification on ad-hoc dataset experi-
ments, each sample related to the other activity has been
removed, while the remaining classes have been merged into
a single class to which a label containing a unique person
identifier has been added.

Table 9 shows the value of the classification metrics
obtained with the four models. Also for the DLA dataset,
recognizing the person who is performing the wrist-based
action is an easier task with respect to recognizing the activity.
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TABLE 9. Best subject classification results obtained with the proposed
models on DLA dataset.

SVM  ERS-KNN LSTM CNN

Accuracy  0.946 0.959 0.902  0.941
Precision  0.949 0.957 0.902  0.940
Recall  0.942 0.949 0.903  0.943
Fl-score  0.946 0.959 0.903  0.939

Moreover, also in this experiment, the standard classifiers (i.e.
SVM and ERS-KNN) overcome the performance of the deep
learning methods even if, with respect to CNN, the gap is
appreciably reduced.

In general, despite this experiment is showing a high aver-
age classification accuracy of the proposed models (greater
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than 95%), it also highlights an average reduction of perfor-
mances while switching from the ad-hoc dataset to the DLA.
Also in this case, in all probability, the loss of performance
can be attributed to the higher number of subjects to be
recognized and to the lack of the gyroscopic signals.

VI. CONCLUSION

Hands hygiene is extremely important in breaking the chain
of pathogens transmission by contact. In fact, contaminated
hands are a privileged way to get to the mucous membrane of
the mouth, nose, or eyes. Also regarding the COVID-19, it is
estimated that a non-negligible part of infections occurs due
to contact, through our hands, with contaminated surfaces.

In this work, we proposed and evaluated four classifica-
tion machine learning models to distinguish the unstructured
handwashing/handrubbing gestures from the rest of the daily
activities starting from commonly used wearable devices.
The proposed models lay the foundations for the creation
of a system that provides users with automatic and con-
tinuous indirect monitoring of hands hygiene in an attempt
to reduce the contact transmission of pathogens including
SARS-CoV-2 coronavirus.

The experimental results, obtained over two different
datasets containing in total more than 50 hours of record-
ing of daily activities registration performed by 12 different
subjects, show that both standard and deep learning tech-
niques can be considered a viable solution to the classification
problem reaching, respectively, an average accuracy of about
94% and 95%. Furthermore, considering the design of a low-
cost low-power wearable device as a possible target of this
work, our results show that SVM, thanks to its low memory
footprint and low inference time, could allow executing the
inference phase on the edge without recurring to the cloud
infrastructure. This could, in principle, avoid latency and
energy issues due to communications to and from the cloud,
leading to higher levels of privacy and security by keeping
most of the data on remote devices. Finally, as a last notewor-
thy result, we also show that by making use of the gyroscopic
signals coming from the IMU devices it is possible to increase
the recognition capability of standard learning tools, such as
SVM and ERS-KNN, achieving the performances of the most
complex model without impairing the computational cost.
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