
Received 17 July 2022, accepted 1 August 2022, date of publication 8 August 2022, date of current version 12 August 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3197295

Lossless Compression of Point Cloud Sequences
Using Sequence Optimized CNN Models
EMRE C. KAYA AND IOAN TABUS , (Senior Member, IEEE)
Computing Sciences Unit, Tampere University, 33720 Tampere, Finland

Corresponding author: Emre C. Kaya (emre.kaya@tuni.fi)

ABSTRACT In this paper we propose a new paradigm for encoding the geometry of dense point cloud
sequences, where a convolutional neural network (CNN), which estimates the encoding distributions,
is optimized on several frames of the sequence to be compressed. We adopt lightweight CNN structures,
we perform training as part of the encoding process and the CNN parameters are transmitted as part of
the bitstream. The newly proposed encoding scheme operates on the octree representation for each point
cloud, consecutively encoding each octree resolution level. At every octree resolution level, the voxel grid
is traversed section-by-section (each section being perpendicular to a selected coordinate axis), and in each
section, the occupancies of groups of two-by-two voxels are encoded at once in a single arithmetic coding
operation. A context for the conditional encoding distribution is defined for each two-by-two group of voxels
based on the information available about the occupancy of the neighboring voxels in the current and lower
resolution layers of the octree. The CNN estimates the probability mass functions of the occupancy patterns
of all the voxel groups from one section in four phases. In each new phase, the contexts are updated with the
occupancies encoded in the previous phase, and each phase estimates the probabilities in parallel, providing
a reasonable trade-off between the parallelism of the processing and the informativeness of the contexts. The
CNN training time is comparable to the time spent in the remaining encoding steps, leading to competitive
overall encoding times. The bitrates and encoding-decoding times compare favorably with those of recently
published compression schemes.

INDEX TERMS Convolutional neural networks, lossless geometry compression, octree coding, point cloud
compression.

I. INTRODUCTION
The compression of the voxelized point clouds recently
became a hot research topic, owing to the need to develop
immersive technologies, underlined, e.g., in the programs
launched by the MPEG [1] and JPEG [2] standardiza-
tion bodies, which have already resulted in two well-
engineered standards, V-PCC [3] and G-PCC [4] (having the
test model TMC13 [5]). The scientific literature has wit-
nessed a strong interest in improving the compression perfor-
mance of G-PCC, with many scholarly contributions in recent
years, e.g., [6]–[22]. These methods differ in several aspects,
such as the representation used for the point cloud (e.g., octree
[15]–[20], dyadic decomposition [6], [7], [12] or projections

The associate editor coordinating the review of this manuscript and

approving it for publication was Gulistan Raja .

onto 2D planes [13], [23]), the selection of the context used
for the conditional probability model for arithmetic coding
and the method to define the symbols to be encoded.

The probability model can be based on adaptively main-
tained counts for various contexts [4], [7] or on a neural
network (NN) model [11], [17], having a binary context at
the input and the probability mass function of the symbol at
the output.

In the last few years, machine learning approaches using
neural networks have been proven to be competitive for both
lossy [14], [16], [20]–[22] and lossless [11], [17], [20], [24]
point cloud geometry compression. A comprehensive survey
of the recent methods with a focus on the learning-based
approaches is provided in [25].

In [14], an autoencoder architecture involving 3D convo-
lutional layers is employed to generate a latent representation

83678 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0002-8255-1302
https://orcid.org/0000-0003-3131-9551
https://orcid.org/0000-0003-2026-1219


E. C. Kaya, I. Tabus: Lossless Compression of Point Cloud Sequences Using Sequence Optimized CNN Models

FIGURE 1. Overview of the proposed Specifically Trained Model (STM) compression method for encoding a point cloud sequence.

of the point cloud, which is further compressed using
range coding. In [21], a variational autoencoder model is
employed in an end-to-end learning scheme. In [22], adaptive
octree-based decomposition of the point cloud is performed
prior to encoding with a multilayer perceptron-based end-to-
end learned analysis-synthesis architecture. VoxelDNN [11]
uses 3D masked convolutional filters to enforce the causal-
ity of the 3D context from which the occupancy of 64 ×
64 × 64 blocks of voxels are estimated. VoxelContext-
Net [20] employs an octree-based deep entropy model for
both dynamic and static LIDAR point clouds. NNOC [17]
operates on the octree representation, where hybrid contexts
are formed by combining the information from two consec-
utive resolution levels. In [24], a deep generative model is
employed for lossless geometry compression.

As a variation from the previous approaches that uti-
lize neural networks, we optimize a specific neural network
model for the sequence to be encoded. In the proposed
scheme, the optimization (training) of the network is a part of
the encoding stage, and the optimizedCNNmodel parameters
are transmitted as a header to the decoder, being then used for
decoding any point cloud from the sequence.

We consider here two distinct paradigms for using a neural
network as a coding probability model. In the first, which
we dub Generically Trained Model (GTM), some generic
training set is selected and is used for optimizing an NN
model to be used by both the encoder and decoder for all the
compression tasks that will be required in the future [8], [11],
[14], [16], [17], [20]–[22], [24], [26], [27]. The compression
performance of the methods involving this approach depends
on the selection of a suitable training set. The model is an
integral part of the encoding program, and an identical copy
is assumed to exist in the decoding program, so the NNmodel
is not considered as a part of the encoded data. Hence, the
model can be made as complex as needed, since its size does
not contribute to the size of the bitstream. Additionally, the

training time of themodel is not accounted for in the encoding
time, although it can be rather important, of the order of
hours.

Here, we propose a second paradigm, Specifically Trained
Model (STM), where the NN model to be used for the
compression of a sequence of point clouds (PC) is opti-
mized for the sequence and is transmitted as a part of the
encoded stream. One cannot simply adhere to this paradigm
by selecting the same model structure as in the GTM case and
train it on the sequence, because the complexity-compression
ratio trade-off needs to be different. The model needs to
be trained quickly, and the cost of transmitting the model
parameters needs to be sufficiently low. Using the specifically
trained model paradigm as a basis for the compression of a
point cloud sequence has the advantage that the NN model
that generates the coding distribution at each context can be
trained to match very closely the real distributions found in
the point clouds that form the sequence, even with a less
complex NN structure than in the general trained model case.
Another advantage is that the point clouds in a sequence
are similar, one to another, from the point of view of their
real probability distributions at the contexts. Whereas in the
case of a general trained model, the distributions gener-
ated by the model at each context can differ quite signifi-
cantly from the distributions learned from the generic training
data.

In this paper, we propose a solution that belongs to the STM
paradigm and has the following main features: It uses the
octree representation [28]; encodes the occupancy of groups
of 2× 2 voxels at each arithmetic encoding operation; uses a
context based on the occupancies of lower resolution voxels
(translated as candidate voxels at the current resolution) and
on sets of voxels already encoded at the current resolution;
computes the probability using a CNN model having at the
input a multivalued context (which becomes gradually more
relevant along the four phases).

VOLUME 10, 2022 83679



E. C. Kaya, I. Tabus: Lossless Compression of Point Cloud Sequences Using Sequence Optimized CNN Models

FIGURE 2. Encoding of the occupancy image Oz0 (the section z = z0 through the point cloud Pr at resolution r ) at phase ϕ using an arithmetic
encoder (AE) for 16-valued symbols. ‘‘Construct the Input Stack’’ is detailed in Fig. 3, CNN is detailed in Fig. 4 and ‘‘Select and Serialize’’ is detailed in
Fig. 5.

FIGURE 3. Construction of the Input Stack Sz0 (ϕ). Mz0 (ϕ) is formed by
combining the available information from the current and the lower
resolution (candidates PC). For more detail on how Mz0 (ϕ) is formed, see
Fig. 7 and Eqn. (3).

The structure of the paper is as follows. We introduce our
method in Section II and present the experimental results in
Section III, and we present the conclusions in Section IV.

II. PROPOSED METHOD
A. ENCODING A SEQUENCE OF FRAMES BY OPTIMIZING
A CNN MODEL ON A FEW FRAMES
We consider lossless compression of the geometry of dense
point clouds forming a sequence. Each point cloud in the

sequence is referred to as a frame. An overview of the
proposed lossless sequence encoding scheme is provided in
Fig. 1. The lossless encoding scheme consists of three stages.
In the first stage, we collect the contexts and corresponding
histograms from a small number of frames. For example,
we show in the Experimental Work section the performance
when selecting different numbers of training frames at equal
temporal distances to each other. More elaborate selection
strategies might be considered but we noticed that the overall
performance does not improve significantly for the sequences
that we experiment with. Each context is associated with
a 16-element histogram where each element corresponds to
an occupancy pattern as described in Section II-C in detail.
This first stage is shown as a block called ‘‘Collect Context-
Histogram Pairs’’ in Fig. 1. In the second stage, we train
a fixed structure CNN model using the contexts and corre-
sponding histograms that were collected in the first stage (see
‘‘Train CNN’’ in Fig. 1). We emphasize that the structure of
the CNN is fixed to make it clear that it is not subject to
optimization in the algorithm, however it is chosen a priori
from a set of possible structures, given the intended perfor-
mance: for better compression performance one can use a
heavier model, while for low overhead of the model bitstream
a lighter structure is preferable (e.g., in the case of short
sequences). In Section III we illustrate four choices of CNN
model structures of different complexities and report their
performance. The set of possible structure choices should be
known to the decoder and the choice made at the encoder
needs to be signaled (by a couple of bits) to the decoder.

83680 VOLUME 10, 2022



E. C. Kaya, I. Tabus: Lossless Compression of Point Cloud Sequences Using Sequence Optimized CNN Models

FIGURE 4. Structure of the sequence optimized CNN used for estimating
the occupancy probabilities. For the convolutional layers, K denotes the
2D kernel size, C denotes the number of output channels and S denotes
the 2D stride.

The optimal parameters (weights and biases) of the CNN
resulting from the training stage, are losslessly transmitted,
consuming 32 bits for each floating point parameter. This
corresponds to the ‘‘Encode the CNN Parameters’’ block in
Fig. 1. The decoder has available the structure parameters
of the CNN (number of layers, number of channels, strides),
and by reading the header transmitted by the encoder, it can
reconstruct the CNN model to be exactly the same as the one
used by the encoder. The CNN model is used for indepen-
dently encoding/decoding each frame of the sequence, and
since the encoding is done only intraframe, the starts and ends
of the bitstream for each frame can be stored (incurring a little
overhead) so that each frame can be decoded without the need
of decoding the previous frames. In the final stage, we encode
the entire sequence frame-by-frame using the same CNN
for each frame. The frames can be encoded independently
from one another; hence, they can be decoded in any order,
independently from one another, resulting in random access
to the point clouds of the sequence. We note that the methods
using interframe coding do not possess this random access
property.

B. ENCODING OF A FRAME
At each frame, the octree representation of the point cloud
is processed iteratively at the resolution r , starting from the

resolution (octree depth level) r = 2 and eventually reaching
the original resolution r = R, thus enabling lossless recon-
struction. First, the PC at r = 2 is written to the bitstream in
64 bits, where each bit represents the occupancy of a voxel.

The encoding steps at resolutions higher than 2 are illus-
trated in Fig. 2. Let PR denote the input point cloud, where
Pr with 2 ≤ r < R is a lower resolution version of PR.
At each resolution level r ≤ R, we have available at both
the encoder and the decoder the point cloud Pr−1, and we
create from it an upsampled version called PC

r by splitting
each occupied voxel of Pr−1 into eight candidate voxels in
PC
r , now having a resolution of r bits per dimension. The

point cloud Pr is a subset of PC
r . For encoding Pr , we need

to encode and transmit the occupancy status of each candidate
voxel in PC

r . This is performed sequentially by sweeping
z0 along the sweeping dimension z and at each z0 considering
the sectioning by the plane z = z0 of the point cloud PC

r and
for each candidate voxel transmitting the occupancy status.

To use suggestive geometric interpretation, when encoding
the voxels at the section z = z0 in Pr , we refer to the plane in
the x and y coordinates as a binary (W×H )-occupancy image
Oz0 , where Oz0 (x, y) = 1 indicates that (x, y, z0) ∈ Pr (see
Fig. 2). The occupancies of the candidate voxels in the current
section z = z0 are encoded in four phases such that, at each
phase, only some of the candidate voxels in the current section
are encoded. The context used at a phase ϕ for encoding
the candidate voxels is constructed using the most up-to-date
information, containing the occupancies that are encoded in
the previous phases 1, . . . , ϕ − 1. Thus, having four phases
instead of a single phase provides more informative contexts
for the candidates that are not encoded in the first phase.

Section z = z0 through the upsampled candidate point
cloud PC

r is called the (W × H )-candidate image, Cz0 (see
Fig. 2). During the decoding process, the reconstructed occu-
pancy image Rz0 (ϕ) (a binary (W ×H )-image) is maintained
for each of the four phases ϕ = 1, 2, 3, and 4, as described in
Subsection II-C. After phases ϕ = 1, 2, 3, Rz0 (ϕ) is a partial
reconstruction of Oz0 , and after phase ϕ = 4, Oz0 is fully
reconstructed. In Rz0 (ϕ), the decoded occupied voxels (true
points) are represented as pixels with a value of 1, and all the
remaining pixels have a value of 0. When encoding the pixels
of Oz0 , the planes Oz0−1 and Oz0−2 were already encoded,
and we rely, when building conditioning distributions by the
CNN, on the most relevant available information, namely,
the images Cz0+1,Cz0 ,Oz0−1,Oz0−2, and for the information
in the current plane z = z0 reconstructed as Rz0 (ϕ). The
information from the candidate image Cz0 and the recon-
structed image Rz0 are combined into a four-level mixed
image,Mz0 (ϕ), as described in Subsection II-C.
The mixed image Mz0 (ϕ) together with the three binary

images Cz0+1, Oz0−1 and Oz0−2 are used to construct a 4 ×
W × H array called Input Stack Sz0 (ϕ). Input Stack Sz0 (ϕ)
is constructed by the block ‘‘Construct the Input Stack’’ in
Fig. 2, which is detailed in Fig. 3, and it is input to a CNN
for estimating the probabilities of occupancy of the voxels at
z = z0.

VOLUME 10, 2022 83681



E. C. Kaya, I. Tabus: Lossless Compression of Point Cloud Sequences Using Sequence Optimized CNN Models

FIGURE 5. The structure of the block ‘‘Select and Serialize’’ from Fig. 2. The candidate voxels encoded in the current phase (ϕ) are determined by the
phase candidate image Cϕ , which is obtained by multiplying the two binary images Cz0 and �ϕ . By downsampling Cϕ , we obtain the so-called block
picker CB

ϕ , which is a binary image where CB
ϕ (m, n) = 1 corresponds to a 2× 2 block of occupancies Bm,n that needs to be encoded in phase ϕ.

Occupancies image Oz0 is convolved with a 2× 2 kernel to generate the block occupancies image OB
z0

, which contains numbers from 0 to 15 that

symbolize the occupancy patterns of 2× 2 blocks. Block Picker’s shape is consistent with both OB
z0

and the output stack Gz0 (ϕ) coming from the CNN. The

element OB
z0

(m, n) for which CB
ϕ (m, n) = 1 and the corresponding column G(m, n) in the output stack Gz0 (ϕ) are picked and form a (symbol, pmf) pair.

These pairs are serialized in a certain scanning order, which is also obeyed by the decoder.

We encode the occupancy of candidate voxels in section
z = z0 in blocks of 2 × 2 voxels, such that a block of
occupancies at a position m, n is defined as

Bm,n =
[

Oz0 (2m, 2n) Oz0 (2m, 2n+ 1)
Oz0 (2m+ 1, 2n) Oz0 (2m+ 1, 2n+ 1)

]
.

We define the occupancy pattern of a block Bm,n as Qm,n =
Oz0 (2m, 2n) + 2Oz0 (2m, 2n + 1) + 22Oz0 (2m + 1, 2n) +
23Oz0 (2m+1, 2n+1). The entireW×H image is covered by
nonoverlapping blocks by settingm = 0, 1, . . . ,W/2−1 and
n = 0, 1, . . . ,H/2− 1 (W and H are enforced to be even).

For encoding with arithmetic coding the occupancy pattern
Qm,n of a generic (2 × 2)− block of pixels Bm,n, we uti-
lize a probability mass function (pmf), denoted as a 16-
length vectorG(m, n), specifying at element q the probability
Gq(m, n) = Prob(Qm,n = q|Cm,n), for each q ∈ {0, . . . , 15},
conditioned on a context Cm,n (see Fig. 6). We implement the
probability model by a CNN with the set of parameters W
and 16 output channels, which will output at every location
(m, n) the pmf vector denoted

G(m, n) = CNNW (Cm,n) = g(W, Cm,n). (1)

Hence, the output of the CNN is an array of size 16×W/2×
H/2, called the output stack, denoted Gz0 . At location (m, n)
and channel q, Gz0 (q,m, n) = Gq(m, n).

FIGURE 6. The context Cm,n (the 4× 6x6 block of voxels marked in red)
for computing the 16-element probability mass function
Prob(Qm,n = q|Cm,n) for q = 0, . . . , 15, needed for encoding and
decoding the occupancy pattern Qm,n for the 2× 2 block Bm,n (the block
marked by the yellow square). The CNN computes in parallel all these
probabilities at all (m,n) locations. At the training stage, for each context
observed in the training set, a 16-element histogram h(q|Cm,n),
q = 0, . . . , 15, is collected and used in the loss function from (5).

The conditioning is done on a context Cm,n, which is
defined by the receptive field of the CNN, i.e., by the set of

83682 VOLUME 10, 2022



E. C. Kaya, I. Tabus: Lossless Compression of Point Cloud Sequences Using Sequence Optimized CNN Models

FIGURE 7. Constructing the mixed quaternary image Mz0 (ϕ) at each phase ϕ by combining the available information from the already encoded parts of
the binary occupancy image Oz0 and the binary candidates image Cz0 . The quaternary value for each pixel (i, j ) is obtained by setting either
Mz0 (i, j ) = 2Oz0 (i, j )+ 1 or Mz0 (i, j ) = 2Cz0 (i, j ) depending on whether Oz0 (i, j ) is known in the current phase (i.e., �s

ϕ−1(i, j ) = 1). Each phase is
associated with a different phase selector image �ϕ , which are binary images. The already processed voxels at the beginning of each phase ϕ are
expressed as a binary image �s

ϕ−1. The mixed image, Mz0 (ϕ), which is to be used in the input stack at phase ϕ, is obtained by applying
Mz0 (ϕ) = Cz0 ◦ (2+ (2Oz0 − 1) ◦�s

ϕ−1) (3) (which rephrases the mechanism of constructing the quarternary values described above). A pixel in Mz0 (ϕ)
can have one of the four values 0,1,2,3. If it was not yet encoded, it can be 0 (if it is not a candidate, Cz0 (i, j ) = 0) or 2 (if it is a candidate, Cz0 (i, j ) = 1).
If it is already encoded, it can be 1 (if it is not occupied, Oz0 (i, j ) = 0) or 3 (if it is occupied, Oz0 (i, j ) = 1). At each phase, we show in Mz0 (ϕ) one example
context window as a red bounding box around its corresponding 2× 2-block to be encoded.

pixels from the Input Stack Sz0 , which affects the computation
of G(m, n). For the selected structure of the CNN shown
in Fig. 4, the receptive field Cm,n can be seen to be the
4 × 6 × 6 subblock from the input stack Sz0 , ranging on x
coordinates from 2m−2 to 2m+3 and on y coordinates from
2n− 2 to 2n+ 3. In Fig. 3 and Fig. 6, the context of 4× 6×
6 pixels from the images Oz0−2, . . . ,Cz0+1, corresponding to
the 2 × 2− candidate block marked in yellow on the mixed
imageMz0 (ϕ), are shown by the red contours.

The CNN consists of four 2D convolutional stages where
the convolutions operate along the W and H dimensions and
the number of input channels is four (the number of 2D
images in Sz0 (ϕ)). As a nonlinear activation function at the
hidden stages, we employ LeakyReLU [29] with a constant
slope α for the negative inputs so that

LeakyReLU(x) = max(0, x)+ α ∗min(0, x). (2)

We set the negative region slope as α = 0.01 following
[29]–[31]. The output layer activation is chosen as softmax

to ensure the output G(m, n) to be valid probability mass
functions.

C. ENCODING THE VOXELS IN A 2D SECTION
IN FOUR PHASES
To improve the informativeness of the contexts, we split the
encoding process into four phases such that in each phase, the
CNN is called once, having at the input a different input stack,
Sz0 (ϕ), which gradually becomes more informative at each
phase. In all four phases, we employ the same CNN model
which is trained with context-histogram pairs collected from
all four phases. We do not devote different CNN models to
each phase because in such a scenario, the CNN bitstream
would be four times longer and the CNN training time would
also increase significantly. Moreover, running four different
CNNs would significantly increase the consumption of GPU
memory during encoding and decoding. Thus, having a single
model which handles all the four phases is advantageous in
terms of the bitrate, the execution times and the memory

VOLUME 10, 2022 83683



E. C. Kaya, I. Tabus: Lossless Compression of Point Cloud Sequences Using Sequence Optimized CNN Models

FIGURE 8. Decoding of the occupancy image Oz0 (the section
z = z0 through the point cloud Pr at resolution r ) at a phase ϕ. The block
‘‘Select (symbol,pmf) pairs’’ provides the arithmetic decoder (AD) with the
pmf vectors of the blocks to be decoded and it inserts the decoded block
occupancies into the reconstructed Rz0 (ϕ). In the next phase, Rz0 (ϕ) is
used to form the Mz0 (ϕ + 1) in the input stack Sz0 (ϕ + 1).

consumption. Associated with each phase ϕ is a different
phase selector image �ϕ that selects the candidate blocks to
be encoded in the current phase (the selected candidate blocks
are called the phase candidates blocks) (see Fig. 5 and 7).
Phase selector images �ϕ are visualized in Fig. 7. In each

phase ϕ, a quarter of the 2×2 blocks, all located in a squared
grid, are selected for possible encoding by setting �ϕ(i, j) =
1 for every pixel (i, j) belonging to a selected 2 × 2 block
(see the four phase selectors�1, . . . , �4 at the top of Fig. 7).
The elements of �1 are 1 for all pairs (i, j) with i = 4k, i =
4k + 1, j = 4l, j = 4l + 1, where k, l are integers, so that
the elementwise product Oz0 ◦ �1 (◦ denotes element- wise
multiplication) forces to zero all the pixels that do not belong
to blocks B2k,2l .
Similarly, the selector image �2 selects in Oz0 ◦�2 all the

blocks B2k,2l+1, �3 selects all the blocks B2k+1,2l , and �4
selects all the blocks B2k+1,2l+1.
In each phase, the CNN uses the Input Stack Sz0 (ϕ) and

generates pmf vectorsG(m, n) = CNNW (Cm,n) for all blocks
Bm,n, with m = 0, 1, . . .W/2 − 1 and n = 0, 1, . . .H/2 −
1, hence covering all blocks of the (W × H ) images. The
candidate imageCz0 specifies which of the blocks are already
known to be zero and hence do not need to be encoded.

In the first phase, out of all 2× 2− blocks of Cz0 and Oz0 ,
only a quarter of the blocks are selected by using�1; namely,
from Oz0 , only the blocks B2k,2l , with k = 0, . . . ,W/4 −
1 and l = 0, . . . ,H/4 − 1. The pmf corresponding to
each block is read from the pmf vector G(2k, 2l) and is
used by the arithmetic encoder. The encoder and the decoder
are now accounting that one quarter of the image Oz0 was

reconstructed, and those values can be inserted for the next
phase into Sz0 .
Phases 2, 3 and 4 proceed in a similar way, after which

the entire Oz0 pixels can be reconstructed so that Rz0 = Oz0 ,
and the algorithmmoves to the processing of the next section,
z = z0 + 1.
Fig. 7 shows how the candidate image Cz0 and the occu-

pancy image Oz0 (or equivalently the reconstructed image
Rz0 ) are combined differently at each phase, resulting in the
mixedW×H -imageMz0 (ϕ). Initially, since fromOz0 nothing
is encoded yet,Mz0 contains only the candidacy information.
The already processed part of the current section after phase
ϕ is denoted with a binary image �s

ϕ = �1 ∨ . . . ∨ �ϕ
(elementwise OR), where �s

0 is all-zeros. The mixed image
Mz0 (ϕ) at the beginning of phase ϕ is obtained at the encoder
as

Mz0 (ϕ) = Cz0 ◦ (2+ (2Oz0 − 1) ◦�s
ϕ−1), (3)

where ◦ is pixelwise multiplication, by the process of obtain-
ing the quaternary values out of the two binary values,
as described in the caption of Fig. 7. Equivalently, at the
decoder, we have

Mz0 (ϕ) = Cz0 ◦ (2+ (2Rz0 (ϕ)− 1) ◦�s
ϕ−1), (4)

since Oz0 ◦ �
s
ϕ−1 = Rz0 (ϕ) ◦ �

s
ϕ−1. Eqn. (3) is the mathe-

matical expression for the block ‘‘Construct the Mixed Image
Mz0 (ϕ)’’ in Fig. 3, whereas (4) is the decoder version of the
same block.

The ‘‘Select and Serialize’’ block, which appears in Fig. 2,
carries out the operations required to feed the occupancy
symbols and the corresponding probability mass functions to
the arithmetic encoder. ‘‘Select and Serialize’’ operations are
schematized in Fig. 5. The two binary images Cz0 and �ϕ
are element-wise multiplied to yield the so-called phase can-
didates Cϕ . Occupancies image Oz0 is convolved with a 2D
kernel having elements [1, 2; 4, 8] to yield the so-called block
occupancies OBz0 . O

B
z0 is a 16-level image with dimensions

(W/2,H/2), and each pixel corresponds to the occupancy
pattern of a 2 × 2 block in Oz0 . In phase ϕ, only those
candidate blocks that are indicated in Cϕ need to be encoded.
Cϕ is downsampled to the so-called block picker CB

ϕ , which
has the same shape (W/2,H/2) as OBz0 . Finally, the ‘‘Pick
and Serialize’’ block in Fig. 5 picks the relevant elements
from OBz0 and from the output stack Gz0 and serializes them
such that for each block Bm,n for which CB

ϕ (m, n) = 1,
the 16-element pmf vector G(m, n) is extracted from the
output stack, and the corresponding block occupancy symbol
OBz0 (m, n) is extracted from the block occupancy image. Then,
the (symbol,pmf) pairs are sent to the encoder in a predefined
scanning order.

Fig. 8 shows the decoder’s flow diagram using the same
probability modeling and the same CNN as the encoder.
The decoder counterpart of the ‘‘Select and Serialize’’ block
in the encoder is called the ‘‘Select (symbol,pmf) pairs’’
block. It performs perfectly aligned with the encoder. First,

83684 VOLUME 10, 2022



E. C. Kaya, I. Tabus: Lossless Compression of Point Cloud Sequences Using Sequence Optimized CNN Models

it provides the arithmetic decoder with the pmf of the block
to be decoded, and second, it reads from the output of the
arithmetic decoder the decoded 2× 2 block occupancies and
inserts them into the correct locations in Rz0 (ϕ). The essential
difference from the way the input to the CNN is constructed
at the encoder is the replacement of Oz0 by Rz0 .

D. OPTIMIZATION OF THE CNN
The CNN is trained using the data collected from a number
of frames, which we call the training frames. The training set
consists of (4× 6× 6)-shaped contexts that have occurred in
the training frames at least once. Each context is associated
with a 16-element histogram h containing the number of
occurrences of 16 possible occupancy patterns of 2× 2 can-
didate blocks. The training data are collected from the final
resolution only.

During training, the contexts from the collected set are fed
in batches of size Nb, and the loss is expressed as

Loss = −
1
Nb

Nb∑
i=1

15∑
q=0

h(q|Ci) log2 gq(W, Ci), (5)

where h(q|Ci) is the number of occurrences of the q’th occu-
pancy pattern in the training set for the i’th context, Ci, of the
batch and gq(W, Ci) is the corresponding output of the CNN;
see (1).

III. EXPERIMENTAL WORK
We have performed experiments with sequences from
Microsoft Voxelized Upper Bodies (MVUB) [33] and 8i
Voxelized Full Bodies [34] datasets, which are dense point
cloud datasets. MVUB sequences have a resolution of 9 bits,
whereas 8i sequences have a resolution of 10 bits per
dimension.

In our default CNN architecture (shown in Fig. 4), the total
number of optimized parameters is 15116. Each parameter
is transmitted in 4 bytes, leading to a model codelength of
CLm=̃60.5 kB. Thus, for a frame with 500k points in a
100-frame sequence, the model’s contribution to the bitrate
is less than 1%. Due to this small size, we did not con-
sider, in this paper, the problem of entropy coding the CNN
parameters, which will not significantly improve the cur-
rently achieved bitrates.

In all the experiments, training is performed using the
ADAM optimizer with batch size Nb = 104 and an initial
learning rate of 0.001. Since the training time is counted as
part of the encoding time, the training phase is kept short.
When no improvement in loss is observed for 20 epochs for
the first time, the learning rate is halved. When no improve-
ment in loss is observed once again, the training ends. The
number of training frames is by default set to 5. To maximize
parallelism, the sweeping axis Oz is selected as the shortest
dimension of the bounding box, tightly enclosing all the
points of the first frame. The algorithm is implemented using

PyTorch and TorchAC [35] on an NVIDIA RTX 2080. The
implementation is made available on Github.1

The bitrate br for the sequence is measured as the average
of the bitrates brf over F consecutive frames, where the
bitrate brf for a frame f is measured as bits-per-point (bpov)

brf = (CLf + CLm/F)/np,f , (6)

and CLf is the codelength for encoding frame f , CLm is
the codelength for encoding the CNN model and np,f is the
number of points in frame f .

In addition to the bitrates, we also report the average
encoding and decoding times per frame, where the encoding
time per frame te includes the time spent collecting training
data and training the CNN divided by the number of frames.
That is,

te =
1
F
(ttr +

F∑
f=1

te,f ), (7)

where ttr is the total time spent training the CNN (including
the training data collection time) and te,f is the time spent
encoding frame f . For our default configuration, the average
ttr over all 9 sequences used in our experiments is 348 sec-
onds.

In Table 1, we compare the bitrates br obtained with the
proposed SeqNOC (default model) and with some recently
published algorithms. The methods on the left side of the
table have to resort to optimization (as in our method) or
adaptively track the count numbers in each context to build
efficient coding probability distributions. The right side of
Table 1, under the header ‘‘Methods using models trained
on a generic dataset’’ contains methods following the GTM
paradigm [11], [17], [24], [26]. We note that for the gener-
ically trained models, there are no results listed for some
sequences because some frames of those sequences were
part of the training data; therefore, the cited publications
did not include results for them. TMC13 [4], S3D [6],
P(Full) [18], S4DCS [12] and SeqNOC results are the average
bitrates over the 100 frames starting from the 2nd frame,
whereas the results for NNOC, fNNOC [17] are for the
entire sequence. VoxelDNN [11], MSVoxelDNN [26] and
DGM [24] results are for certain representative frames taken
from the sequences.

To investigate the effect of model complexity, we experi-
ment with CNN models with different complexities. To that
end, we devise three additional CNNmodel structures having
the same number of convolutional layers as our default model,
which is illustrated in Fig. 4 but with a different number of
output channels at the hidden layers. These models are named
SNLM, SNLM2 and SNHM (the first two of them being
lighter than the default model and the last one being heavier),
and their structures are summarized in Table 2, where nw is
the number of CNN parameters to be transmitted and nhidden,l
is the number of output channels at the l’th hidden layer.

1https://github.com/marmus12/seqnoc

VOLUME 10, 2022 83685



E. C. Kaya, I. Tabus: Lossless Compression of Point Cloud Sequences Using Sequence Optimized CNN Models

TABLE 1. Comparing the average bitrates of the proposed SeqNOC with those of the other recent methods.

TABLE 2. Structure of CNN models having different complexities.

The bitrates and per-frame encoding-decoding times obtained
with four different models are presented in Table 3, where the
sequence length is F = 100. From Table 3, one can observe
that the default model yields the best bpov results for the
9-bit MVUB sequences, whereas for the 10-bit 8i sequences,
SNHM performs the best in bitrates. This is because, for the
9-bit sequences, the number of points at each point cloud is
much less than the 10-bit point clouds so that the average
bpov model cost of the heavy model (SNHM) is much more
significant than the 10-bit case. A more complex model is
more suitable when the number of points is high. On the other
hand, the best decoding time is obtained with the lightest
model (SNLM2); however, the bitrates of SNLM2 are the
worst. Regarding the encoding time, there does not seem to be
a clear-cut winner, but on average, SNLM performs the best.
This is because the per-frame encoding time te is composed
of both the time spent training the CNN ttr (divided by the
number of frames F) and the time spent encoding one frame.
The time spent encoding one frame is shorter for the lighter
models, whereas the CNN training time can sometimes be
shorter when the model is more complex. Note that for all
the experimental models, we employ the same training policy,
which decides to end the training when the training loss stops
to improve.

In Table 4, we compare the results obtained with different
numbers of training frames. In our default configuration, the
number of training frames is set to 5. Since the number of
training frames does not affect the decoding times, we only
present the encoding times in Table 4. According to Table 4,
the per-frame encoding time te increases dramatically with
the increasing number of training frames since the CNN
training takes longer and the best encoding times are obtained

in the single training frame case. For MVUB, the best bitrates
are obtained with 20 training frames, whereas for the 8i
dataset, the best bitrates are obtained with 10 training frames,
yet the bitrate differences between the 10 and 20 training
frame scenarios are rather small.

In Table 5, the results obtained with the default SeqNOC
are compared with the single phase version of SeqNOC,
which is called SeqNOC-SP. In SeqNOC-SP, we do not
employ the four-phase strategy; instead, there is a single
phase in which the probability of occupancies for a section
z = z0 is estimated. The SeqNOC-SP operates on less infor-
mative contexts, yet it has the advantage of speed.We perform
this comparison mainly to show the improvement brought by
the usage of phases.

Since the algorithms run at different speeds on different
hardware, we compare the speed performance of different
algorithms by comparing the ratios between the runtime of
an algorithm and the runtime of TMC13 (reported in the
publication describing the algorithm). The ratios between the
average (per-frame) encoding/decoding times of the differ-
ent methods and the average (per-frame) encoding/decoding
times of TMC13 for PCs from MVUB and the 8i sequences
are presented in Table 6. The encoding time ratio for FRL
is taken from [32]. The runtimes for DGM, NNOC, fNNOC,
MSVDNN, VoxelDNN and SeqNOC were measured on an
NVIDIA RTX 2080, and the runtimes for TMC13 were
measured as 2.9 seconds for encoding and 2.8 seconds
for decoding on an Intel(R) Xeon(R) Silver 4110 CPU @
2.10 GHz [24]. From Table 6, it is evident that FRL [32] is
the fastest method, whereas SeqNOC-SP and SeqNOC are
the third and fourth fastest, respectively. We note that the
remaining methods are significantly slower than SeqNOC,
and out of the NN-based methods, only the SeqNOC and
SeqNOC-SP encoding times include the time spent for CNN
training.

In Figure 9, we plot the average per-frame bitrate of sev-
eral methods vs. the encoding time ratios to the TMC13
encoding time. Such 2D visualization allows us to roughly
demonstrate the trade-off between bitrates and runtimes for
different algorithms. In Fig. 9, the convex hull formed by

83686 VOLUME 10, 2022



E. C. Kaya, I. Tabus: Lossless Compression of Point Cloud Sequences Using Sequence Optimized CNN Models

TABLE 3. Bitrates [bpov], encoding times (te[s]) and decoding times (td [s]) obtained with four different CNN models.

TABLE 4. Bitrates [bpov] and encoding times (te[s]) for SeqNOC obtained with different numbers of training frames.

TABLE 5. Bitrates [bpov], encoding times (te[s]) and decoding times
(td [s]) obtained with the default (4-phase) model vs. the single phase
model.

the datapoints corresponding to various algorithms is also
drawn as a blue dashed line. The bitrates are averaged over
4 sequences, namely, phil, ricardo, loot and redandblack, for
which the bitrates were available for all of the plotted meth-
ods. Similarly, in Fig. 10 are plotted the bitrates vs ratios of
decoding times. From Figures 9 and 10, it is evident that both
the default SeqNOC and its single-phase version SeqNOC-
SP provide good trade-offs between encoding/decoding times
and bitrates.

A. COMPRESSING A SINGLE POINT CLOUD WITH SeqNOC
Although the SeqNOC scheme is intended for the compres-
sion of sequences, it can also be used to compress a single

point cloud, where the CNN optimization is performed with
the context-histogram pairs extracted from the single point
cloud. In the single point cloud case, the cost of transmitting
the CNN parameters becomes quite significant; therefore,
we choose to employ a CNN model with a small number of
parameters. The model we use for the single point cloud case
is SNLM2. The encoding time for a single PC is on the order
of minutes since the time spent for optimization (ttr ) is on
the order of minutes, whereas the decoding time is still on
the order of seconds for a single point cloud. This property
makes encoding of single frames by the STM strategy well
suited for ‘‘encoding once decoding many times’’ scenarios
(i.e., for broadcasting).

The bitrates obtained for the point clouds from Cat1A [36]
are presented in Table 7. The point clouds with resolutions
higher than 10 bits are downsampled to 10 bits. The bitrates
reported in the SNLM2 column include the model cost (the
cost of transmitting the model). Since the model costs for the
single point cloud case are much more significant than those
for the sequence case, the model costs for each PC are also
shown separately in the Model Cost column. Note that for all
of the PCs, the model structure and thus the model codelength
CLm = 32 × nw are exactly the same, and the model cost
in bpv (CLm/np, where np is the number of points) varies
due to the differences in the number of points in each PC.
From Table 7, one can see that SNLM2 outperforms TMC13
for all the point clouds except three of them. Furthermore,
SNLM2 offers significantly better bitrates on average when

VOLUME 10, 2022 83687



E. C. Kaya, I. Tabus: Lossless Compression of Point Cloud Sequences Using Sequence Optimized CNN Models

TABLE 6. Ratios between the average (per-frame) runtime of different methods and the average (per-frame) runtime of TMC13.

FIGURE 9. Average bitrate vs. encoding time ratio to TMC13 encoding
time.

FIGURE 10. Average bitrate vs. decoding time ratio to TMC13 decoding
time.

compared to TMC13. On the other hand, DGM [24] performs
significantly better on shiva and frog.

IV. DISCUSSION
Our proposed scheme SeqNOC is a follow-up version of the
schemes NNOC and fNNOC proposed in [17], with many
architectural changes made with the main goal of achieving

a reasonable per-frame decoding time. Additionally, from the
encoder point of view, the structure of the neural network was
changed and chosen to obtain a reasonable time for the opti-
mal design of the CNN model based on several frames of the
sequence. In a nutshell, we changed the schemes from [17] to
allow a specific design of the CNN for each sequence with a
faster encoding time (including even the time for optimizing
a specific CNN for each sequence) and a faster decoding
time, retaining almost as good lossless coding performance as
in [17]. The similarities and differences are reviewed below in
detail.

First, we discuss the similarities. The encoding of the
occupancies of the voxels is performed in a multi-resolution
fashion, sequentially encoding the octree representation at
increasing resolutions. As with any context-based compres-
sion scheme, we tried to ensure the most informative contexts
around the voxels to be encoded, using the voxels at the pre-
vious resolution (all of them being already encoded) and the
voxels that are already encoded from the current resolution.
In all SeqNOC and NNOC versions, we scan the voxels at
a current resolution plane-by-plane (with each plane perpen-
dicular on a chosen coordinate axis). Looking at the 4×L×L
(L = 5 for NNOC) neighbors of the voxel to be encoded
in the current resolution, we see in the planes below it, z =
z0−2 and z = z0−1, voxels for which the occupancy status is
known, providing good contextual information. In the plane
above, at z = z0+1, the current resolution status is not known,
but the previous resolution level pixels are already encoded,
so we can create the candidate voxels at the current resolution
(those that resulted from the split of an occupied voxel at the
previous resolution). This is still useful contextual informa-
tion but less useful than the information at z = z0 − 2 and
z = z0 − 1.
In the current plane, z = z0, one can use the voxels

from the current resolution that have been already encoded
(i.e., b(L × L − 1)/2c voxels), as is done in NNOC, which
results in a good coding performance, but this implies that
the computation of the occupancy probabilities must be done
at the decoder, one-by-one sequentially, for all the voxels in
a plane z = z0, resulting in very slow decoding. The fNNOC
did not use all the voxels that have been already encoded
from the current resolution at z = z0, instead using only the
candidate status at z = z0, which resulted in faster decoding
than NNOC, but with a lower compression performance.
In SeqNOC, we use in a similar way the occupancy status
of the neighbor voxels at z = z0 − 2 and z = z0 − 1 and the
candidacy status of the voxels at z = z0 + 1; however, the
main change is in forming the context from the neighboring
voxels at z = z0.

83688 VOLUME 10, 2022



E. C. Kaya, I. Tabus: Lossless Compression of Point Cloud Sequences Using Sequence Optimized CNN Models

TABLE 7. Bitrates [bpov] for TMC13, DGM, and for SNML2 (the lighter
complexity version of SeqNOC, see Table 2) for the point clouds from
Cat1A [36] in 10 bits resolution. The bitrate costs of transmitting the CNN
parameters are included in the SNLM2 column but are also shown
separately in the model cost column.

Some of the differences are listed next. To make a scheme
even faster than fNNOC at the decoder and to improve
the compression performance, in SeqNOC, we made two
changes. First, we defined the element to be encoded at each
arithmetic coding operation to be a block of 2 × 2 vox-
els (leading to a context of 4 × 6 × 6 voxels around the
2 × 2 voxel block), instead of a single voxel in NNOC
and fNNOC (for which the context had 4 × 5 × 5 vox-
els). The prediction capabilities of the enhanced contexts
in SeqNOC were shown in the ablation study to be better,
not being affected too much by the dilution effect of the
larger contexts. Another consequence of having a different
symbol definition is the change in the shape of the context
window.

The second change was to use a convolutional neural net-
work instead of the multilayer neural network, which allowed
us to compute all the probabilities at all the voxels very
fast in parallel from a plane z = z0. In NNOC, a two-
layer MLP was employed, whereas in SeqNOC, a four-layer
CNN, having fewer parameters than the MLP of NNOC,
was employed. The CNN formulation enables faster exe-
cution, which helps to reduce the encoding/decoding times
significantly.

Additionally, to further improve the compression perfor-
mance, the pass of the encoding through plane z = z0 was
divided into four phases so that in each phase, the computa-
tion of the encoding probabilities can be performed in parallel
but the contexts from the available voxels in z = z0 are more
informative, including the voxels z = z0 already encoded in
the previous phases.

The training stage is different. First, NNOC is a generically
trained model, and therefore, the results obtained with NNOC
are dependent on the training data. If the test data are not
similar to the training data, the bitrate performance may
deteriorate. In SeqNOC, the entropymodel adapts to the input

sequence itself. Since the symbols are defined in a different
way than it was in NNOC, the loss function is also formulated
in a different way.

In NNOC, during decoding, NN was executed for each
candidate location in the current section; hence, the num-
ber of phases was as high as the number of candidates in
the current section, resulting in very slow decoding. The
four-phase approach in SeqNOC provides a good balance
between bitrates and decoding speed.

Compared to the current state-of-the-art, our method is
distinguished by two main features. First, the selection of the
encoding unit (a 2× 2 block of voxels) and its context (in the
neighborhood of the block, utilizing the already encoded vox-
els at both the current resolution and the previous resolution
of the octree), which allows encoding and decoding with rich
contextual information in a parallel fashion along the plane-
by-plane scanning of the point cloud at each resolution, which
reaches competitive encoding and decoding speeds. Second,
the introduction of lightweight CNN models, which can be
trained quickly at the encoder and can be attached as a header
to the bitstream for the full sequence without greatly affecting
the overall bitrate, ensuring a very specific CNN model for
the task at hand and alleviating the question of whether
a generically trained CNN is suitable for the sequence
at hand.

V. CONCLUSION
We have introduced a lossless geometry encoding scheme
for sequences of dense point clouds using CNN models that
are designed in a new paradigm, named specifically trained
models, which has not been used until now. The learning
of the CNN model can be done fast enough at the encoder,
so that the learning plus sequence encoding time divided
by the number of frames, gives very competitive per frame
encoding times, at a bitrate performance better than that
obtained in the competing paradigm of generically trained
models. The coding probability models at each 2 × 2 block
are computed in parallel by the convolutional neural network
at each section z = z0 through the point cloud, contributing to
a fast encoding and decoding performance. To improve the
decoding time, which has unreasonably large values for the
published solutions [11], [17], [26], we adopt a four-phase
encoding at each section, such that the content of the contexts
improves from one phase to another, including the recently
encoded/decoded voxels inside the context after each phase.
Several variations of the method were proposed that cov-
ered various interesting trade-offs (e.g. compression ratio vs.
time complexity). We discussed the performance of the pro-
posed solution compared to the recently published schemes
and found that the introduced features produce significant
improvements.

REFERENCES
[1] S. Schwarz, M. Preda, V. Baroncini, M. Budagavi, P. Cesar, P. A. Chou,

R. A. Cohen, M. Krivokuća, S. Lasserre, and Z. Li, ‘‘Emerging MPEG
standards for point cloud compression,’’ IEEE J. Emerg. Sel. Topics Cir-
cuits Syst., vol. 9, no. 1, pp. 133–148, Mar. 2018.

VOLUME 10, 2022 83689



E. C. Kaya, I. Tabus: Lossless Compression of Point Cloud Sequences Using Sequence Optimized CNN Models

[2] T. Ebrahimi, S. Foessel, F. Pereira, and P. Schelkens, ‘‘JPEG Pleno: Toward
an efficient representation of visual reality,’’ IEEE Multimedia, vol. 23,
no. 4, pp. 14–20, Oct./Dec. 2016.

[3] E. S. Jang, M. Preda, K. Mammou, A. M. Tourapis, J. Kim, D. B. Graziosi,
S. Rhyu, and M. Budagavi, ‘‘Video-based point-cloud-compression stan-
dard in MPEG: From evidence collection to committee draft [standards
in a nutshell],’’ IEEE Signal Process. Mag., vol. 36, no. 3, pp. 118–123,
May 2019.

[4] D. Graziosi, O. Nakagami, S. Kuma, A. Zaghetto, T. Suzuki, and
A. Tabatabai, ‘‘An overview of ongoing point cloud compression standard-
ization activities: Video-based (V-PCC) and geometry-based (G-PCC),’’
APSIPA Trans. Signal Inf. Process., vol. 9, no. 1, pp. 1–15, 2020.

[5] Moving Picture Experts Group. TMC13. Accessed: Mar. 20, 2020.
[Online]. Available: https://github.com/MPEGGroup/mpeg-pcc-tmc13

[6] E. Peixoto, ‘‘Intra-frame compression of point cloud geometry using
dyadic decomposition,’’ IEEE Signal Process Lett., vol. 27, pp. 246–250,
2020.

[7] E. Peixoto, E. Medeiros, and E. Ramalho, ‘‘Silhouette 4D: An inter-frame
lossless geometry coder of dynamic voxelized point clouds,’’ inProc. IEEE
Int. Conf. Image Process. (ICIP), Oct. 2020, pp. 2691–2695.

[8] J.Wang, D. Ding, Z. Li, and Z.Ma, ‘‘Multiscale point cloud geometry com-
pression,’’ in Proc. Data Compress. Conf. (DCC), Mar. 2021, pp. 73–82.

[9] H. Liu, H. Yuan, Q. Liu, J. Hou, and J. Liu, ‘‘A comprehensive study and
comparison of core technologies forMPEG 3-D point cloud compression,’’
IEEE Trans. Broadcast., vol. 66, no. 3, pp. 701–717, Sep. 2020.

[10] S. Milani, E. Polo, and S. Limuti, ‘‘A transform coding strategy
for dynamic point clouds,’’ IEEE Trans. Image Process., vol. 29,
pp. 8213–8225, 2020.

[11] D. T. Nguyen, M. Quach, G. Valenzise, and P. Duhamel, ‘‘Learning-based
lossless compression of 3D point cloud geometry,’’ inProc. IEEE Int. Conf.
Acoust., Speech Signal Process. (ICASSP), Jun. 2021, pp. 4220–4224.

[12] E. Ramalho, E. Peixoto, and E. Medeiros, ‘‘Silhouette 4D with context
selection: Lossless geometry compression of dynamic point clouds,’’ IEEE
Signal Process. Lett., vol. 28, pp. 1660–1664, 2021.

[13] E. C. Kaya, S. Schwarz, and I. Tabus, ‘‘Refining the bounding volumes for
lossless compression of voxelized point clouds geometry,’’ in Proc. IEEE
Int. Conf. Image Process. (ICIP), Sep. 2021, pp. 3408–3412.

[14] M. Quach, G. Valenzise, and F. Dufaux, ‘‘Learning convolutional trans-
forms for lossy point cloud geometry compression,’’ in Proc. IEEE Int.
Conf. Image Process. (ICIP), Sep. 2019, pp. 4320–4324.

[15] D. C. Garcia and R. L. de Queiroz, ‘‘Context-based octree coding for point-
cloud video,’’ in Proc. IEEE Int. Conf. Image Process. (ICIP), Sep. 2017,
pp. 1412–1416.

[16] L. Huang, S. Wang, K. Wong, J. Liu, and R. Urtasun, ‘‘OctSqueeze:
Octree-structured entropy model for LiDAR compression,’’ in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2020,
pp. 1310–1320.

[17] E. C. Kaya and I. Tabus, ‘‘Neural network modeling of probabilities
for coding the octree representation of point clouds,’’ in Proc. IEEE
23rd Int. Workshop Multimedia Signal Process. (MMSP), Oct. 2021,
pp. 1–6.

[18] D. C. Garcia, T. A. Fonseca, R. U. Ferreira, and R. L. de Queiroz,
‘‘Geometry coding for dynamic voxelized point clouds using octrees and
multiple contexts,’’ IEEE Trans. Image Process., vol. 29, pp. 313–322,
2019.

[19] R. L. de Queiroz, D. C. Garcia, P. A. Chou, and D. A. Florencio, ‘‘Distance-
based probability model for octree coding,’’ IEEE Signal Process. Lett.,
vol. 25, no. 6, pp. 739–742, Jun. 2018.

[20] Z. Que, G. Lu, and D. Xu, ‘‘VoxelContext-Net: An octree based framework
for point cloud compression,’’ in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2021, pp. 6042–6051.

[21] J.Wang, H. Zhu, H. Liu, and Z.Ma, ‘‘Lossy point cloud geometry compres-
sion via end-to-end learning,’’ IEEE Trans. Circuits Syst. Video Technol.,
vol. 31, no. 12, pp. 4909–4923, Dec. 2021.

[22] X. Wen, X. Wang, J. Hou, L. Ma, Y. Zhou, and J. Jiang, ‘‘Lossy geom-
etry compression of 3D point cloud data via an adaptive octree-guided
network,’’ in Proc. IEEE Int. Conf. Multimedia Expo (ICME), Jul. 2020,
pp. 1–6.

[23] D. E. O. Tzamarias, K. Chow, I. Blanes, and J. Serra-Sagristà, ‘‘Compres-
sion of point cloud geometry through a single projection,’’ in Proc. Data
Compress. Conf. (DCC), Mar. 2021, pp. 63–72.

[24] D. T. Nguyen, M. Quach, G. Valenzise, and P. Duhamel, ‘‘Lossless
coding of point cloud geometry using a deep generative model,’’ IEEE
Trans. Circuits Syst. Video Technol., vol. 31, no. 12, pp. 4617–4629,
Dec. 2021.

[25] M. Quach, J. Pang, D. Tian, G. Valenzise, and F. Dufaux, ‘‘Survey on
deep learning-based point cloud compression,’’ Frontiers Signal Process.,
vol. 2, pp. 1–15, Feb. 2022.

[26] D. T. Nguyen, M. Quach, G. Valenzise, and P. Duhamel, ‘‘Multiscale
deep context modeling for lossless point cloud geometry compression,’’ in
Proc. IEEE Int. Conf. Multimedia Expo Workshops (ICMEW), Jul. 2021,
pp. 1–6.

[27] A. F. R. Guarda, N. M. M. Rodrigues, and F. Pereira, ‘‘Adaptive deep
learning-based point cloud geometry coding,’’ IEEE J. Sel. Topics Signal
Process., vol. 15, no. 2, pp. 415–430, Feb. 2021.

[28] D. Meagher, ‘‘Geometric modeling using octree encoding,’’
Comput. Graph. Image Process., vol. 19, no. 2, pp. 129–147,
Jun. 1982.

[29] A. L. Maas, A. Y. Hannun, and A. Y. Ng, ‘‘Rectifier nonlinearities improve
neural network acoustic models,’’ in Proc. ICML, 2013, vol. 30, p. 3.

[30] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Delving deep into rec-
tifiers: Surpassing human-level performance on ImageNet classifica-
tion,’’ in Proc. IEEE Int. Conf. Comput. Vis. (ICCV), Dec. 2015,
pp. 1026–1034.

[31] M. Alzantot, Z. Wang, and M. B. Srivastava, ‘‘Deep residual neural net-
works for audio spoofing detection,’’ 2019, arXiv:1907.00501.

[32] D. E. O. Tzamarias, K. Chow, I. Blanes, and J. Serra-Sagrista, ‘‘Fast run-
length compression of point cloud geometry,’’ IEEE Trans. Image Process.,
vol. 31, pp. 4490–4501, 2022.

[33] C. Loop, Q. Cai, S. O. Escolano, and P. A. Chou,Microsoft VoxelizedUpper
Bodies—A Voxelized Point Cloud Dataset, document ISO/IEC JTC1/SC29
Joint WG11/WG1 (MPEG/JPEG) Input document m38673/M72012,
2016.

[34] E. d’Eon, B. Harrison, T. Myers, and P. A. Chou, 8I Voxelized
Full Bodies—A Voxelized Point Cloud Dataset, document ISO/IEC
JTC1/SC29 Joint WG11/WG1 (MPEG/JPEG) Input document
WG11M40059/WG1M74006, 2017.

[35] F. Mentzer, E. Agustsson, M. Tschannen, R. Timofte, and L. Van
Gool, ‘‘Practical full resolution learned lossless image compression,’’
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2019, pp. 10629–10636.

[36] S. Schwarz, G. Martin-Cocher, D. Flynn, and M. Budagavi, Com-
mon Test Conditions for Point Cloud Compression, document ISO/IEC
JTC1/SC29/WG11 w17766, Ljubljana, Slovenia, 2018.

[37] R. Mekuria, K. Blom, and P. Cesar, ‘‘Design, implementation, and
evaluation of a point cloud codec for tele-immersive video,’’ IEEE
Trans. Circuits Syst. Video Technol., vol. 27, no. 4, pp. 828–842,
Apr. 2017.

[38] C. Cao, M. Preda, V. Zakharchenko, E. S. Jang, and T. Zaharia, ‘‘Compres-
sion of sparse and dense dynamic point clouds—Methods and standards,’’
Proc. IEEE, vol. 109, no. 9, pp. 1537–1558, Sep. 2021.

[39] R. L. de Queiroz and P. A. Chou, ‘‘Motion-compensated compression of
dynamic voxelized point clouds,’’ IEEE Trans. Image Process., vol. 26,
no. 8, pp. 3886–3895, Aug. 2017.

[40] D. C. Garcia and R. L. de Queiroz, ‘‘Intra-frame context-based octree
coding for point-cloud geometry,’’ in Proc. 25th IEEE Int. Conf. Image
Process. (ICIP), Oct. 2018, pp. 1807–1811.

[41] S. Milani, ‘‘Fast point cloud compression via reversible cellular automata
block transform,’’ in Proc. IEEE Int. Conf. Image Process. (ICIP),
Sep. 2017, pp. 4013–4017.

[42] J. Kammerl, N. Blodow, R. B. Rusu, S. Gedikli, M. Beetz, and
E. Steinbach, ‘‘Real-time compression of point cloud streams,’’ in Proc.
IEEE Int. Conf. Robot. Autom., May 2012, pp. 778–785.

[43] D. Lazzarotto, E. Alexiou, and T. Ebrahimi, ‘‘On block prediction for
learning-based point cloud compression,’’ in Proc. IEEE Int. Conf. Image
Process. (ICIP), Sep. 2021, pp. 3378–3382.

[44] T. Huang and Y. Liu, ‘‘3D point cloud geometry compression on
deep learning,’’ in Proc. 27th ACM Int. Conf. Multimedia, Oct. 2019,
pp. 890–898.

[45] L. Gao, T. Fan, J. Wan, Y. Xu, J. Sun, and Z. Ma, ‘‘Point cloud geometry
compression via neural graph sampling,’’ in Proc. IEEE Int. Conf. Image
Process. (ICIP), Sep. 2021, pp. 3373–3377.

83690 VOLUME 10, 2022



E. C. Kaya, I. Tabus: Lossless Compression of Point Cloud Sequences Using Sequence Optimized CNN Models

[46] H. Roodaki, M. Dehyadegari, and M. N. Bojnordi, ‘‘G-Arrays: Geo-
metric arrays for efficient point cloud processing,’’ in Proc. IEEE
Int. Conf. Acoust., Speech Signal Process. (ICASSP), Jun. 2021,
pp. 1925–1929.

[47] Y. Xu, W. Zhu, Y. Xu, and Z. Li, ‘‘Dynamic point cloud geom-
etry compression via patch-wise polynomial fitting,’’ in Proc. IEEE
Int. Conf. Acoust., Speech Signal Process. (ICASSP), May 2019,
pp. 2287–2291.

EMRE C. KAYA was born in Edirne, Türkiye,
in 1990. He received the B.S. and M.S. degrees
from the Department of Electrical and Electronics
Engineering, Middle East Technical University,
Ankara, Türkiye, in 2015 and 2018, respectively.
He is currently pursuing the Ph.D. degree with
the Computing Sciences Unit, Tampere Univer-
sity, under the supervision of Prof. I. Tabus.
His research interests include point cloud com-
pression, image compression, and visual object
detection.

IOAN TABUS (Senior Member, IEEE) received
the Ph.D. degree (Hons.) from the Tampere Uni-
versity of Technology, Finland, in 1995.

He held teaching positions with the Department
of Control and Computers, Politehnica University
of Bucharest, from 1984 to 1995. Since 1996,
he has been a Senior Researcher, and since January
2000, he has been a Professor with the Depart-
ment of Signal Processing, Tampere University
of Technology, which was merged into Tampere

University, in 2019. He is the coauthor of two books and more than 250 pub-
lications in the fields of signal compression, image processing, bioinfor-
matics, and system identification. His research interests include light field
image processing, plenoptic image compression, point cloud compression,
audio, image, data compression, genomic signal processing, and statistical
signal processing. He was a co-recipient of the 1991 Train Vuia Award
of Romania, the 2001 NSIP Best Paper Award, the 2004 NORSIG Best
Paper Award, the 2016 3DTV Best Paper Award, and the ICIP 2017 Light
Field Image Coding Challenge Award. He is an Associate Editor of the
IEEE TRANSACTIONS ON IMAGE PROCESSING. He served as an Associate Editor
for the IEEE TRANSACTIONS ON SIGNAL PROCESSING and EURASIP Journal
on Advances in Signal Processing. He has served as a Guest Editor for
special issues for the IEEE Signal Processing Magazine, EURASIP Journal
on Advances in Signal Processing, and the IEEE JOURNAL OF SELECTED TOPICS

IN SIGNAL PROCESSING. He was the Editor-in-Chief of the EURASIP Journal
on Bioinformatics and Systems Biology, from 2006 to 2014.

VOLUME 10, 2022 83691


