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ABSTRACT When facing severe weather events, a distribution system may suffer from the loss or failure
of one or more of its components, the so-called N-K contingencies. Nevertheless, taking advantage of the
system’s isolate switches and the increasing availability of distributed energy resources (DERs), a distri-
bution system may be clustered into microgrids able to withstand such contingencies with minimal power
interruption. In this perspective, this work proposes a novel bilevel optimization framework for planning
microgrids in active distribution systems under a resilience-oriented perspective. For this, first, the outer level
optimization features a multi-objective problem seeking to optimally allocate DERs and isolate switches in
the distribution network while balancing the competing objectives of cost, resilience, and environmental
impact. Next, the inner level handles the optimization problem pertaining to the optimal operation of the
microgrids that can be created by harnessing local DERs and isolate switches allocated in the outer level.
Further, given the proposed approach resilience-oriented focus, the developed framework employes deep
learning models based on deep neural network (DNN) architectures trained using Bayesian Regularization
Backpropagation (BRB) technique. This strategy allows for avoiding the modeling simplifications typically
employed to alleviate the computational burden that can otherwise jeopardize planning solutions’ feasibility.
Thus, enabling the accurate consideration of microgrids’ operational behavior, including hierarchal controls
and the stochastic nature of loads, generation, and weather-induced line failures, especially critical aspects
under resilience-oriented planning. Simulation case studies are developed to demonstrate the effectiveness
of the developed planning framework.

INDEX TERMS Resilience, stochastic linear optimal power flow, microgrids formation, NSGA-II, deep

learning.
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ES Energy Storage unit

GC Grid-Connected operation

HILP High Impact Low Probability

IS Islanded operation

ISW Isolate Switch

ISWseP Isolate Switch at the upstream substation

MG(s) Microgrid(s)

MILP Mixed Integer Linear Programming

NaS Technology Sodium Sulfur

N-K Level of contingencies

NREL National Renewable Energy Laboratory

NSGA-II Non-dominated Sorting Genetic Algo-
rithm II

NYISO New York Independent System Operator

O&M Operation and Maintenance

OPF/LOPF Non-Linear/Linear Optimum Power
Flow

PHEVs Plug-In Hybrid Electric Vehicles

PQ mode Active and Reactive power control mode

PV Photovoltaic unit

SPF System Performance

WT Wind Turbine unit

B. SET AND NUMBER

Npr
Npus
Nddg
Nes
Nfeat
npl
Risw
nyG
Npath
py
npw
Ny
N/
Nfre
Nsam
Nr

Nyt

Number of the branches in the test system
Number of buses in the test system

Number of DDGs in the planning problem
Number of ESs in the planning problem
Number of features in a vector of sample
Number of hidden layers for DNN model
Number of ISWs in the planning problem
Number of the microgrids

Number of the paths search

Number of PVs in the planning problem
Number of pieces for piecewise linearization
Number of normal scenarios

Number of severe scenarios

Number of generated scenarios in Qf'°
Number of samples for training DNN model
Planning horizon time e.g., 24h

Number of WTs in the planning problem
Continuous variable or real number

Integer variable or binary number

Set of buses in the test system

Set of candidate buses for DDGs

Set of candidate buses for ESs

Set of candidate branches for SSWs

Set of candidate buses for PV units

Set of candidate buses for WT units

Set of lines or branches in the test system
Set of failure branches in the test system

Set of targets node(s)

Set of generated scenarios for normal situation
Set of generated scenarios for severe situations
considering network SPF progression phase I
and II (i.e., t¢ — t")
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" :
orig
Qy

pre
Q
Qsam

QS@

Qr

Original set before reduction of generated sce-
narios for severe situation considering network
SPF progression phase I and II (i.e., ¢ — t")
Set of generated pre-scenarios for severe situa-
tions considering only network SPF progression
phaseI (i.e., t* — 4

Set of DNN training samples

Set of seasonal periods i.e. {fall, winter, spring,
summer }

Set of time segment in planning horizon e.g. {1,
2,...,24}

C. PARAMETERS AND VECTOR/MATRIX

AMG
APL; s se

AV
AV

s,5€

I-1II,orig
AVs, se

AVl

s, se

Bij,t,s,se

Bs, se

m
t,s,s€

BFa;
ail
!

bus’"

bus?¢

Cd nor

Adjacency matrix for generating MGS**
Annual peak load pattern in percentage at
time ¢ for s scenario of season se

Line or branch availability binary matrix

. . 111, ori
Reduction version of AV orig

Matrix constraining the binary element
representing the availability of branches
for s scenario of season se, considering
full network SPF progression i.e., phase |
andII (i.e., ¢ —> t")

Matrix constraining the binary element
representing the availability of branches
for s scenario of season se, considering
only network SPF progression phase I (i.e.,
¢ — 19)

Element of the time-coupled susceptance
matrix denotes the connection of bus i to
bus j at time ¢ for s scenario of season se
3D matrix containing the time coupled sus-
ceptance matrices for s™ scenario of season
se

Binary input parameter indicates the oper-
ation mode of the microgrid at time ¢ for s
scenario of season se

Vector of biases for i hidden layer of
DNN architecture

Element of the susceptance matrix denote
the connection of bus i to bus j

Vector containing binary elements bff’t’ 5.5
indicates the operation mode for each bus
at time ¢

Binary vector represents the bus(es)
affected/non-affected by fault(s) at time ¢

Branch location corresponding to failure
branch i

Bus online or bus non affected by fault(s)
Vector containing binary elements
bus}’; ¢ ;. that indicates bus energize/non-
energize at time ¢ for s scenario of season
se

Normal Cumulative Distribution Function
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DDGSite

n,sp

DDG}¥
DDG*

d
DDG[ own

DIJK (.)

DoD"*

ES,size
E; )
site
ESS[,
down
ES¢
fdnn’

f;'dnn ()
ftbus

FAP"
FAblls

il
fobri™
Jb, tb
floc

Gbus
Gij ,1,8,5€
Gs, se

Gij

hddg

high ,, high
hy "y
hlow hlow
1 /2

—br

INdrm
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Location of n DDG of sample sp

Vector containing the location of the DDGs
for sample sp

Vector containing the size of DDGs for
sample sp

Vector containing binary elements
DDG" that indicate the n™ DDG
deactivation at time ¢

Shortest path between two point by Dijk-
stra algorithm

Maximum Depth of Discharge allowable
for ES

Energy rating of ES at candidate bus i
Vector containing the location of the ESs
for sample sp

Vector containing the status of the ESs (i.e.,
ESS%own y at time ¢

i,t,s,se
Activation function for the output layer
Activation function for the i”* hidden layer
Vector containing f’% that indicate the
location of the controllable bus at time ¢ for
an™ DDG
Binary matrix represents branches affected
by the different locations of faults
Binary matrix represents buses affected by
the different locations of faults
From bus of the failure overhead line of
branch i
Set of from bus and to bus for the test case
topology
Vector containing the i fault at location
i.e., floc; ; at time ¢
Undirected graph representation by set of
vertices (nodes) ND” and set of edge
(branch) ED?"
Element of the time-coupled conductance
matrix denotes the connection of bus i to
bus j at time # for s scenario of season se
3D matrix containing the time coupled con-
ductance matrices for s” scenario of season
se
Element of the conductance matrix denotes
the connection of bus i to bus j

Vector containing hidg that indicate the
presents of DDG for m MG

Pre-determined range for determining ¢”"

for the case corresponding to higher wind
gust high
Vi,s,se cri
Pre-determined range for determining
" for the case corresponding to

low gust high
cri — Vt,s,se = Ve

Maximum ampacity of the branch k
Matrix containing vector IN' ‘Sil’,’” for train-
ing DNN model, sp € Qsam

1%

ISWopen

ISWsite
Jgust

kiw
Ks,xe /KHI

BhG s,se
K CcOo2

GRID
KC 02

DDG
Li,t,s,se

ES
i,t,s,s€

pPCcC
Li,t,s,se

Lbr

k.,t,s,se

LFa;

Madj

=PV
SWT
P

dnn

pi,sp

Pi,t,s,xe

L
i,t,s,se

PV
i,t,s,s€

Vector containing the location of m” ISW
(i.e., ISW,;"“") in the open state

Vector containing the location of ISWs
Constant factor for calculating wind-gust
Integral gain for frequency restoration for
DDG with droop/2"¢

Level of contingencies

Carbon emission factor in kg/kWh accord-
ing to energy generated by DDGs

Carbon emission factor kg/kWh according
to energy imported from the main grid

Set of piecewise linearization for DDG
quadratic constraint

Set of piecewise linearization for ES
quadratic constraint

Set of piecewise linearization for PCC
quadratic constraint

Set of piecewise linearization for line
ampacity quadratic constraint

Binary vector represents the line(s)
affected/non-affected by fault(s) at time ¢
Adjacency matrix

Active droop gain of the i DDG unit with
primary droop/2"d

Binary element of M2% represents the con-
nection between two adjacent node ij
Vector of m" microgrid obtained by DFS
of m"rootMS

Initial set of microgrid formation

Set of buses in m"” MG formed at time ¢
Matrix containing the set of possible
microgrids formation due to fault at time
t

Mean sum of squares of the DNN errors
Mean sum of squares of the DNN weights
Specified mean time to repair under normal
weather conditions

Number of the poles according to span
length of branch i

Reactive droop gain of the i DDG unit
with primary droop/2™

Trained DNN model for target n

Planning upper bound for DDGs allocation
Planning upper bound for ESs allocation
Planning upper bound for PVs allocation

Planning upper bound for WTs allocation

Vector of neuron pre-activation obtained
by i hidden layer according to sample sp
Active power injected to bus i at time ¢ for
s™ scenario of season se

Active power load for bus i at time ¢ for s
scenario of season se

Active power generated by i PV unit at
time ¢ for s scenario of season s
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wT
Pi,t,s,se

GRID+
P t,s,s€

DG, si:
PjD size

£S i
Pi S, size

,peak
i,t,s,s€e

V.si
Pf size

PIWT ,size

—bus

P

1

poo
PESP

i
P ste,

7
PSWtep

PATH""
P AHbllS
pathf.”

b
hl us

pat

PC \%4

PFiDDG’4th, PFiDDG, 1st

PFTR,4th’ PF-TR’ 1st

1 1

site
PV

down
PV
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L
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Active power generated by i
WT unit at time ¢ for s sce-
nario of season s

Active power imported from
the main grid at time 7 for s
scenario of season se. Its cor-
responding to szclc’l’ sse > 0
Active power rating of DDG at
candidate bus i

Active power rating of ES at
candidate bus i

Original active peak load from
data sheet, bus i at time ¢ for
s™ scenario of season se
Active power rating of PV at
candidate bus i

Active power rating of WT at
candidate bus i

Maximum installation power
allowable for DERs at candi-
date bus i

Step size for DDG allocation
Step size for ES allocation
Step size for PV allocation
Step size for WT allocation
Matrix containing the vector
path®" with Vi € Q9%
Matrix containing the vector
path?™s with Vi e Q1ode
Vectors containing the
branches in i road

Vectors containing the buses
in i" road

Penalty coefficient of voltage
violation in $/kV

Minimum operating power
factor allowable of the 15/4™
quadrant of the DDG unit i
Minimum operating power
factor allowable of the 15/4™
quadrant of the transformer i
Vector containing the location
of the PVs for sample sp
Vector containing the status of
the PVs (i.e., PV?{‘;_"“;’;) at time
t

Reactive power injected to bus
i at time ¢ for s” scenario of
season se

Reactive power load for bus
i at time ¢ for s scenario of
season se

QL,peak
i,t,s,se

R

STD
Ri

rdnn

ele,sp

Tit,s

rm

s,se

i,t,s,s€

ES
Fi

rootMG

round

Sbase
EiDDG
5
5"
soc?
SPFy/SPF
Stisw

n

t"

td
€

Tevent

ti‘

Trepair
br fail

i,s,s€

br,rep
i,s,s€
d
Is,se
e
ts,se
r
ts,se

TGnode

TL
TTR

TTRbr,fail

i,s,s€

TTRY

Original reactive peak load from data sheet,
bus i at time ¢ for s scenario of season se
Certain solar radiation point of the i PV
unit, typically set to 0.15 kW/m?

Solar radiation in standard test conditions
of the i PV un, typically specified as 1000
W/m?

Vector containing uniform random number
between [0,1] for planning element ele for
sample sp

Uniform random number for generating
br
i,t,s,se

Vector constraining r;" ¢, for s™ scenario
of season se

Measured solar radiation of the i PV unit
at time ¢ for s™ scenario of season se
(kW/m?)

Ratio between the rated capacity and rated
power for the ES

Vector containing root of each microgrids

Round deployment, “1” for input >
0.5 and “0” otherwise

Setting power base value

Capacity rating of the DDG unit i
Maximum rating power of the ES unit i

Capacity rate of the transformer

Initial state of charge of the ES unit
Expected/actual system performance
Status of ISW n

Time ¢ corresponding to first failure branch
revered

Time ¢ corresponding to the end of event
Time ¢ corresponding to the beginning of
impact or severe event

Time segment period of the event Phase I
Time ¢ corresponding to the full system
recovery

Time segment period of the event Phase II
Time corresponding to the moment when
branch i fail for s™ scenario of season se
Time ¢ when branch recovered or repared
for s scenario of season se

Time ¢¢ for s scenario of season se

Time #¢ for s scenario of season se

Time ¢ for s scenario of season se
Vector containing the set of target node
TG°% with Vi € Qljede

Project lifetime, typical set by 10 years
Time to repair

Time to repair of the failure branch i for s™
scenario of season se

Vector TTR containing TTR? /!

i,s,se
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vi,t,s,se

Vbase

low
Veri /V

high
cri

V spec

V~**

1

Vv

1

gust
Vse

worst
se

W;

load
WTSlte

WT ?own

Ybus

s,5€

Zi,t,s,se

z?
dnn
a, 5P

dnn
a; ,Sp

br,new
i,t,s,se

br
i,t,s,s€

dnn’
ag;

DDG
77ES
n;

cond

e, o

cond

Mpole o pole

T br,nvul
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Maximum/Minimum voltage violation of
the bus

Cut-in, cut-out, and the rated speed of the
h wind DG, respectively

Vector constraining v/" , for s
of season se

Measured wind speed of the i’ wind DG at
time 7 for s™ scenario of season se

Setting voltage magnitude base value

scenario

Specified low and higher bound for critical
wind

Nominal specified voltage during grid-
connected mode

Voltage reference for secondary control of
the DDG at candidate bus i operated with
droop/2™

Voltage reference for primary control of
the DDG at candidate bus i operated with
droop/2md

Vector containing 3-Second wind gust in
proportional to v

Matrix constraining v{’, for season se
Vector of wind scenario contains the word
wind speed in m/s

Matrix of weight for i/ hidden layer of
DNN architecture

Weighing coefficient of loads

Vector containing the location of the WTs
for sample sp

Vector containing the status of the WTs
G.e., WTf?”‘;”Y .) at time ¢

3D matrix containing the time couple
admittance matrix Y;"A‘Sw at time ¢ for s
scenario of season se
Time coupled impedance of branch i at
time ¢ for s™ scenario of season se

Initial impedance value for branch i
Vector input sample sp for DNN architec-
ture

Vector of neuron activation obtained by i
hidden layer according to sample sp

Updated number for a? at time t =
thr rep
i,s,5e
Binary element represents the availability

of branch i at time ¢ of season se

llSSE

Neuron activation obtained by the output-
layer according to sample sp

Power efficiency of the DDG

Efficiency of the energy storage

Mean and Standard deviation of the normal
distribution for conductor’s fragility curve
Mean and Standard deviation of the normal
distribution for pole’s fragility curve
Vulnerability threshold for distribution
branch

br
it,se

cond
i,t,se

Pole
i,t,se

poles
it,se

wiso
s,s€

Failure probability of the branch i at time ¢
of season se, considering nl t < “ and nf‘,’”fi

Failure probability for a conductor of
branch i at time ¢ of season se

Failure probability for single pole of
branch i at time ¢ of season se

Failure probability considering all poles of
branch i at time ¢ of season se

Probability for both wind and solar sce-
nario for s” scenario of season se obtained
by forward reduction technique

Matrix in 3D format containing the failure
probability 771 7.se for season se

Cost of load curtailment in $/kWh

Fuel cost for DDG in $/kWh

Cost $/kWh for O&M the DDG

Cost $/kWh/year for O&M the ES

Cost $/year for O&M the ISW

Cost $/kWh/year for O&M the PV

Cost $/kWh/year for O&M the WT
Market energy price in $/kWh correspond-
ing to time 7 for s” scenario of season se
Installation cost $/kWh of ES at candidate
bus i

Investment cost $/kWh for energy density
rating for ES

Investment cost $/kW for power rating for
ES

Investment cost for DDG in $/kW
Investment cost for PV in $/kW
Investment cost in $ per allocated ISW
Investment cost for WT in $/kW

Step time (i.e., 1 segment = 1 hour)

D. CONTINUOUS VARIABLES

EES

i,t,s,se

br
k,t,s,se

Pch

1,t,5,5e

Pdch

1,t,5,5€e

DDG
i,t,s,se

PCC
Pztsse

V ,use
i,t,s,se

WT ,use
i,t,s,s€

Energy SOC of the ES unit i at time ¢ for s
scenario of season se

Active power flowing across the transmission
branch k at time 7 for s”* scenario of season se
Active power charge by i/ ES unit at time 7
for 5™ scenario of season se

Active power discharge by i ES unit at time
t for s™ scenario of season se

Active power generated by DDG i at time ¢
for s™ scenario of season se

Active power imported/exported from/to the
main grid across the i PCC of the MG at time
t for s™ scenario of season se

PV’s adjusting power output and used at time
t for s™ scenario of season se

WT’s adjusting power output used at time ¢
for s™ scenario of season se
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thsse

DDG
0

i,t,s,se

QltSSe

PCC
Qi,t,s,se

i,t,s,se

Vi,t,s,se

Si,t,x,se

MG
fibl‘”,t,s,se

MG
(St s,5€

Reactive power flowing across the transmis-
sion branch k at time ¢ for s scenario of
season se
Reactive power generated by the i/ DDG unit
at time ¢ for s scenario of season se
Reactive power generate/receive of the i ES
unit, at time 7 for s™ scenario of season se
Reactive power exchange with the main grid
across the i" PCC of the MG at time ¢ for s
scenario of season se
Integrator output of secondary voltage
restoration of i DDG unit operating with
droop/2™ at time 7 for s™ scenario of season
se
Voltage magnitude of the bus i at time 7 for s
scenario of season se
Voltage magnitude angle of bus i at time ¢ for
s™ scenario of season se
Phase angle of the frequency controllable bus
fiﬁ”s at time 7 for s™ scenario of season se
Phase angle of the bus where the frequency
control act at time 7 for s scenario of season
se

E. INTEGER AND BINARY VARIABLES

curt
i,t,s,s€

b_DDG ,size

bES

it,s,se
bES,size

ISW
bi

PV ,size
bi

bWT,stze

Binary variable for load curtailment (1: load

shaded and O: load fed) for bus i at time ¢ for
s™ scenario of season se

Integer variable for DDG allocation at candi-

date bus i

Binary variable indicates the status of ES i.e.
1: discharge and O: charge

Integer variable for ES allocation at candidate

bus i

Binary decision variable for ISW allocation at

candidate branch i

Integer variable for PV allocation at candidate

bus i

Integer variable for WT allocation at candi-

date bus i

F. FUNCTION AND METRIC

AEMISPP Annual CO, emission in kg/kWh/year
according to DDGs generation
AEMISPPG-A AEMISPPS based on DNN model
AEMISORID Annual CO, emission in kg/kWh/year
according to power imported from main
grid
AEMISORID-dl AEMISORIP bhased on DNN model
AEMISOLEV Total CO, emission, use as an objective
function for the outer level problem
AEMISOLEV- Al AEMISOLEY based on DNN model
AOMCPPG Annual O&M cost for DDGs in
$/kWh/year
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AOMcDDG,dl
AOMCES

AOMCISY
AoMctY

AoMcCWT

CDDG dl

CURT
Ct s,s€

CDDG

DDG
Ct s,se

CES
CISW
CPCC

t,s,se

CPV
CVI

t,s,se

VI,MGs
Ct,x,se

C wr

CPCES:-E
CPCES’P
CpCPPe
cpPCiv
cectY
cpct
EMISPRC

§,5€

EMISGRID

§,5€

INSCES

MILP
OF s,s€

MILP,MGs
OFS se

OMCDDG

s,5€

RESI
RESIOLEV

RESIOLEV’dl
TCOLEV

AOMCPPS based on DNN model
Annual O&M cost for ESs in
$/kWh/year

Annual O&M cost for ISWs in $/year

Annual O&M cost for PVs in
$/kWh/year
Annual O&M cost for WTs in
$/kWh/year

CPPG based on DNN model

Cost of energy curtailment during IS
mode at time  for s scenario of season
se

Total cost in $ for DDGs considering TL
Cost of natural gas consumption by the
DDG units at time ¢ for s™ scenario of
season se

Total cost in $ for ESs considering TL
Total cost in $ for ISWs considering 7L
Cost of energy imported from the sub-
station across the PCC of the microgrid
at time ¢ for s scenario of season se
Total cost in $ for PVs considering TL
Cost of voltage violation at time 7 for s
scenario of season

Cost of voltage violation considering
MGs at time ¢ for s scenario of season
se

Total cost in $ for WTs considering TL
Total capital cost for ESs in $/kWh
Total capital cost for ESs in $/kW

Total capital cost for DDGs in $/kW
Total capital cost for ISWs in $

Total capital cost for PVs in $/kW

Total capital cost for WTs in $/kW
Daily CO, emission in kg/kWh accord-
ing to DDGs generation

Daily CO, emission in kg/kWh accord-
ing to power imported from main grid
Installation cost in $ for ESs
Normalized objective function for MILP
problem at time ¢ for s™ scenario of
season se

Normalized objective function for MILP
problem considering microgrid forma-
tions at time ¢ for s scenario of season
se

Pre-representation O&M cost for DDGs
in kWh/day for s™ scenario of season se
Basic resilience index

Resilience index considering SPF pro-
gression phase I and II, use as an objec-
tive function for the outer level problem.
RESIO'EV based on DNN model

Total cost in $, use as an objective func-
tion of the outer level
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TCOLEV.dl TCOLEV based on DNN model

TG Target n for training DDN model corre-
sponding to LOPF solution of sample sp

xMiLe Vector containing the decision variables
for the MILP problem formulation

XOLEV Vector containing the decision variables

for the outer level problem

I. INTRODUCTION

Power distribution systems are currently undergoing a major
transition toward sustainability. The key drivers for this
transition include the need to control electricity costs to mit-
igate global climate change, enhance/replace aging infras-
tructure, and provide reliable service [1]. On the other
hand, the increasing recurrence of extreme weather events is
demanding significant changes to the distribution networks’
operation and design. Extreme weather events can cause
power outages in what would otherwise be a reliable distri-
bution system. In fact, many distribution utilities worldwide
are increasingly suffering from power outages due to High
Impact Low Probability (HILP) events. For instance, in the
ten years from 2003 to 2013 more than 70 million customers
in the United States were affected by HILP events [2]. In order
to address this issue, major efforts toward distribution system
resilience enhancement have been introduced recently. In this
context, resilience generally refers to the ability of the system
to anticipate and withstand extreme HILP events, allowing
for a rapid recovery from possible interruptions due to the
event [3]. To date, power distribution utilities are on the
lookout for practical solutions to increase their distribution
systems’ resiliency, allowing for continuous supply for criti-
cal loads, e.g., hospitals and data centers, during HILP events
[4]. To this end, resilience enhancement solutions have been
recently put forward in the literature. Generally, these solu-
tions can be categorized into 1) planning and infrastructure-
oriented strategies, and 2) operational strategies. The first
kind of solution mainly focuses on preventive actions to
protect the power distribution system against contingencies
that may arise due to HILP events, e.g., distributed energy
resource (DER) allocation [5], optimal sizing [6] and hard-
ening [7]. On the other hand, operational strategies seek to
improve the load restoration ability in case of a HILP event,
e.g., pro-active operation [8], network configuration [9], and
microgrids (MGs) formation [10].

The concept of microgrids planning for resilience enhance-
ment was recently introduced in the literature. The majority
of the work in this area opted for a multi-stage optimiza-
tion problem for delivering the optimal resilience enhance-
ment solutions. Generally, the outer level is dedicated to the
investment decisions pertaining to the planning elements.
On the other hand, the inner level deals with the microgrids
operation strategy to hedge the contingencies as well as
to consider the microgrids operation and control behavior.
In [11], the authors proposed a two-stage model for plan-
ning microgrids considering both economics and resilience
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enhancement. In this work, the determination of the optimal
site/size of the DERs and the backup distribution lines were
considered. The problem was formulated as a master/sub-
problem and solved iteratively. The master problem focused
on deploying DERs and distribution lines while the sub prob-
lem identified the extreme events scenarios allowing for up
to N-3 contingencies. The solution delivered by this method
improved the ability of the microgrids to restore the power
supply to loads during contingencies using either DERs or
backup distribution lines. Still, this work lacked in terms
of accounting for the AC optimal power flow representing
the microgrid operation with hierarchical control. In [12] a
stochastic planning model was proposed for enhancing the
distribution systems’ resilience using a microgrid formation
strategy. The proposed method was formulated as a multiple-
stage optimization model. The upper stage dealt with the
optimal line hardening and distributed generation (DG) allo-
cation while the lower stage dealt with the optimum operation
strategies,i.e., network reconfiguration, microgrids formation
and demand-side management. This work considered the
uncertainty of loads as well as the uncertainty of the damage
in the feeders caused by the weather events. Still, this work
only considered dispatchable DG units. Renewable energy
resources and energy storage units were not considered.
Additionally, the microgrid hierarchical control structure was
not considered in modeling the microgrid operation. The
work in [6] focused on developing a planning model for
the optimal sizing of isolated networked MGs considering
the trade-off between economics and resilience enhancement.
In this work, the problem was formulated as a three-level,
wherein the first level focused on the optimal sizing of the
DERs and energy storage considering the normal operation
(without contingencies). The second level coordinated with
the third level allowed for considering both normal operation
and emergency operation of isolated networked MGs. For
each level, the AC optimal power flow has been used for
delivering the minimum of the generation cost, load shedding,
or both according to the operation condition (i.e., normal and
emergency). A time-coupled AC optimal power flow has been
simulated for 4 representative days to allow for the uncertain
characteristics of the seasonal load profile. Still, renewable
energy resources were not considered in this work. Moreover,
the location of the DERs and storage were pre-predetermined
a priori to the solution. Authors in [13] proposed the optimal
sizing of mobile energy storage system in networked MGs.
This work considered renewable energy resources, i.e., pho-
tovoltaic (PV), wherein different scenarios were adopted for
considering the uncertain characteristic of the PV generation
as well as the load. Still, the microgrid hierarchical control
structure was not considered in modeling the microgrid oper-
ation. Moreover, this problem was limited to the optimal
sizing and placement of mobile energy storage, while the
location and size of PV and DGs were pre-predetermined a
priori.

In regards to the existing resilience-oriented microgrids
planning methodologies, one of the main concerns is the
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computational burden. Attempting to manage their compu-
tational burden, existing work endeavored to minimize the
problem size by omitting renewable energy resources, pre-
specifying the location of some resources, neglecting the
microgrid hierarchical control structure, and/or considering
a limited number of stochastic scenarios. While these tech-
niques can reduce the problem size, they on the other hand
render the planning problem incomplete and only applicable
to particular planning instances. As a possible solution to
this problem, the concept of deep learning can provide an
attractive solution for handling computationally demanding
problems, i.e., its ability to significantly increase the compu-
tation performance of large scale analysis/optimization prob-
lems make their solution more attainable in comparison to
traditional methods. For instance, the concept of deep learn-
ing has been applied for in the development of power flow
and optimal power flow tools, respectively, [14] and [15].
In these works, the deep learning technique was used for
enhancing the performance and computation efficiency of the
power flow/optimal power flow solution approach. Still, the
concept of AC microgrids considering hierarchical control
solutions has not been introduced in this work and making its
application not appropriate for microgrid planning problems.
On the other hand, the work in [16], proposes the use of
deep learning for the restoration problem of critical loads
after experiencing a major outage. In this work, the deep
Q-learning method is applied for speeding up the solution
approach, making the problem solvable for small distribu-
tion system up to large-scale network. However, there is no
consideration of the microgrid concept and its planning in
this work. Next, a new planning problem based on deep
learning for a resilient transmission system is introduced in
[17]. In this work, a deep learning technique is adopted to
forecast the load growth while improving the forecasting
task compared to an existing method. Still, the concept of
microgrids is also not introduced in this work. Recently,
in [18], the concept of microgrid has been introduced while
coordinating several renewable resources and Plug-In Hybrid
Electric Vehicles (PHEVs). In this work, the deep learning
technique is adopted to forecast the renewable output seeking
to mitigate the uncertainty caused by the renewable energy
elements in the microgrid. While the deep learning technique
is adopted in this work, this work only discusses the operation
stage and presents a simplified problem by omitting the hier-
archical control philosophy of the microgrid in its problem
formulation.

Considering the abovementioned advancements and cur-
rent challenges described in the literature, in this work, a new
general framework for resilience-oriented microgrid(s) plan-
ning is proposed exploiting deep learning technique ability to
alleviate the computational burden associated with planning
problem without sacrificing modelling accuracy. The remain-
der of this paper is organized as follows: First, a basic out-
line for the proposed resilience-oriented microgrid planning
framework is presented in Section II. Subsequently, the prob-
lem formulation for the outer and inner levels is described in

VOLUME 10, 2022

Section III. Then, the data preparation stage for the proposed
planning approach is presented in Section IV. Next, the deep
learning approach for a stochastic optimal operation level is
discussed in Section V. Later, Section VI exhibits the details
of the optimal microgrid planning approach Non-dominated
Sorting Genetic Algorithm II (NSGA-II) based deep neu-
ral network (DNN) models. Finally, sections VII and VIII
present the results and conclude the paper, respectively.

Il. PROPOSED RESILIENCE-ORIENTED PLANNING
FRAMEWORK

The availability of isolate switches (ISWs) along with the
locations and capacities of the DERs, including DG units,
renewable DG units and energy storage (ES) units, are salient
for the successful creation of MG(s) in a distribution network.
Additionally, the optimal operation of the MG’s resources
should be considered to ensure the MG successful operation,
minimize its operational costs and maximize its resilience.
As such, the proposed resilience-oriented planning frame-
work seeks to identify the optimal allocation of DERs and
ISWs in a distribution network considering the optimal oper-
ation of the MG(s) that will be created using these compo-
nents. To this end, the analyzed problem is formulated as
a stochastic bilevel optimization framework. First, an outer
level featuring a metaheuristic multi-objective optimization
is adopted for the optimal allocation of the DERs and ISWs
seeking to balance the competing objectives of cost, resilience
and environmental impact. Then, an inner level is proposed
to handle the optimization problem pertaining to the optimal
operation of the MG(s) that can be created by the DERs
and ISWs allocated in the outer level. The problem of the
MG’s optimal operation is cast as a linear optimum power
flow (LOPF) problem. In this work, the adopted LOPF
model considers the operational behavior of the MG in both
grid-connected (GC) and islanded (IS) modes of operation.
Additionally, different scenarios are considered to account
for the stochastic nature of the HILP events, as well as
renewable DG units. In this sense, despite using a LOPF
model, the detailed modeling of MGs and consideration of
different stochastic scenarios in the inner level along with
the metaheuristic nature of the outer level make solving the
LOPEF, for each of the stochastic scenarios for each individ-
ual in the metaheuristic optimization’s population, using a
numerical optimization solver computationally challenging.
In other words, the combination of the need for numerous
iterations to solve the LOPF of the inner level and the large
populations from the metaheuristic presented in the outer
level before reaching the final planning solution, make this
problem computationally extremely demanding that it may
be unsolvable with the traditional analytical methods. In this
sense, in this work, a deep learning technique is adopted for
deriving the information required from the LOPF solution for
the stochastic scenarios under consideration. With this tech-
nique, DNN models are developed and trained to predict the
solution delivered by the inner level that comprises the LOPF
solution with the numerous stochastic scenarios, significantly
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reducing the computation burden, and thus eliminating the
possible requirement for modelling simplication. This new
perspective provides an effective strategy for solving MG
planning framework, overcoming computation constraints
that limit the consideration of detailed systems’ modeling and
scenarios, which are especially critical features for guarantee-
ing feasible solutions under a resilience-oriented outlook.
The proposed planning framework comprises four cas-
cading stages for delivering the final optimal allocation of
the DERs and switches. 1) The first stage is concerned
with data preparation. In this stage, the distribution system
under consideration and its planning elements are identified
along with the uncertainty scenarios describing the stochastic
nature of the system and the planning elements. The target
system for this work is a typical distribution system with
the ability to disconnect from the main grid via a main
isolate switch, denoted by ISW'®. The planning elements
include dispatchable distributed generation (DDG), wind tur-
bine (WT), PV, ES and ISW. Candidate buses and branches
are specified as potential locations for the system’s planning
elements. Stochastic scenarios are considered for allowing
for the uncertainty associated with the MG(s) creation, i.e.,
HILP, and operation (renewable generation and load). These
uncertainty scenarios are seasonal and include a set of sce-
narios representing the normal operation of the system and
another set of scenarios representing the severe HILP events
in which N-K contingencies occurred in the network within
a certain time interval. 2) The second stage corresponds to
the problem formulation of the proposed stochastic bilevel
optimization framework. In this formulation, the outer level’s
objective functions are cost, resilience and environmental
metrics (indices) that depend on the solution of LOPF for
different stochastic scenarios in the inner level. 3) The third
stage seeks to deliver the deep learning models that are
used to determine the stochastic LOPF dependent indices
required for the outer level. To this end, a set of sample DERs
and switches allocation is developed considering randomly
generated combinations of possible installation decisions for
the candidate planning elements’ locations and capacities.
Next, the stochastic LOPF is solved using a numerical opti-
mization solver for each of the allocation samples under
consideration for each of the stochastic scenarios. Based on
the LOPF solutions obtained for these samples, the outer
level cost, resilience and environmental indices are calcu-
lated. The calculated indices are considered the target values
of the allocation samples. The allocation samples and their
corresponding target values are then employed for training
the DNN models that map the planning elements installa-
tion decisions to the outer level’s cost, resilience and envi-
ronmental indices. Finally, in the fourth stage, the optimal
planning approach is held. Using a population-based meta-
heuristic optimization exploiting the DNN models derived in
the third stage, the optimal solution describing the optimal
allocation of DERs and ISWs is determined by respecting
the optimal trade-off between the multi-objective functions,
i.e., resilience, economic and environmental impact. Each of
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these four stages is individually addressed in the following
sections.

IIl. STAGE 1: DATA PREPARATION

In this section, the first stage responsible for data preparation
is addressed, including the modeling of the distribution sys-
tem and planning elements, as well as generation uncertainty,
normal operation and HILP event scenarios.

A. DISTRIBUTION SYSTEM AND PLANNING ELEMENTS
The distribution system considered in this work is a typi-
cal distribution network with the ability to disconnect from
the main grid via a main ISW*'™® located at the upstream
interfacing substation. Candidate buses and branches for the
installation of DERs and isolation switches, respectively, are
assumed to be selected arbitrarily by the distribution system
operator (DSO). The planning elements include the DDGs,
WTs, PVs, ESs and ISWs. In GC mode, the DDGs are con-
trolled to inject constant amounts of power prespecified by a
higher level control layer typically seeking to realize an eco-
nomic benefit [19]. On the other hand, in the islanding mode
of operation, the DDGs are controlled using primary droop
mode with a supervisory secondary control layer (droop/2"?)
control to follow the load variation and maintain the system
voltage and frequency within adequate bounds, allowing for
quick synchronization back with the main grid when it is
ready. The WTs and PVs are intermittent resources and are as
such operated in power control mode to allow for maximum
power tracking. The ESs are interfaced with a power elec-
tronic inverter and are controlled in a power control mode to
inject/absorb power from the microgrid as needed. The ISWs
are used to isolate faults according to the considered N-K
contingencies.

B. WT AND PV GENERATION MODEL

The power generated by the WTs and PVs depends on the
wind velocity and solar irradiance, respectively, and can be
modeled using (1) and (2) similar to the work in [20].
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where, P}Z’TS“ denote an active power generated by i WT

. . . WT .si
unit at time ¢ for s scenario of season se. P ! size
m

power rating of WT unit at candidate bus 7. v, |

a measured wind speed of the i# WT unit at time ¢ for s
scenario of season se. Then, vfi, vi? and v denotes cut-in,
cut-out, and the rated speed of the i WT unit, respectively.
Qi is the set of candidate buses for WT units. Qr is the
set of time segment in planning horizon. 2}, Q7 and Q. are
the set of generated scenarios for normal situation, severe
situation and seasonal periods, respectively. Then, for (2),
Pf ;/ 5.5 denote an active power generated by i™ PV unit at
time ¢ for s scenario of season se. Pf Vsize denote the active
power rating of PV unit at candidate bus i. r;"} ., denote
a measured solar radiation in kW/m? of the i PV unit at
time ¢ for s™ scenario of season se. RiSTD and RiC are the
solar radiation in standard test conditions and certain solar
radiation point of the i PV unit, respectively. QY is the set
of candidate buses for PV units.

In this work, it is assumed that the WTs and PVs are operat-
ing with a unity power factor. Thus, there is no reactive power
injected by these units leading to (1) and (2) exclusively
representing active power relations.

is the active
denote

C. LOAD MODEL

The varying seasonal behavior of the loads is modeled using
the annual peak load pattern [21]. In this sense, the load on
bus i € Qpus at time t+ € Qr can be calculated as the
multiplication between the peak demand at this bus and the
annual peak load factor at time € Q7 for the season under
consideration. The active and reactive power demand for bus
i at time ¢ for scenarios s and season se can be calculated
using (3) and (4).

PE, oo = (APLy 550/ 100) x PP,

Vi e Qpus, VteQr, VseQUQY,

Vse € Qe 3)
Qll':t,s,se = (APL’vSJE/lOO) X QlL;pS&;Ie(’

Vi€ Qpus, VteQr, VseQUQY,

Vse € Qe “4)

where, me’ se and Q{fz, s.5¢ Ar€ the active and reactive power
load for bus i at time ¢ for s scenario of season se. Then,
Pf e Zl; and Qéf N ‘;l; denotes original active and reactive peak
load from data sheet of bus i at time 7 for s scenario of season
se. APL; s ;0 is an annual peak load pattern in percentage at
time 7 for s™ scenario of season se. Qpys is the set of buses

in the test system.

D. OPERATION SCENARIOS
Given the resilience-based planning perspective of the pro-
posed work, two sets of scenarios have been considered.
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First, scenarios representing normal system operations with-
out contingencies are addressed. Second, scenarios repre-
senting severe HILP events, in which N-K contingencies
occur during a certain time interval are tackled. These sce-
nario generation processes are described in the following
subsections.

1) NORMAL OPERATION SCENARIOS

In the normal operation scenarios, the system is assumed
to operate in GC mode considering uncertainties associated
with the renewable resources. For this, historical data sets
comprising different 24-hours time series of wind speeds and
solar irradiance are considered. Next, based on this data a
fast forward reduction approach is employed [22], extracting
a number of normal scenarios (N;) per season representing
the uncertainty associated with the renewable resources. This
step seeks to avoid the higher computation burden, while
keep a good approximation of the system. The wind speed
and solar irradiance in a given scenario s can be expressed
by (5) and (6), respectively.

m __ r.m m m ’
Vs.se = [vlgwe, Vo sserc oo vNT’Me], Vs € Q, Vse € Qg
5)

— m m m !
"?:se = [ ser Tsser -+ TNpsiseds V8 € S, Vse € Qe
(6)

m ini m
where, v{',, and ry’;, are the vectors constraining vf’; ;, and

r o for s™ scenario of season se, respectively. Then, N7
denote planning horizon time.

2) SEVERE HILP OPERATION SCENARIOS

For scenarios representing the operation of the distribution
system under severe HILP events, a similar approach to the
work developed in [23] is employed. In this sense, by using
the component availability matrix AV, the availability of the
different system components (e.g., branch) at different time
segments in the planning horizon is depicted. This matrix
allows for the identification of the contingency level, as well
as the fault location(s) at any instant in the planning horizons.
This in turn enables the development of effective microgrid
formation solutions that can meaningfully improve distribu-
tion system resiliency. For considering the distribution system
operation under severe HILP events, the following assump-
tions are made in this work:

1) Severe wind events are considered the main source of
contingencies affecting the distribution network, simi-
lar to the work developed in [23].

2) Only overhead lines are considered to be vulnerable
to severe winds. Distribution substations and under-
ground lines are able to withstand severe winds as
depicted in [24].

3) The distribution system buses are assumed to be geo-
graphically close enough that the trajectory of the wind
passing through the distribution network causes the
entire network to be exposed to the same weather con-
ditions [25].
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FIGURE 1. Evolution of network’s system performance during a severe
event.

a: SYSTEM PERFORMANCE ANALYSIS FOR HILP SCENARIOS
SELECTION

Next, considering the aforementioned assumptions, when a
severe wind event arises, the supply availability and the cor-
responding system performance progress through multiple
phases along 27, leading to the typical progression curve for
the system performance (SPF) during a severe event depicted
in Fig. 1 [3], [23]. In this perspective, the system performance
can be represented as a function of the electricity supply
level at time ¢, being divided into Phase I and II, where
Phase I represents the disturbance progress period between
the event start, 1, and maximum system degradation state, 4,
i.e. T¢" = ¢ —t? and Phase II depicts the recovery period
between the maximum degradation time until reparations
conclusion, i.e., T4 = 4 — ¢ Here it is important to
note that there is typically a lead time in Phase II between
the moment where the event disturbance progression stops
and th/e time where repairs’ impact is effectively observed,
ie.,t".

Detailed descriptions of Phase I and II leading to the devel-
oped weather-related algorithm for HILP scenarios selection
and component availability matrix AV derivation are follow-
ing presented.

b: PHASE I: DISTURBANCE PERIOD

Assuming the event start and progression, during Phase I the
affected system clusters into multiple MGs with topologies
respecting local resources availability and ISWs allocated in
the network. The formation of MGs allows the system to
improve its withstanding ability against the N-K contingen-
cies caused by the severe wind and enhance the maintenance
of the loads’ service. In this sense, given this work focus on
resilience-based planning, the single most vulnerable wind
scenario needs to be identified for each season in order to
stress the system performance under worst-case condition,
i.e., vi.2™" . For this, based on works [26], [27] wind gusts can
be calculated using (7), where the system’s most vulnerable
scenario under a resilience perspective is given by the wind
scenario within the matrix viy containing the highest wind
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FIGURE 2. Generic fragility curve for single pole and conductor against
wind gust.
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where, vis is a matrix constraining v¥' ., for season se. vey

s,s5e
is a vector containing 3-Second wind gust in proportional to
vorst Then, k84 is the constant factor for calculating v .

Following, the failure probability of overhead lines for
season se can be extracted by mapping poles and conductors’
fragility curve for the calculated wind gust profile v$e * The
fragility curve can be generated using the normal cumulative
distribution function as generically illustrated in Fig. 2 for the
distribution overhead line depicted in [24].

Here, it is worth noting that a branch fails if a con-
ductor, or any pole overhead line, connected between two
adjacent nodes fails. In this sense, the total failure proba-
bility of the distribution overhead line should be calculated
using (8a)-(8d).

nle:e (fofvsgt) _ Cdf,wr(v;q’léset7 Mfule’ O_ipole)7

Vie Qun, YVt € Qr, Vse € Qe (8a)
cond gusty nor (. gust cond cond
T t.se (vt,se) = cdf (vt,se s i, O ),
Vie Qun, Vt € Qr, Vse € Q.  (8b)
pole
poles (gust\ _ . ole wst \ \ Vi
ni,t,se (vt,se) =1 |: (l — T[z{’t,se (Vf,xe )) ’

Vie Qun,Vt € Qr,Vse € Qe (8¢)

cond (8ust poles [ gust
br gust\ _ [ Tit.se (vhse>+”i,t,se Vi.se
Titse\Vise ) = _cond (,gust poles [ gust ,
”i,t,se Vt,se it,se t,se

Vie Qun,Vt € Qr,Vse € Qe (8d)

pole cond . ..
where, 7, and 77" denotes the failure probability for

a single pole and conductor of branch i at time ¢ of season
se. cdf"” (.) denote a normal cumulative distribution func-
tion. Then, uP0, oPole, cond and o™ denotes the mean
and standard deviation of c¢df"°" (.) for pole and conduc-

tor’s fragility curve. Next, N [p %l denote number of the poles
poles
i,t,se

denote a failure probability considering N/’ %l of branch i at

time ¢ of season se. At the end, nl.btr 4 1s a failure probability
poles

according to span length of branch i. While, & in which

of the branch i at time ¢ of season se, considering Tt se and
nf;’”“s’i. In this work, a set of lines or branches in the test system
denoted by Qv .

In this case, eqs. (8a) and (8b) define the failure proba-

bility for a single pole and conductor during vfféset based on
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the normal cumulative distribution function with parameter
ubote grote cond and ¢ond Egs. (8c) and (8d) determine the
general formulation for dealing with the failure probabihty
of branch i according to the number of poles Np %k for the
overhead line of branch i, assuming that the poles and con-
ductor in the distribution system have the same characteristics
and age. For this, Nlp %l can be estimated based on the span
length of the distribution overhead line [28]. For distribution
systems, the span length is typically between 100 ft to 150 ft,
significantly shorter when compared to those used for the
transmission system [29].

The failure probability obtained for the branches is stored
in 3D matrix g (9). Next, similar to the work in [24],
non-vulnerable branches are identified and disregarded by

Ko = 0| Ty (ni{’l”se < br-mul) “Where, b4 denote a
vulnerability threshold for distribution branch. Following, for
enlarging the possibility space of N-K contingencies NP
scenarios of AV are generated and represented by AVS se CON-
sidering Phase I. Where, N!"* denote a number pre-scenarios
for severe situations considering only network SPF pregres-

sion phase (i.e., ¢ — ).

r br br
i,t,se e ni,NT,se
T se (Vféut) = ,  Vse € Qg
br br
mprtise 0 Ty Npose
)
r . br br
it,s,se T 4 Nr.s,se
I _ . . .
AVS se — . . . ’
abr . br
L “np,,t,s,5€ npr,NT,5,5€¢
. pre
Vie Qun, VteQr, Vse QU°,
Vse € Q. (10)
where, af’? 5.5 is 0 if the i”* branch fails at time t for sce-
br —
nario s of season se, otherwise, ai s = 1. a” sge can
be determined by comparing the failure probability 77; f.se 1O

the generated uniformed random binary number (i.e., 7z s),
as expressed by (11).

br

af); I a;';'t‘—l,s,se X l’ nil;;,se =it
T i,t—1,s,se x 0 ni,l,se > Tit,s,
Vie Qun, YteQr, Vse Q{;w,
Vse € Qg (11)

c: PHASE II: RESTORATION PERIOD

Once the system reaches the maximum degradation condi-
tion, Phase II begins repairing the system until all branches
are fully recovered at /" and the system is back to normal
operation, i.e., grid connected. In this sense, considering the
time to repair (TTR) overhead lines dependency on the wind
velocity at the time of failure, i.e., 1 = tlb ; f‘:l [23], while
aware that due to safety reasons, there are no repair actions
implemented until the end of the event at ¢ S se [23]. The
weather-related restoration time expressed by (12a) and (12b)
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gust

is employed for determining TTR, and ¢”" (vt s, Ye) is deter-
mined using uniform distributed sampling ¢ ~ Ulhy, h>]

as depicted in (12c¢) [23], [30]. Once TTR?Q{“'I and tAdAL

determined, the recovered time for a single branch i can be

br,rep br fail br,rep
determined by #; SZ = S se T TTR; ', - Thus, at 7; ' ",
r,new

br br,rep
i‘w’se( isse ) = A5 se = = 1, which represents that branch

i is recovered and turned back to the online state. Finally,
the branch availability matrix Considering Phase I and II
AVg;ZI’mg can be obtained updating AV!  with the new

br,new
i,t,s,s€

s,5€

a information as shown in (12a)-(12d).

br,fail
TTRY J4
_ br . fail
- [TTRI ,5,5¢ °

Vs € @,

br.fail
TTRt s,5€

1
= round ( " [ V*", 1 MTTR™ |,
t= ll sse 19:5€¢

1
Vie Q. Vse QU Vse e Q

br gust
4 (W,x,xe)
oo gust low
1’ lfvtsse<vcri
_ ~ low 1 low low _ gust high
=19 U[h h I, if Veri = Visse = Veri
hlgh htgh gust hlgh
U[h 1, f Vt.s,se Veri o
ail
Vie Q’Z,’N, Vs € QU'¢, Vse € Qy
I-1II, orig
AVs,se

TTRbr, Jail

2,5, """

Vse € Qe

TTRbr Jail ]

Npyr,S,s€

(12a)

(12b)

(12¢)

br,new
1,Nr,s,s€

br new
2 ,NT,5,5€

br br,new

1,1,s,5€’ br,rep
1[ tzsie ’

hr abr new

21336’ 2tt”eps_se.

j— i,s,se

s,se’

br br,new br,new

npr,1,s,s€’ br,rep 0 Yy N7 L8, 5e
Ll Npyp,t= tl”e,r,re r

a

vs € 9o,
where, TTR?rs{ail is a vector TTR containing TTR,
Whereas, TTR? /!

l A4
branch i for s

Vse € Qe (12d)

br.fail
is,s€ °

denote a time to repair of the failure
br . fail .
1,8,5e

responding to the moment when branch i fail for s scenario

of season se. MTTR™ denotes a specified mean time to repair
under normal weather conditions. v"’w and v i8h are the spec-
ified low and higher bound for critical wind. Then hhlgh/hh'g h
are the pre-determined range for determining ¢? for the case

scenario of season se. t; is a tlme cor-

corresponding to higher wind v$%" > V8" while h["w/hl"w

t,s,se cri
. ust hi,
are for the case corresponding to viow <% < 8" Next,

cri — "t,s,5¢ — Vcri
br,re, .
lis. Sep denote a time ¢ when branch recovered or repared for

b
s scenario of season se, while a; ; ?es‘:

_ _br,rep ail
i t s.se At time t = li s se QQIN is a set of failure branches

in the test system. Q' is a set of generated pre-scenarios for
severe situations considering only network SPF progression
phase I (i.e., t¢

is an updated number

for a®

4 .
— td). Q" is an original set before
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H Import the wind scenarios v",

Select the most vulnerable

worst

series of windspeed v,

Calculate the wind gust v**', and
extract the matrix of failure probability
. referring to the calculated wind gust

| Phasel
(td' [2)

Generate a set of uniform random
numbers 7;,
N
For ¢ belonging to Qr compare r;
to 7 for determining AVY .
L
Store AV, . in th 3D matrix
AV for season se

yes

NG
Identify ¢ ¢ and generate TR
for scenario s season se, forming
AVl-ll,orig
s,5€

o>

yes

Phase 11
(te - tr)

L—se=se+]

Obtain AV and perform the
selection process for AV

END

FIGURE 3. Weather-related algorithm for generating branch availability
matrix.

reduction of generated scenarios for severe situation consid-
ering network SPF progression phase I and II (i.e., ¢ — t").

Next, the highest impact scenarios are determined for each
season se until reaching the desired number of samples, i.e.,
N — (K/")) are chosen first, where N — (K, s.) denotes N-K
contingencies for scenarios s, se, Ky s corresponds to the
number of fault locations that occurred in the network for
scenarios s, se. In case the highest impact selected scenar-
ios do not reach the expected number of samples, available
space(s) are fulfilled by the scenarios N — (K%, — 1), then

N — (K o 2) until the N-1 contingency. The procedure for

s,5e

generating the AV matrix is illustrated in Fig. 3.

AV = AVETLorie (y — (K)), Vs € @,
Vse € Qe (13)

I-1II,0rig

where, AVI-ILis the reduction version of AV,

IV. STAGE 2: PLANNING PROBLEM FORMULATION
In this section, the problem formulation is detailed
for both outer and lower levels, including respective
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discussions on objective functions, constraints, and decision
variables.

A. OUTER LEVEL: OPTIMAL ALLOCATION LEVEL

The outer level problem formulation is responsible for the
allocation of the planning elements including the DDGs,
WTs, PVs, ESs and ISWs. For this, the following multi-
objective problem formulations are developed.

1) OBJECTIVE FUNCTION - OUTER LEVEL

The multi-objective function for the outer level considers
three main perspectives, i.e., 1) resilience enhancement,
2) economic benefit, and 3) environmental impact mitiga-
tion. The proposed optimization problem is solved using
multi-objective optimization. This allows the solution to this
problem to entail the best trade-off between these possibly
conflicting objectives and enables the selection of the optimal
design under each objective’s consideration i.e., through the
Pareto set. In this work, each objective detailed described in
the following subsections.

a: RESILIENCE INDEX

The resilience index is responsible for ensuring the system’s
capacity to withstand HILP events. For this, the system’s
loss performance considering the duration of degradation and
the importance of rapid recovery has been used [3]. The
resilience index considering Phase I and II can be expressed
using (14a).

RESI =

1 /"‘ |:SPF0 (1) — SPF (1)

SPF ) } dt  (l4a)

1" — 1€ Jpe
Then, by considering the set of scenarios s and season
se according to Fig. 2, eq. (14a) can be re-formulated
into (14b)-(14c). This perspective allows for combining the
multiple inner level season and scenarios information, i.e.,
Vs € QY and Vse € Qj,, in a way to determine a single value
for the outer level resilience index.

RESI; g,

,
1 fts.se
T 4r _ qe
ts,se ts,se 1

se,xe
L curt L
ZieQBUS Pi,t,s,se_ZiGQBUs (1_bi,t,s,se)Pi,t,s,se
X 7 dt,
Zieﬂgus Pi,t,s,se
Vse € Qe

Vs € QF,
RESIOLEV
1

= Z — RESI, 5,
SEQe ]\7S €Y

(14b)

(14c)

where, ¢, and t] ., corresponding to the beginning and end

> bs,se s,s€
of the event for s™ scenario of season se. Next, bf‘;’é . denote
binary variable for load curtailment (i.e., 1: load shaded and
0: load fed) for bus i at time ¢ for s scenario of season se.

N is the number of severe scenarios.
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b: ECONOMIC INDEX

The second objective function relates to the economic benefit,
i.e., capital cost, installation cost, and operation and mainte-
nance (O&M) cost for ISWs [31] and DERs [32], [33], [34].
Where, eq. (15) defines the total cost as the second objective
function for the outer level. Egs. (16a)-(16c) determine the
capital and O&M cost for the DDG, while (16d) normalizes
the cost (16a) and (16¢) for DDG units by considering the
planning lifetime 7L. Similarly, eqgs. (17a)-(18c) summarize
the capital and O&M cost for the allocated WTs and PVs.
In term of the ES, (19a) and (19b) determine the capital cost
depending to ES power and energy density, respectively. The
annual O&M cost and the installation cost for the ES can be
calculated using (19c) and (19d), respectively. In (19e) the
normalized cost for ES considering 7L is expressed. Finally,
the cost for ISWs can be determined using (20a)-(20c).

OLEV CDDG + CPV
rc = <+CWT 1 CES 4 cIsw (15)
DDG __ DG,size _DDG
CPe™™ = ZVingIgG (PP o 09) (16a)
fuel / DDG
DDG __ o n
OMCse” = Shase <+JOD£AC; > ZVing‘gG ZWEQT
x PPPO . Vse Q| VseeQ,  (l6b)
365 .
AOMCDDG = T ZVseeQW ZVSGQ’. (n;t};f‘)OOMCQSDeG)
(16¢)
CPPG = cPCPPY + TL x AOMCPP¢ (16d)
PV __ PV ,si PV
CPC™ =3 (PIV 0l (172)
PV __ PV size _PV
AOMCT =37 (P b (17b)
cPV = cpc?V + 1L x Aomct” (17¢)
wr __ WT ,si. wT
cPCVT — ZWEQ% (Pl. Wa,,w) (18a)
wr __ WT ,size _WT
AoMC"T = ZWGQ% (Pi oo&M) (18b)
c"T = cpc"! + 1L x AoMCWT (18¢c)
ES.P __ ES,size _ES,P
CPCPP = 3 e (PESo i) (192)
ES.E __ ES,size _ES,E
cpPc - Zvl‘eszgs" (Ei oy ) (19b)
ES _ ES,size _ES
AOMCES = ZWE%HS” (Pl. ““ao&M) (19¢)
ES __ ES.size _ES
INSCE =3 (EF=of%) (19d)
gs _ [ CPCESP + TL x AOMCES
= (—l—CPCES’E + INSCES (19)
ISW _ ISW _ISW
cPCiSV = ZWEQ% OISV S (20a)
ISW __ ISW _ISW
AOMCBY = 8760 ZVI_EQI% (A7) (20b)
cBSW = cpcBY + 1L x Aomc™SV (20c)

where, for (16a)-(16c¢) P?Pfse is a variable denotes an active

power generated by DDG i at time  for s scenario of season
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se. Then, Pf) DG.size genotes an active power rating of DDG
at candidate bus i. GHDVI‘),G, G(?&?/S and o/*¢! are the DDG’s
investment cost in $/kW, O&M cost in $/kWh and fuel cost
in $/kWh, respectively. n”P¢ denotes a power efficiency of
the DDG unit. Sy, is the setting power base value. nvwézo
is a probability for both wind and solar scenario for s sce-
nario of season se obtained by forward reduction technique.
Q37 1s the set of candidate buses for DDG units. In term
of (17a)-(18c), o};‘(, and O'I%‘T/ denotes the investment cost in
$/kW for PV and WT, respectively. Then, U(?XLM and UOWZM
denotes the O&M cost in $/kWh/year for the PV and WT.
Then, for the energy storage unit in (19a)-(19d), Pfs’me and
Efs’me denotes active power rating and energy rationg of the
ES at the candidate bus i, respectively. Then, 05\}9\}13 and Gf]\ls‘}E
are the investment cost in $/kWh for energy density rating
and power rating of the ES unit, respectively. While, agch
and O'IIE:\}% are the O&M cost in $/kWh/year and installation
cost in $/kWh for ES, respectively. At the end, Q' is the set
of candidate buses for ES units. Finally, for (20a) and (20b),
beW is the binary decision variable for ISW allocation at
candidate branch i. o,’lf,‘v,v and oés&% are investment cost in
$ per allocated ISW and it O&M cost in $/year, respectively.

Qjqw is the set of candidate branches for SSWs.

c: ENVIRONMENTAL IMPACT INDEX

The environment impact index aims to reduce the car-
bon footprint due to energy purchases from the main grid
and energy generated by DDG [34], [35]. The annual
carbon emission can be calculated using the expressions
below. Egs. (21a) and (21b) are the CO, emission quantity
and their annualized kg/year from the DDGs generation.
Egs. (21c) and (21d) represent the CO, emission depending
on the power imported from the main grid. Finally, (22)
defines the total annualized Carbon emission as the third
objective function for the outer level.

DDG DDG DDG
EMIS'; =K Shas P ,
s, 5€ CO2 Pbase z :ViEQDDG 2 :VIEQT it,s,5€

Vs € Q, Vse € Qe (21a)
365 ;
DDG _ “*Y wiso DDG
AEMIS - 4 ZVMEQN ZVSEQ; (ns,se EMISS’“W )
(21b)
GRID GRID GRID
EMISs,se = KCOZ Sbase ZVIEQT Pt,s,se+’
Vs € Q, Vse € Qe (21c)

365 4
GRID R GRID
AEMISRP — =2 ZVWEQM > (n;fézf’EMISs’se )

21d)

AEMISOEY = AEMISPPC + AEMISORID (22)
where, KgODZG and KggéD are the carbon emission factor in
kg/kWh according to energy generated by DDGs and energy
imported from the main grid, respectively. Pfﬁlsle) * denotes
active power imported from the main grid across the i PCC
of the MG at time 7 for s scenario of season se.
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TABLE 1. Decision variables type and set belonging for the outer level
problem.

Variables type Set
XOLEV Vi €
biDDG,size VA QE)%”G
bl!/I/T,size 7 Qﬁﬁ
biPV,size VA Qf}‘[lln
b iES,size 7 Qi%n
bISY Z o5y

2) CONSTRAINTS AND DECISION VARIABLES - OUTER LEVEL
Next, the system’s constraints and decision variables for opti-
mizing the outer level are following depicted.

a: DISCRETE SIZE FOR DERS CONSTRAINT:
The DERSs size was discretized with a fixed step [35].

ER,size __ 3 DER,size ER
PP = b} POER,

VDER € {DDG, PV, WT, ES}, Vie Qi
(23)

EES,slze _ rES x PES,szze Vi e Q%aéz (24)

i — i i >
where, biDER’Size denotes the integer variable for DER allo-
cation at candidate bus i. ngpR is the step size for DER
allocation. Finally, riES is a ratio between the rated capacity

and rated power for the ES.

b: MAXIMUM BUS POWER ALLOWABLE CONSTRAINT

The DER(s) connected to an individual bus must respect the
technical constraints defined by (25) [35]:

Z ! ER,size < F%’MS’
VDERe{DDG,PV ,WT ,ES} ! - !
Vi € Qpus (25)

—bus . . . .
where, P; "* is a maximum installation power allowable for
DERs at candidate bus i.

c: INSTALLATION DISCRETE BINARY CONSTRAINTS

i —DER
0 < biDER’Slze SP /PDER

step
VDER € {DDG, PV, WT, ES}, Vi € Q5. (26)
0<bBY <1, VieQu 27)

where, PR denotes a planning upper bound for DER alloca-
tion in the system. beW is a binary decision variable for ISW
allocation at candidate branch i.

3) DECISION VARIABLES FOR OUTER LEVEL

The decision variables for optimizing the outer level are
summarized in Table 1. Here one should note that variables
associated with each planning element are respectively set to
zero for the case that the optimization decides to not place
these elements on the candidate buses or branches. Otherwise,
these variables are the integer numbers respecting the upper
bounds defined in (26)-(27), and the binary value ‘1” for 55"
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MICROGRID

kW
MW <€«—>» kVAR
MVAR <> Swe g
BUSBAR pecMe
SUBSTATION

®> Candidate branch
@ Candidate bus
@ Microgrid PCC
@ Substation

DDG

FIGURE 4. Basic scheme of the single microgrid base ISWsub,

B. INNER LEVEL: OPTIMAL POWER FLOW FOR
MICROGRIDS

This level presents the problem to be solved using the
proposed machine learning based technique. Still, first, a pre-
problem formulated as a Mixed Integer Linear Program-
ming (MILP) model similar to the work in [19] is developed.
This inner level optimization solutions provide the sample
solutions needed to train the proposed machine learning-
based strategy using the upper level solutions as inputs. For
this, this problem models the ability of microgrids to operate
in both GC and IS mode, depending on the operation status of
the ISW*" as shown in Fig. 4. Details on the problem formu-
lation and optimization strategy including objective function,
constraints and decision variables are following depicted.

1) OBJECTIVE FUNCTION AND CONSTRAINTS INNER LEVEL

The objective function formulated for the optimal operation
in the inner level is expressed by (28a)-(28e). First, in (28a)
the objective function is obtained by normalizing the four
terms as a single total operation cost to be minimized. The
first term in (28a) represents the cost of power exchange
between the microgrid and the main grid, which can be deter-
mined using (28b). Then, the second term is given by (28c),
which refers to the fuel consumption cost for the DDG units
in use at the MGs [36], [34]. As one may observe, (28a), (28b)
and (28c¢) are restricted to the GC mode due to the association
of the binary input b/’ (, i.e., bf'; (, is the binary number
that denotes the operation status for ISW*"° along Q7, where
bf's sc = 1 represents the microgrid operation in islanding
mode, otherwise by’ , = 0 denotes the system operation in
GC mode. In this sense, by’ |, can be used as multiplication
and integrated in the MILP model for allowing the objective
function and constraints pertaining to the operation mode for
microgrid. The third term given by (28d) represents the cost
for load curtailment, being restricted to IS mode only [37].
The last term depicted in (28e) represents the voltage vio-
lation index. This term seeks to improve the voltage quality
of the microgrid during both operation modes. For this, the
following assumptions are made: 1) during GC mode, the
DDG units are operated in active and reactive power control
(PQ) mode [38], [39], 2) during IS mode the DDG units are
operated under a secondary control layer with V** identically
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set for all DDG units.
MILP
OFs,se
PCC
5| s s
= +C s l_b;nsse , o Vs e QUG
teQr % 5
+CCURT b+ O
Vse € Q. (28a)
PCC
Ct,s,se
= Shase (0 CSPESE, ) A1, V1 € Qr, Vs e LU,
Vse € Qe (28b)
DDG
Ct,s,se
DDG / DDG DDG
- Sbase (ZiEQDDG Pi’l’s’xe <0fue /7] + aO&M)) At’
Vi € Qr, Vs € QLUQY, Vse € Qe (28¢)
CCURT
t,s,se
= Sbase (O_curt ZiEQBUS bz?,Ltl,rfv,sewgoadPIIft,s,se> At,
vVt € Qr, Vs e Q; U Qg, Vse € Qe (28d)
\%4
Ct,s,se
1 —pn ) spec
— V PCVI ( t,s,se GC At,
base ( [ZiEQBUS <+b?fsysevi**_vi,t,s,se
Vt e Qr, Vs e Q; U Qg, Vse € Q. (28e)
Subject to:
V < Vitsse < V, Vi € Qpus, Vt € Qr,
Vs € Q; U Q;’, Vse € Qe (29)
0< bi’;ﬁ)se < b’;?s,se’ Vi € Qpus, Yt € Qr,
Vs € QLUQL, Vse € Qe (30)
ZjeQBUS GijVi,t,s,se
Pi,t,s,se =
- ZjEQBUS Bijaj,t,s,se

PP CcC 4 PDDG

i | opV e
+ it,s’,se + i,t,s’,se
- +Pg§%ls,se - niESPl?,};,s,se ’
_Pz{lt,s,se (1 - bz?,l;,ré,se
Vie Qpus, YteQr, Vse Q; U Q;/,
Vse € Qe 31D

0; = ( B ZjEQBUs BijVit,s5e )
it,s,5e —

= 2jeapys Gidt.s.5e
PCC DDG
+Qi,t,s,se ;_ Qi,t,s,se

E.
= +Qi,t,s,se
L .
_Qi,l,s,se (1 - blé',llzfﬁi‘,se)
Vi e Qpus, VteQr, Vse Q; U Q;/,
Vse € Qe (32)
Vj,l,s,se)
+ bigh)jk) i t,5,5e — 8jt,5,5¢)>
Vk € Qun, VteQr, Vs e Q; U Qg,
Vse € Qe (33)

s

b
P sse = 8ithjc) (Vits.se —
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er _ ( biyjt) (Vitsise — Vitos.se) )
o4o,se +8&ick)jck) (ai,t,s,se - j,t,s,se)
Vk € Quv, Vte Qr, Vse Q: U Q;/,
Vse € Qe 34)

arllxtpirt,s,se + ﬁ;n Qll:’t,s,se
_Vlﬂjzrvi(k),t,s,se =< 0
_arllﬂpzrt,x,se + /311” Qz,rt,s,se
br _ -V Stiirvi(k),t,s,se =< 0
fotsse _agthpz,rt,s,se - ﬂfzttht’t,s,se
th=br

4
-V Ik Vi(k),t,s,se = 0
4 pbr 4t Sbr
oy Pk,t,s,se - IBn Qk,t,s,se

b
_V4 Ik Vi(k),t,s,se <0,
vVt € Qr, Yk € Qiv,

n=12 ..., 1y,

Vie Qpus, Vse Q; U Qg, Vse € Qe
(35)
iz = (S T ) e ).
t,s,se) " it,s,se
Vie Qppg, VteQr, Vse Q; U Qg,
Vse € Qe (36)

QDDG — (I:(Vi*_vi,t,s,se + u}},t,s,se)/n?] b;r,ls,se,’)

it,s,se m DDG
+ (1 - bt,s,se) Qi,l,s,xe

Vi€ Qppg, Vit € Qr, Vse QUQY,
Vse € Q. 37
Virsseb™s o = VI¥BI . Vi€ Qppg, V1 € Qr,
Vs € Q,UQY, Vse € Qe (38)
§7P¢ = pPPOsE i e Qppe (39)
! = Aw / E?DG, Vi € Qppc (40)

nl = AV [27PP9S0, VieQupg @41

—DDG .
0<PPPG <S5, VieQpp, VteQr,

Vs € Q UQL,  Vse € Qe (42)

DDG<DDG DDG _ —DDGPDG

X Si = Qi,t,s,se =X Si

vVt € Qr,

, Vie Qppg,
Vs € Q/Y U Q;/, Vse € Qe
43)
— DDG,4th
—P?fgsetg (cos lPFl. ! )
DDG DG —1 DDG,1
= Qi,t,s,se = P?t,s,setg <COS PFi SI>’
Vie Qppg, VteQr, Vse Q; U Q;/,
Vse € Q. (44)

o PG, 5 A OE2S,
lS[—
Li[),«%% = 4’h_ JZ)D(;S i f’ho DDG
T oy Pi,t,s,se - IBn Qi,t‘s,se
5P <o,

1
vVt € Qr, Vi € Qpps
Vs € Qg U Q;’, Vse € Qe 45)

n=12, ..., 1y,
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0 < PWT,use <PWT

it,s,se — " it,s,se’

Vi e Qwr, Vt € Qr,

Vs € Q UQY, Vse € Qe (46)
0 <Py <PPY . VieQpy, VteQr,
Vs e QLUQY,  Vse e Qe (47)
57 = PESSE i€ Qg (48)
0< Pl < Efsbfi sser Vi€ QEs,
Vi€ Qr, VseQ,UuQl,
Vse € Q. (49)

0Pl =S5 (1-08,.). VieQs,

it,s,se — ~i
VieQr, VseQUQ/ Vsee Qe (50)

—ES —_ES<GES ,
BSS7 < 08 o < X587, VieQps, VteQr,
Vs e Q; U Qg’, Vse € Qe (51)

ES
Li,t,s,se
1% dch ch 15" AES
oy (Pi,t,s,se - Pi,t,s,se) + IBn Qi,t,s,se
st—=ES
—y"S” <0

i
15 ch ch 1% AES
—Q, ( it,s,se Pi,t,s,se) + ﬂn Qi,l,s,se

. )/I”EI.ES E O

4th ch ch 4" AES
—0y (P?,t,s,se _Pi,t,s,se _an Qi,t,x,se
th—ES
—y¥'57 <0
a4f’1 pdch _ pch . ﬂ4"1 0Fs
n i,t,s,se i,t,s,se n i,t,s,se
th—ES
—y*'S =<0,

1

n=1,2,....np, VieQr, VieQs,

Vs € Qg U Qg, Vse € Qe (52)

ES
i,t,s,se

soc? EiES,size + (ﬁfs peh

it,s,se P?ji{ls,se) At,
t=1
Eiljj;g—l,s,se + (nfspz?,];,s,se - P;{fl,ls,se) At,
t>2,
Vie Qps, VteQr, Vse Qg U Q;/,
Vse € Qe (53)
DoD™ EiES ,size

ES ES,size
= Ei,t,s,se - Ei ’

VseQuQ/,
ES
Ei,t:NT ,5,5€¢

> SOCYEF % Vi e Qps, Vs € QLU QL
Vse € Qe (55)
S (1= ')
< PPCC <SM (=D ), VieQpcc, VieQr,
Vs € QU QY, Vse € Qe (56)
&TREiTR (1 - b;’?s,se)

PCC —TRGIR m
= Qi,t,s,se = Si (1 - bt,s,se

Vi e QES’ Vt € QT,
Vse € Qe (54)

), Vie Qpcc,
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vVt € Qr,

pPccC
i,t,s,s€

Vs € QU QY, Vse € Qe (57)

1% pbPCC 158 HPCC 1 TR
o, Pi,t,s,se + ﬂn Qi,t,s,se -Y Si = 0

15 LPCC 15 APCC 15 TR
—Otn P: -+ ,Bn Q - Y Si S O

_ " i,t,s,se " i,t,s,se -
- 4 hpCC 4 PCC 4
-, Pi,t,s,se - ﬂn Qi,t,x,se -Y Si <0

4 npCC 4t ApCC 4hSTR
oy Pi,t,s,se - IBn Qi,t,s,se -V Si = 0’
n=172,...,n,, VteQr, VieQpcc,
Vs € QLUQY, Vse € Qe (58)
_PPCC 1 (Cos_l PFTR,4th>

i,t,s,s€ i

_ TR, 1:
< QFCC < PICC g (COS L pF! w>’
Vie Qpcc, Vte Qr,
Vs € QLUQL, Vse € Qe (59)
Vi 1=b" )=V (1—p" VieQ
L1,s,5€ ( t,s,se) - spec( t,s,se) ’ 1 €ddpcc,

Vi e Qr, VseQ,uQl,
Vse € Qe (60)

Si,t,x,se (] - bm

t,s,se

) =0, VieQpcc, Vt e Qr,
Vs e QLUQL, Vsee Qe (61)

where, for the objective function Pf tCsz ., denotes an active
power imported/exported from/to the main grid across the
i PCC of the MG at time ¢ for s” scenario of season se.
o/ CC, is the market energy price in $/kWh corresponding to
time ¢ for s™ scenario of season se. While o' is cost of
load curtailment in $/kWh. b%"{  denote a binary variable
for load curtailment (1: load shaded and O: load fed) for
bus i at time ¢ for s scenario of season se. wf"“d is the
weighing coefficient of load at bus i. V. is a setting voltage
magnitude base value. PCY! denotes a penalty coefficient
of voltage violation in $/kV. V5 is a nominal specified
voltage during GC mode. V;** denote a voltage reference for
secondary control of the DDG at candidate bus i operated with
droop/Z“d. Vi.1.s.se denotes a voltage magnitude of the bus i at
time ¢ for s™ scenario of season se.

In term it constraints, first for (29)-(35) V and V are
maximum/Minimum voltage violation of the bus. P; ; s 5. and
Qi 1.5.s¢ denotes the active and reactive power injected to bus
i at time ¢ for s scenario of season se. G;j and B;; are the ele-
ment of the conductance and susceptance matrix denotes the
connection of bus i to bus j, respectively. PIVZTCMYZE and Pfx;f‘;:
are respectively the PV and WT’s adjusting power output and
used at time 7 for s scenario of season se. P;{%,se and Pf_};’”e
denotes the active power charge and discharge by i ES unitat
time ¢ for s™ scenario of season se, respectively. nlES is a effi-
ciency of the energy storage. §; ; s,se is the voltage magnitude
angle of bus i at time ¢ for s™ scenario of season se., Qf fgse
denotes a reactive power exchange with the main grid across
the i PCC of the MG at time ¢ for s scenario of season se.
szl,)fs . 18 a reactive power generated by the i" DDG unit at
time ¢ for s scenario of season se. Qﬁs 5.5

generate/receive of the i/ ES unit, at time ¢ for s” scenario

is a reactive power
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of season se. Pk £.5.5e and QZ’ 1,55 AT€ the active anq reactive
power flowing across the transmission branch k at time ¢ for
s™ scenario of season se. gi(kyjky and bj)jik) denotes the
conductance and susceptance between bus i to j of branch k.

Lk 1.s.s¢ 18 a set of piecewise linearization for line ampacity

., sbr . .
quadratic constraint. /, denotes a maximum ampacity of the
branch k. For the DDG’s constraints (36)-(45), k' denotes
an integral gain for frequency restoration for DDG with
droop/2"d, 5, s.se denotes a phase angle of the bus where the
frequency control act at time ¢ for s” scenario of season se.
mf and n? are the active and reactive droop gain of the i
DDG unit with primary droop/2™. V¥ is a voltage reference
for primary control of the DDG at candidate bus i operated
with droop/2™. W, o . is an integrator output of secondary
voltage restoration of i DDG unit operatm% with droop/2"d
at time ¢ for s scenario of season se. S; is a capacity
rating of the DDG unit i.Aw and AV are respectively a
maximum angular frequency and voltage magnitude devia-
tion. xPP%nd 3PPC are the minimum/maximum ratio for

determining lower/upper bound of DDG’s reactive power.

PF ?DG’ " and PF iDDG"m denotes minimum operating power

factor allowable of the 15¢/4" quadrant of the DDG unit i.

LgDSGS . 1s a set of piecewise linearization for DDG quadratic

constraint. For the ES’s constrains (48)-(55), Efs is maximum
rating power of the ES unit i. bl 1 s.se denotes a binary variable
1ndlcates the status of ES (i.e. 1: discharge and 0: charge). x5
and x5 are the minimum/maximum ratio for determilﬁng
lower/upper bound of ES’s reactive power. L[ +s.se 18 asetof
piecewise linearization for ES quadratic constraint. ElEtS 5.5
denotes an energy SOC of the ES unit i at time ¢ for st
scenario of season se. SOC? is an initial state of charge of the
ES unit. DoD™**is a maximum Depth of Discharge allowable

for ES. Finally, for (56)-(59) EiTR is a capacity rate of the
transformer. x TR and ¥R are the minimum/maximum ratio
for determining lower/upper bound of reactive power flowing

across TR. LPCC _is a set of piecewise linearization for PCC

1,t,5,5¢e
quadratic constraint., PF; TRt and PF; TR.41h are the minimum

operating power factor allowable of the 151/4™ quadrant of the
transformer i.

For these constaints, the inequality (29) represents the
general constrain that guarantees the voltage magnitude for
different individual buses within magnitude limits. Eq. (30)
guarantees load curtailment during IS mode. The micro-
grid model is obtained using the power flow model given
by (31)-(35). Constraints (31) and (32) are the linear ver-
sion of the node-based power flow equation that refers to
the power injected to thei” bus of the microgrid [19]. It is
worth noting here that, (31) and (32) have been generally
formulated for all buses. Thus, the variables representing the
power exchange and generation (i.e., by DDG, WT, PV, ES)
that are not relevant to the power flow equations written for
bus i can be disregarded by setting the upper bound for these
variables to zeros. Next, eqs. (33) and (34) are the linear
version defining the active and reactive power flowing along
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FIGURE 5. Steady state model for DDG unit operate with droop/2™d in IS
mode and their feasible operation region for both GC and IS mode.

a branch k in the microgrid. Where, i(k) and j(k) denote buses
i and j located at the upstream and downstream of branch k,
respectively. Finally, (35) is the piecewise linearization of the
quadratic constraint limiting the line ampacity.

The DDG units are modeled using the steady state
model (36)-(45). Fig. 5 shows the steady state model
employed for representing operation constraints for the DDG
units with droop/2™. Details of the derivation of the DDG
unit operation constraints can be found in [19]. Constraints
(36) and (37) define the active and reactive power generated
by the DDG units during IS or GC mode. These constraints
are composed of two terms associated with the binary input
bY's s¢- The first term of these constraints refers to the oper-
ation of the DDG unit under droop/2™ control during IS
mode. The second terms represent the operation of the DDG
unit in PQ mode during GC mode. As one may observe, the
activation of the terms in (36) and (37) are conditioned to
the binary input b’ , status. Eq. (38) guarantees the voltage
of the DDG bus restoration to the nominal secondary setting
voltage in IS mode. Eq. (39) defines the apparent power equal
to the DDG allocated unit rated size. In this work, loads are
considering to be shared proportionally to the capacity of the
DDG units [37], [39]. Thus, the active and reactive droop gain
can be calculated via the capacity-based model as expressed
in (40) and (41). Egs. (42) and (43) establish minimum and
maximum boundary limits to the active and reactive power.

Constraint (44) guarantees that the relationship between
the active and reactive power of a DDG unit is greater than
the minimum set power factor. Finally (45) represents the set
of piecewise linearization that ensures the operation of the
DDG unit respecting its rated capacity E?DG. Constraints (46)
and (47) represent the power outputs of the WTs and PVs
considering their actual MPPT power Plt s.se and PfJ tV 550"
ES constraints are depicted in (48)-(55). For this, in this
work, ES units are operated in PQ mode via its power elec-
tronic inverter interfaced (48). Nevertheless, with the power
electronic interface, the ES can be operated with droop/2™

84347



IEEE Access

Y. Vilaisarn et al.: Deep Learning Based Multiobjective Optimization for the Planning of Resilience Oriented Microgrids

control similar to the work in [19]. Constraints (49)-(50)
guarantee that the ES units’ operations are restricted within
the feasible operation region. In these constraints, the binary
variable bff 5.5 is introduced in (49) and (50) to avoid simul-
taneous charging and discharging states. Eq. (51) ensures that
the reactive power delivered by the ES units respect their
maximum and minimum reactive power allowable setting.
As the ES unit is connected through an inverter, (52) defines
the piecewise linearization representing the quadratic con-
strain for limiting the output to the maximum rated power
denote by E?S. In (53) update SOC for the ES are obtained for
each time segment based on the charging/discharging energy
flows, as well as considering the round-trip efficiency nfs
[32], [40]. Constraint (54) guarantees that the energy stored in
the ES is restricted by its rated capacity and minimum energy
storage setting. Finally (55) ensures that the energy stored in
the ES is available at the end of the planning horizons and
ready for the next days.

Constraints for the power exchange between the micro-
grid and the main grid at the substation are given by
(56)-(61). The constraints (56)-(59) guarantee the power
exchange is restricted by transformers’ feasible opera-
tion. First, (56) and (57) limit the active and reactive power
exchange respecting to the transformer rated power. As well,
the introduction of b’ (, in (56) and (57) allows for deac-
tivating these constraints during IS mode. Then, (58) is the
piecewise linearization representing the quadratic constrain
for limiting the active and reactive power exchange under the
transformer rated capacity. The operation for transformer lim-
its above the minimum power factor setting is given by (59).
Finally (60) and (61) refer to the grid connected power flow
conditions for voltage magnitude and phase angle at the
PCCMS imposed by the main grid during GC mode.

The piecewise constraint coefficients for (35), (45), (52)
and (58) can be calculated using (62a)-(62d). Details on
the derivation of piecewise constrains coefficients for the
quadratic constraints can be found in [19].

1t 4t 15t 4th 197 4th 157,41 151 4th
a, = cos | ¢, +(n —1) oy, Ny ,

n=12,...,npy (62a)
1st)4th o lst‘4rh lsl’4th lst’4rh lst’4rh
B, = sin ((pn + (n —1) e, Ny ,
n=12,...,np, (62b)
15t ’4th 15t ’4711 18 ,4th
y = cos(gy, 2npw ), n=12,... mpy
(62¢)
15t )4rh 15t ’4rh 15t 14th
o0 =t [ n=12 o (624)

2) DECISION VARIABLES - INNER LEVEL
The decision variables for the MILP model seeking to opti-
mize microgrids’ operation are summarized in Table 2.

V. STAGE IiI: OPTIMAL OPERATION BASED ON DEEP
NEURAL NETWORK (DNN) LEARNING

The detailed modeling of the multiple components involved
in microgrids for ensuring adequate operating conditions
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TABLE 2. Decision variables for MILP model for microgrid optimal
operation.

Variables Set
xMiLp Type vt € ,Vs € Vse € Vi k €
Vi,t,s,se R ﬂT Q;‘ v Q;" Q‘se n'BUS
ai,t,s,se R ﬂT Q’s U Q’s’ Qse n'BUS
byt 7 0r Qs U Qy Qg Qgys
PR R Q7 Q0 Qf Qg Qppe
il,)tl,)sc,;se R 'QT ﬂ’s U ﬂ’s’ ﬂse QDDG
uZt,s,se R 'QT Q;‘ u Q;" Qse -QDDG
Piose’ R 07 QU 0y Ose Qur
Pifut‘,;'zze R ‘QT Q‘.’:‘ U Q::" Qse QpV
Pi(.itc,gse R ‘QT Q,5 u Q’s’ Qse QES
Pift’:s,se R ‘QT Q;‘ U Q;" Q‘se 9-ES
osse R O Q007 Qe Qs
Eff,s,se R 'QT D',s U D',sl O-se QES
bisse z A AV 4 Qe Qs
Pil,;t(,:sc,vse R Qr QU Qy Qe Qpce
[ R {7 QU af Qg Qpce
Plsse R 07 QU af Qg Qi
Ilc’:,s,se R 'QT D',s U Q;’ O'se QLIN

during GC and IS modes, makes it unfeasible to solve this
problem using a MILP formulation due to the stochastic
nature of the problem, and consequently, the implied high
computational burden. In this sense, seeking to overcome
these limitations while not reducing the modeling complexity
in order to ensure feasible resilient solutions, a novel method-
ology using DNN technique is proposed. For this, effective
training samples for the DNN models are necessary. These
samples are composed of 1) the set of input samples for com-
binations of switch allocation and resources; and 2) the set of
targets for the LOPF dependent indices used for determining
the multi-objective functions of the outer level. To obtain
this data, the LOPF model depicted in the Section III is
used considering microgrid formation indicators-based N-K
contingencies level. Here, given that the LOPF is simulated
for set of sample inputs belonging to 2, 27 and Q4, which
are independent to each other, parallel computing can be
employed as shown in Fig. 6. For this, any third-party solution
based on well-knows multi-CPU cores or multi-GPU cores
can be applied.

A general outline of this process based on the stochastic
deep learning AC linear optimum power flow (DL-LOPFAC)
approach considering microgrids operation and control is
presented in Fig. 6. Details for obtaining the set of input
samples, as well as the targets provided by the LOPF model
are described in the following section.

A. SET OF SAMPLE INPUTS AND TARGETS

The set of input samples is a combination of possible allo-
cations for the DDGs, WTs, PVs, ESs and ISWs, where
INY"™ denotes the matrix including a set of sample sp which
belonging to a set of DNN training samples 25457, that can
be expressed by (63a)-(63b).

Ndn — [IN‘I’"";IN;’""; ...;IN?,’,‘”], sp € Ssam
(63a)
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FIGURE 6. Proposed optimal operation for hierarchical microgrids based
on deep-learning technique.

round (rg”s’;,)
}—)DDG
round rd"" pbLG
1
b.sp P?,EI,G step sp € Qsam
P a € Qg
dnn wT can
N _ round relp: PT Pgtep b e Qppg
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The vector INf;,’" is dependent on the candidate location
of the ISW and resources, where ng,, denotes the number
of features for a single DNN training sample input, in this
case Mpar = Nddg + Mt + Npy + Nes + Nigys T is a
uniform random number between [0,1]. In this work, the
uniform random is generated one time as a matrix with a size
Nfear X Nqm TEPTESENting a whole 254y training sample inputs
before being classified into subset according to the candidate
location of switch and resources as seen in (63b). In this way,
it guarantees that the generated random numbers cover all
possible configurations in the space ngq X ngam.

The set of targets is identified by the outer level’s indices
dependent on the decision variables of the LOPF prob-
lem. In this case, from (14b)-(22) the identified indices are
RESIOLEY | AOMCPPSG, AEMISPPS and AEMISORIP | where
TGsp,, denotes the DNN targets n corresponding to LOPF
solution sample sp, the identification targets for training the
DNN model can be given by (64)-(66).

TGgp,
=RESIO'FY | Vsp € Qsam (64)
TG
AOMCDDG/(_Sb (Ufuel/ DDG+O_DDG))
=14 or
365

SbaseKC DG)

E Z ( wmo§ : Z DDG)
Vsee Qe VseQ Ts.se VieQppg L=iVteQy  b1:s:se)’

Vsp € Qsam (65)
TG 3

AEMISPPS j(— 1

365
=AEMIS GRID/(TSbasnggéD)

:§ : § ( wmaE : § GRID+)
Vse€ e Vs Tls.se YieQppg L—vieQr 5S¢ )’

Vsp € Qsam (66)

The first target (64), RESI?LEV | is dependent on LOPF’s
decision variable b ’Y .- It is responsible for the training of
the DDN model for accounting bf‘;’; 4 Of the inner level.
This allows the trained DNN model enables to predict the
resilience index value which is corresponding to the first
objective function as discussed in section IV. The second
target (65) is related to AOMCPP G and AEMISPPY indices
dependent on the LOPF’s decision variables PlDthse It char-
acterizes both indices shared by the same variablei.e.,
and leading to the possibility to predict only a single value for
determining these two indices. As can see in (65), TGy > can
be calculated via AOMCPPG | or AEMISPPG | as those indices
are dependent on the same P?Pﬁ - In this case, the prediction
results according to 7G> can be used for re-calculating
AOMCPPC and AEMISPPC respecting their corresponding
multiplication constant requirement. These re-calculated pro-
vide the predicted results for AOMCPPC and AEMISPPC
which is necessary for determining the second/third objective

function for the outer level (i.e., TC OLEV and AEMIS OLEV)

84349



IEEE Access

Y. Vilaisarn et al.: Deep Learning Based Multiobjective Optimization for the Planning of Resilience Oriented Microgrids

Set of input START
samples Import line data R, X, fb, th———
: b, th, br™™
ISW " (sp), T |
0 DDG " (sp), [LFa] and [BFa] [LFa]
DDG "*(sp) floc, ISW " “(sp)
Path finder algorithm ‘ Determine MG ‘ Generate Y,'""
Generate Graph and
™ Adjacency matrix for ves ﬁtﬂ t—t+l
netwok tropology

& N3
‘ Generate vector node TG"*

Determme b,

Determine
PATH™® and PATH"

Forming FA™ and FA”

Determine
£ & DDG ™

N

-0 DDG ““(sp)

DDG *“(sp)
DDG **(sp)

*% Forming BFa, and LFa,

J@

0 floc, bus™ yhus
WTduun bm
2 pyomn fous
Gefrllerale ESim DDGE™
oc,
~ indicators set for
AV {s,se}
From END
stage 1

LOPF*"{s,se}

FIGURE 7. Flowchart for generating the microgrid indicator matrices and
vectors for time t € 2 for scenarios s of season se.

accordingly. Finally (66) corresponds to AEMISYR!P which

is dependent to P?fﬂj, leading to the representation of the

predicted value of the trained DNN model for the annualized
CO; emission by the power imported from the main grid
during GC mode, similar to (21d) in section IV.

B. MICROGRID FORMATION

The microgrid formation is the intermediate step within the
stochastic optimal operation level. This step delivers the nec-
essary indicators for optimal operation level representing the
microgrids formation due to N-K contingencies level. These
indicators are the matrices and vectors that represent the time-
coupling topologies of the test system during severe scenarios
QY. The methodology for delivering the microgrid formation
indicators respecting the LOPF problem is detailed illustrated
in Fig. 7.

1) FAULT INFLUENCE PATH

First, the affected branch and bus pathfinder is proposed
for searching the path(s) from the original fault location
until the end branch (terminal edge) and end node (leaves
node) respecting the graph representation of the network.
This search algorithm is deployed in order to automatically
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search the path(s) whenever a single fault is located in the
network. The respective step-by-step description of the algo-
rithm solution is detailed in the following sections.

a: STEP 1: REPRESENTATION OF THE SYSTEM TOPOLOGY
Let the reference system topology be represented by the undi-
rected graph Ghus = (NDb"s, ED""), where ND are the set
containing the vertices or nodes representing the buses in the
reference system, while EDP" are the edge set representing
the branch connected between two adjacent nodes in the test
system. In this case, the adjacency matrix of Gb“s is the
Npus X Npys Matrix denote byMadJ [M adj ] with M 4] Gefined
by (67) [41].
adi 1, if ND"ND™ < ED*

- i J
U 0, otherwise ©7)

As GPUS is an undirected graph, the adJacency matrix is
the symmetrical square matrix with M = Mj'f U Here it
is important to note that in case there is a reconfiguration
in the reference system, GP"S and M2% should be updated
accordingly.

b: STEP 2: DETERMINATION OF THE TARGET NODES TG"*%
Based on the graph GPUS, the shortest path by Dijkstra’s
algorithm is adopted for determining the path(s), or road
map(s), between the failed branch and the target node(s),
where fb (br/®") denotes the start node for the shortest path,
i.e. fault location, while the end of the shortest path is the
target node including the root node and leave nodes. More
detail about Dijkstra’s algorithm can be found in [41], [42].

The target nodes can be identified using the adjacency
matrix M24, determining the row of M4 with summation
equal to one. In this sense, let i and j denote the row and
column of M2dJ, Z"b”” M;; “ _ 1 indicates that node i is an
end node with no connectlon elsewhere.

c: STEP 3: DETERMINATION OF THE PATH(S)
Once the target nodes are identified, Dijkstra’s algorithm
is employed for determining the shortest path between the
start node fb (br/®!) and the target nodes TG*%. For this,
considering the system topology information available in the
GPUS matrix, where the weight of all branches is set to one,
given that any connection between two nodes is established
by a unique path for a radial distribution system.

The Dijkstra’s algorithm solution (DIJK) identifies the
shortest path between two nodes, respectively fb (br/*') and
T G?’”de, can be expressed by eq. (68).

path!™ (1 (br") , 7G1)
— DIJK (fb (brf“”) , TG;W) . Vie QIde (68)

Next, the branch path denoted by pathf” vector can be
obtained by identifying the edges located within the solu-
tion path fb (brf“”) to TG;"’de. Following, vectors pathﬁ’”s
and path?r belonging to a set of targets node(s) Q’;‘gf‘f are
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stored in matrices PATHP" and PATHP", respectively. These
matrices are responsible for determining the fault-influenced
branch and bus matrices, being detailed elaborated on in the
following section.

2) FAULT INFLUENCED BRANCH AND BUS MATRICES
Following, once affected paths are determined, clearing
procedures must be established to successfully isolate the
fault and ensure the system’s resilience. In this sense,
the representation of affected bus(es) and branch(es) by the
respective fault(s) must be performed to enable planning
algorithms solutions. These representations are respectively
held by matrices LFa and BFa, describing affected bus(es)
and branch(es). In addition, the establishment of rules to
ensure the adequate allocation of candidate ISWs able to
isolate the upstream and downstream of a branch fault is
fundamental [43], [44]. For this, the following rules are
established:

1) If the fault is found on the branch equipped with ISW,
the fault stays in the middle of the branch and has been
cleared by this ISW.

2) If the fault is located on the branch without ISW, the
fault, in this case, is cleared by the nearby ISWs located
along the searching paths.

A detailed description of bus and branch affected matrices

is presented in the following sections.

a: BRANCH AFFECTED MATRIX (LFA)

The branch, or line, affected matrix LFa is the binary matrix
assembling all binary vectors LFa, with ¢ belong to Qr,
where an online branch is represented by “1”, i.e., non-
affected branch, and affected branches by the fault(s) are
represented by “0”’. For determining this matrix, first, the
binary matrix denoted by FAPT is required. FAPT is the binary
square matrix np, X np,, in which its it single row describes
the set of affected branches corresponding to the location
of a single fault brf where i € Quy. Once matrix FAPT
is obtained, a generic i fault located at a branch “a”, i.e.,
floc; , = a, due to the severe event at a time “¢”, allows for
the determination of LFa; by the row “a’ of FAP" Moreover,
FAP" is useful for manipulating the elements of LFa; in case
multiple faults are featured in the test system (i.e., floc;; €
Qf10¢). To this end. the location of the fault(s) can be identified
by looking up on time segment ¢ of AV§ S?.

If there is more than a single fault located in the system.
Let, floc;be a vector containing the locations of the faults,
where its elements can be identified using AVIY gil LFa; at
time ¢ can be determined by looking up the multiple rows
of FAP™ considering the correspondent element number of
vectors floc; as described in (69), where || denotes the
Hadamard multiplication.

LFa; = HiGQﬂoc |:oFAbr (floc;, ):| (69)

Finally, LFa is obtained by repeating the same method-
ology for LFa, for t € Q7. Here one must note that, if no
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TABLE 3. Algorithm for determining FA%s {brf"” )

Algorithm A: formation of FAY*S

1: Initialize FA"™(1:n,,,) = 1

2: Generate PATHP" and PATH®"S using path finder for b, *"

3: for pth = 1ing,gy,

4: Set FAP (br/ ", [fb(br/*"), th(br/*")] = 0

5: for br = Ling,g,

6: if PATHP" (pth, br) corresponding to location of ISW

7: Denote pis = PATH®"(pth, br)

8: Find ay,, is an element address of PATH" (pth, br) = fb(pis)
9: Find ay,, is an element address of PATH®" (pth, br) = fb(pis)
10: FA" (br/ai, PATHY (pth, 1: min(ap, ap,)) = 0

11: Break for loop and go to next pth

12: elseif there is no ISW along path pth by br = 1,44,

13: Find index for the non-zero number nz from PATHY"S(pth, :)
14: FAbus (brf‘”", PATH"" (pth, nz)) =0

15: Break for loop and go to next pth

16: end if of elseif

17:  end for

18:end for

fault(s) occurs at time ¢, especially in the normal scenarios,
i.e., 2, the elements of LFa; can be simply set by the vector
constrained element of ‘1’.

b: BUS AFFECTED MATRIX (BFA)

Similar to the branches analysis, buses located within the fault
zone bounded by the ISWs must be deactivated. In this sense,
to represent this information, the binary matrix denoted by
BFa containing the bus(es) affected is required, where the
BFa is an assembly of the binary vectors BFa; wheret € Qr,
with term(s) equal to “1”, corresponding to an online bus,
and “0” for those affected by the fault(s) and deactivated.

Following the binary matrix denoted by FAP" is required.
FAPYS ig o non-square matrix due to np,s = np + 1, where
the i single row of FAPY describes the set of affected
buses corresponding to the location of a single fault location
br’fall given i € Qpn. Once this matrix FAP" obtained, the
BFa; can be determined by looking up to the row “a” of
FAP"S Similar to FAPT, FAPYS can be used for determining
BFa, in case the case there is a multi-fault in the network
ie., floci; € Qoc.

For determining FAP"S, flrst PATH"" and PATH™" have
been determined for brf € Q. Then, FA®S brf ail
obtained searching PATHbrbrf @il and PATHP brf @il ysing the
proposed algorithm described in Table 3.

For the case with multiple faults, a Hadamard multiplica-
tion [ is used according to FAP" {floc,}. Eq. (70) shows the
formulation for determining BFa; based on floc;.

BFa, =[], [FA™ (oc. o] (70)

Similarly, BFa; is repeatedly determined for ¢+ € Qr
and then stored in BFa. For the case where there is no
fault at time 7, the methodology described above can be
skipped and BFa; can be simply a set vector containing the
element ‘1°.
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TABLE 4. Formation of matrix containing microgrid set.

TABLE 5. Algorithm for determining 5".

Algorithm: formation of MG$®*

Algorithm A: formation of b*

1: Initialize the matrix MGEt(1: 5, 1: 1) = 0
2: Determine floc, = find(AVIsH(1:nyy,,t) = 0)
3: if floc, is empty

4: Set the matrix MG$®t(1: npys, 1: Mpys) = 0

5: else

6 import LFa, from LFa, then BFa, from BFa
7 Initialized the root of microgrid root™¢ = 0

8 Set and initialize MG**® = 0

9 Initialize the status of the nt® ISW by st = 0
= Find sti" of the set ISWSi€ for time ¢

10:  forn = ling,

11: if LFa, (ISWSite) = 0,

12: The ISWS€ is open and set st = 0

13: else

14: The ISWSUe is still close and set st = 1
15: end if

16:  end for

17:  Define ISWoPe™ = [SWSite (find(st,ifw = 0))

=» Determine the adjacent matrix for MG§®*

18:  Generate adjacency matrix AMS for the initial test system using (67)
open

19:  forn = 1l:ny,

20: Set AMG (fb(ISWn"”e"),tb(ISWn"”e")) =0
21 Set AMG (tb(ISWn"”e"), fb(ISWn"”E")) =0
22:  end for

=>» Determine the root of the microgrid(s) set
23:  Determine bus®", by bus’* = find(BFa, = 1)

open

24:  form = ling,

25: if ISW,2P®" corresponding to the fault location

26: Set 1% root by r00tM¢(m, 1) = fb(ISW,P™)

27: Set 2™ root by rootM(m, 2) = th(ISW,27°™)

28: else

29: Determine a single root node root™%(m, 1) equal to fb or tb of
ISW,P™ corresponding to the online node

30: end if

31:  end for

32: Do the intersection between rootM¢ and bus°" for eliminating the
overlap and selecting only the corresponding online node for forming
vector rootM¢

=> Forming MG$®* based on DFS

33: form = 1:n,4,

34: Do DFS on AMS for root¢ then store resulting vector in MG2FS
35: Sort MGPFS

36: Update MG®¢*®(m, 1: length of MGEFS) = MGPFS

37:  end for

38:  Check and eliminate the overlapping set of microgrid(s) in MG®¢t
39:  Store MG*** in MG§®*
40: end if

3) MICROGRID FORMATION SET

The matrix MGS®* is used for indicating the set of possible
microgrid formations once the fault is eliminated. In this
sense, taking advantage of the Depth First Search (DFS)
technique the matrix MG for a generic floc, and ISW*"*
is obtained employing the proposed algorithm described in
Table 4 for all ¢+ € Q7. This is possible as the DFS technique
allows the proposed algorithm able to track a set of micro-
grid(s) according to their roots noted by root™® which is
corresponding to the location of the switch(es). More details
about the DFS can be found in [45], [46].

4) MICROGRID FORMATION INDICATORS
In this section, the time dependent microgrid formation
indicators are determined. These indicators are the binary
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. Initialize b7*(1:npy) = 1
. if there is no fault(s) happening at time ¢
Set vector b*(1: ny,) to 0
else
Find the set microgrid in MG$®t that is adjacent to the main grid through
bus 1
Set bT* to 0 for all buses corresponding to the set of microgrid that is
adjacent to bus 1
7: end if

DEen s

a

matrices and binary vectors representing the time-coupled
microgrid tropology and operation, especially during the
N-K contingencies scenarios. The methodology applied for
determining these indicators is described in the following
subsection.

a: SYSTEM BUSES OPERATION MODE

The system buses’ operation modes are described by matrix
b™. Matrix b™ assembles the binary vectors b} containing
the binary elements responsible for indicating the operation
mode, i.e., GC or IS, of each system bus; where, the element
of b is “1” if the corresponding bus is located in the
microgrid area, otherwise “0” for those buses connected to
the main grid. The formation of b}" can be expressed by (71).
For the determine b}, the algorithm in Table 5 is adopted.

Bt} 71

m __ ppm m
bt = Le> Y2800

b: NON-ENERGIZED SYSTEM BUSES

The microgrid can be operated in IS mode when there is at
least a single DDG unit localized within the microgrid. In this
sense, let a vector MGy, define the set of m™ microgrid
found at time ¢, if there is no DDG unit installed in MGf,‘ff,,
this MG}, can not operate in IS mode. For this reason,
a binary vector bus¢ is adopt for indicating that the buses
within the microgrid cannot be energized due to the lack of
local DDG(s); where, the element of bus} is ““1”” when the
corresponding bus is located in a with DDG(s), otherwise “0”’
for those buses located in microgrids lacking local DDG(s).
The general formation for bus;¢ is shown in (72). Then, the
general algorithm for determiner bus} for an instance time
t € Q7 is shown in Table 6.

e

bus}® = [bus’fft, busg’t, oo busye ] (72)

Nbus,

¢: FREQUENCY-CONTROLLED BUSES AND DEACTIVATED
DDGS

According to (36) there is a need to identify the location of
buses with frequency control capability within the microgrid.
Nonetheless, if more than a single microgrid is created, the
frequency-controlled bus for each formed microgrid should
be identified. For this, the vector f?%S is employed. Its ele-
ments indicate the location of frequency-controlled buses for
each DDG. Still, there might be cases where a DDG is located
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TABLE 6. Algorithm for forming busg®.

Algorithm A: formation of busp®
. Initialize busy®(1iny,) =1
. if there is no fault(s) happening at time ¢
All buses are energized by GC mode, set busye(1:n,,;) =1
else
: Define ny; as the number of microgrid(s) from MG§®*
form = 1:ny,
if MG3?% adjacent to the main grid
do nothing and jump to the next microgrid m of the for loop
elseif MG32% have a DDG unit installed by checking the element of
MG?: with DDGS® as well as confirm that DDGSZ® + 0
10: do nothing and jump to the next m of for loop
11:  else
12: Define vector index i"° that is equal to the non-zero element of
MG
13: Set busye(i") =0
14:  endif
15:end for

VXA NBE DN

TABLE 7. Algorithm for determiningf?”s and DDG?"W".

Algorithm A: formation of 2% and DDGZ°W"
1: Initialize vector f2s(1: Ngqg) = 1 and vector DDG?"W”(lznddg) =1
2: if there is no fault(s) happen at time 7, it means MG operate in GC mode
3: Do nothing and let f¥*$(1:n4q,) and DDGI"(1:n4q,) as initial
value

4: else

5: forn = 1lingg,

5: Initialize %49 (1: nyg) = 0

6: form = 1:ny,

7: if there is an element of MG3¢% corresponding to DDGS'te
8: Set h2%9 =1

9: else

10: Set h%9 =0

12: end if

13: end for

14: if ¥, h49 = 0 means DDG¢ are not stay on any MG set in MG§®*
15: Set f,21s = DDGSe and DDGEYY™ = 0

16: else

17: Set f;P¥s = MG3et (R = 1,1) and DDGH9"™ = 1

18: end if

19:  end for

20:end if

within the fault area. In this case, the binary vector DDG;"”W”
is used, where elements corresponding to DDGs standing in
fault areas are set to zero, otherwise set to ““1”’. (73) and (74)
show the formation for f' f"s and DDG?”W", respectively.

bus __ rpbus rbus bus
fl — VUl ffz,z [ nddg,t] (73)

d d d d
DDG!™" = [DDG{3", DDG?'™, ..., DDGI"™,]

(74)

Table 7 shows the algorithm adopted for determining f f"s
and DDGI"".

d: WT, PV AND ES OPERATION STATUS

WT, PV and ES can not maintain the microgrid operation
in IS without DDG support. In this sense, WTs, PVs and
ESs that are located inside a non-successful IS microgrid
should be deactivated. For this, vectors indicating the WTs,
PVs and ESs deactivation status can be determined by simply
mapping their location with bus?® and can be as expressed
by (75a)-(75c).

WTtdown — bus;le (WTsite

P (75a)
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PV = bus}*(PV ¢ (75b)
ES{™"" = bus}“(ES})* (75¢)

where, WT %" py 40w and ES°"" are the vector containing
the status of the WTs (i.e., WT'%"" ) PVs (i.e., PV )

i,t,s,s€ i,t,s,se
: down : : site
and ESs (i.e., ES i,l,me) at time ¢, respectively. Then, WT priags

PV;;,’E and ESiZe are respectively the vector containing the
location of the WTs, PVs and ESs for sample sp.

e: TIME-COUPLED Ybus

The initial system impedance is determined via the original
system topology, i.e., Z; t s 5¢ = Zl.o. Still, during severe event
analysis, the impedance of overhead line branches changes
as the system topology adapts, i.e., opening the switch of an
overhead line leads to an equivalent impedance Z; ; 5 5o = 0©.
In this sense, the binary matrix LFa is used for updating
Z; 1 5.se at an instance time ¢, where the element of LFa can be
used as a multiplication for modifying the impedance Z; ; s se
as expressed in (76).

Zi,t,s,se = (I/LFai,t,s,se)Z,'O,
Vs € Q; @] Qg,

Vi € Qpus, Vt € Qr,
Vse € Qe (76)

The time-coupled Y?};ﬁ can be expressed by (77a) using
the methodology found in [47]. Conductance matrix G and
susceptance matrix B along the planning horizon Q7 can be

obtained using (77b) and (77c).

b b b b
Ys,gi = I:Yljlss,se’ Y2,uss,se’ R} YNL;S,‘r,se:I’
Vs € QLUQY, Vse € Qe (77a)
Gy ye = real (Y';’};z) (77b)
B, . = imag (Y';‘;j) (77¢)

C. INTEGRATION OF MICROGRID FORMATION
INDICATORS TO INNER LEVEL OPTIMIZATION

In this section, the microgrid formation indicators are inte-
grated into the LOPF problem allowing the capture of multi-
microgrid topology and the status of available resources over
the planning horizon Q7. For this, the LOPF formulation
updated according to the multi-microgrid formation indica-
tors is listed as follows:

1) OBJECTIVE FUNCTION

With a new b}", the formulation (28a) and (28e) were replaced
by (78a) and (78b), as shown at the bottom of the next page,
to introduce bff’t’s’se.

2) CONSTRAINTS

The update constraints considering the microgrids formula-
tion indicators can be listed as follows:

(1 - buszet‘,s,se)
t .
< bff;)r&se < b?,qt,s,se’ Vi e Qpus, Yt € Qr,
Vs € Q; U Qg, Vse € Q. (79)
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Pi,t,s,se

_ ZIEQBUS Gij,t,s,sevi,t,s,se
- i/GQBUS Bij,t,s,se‘sj,t,s,se

PCC DDG
P; +Pit S

it,5.5€ 1,8, 5e
+ use + PV use
= Pl s Vi € Qpus, Vt € Qr
+ its,se Wi Litsse ’ ’ ’
L curt
_Pi,t,s,se (1 - bi,t,s,se)
/ I
Vs e Qo UQ, Vsee Qg (80)
Qi,t,s,se

Y ZjeQBUS Bij,t,s,5¢Vit,s,5
— Z.jeQpus ij.t.5.5¢9],1.5.5¢

+QPCC + Q_DDG
S

i,t,s,se
- +07t e ,
_Qét,s,se <1 - bl'C,L;rfv,se)
Vie Qpus, YteQr, Vse Q; U Q;/, Vse € Qe
81)
Pbr

k,t,s,se
_ ( 8i(k)j(k),t,s,se (Vi,t,s,se - Vj,t,s,se) )
=\ Hbijck).n,s.se (irt,5,5e ’

Vk € Qun,

- aj,t,s,se
Vi € Qr, Vs € Q,UQY, Vse € Q
(82)
b
Qk,rt,s,se
— bi(k)j(k),t,s,se (Vi,t,x,se - j,t,s,se)
+8i)j(k). 15,5 (Si,t,5.5¢ ’
Vk € Qpin, Vt € Qr, Vs € Q/v U Q;/, Vse € Qe

- aj,t,s,se

(83)

DDG
i,t,s,se

1 MG
— |:_klw (éfif’t“‘v,t,s,se o 7-[/2) /m€:| bzlfyS,Sf

m DDG
+ (1 - bi,t,s,se Pi,l,s,se

Vie Qppg, VteQr, Vse Q; U Qg,

Vse € Q. (84)

DDG
Qi,t,s,se

q
_ [(Vi* = Vit,s,se + u:'),t,s,se) /ni ] b?ft,s,se
B DDG ’
+ <1 - th,s,xe) Qi,t,s,se
Vt € Qr, Vs e Q; U Q;’, Vse € Q.
(85)

Vi e QDDg,

Vi,f,S.Sbet,s,se
= Vb o r Vi€ Qppc,Vt € Qr, Vs € QU QY
Vse € Qe (86)
0 < PPPS < 5PPDDGi™ | Vie Qppe, Vi € Q
—= Yit,s,se =i it,s,se’ 1 € 8ppG, VI € {lr,
Vs € QLUQY,  Vse € Qe &7)
DDGGPDG down
X Si DDGi,t,s,se
DDG —DDGGPDG dow ;
< Qi,t,s,se <X S; DDGi,?K?se’ Vi € QppG,
Vt e Qr, Vse Qg U Q;’, Vse € Qe (88)
wT WT,0 H
0 = Pi,t,s,se = Pi,t,s,seWT?,?r;li%” Vie QWT’ vt € QT’
Vs € QLUQY, Vse e Qg (89)
PV V.0 d .
0t ePlY <P 0 PV VieQpy, Vi € Qr,
Vs € QLUQY,  Vse € Qe (90)
. <ES  E .
0< P;{Ltfls,se =S; bi,ts,s,seESg(t)r‘;flse’ Vi€ Qs, Vi € Qr,
Vs € Q; U Q;’, Vse € Qe 91

<ES .

0 = Pl?,};,s,se = Si (1 - bfiS,se) ES?,?YAV"TISE’ Vie QES’
VieQr, VseQUQJ, Vsee Qg 92)
—ES

KESSi ESf(t),Mglve

__ES<ES .
< OB o < XPSSTESIM,. Vie Qps, Vt e Qr,
Vs € Qi U Qg/, Vse € Qe 93)
—TR
_Si (1 - th,x,se)
—=TR .
= P{,)tc:gse = Si (1 - bth,s,xE) . VieQpcc, V1 € Qr,

VseQ Ug,
xRS (1 bl

z,l,s,se)

Vse € Qe (94)

< QFCC, <RSI (1=b, L), Vi€ Qpcc,
Vi e Qr, VseQ,UQY, Vse e Qe (95)
Vidsise (1= 5% ¢ s0)
= VoL (1=b] ). VieQpce. VteQr,
Vs € QLUQY,  Vse € Qe (96)
(SEIC,Sse (1 - bglt,s,se)

=0, VieQpcc, Vt € Qr,
Vs € Q UQL, Vse € Qe 97
where, Gjj s and Bjj; s s are the element of the time-

coupled conductance and susceptance matrix denotes the
connection of bus i to bus j at time ¢ for s scenario of season

CPCC

t,s,s€

MILP,MGs:
OFs,se S = Zteﬂr +CDDG (1 — pm

t,8,5¢e

+CCURTbm

t,s,s€ VieQBUS,t,s,se'l' t,s,s€

(1 —pm

VI,MGs \%4
Clise’s = Voase [ PCYT| > bus?

i€Qpus 1,t,s,5€

Vse € Q.
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(1 - b;'n:l,t,s,se)

VieQppg,t,s,se

b

it,s,se

g , VseQLuQl, Vsee Q (78a)
Gs
) Vspec
iLsse) " GC At, YVt eQr, Vse Q. UQ,
V,'** - Vi,t,s,se
(78b)
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se, respectively. gik)jk),r,s,se and Dji(kyjk) 15,5 are the time-
coupled conductance and susceptance between bus i to j of
branch k, at time ¢ for s scenario of season se.

denotes a phase angle of the frequency controllable bus flf’t‘”
at time ¢ for s™ scenario of season se.

First, (30) is replaced by (79) for allowing the load at the
individual bus to curtail during IS mode while forcing b";" e
1 for any bus i that corresponds to the bus non-energize
bus?j,s’se. Then, equations (80)-(84) are power flow con-
straints considering the microgrids topology using the time-
coupled YPUS. The updated constraints for the DDG units

§,5€

are expressed by (84)-(85). Compared to (36)-(38), b;”t suse 1
introduced in (84)-(86), allowing the problem con51derat10n
of an individual DDG unit s operation, i.e., GC or IS mode.

Moreover, for (84), M "“‘z w0 is dependent on frequency-

controlled buses. Egs. (42) and (43) are replaced by (87) and
(88) for accounting for the status of the DDG units i.e., online
or failure. The inequalities (89)-(93) guarantee that WTs, PVs
and ESs are deactivated in case they are located inside a non-
successful IS microgrids. Finally, eqs. (94)-(97) defined the
updated power exchange constraints by introducing b;’ft.

3) MILP MODEL FOR LOPF CONSIDERING MICROGRIDS
FORMATION

According to the updated LOPF problem formulation, the
MILP model used for the deep-learning approach can be
summarized as follows:

FM]LP MGs (98)

min O 5 s¢

XmiLp

Subject to:

« Voltage and load curtailment constraints: (29), (79)

o Power flow constraints: (80)-(83), (35)

« DDG operation constrains: (39)-(41), (44), (45),
(84)-(88)

o WT and PV operation constrains: (89), (90)

« ESS operation constraints: (48), (52)-(55), (91)-(92)

« Power exchange constraints: (58), (5§9), (94)-(97)

D. DEEP NEURAL NETWORK (DNN) MODEL
At this stage, for each sample sp, the identified
targets (64)-(66) can be calculated using the results obtained
by the LOPF solution. Then, a set of sample inputs IN™™
and the calculated targets (64)-(66) are used for training the
DDN models, wherein 70% of the samples were arbitrarily
selected for the training procedure and the remaining samples
for the testing procedure. For simplicity, a single DNN model
is trained for predicting the single identification target. In this
work, each DDN model employed is formed as a multi-
layer feedforward neural network with three levels, i.e.,
a single input layer, several hidden layers and a single output
layer [48], [49]. Fig. 8 shows the basic scheme for a multi-
layer feed-forward neural network architecture.

According IN9™ and targets (64)-(66), a general DNN
model architecture designed for a single sample can be
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FIGURE 8. General scheme of multi-layer feed-forward neural network
architecture for predicting a single identified target.

expressed by (99)-(101).

O = ING". sp € Qsam (99)
affy = " (Wial™ , + bi).
i=1,2,.,n,sp € Qsam (100)
af;?‘ln’ — fdnn’ (thl'i‘]a[r{Z],,lSp + bnhH—l),
sp € Qsam (101)

The input layer of the hidden layer receives the vector of
input a‘é’”’ expressed by (99). Then, each layer in the hidden
layer computes their neuron pre-activation pd";’ regarding
the weight matrix (i.e., W;) and biases vector (i.e., b;), the
activation function f; dn (.) employed to pf’fg for delivering
the neuron activation for the next layer (100). In the end, the
output layer computes a single prediction neuron activation,
nyr = 1, using the neuron activation a‘,ffl"‘sp that is obtained
by the last layer of the hidden layer (101). In this work,
fid”" (.) is a sigmoid activation function for the hidden layer,
while the output layer linear activation function is denoted
by f dnn’ () is used. Finally, the DNN model has been trained
via the Bayesian Regularization Backpropagation (BRB)
algorithm [48]. This algorithm is a backpropagation-based
approach focused on minimizing the mean sum of squares
of the network errors (MSE) during the DDN model train-
ing. Moreover, seeking to minimize and make the network
response smoother, as well as likely to reduce overfitting
impact [48], [50]. The proposed algorithm also includes the
network regularization based on the network sum of mean
square weights (MSW).

As can be seen in Fig. 6, the prediction obtained by the
trained DDN model should satisfy the criteria. In this work,
the errors indicated in (102) have been used as a criterion cal-
culated for every round of DNN training completion. Then,
(103) and (104) are calculated for illustrating the performance
of the model for different types of errors.

Gy — ner (IN%m)
TG,

ed™ = 100% x max

Vsp € 41, (102)
4™ = mean (|7G,, — ner"AN%™) ),
Vsp € Qi (103)
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mean ()TGSP - net"(IN‘Sll','")
mean (TGSI,)

)

’

ed™ = 100% x

Vsp € Qi (104)

where, net" (IN ‘Sll’,‘”) is the prediction results for the input

sample IN ‘sil',’" using the DNN model corresponding to target
n. First, e‘ll"” represents the relative error between the pre-
diction and real value. In this case, we apply a maximum
for delivering the worst error over the vector of relative
error. Then, eg"” and 6‘31”" represent the mean absolute and
relative errors, presenting more generalized perspectives in
comparison to e‘lj””.

In this work, the hyper parameters are randomly selected
for every round of DNN training, i.e., (a) activation function
for hidden layers, (b) activation function for outer layer,
(c) number of layers and corresponding neurons in the hid-
den layers. According to the BRB algorithm, the training
round stops if the sum squared error and the sum squared
weights are not improved over subsequent training iterations
(epochs) [48], [50]. Then, trained DNN models are vali-
dated through the testing set until satisfying the criteria e‘l’"”
threshold, guaranteeing that the worst relative error between
the target and prediction is less than e‘f”". Finally, trained
DNN models are used for predicting the targets and calcu-
lating the LOPF dependent indices RESIOLEY | AOMCPPO,
AEMISPPS and AEMISCRIP for the outer level. In this sense,
let net"(Xorgy) be a trained DDN network for target n
depending on Xgrgy, the LOPF dependent indices for the
outer level calculated using the trained DNN model can be

expressed by (105)-(109b).

RESIOEV-Al — net\ (X orpy), Vsp € Qsam (105)
CDDG,dl + CWT

TCOLEV.dl _ <-|—CPV L CES 4 CIsW (106)

(107a)

AOMCPPO U — ner® (X oLEV)

365 .
X (stase (UJMZ/’]DDG + Uggﬁgl))
(107b)

AEMISOMEV-AE = AEMISPPC 4 + AEMISORIP4L - (108)
365
AEMISPPC M = net* X ovpy)(==SpaseKCor ),
Vsp € Qsam (109a)
365
AEMIS P = net® (X o1uv ) Sbase KEE).

Vsp € Qsam (109b)

VI. STAGE IV: SOLUTION FOR OPTIMUM PLANNING
The proposed multi-objective optimization problem incorpo-
rating the DNN models for the resilience-oriented planning
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of microgrids can be summarized as follows:

min (RESIOLEV,dl,TCOLEV,dl’AEMISOLEV,dl) (110)
XoLEv

S.t.

o DERs size constraint: (23), (24)
o Maximum allowable bus power constraint: (25)
o ISWs and DERs installation constraints: (26), (27)

The proposed problem has been solved using the
population-based multi-objective optimization approach
NSGA-II [51]. Fig. 9 shows the general outline of the pro-
posed optimum planning NSGA-II based on DNN models.
The NSGA-II is widely used for multi-objective optimization
problems due to its computational efficiency and faster con-
vergence compared to the other techniques [51]. Moreover,
the solution delivered by NSGA-II is closed to the true Pareto-
optima frontier [51]. Additional details on NSGA-II and its
implementation can be found in [51].

In the beginning, the first iteration at gen = 0 the NSGA-II
starts generating an initial random parent population with
Npop individuals. In this work, a single individual includes
the combination of the genes representing the allocation of
the planning elements i.e., ISWs, DDGs, WTs, PVs and ESs.
Fig. 10 shows the structure of an individual or a chromosome.
Then, considering every single individual, the multi-objective
function can be determined from two directions A and B. For
the following iteration gen > 0O the NSGA-II starts forming
an 71,4, child offspring population using the genetic operators,
i.e., selection, crossover, and mutation [51]. Similar to the
parent population, the multi-objective functions are evaluated
for npep child individuals, and a new parent population is
determined.

First, the child population is combined with the parent
population forming a mixed population with 2 X 71, individ-
uals. Then, a new parent population is developed by select-
ing npep individuals from the mixed population using the
fast non-dominated sorting technique [51]. According to this
technique, individual(s) classified in the lowest rank of the
frontier are selected and moved up to the highest frontier
until the number of selected individuals reach nyp. If the
last ranked individuals cause the quantity to exceed 7y, the
crowding distance is applied for selecting the remainder indi-
viduals. This process is repeated until satisfy the NSGA-II
criteria.

VIl. NUMERICAL RESULTS

To validate the proposed method, the IEEE 33-bus test system
is selected. This system is a typical distribution network with
the ability to be disconnected from the main grid via the main
isolated switch, i.e., ISWS"_ installed at the upstream inter-
facing substation. Distribution lines infrastructure is assumed
as a typical overhead power line, with loads weighing coeffi-
cient proportional to the annual peak load, Fig. 11, similar
to the work found in [19]. The wind speed and irradiance
data sets are obtained via the scenario generation procedure
described in Section III using fast forward reduction. For this,
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FIGURE 9. Optimum planning approach.

data series extracted from NREL [52] comprising the hourly
profile for 10 years, respectively 2008-2017 for Victoria-BC,
Canada, of wind speed in MPH (miles per hour) and for
irradiance in w/m? are employed. Details pertaining to the
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FIGURE 11. Seasonal annual load pattern.
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FIGURE 12. 33-bus test system with candidate buses and branches.

obtained set of scenario reductions are shown in Table 8.
Based on the obtained data sets, the most vulnerable wind
scenarios summarized in Table 9 are used for generating
severe operation scenarios. For accounting for the uncer-
tainty of the N-K contingencies, NI is set sufficiently high,
NP = 10000, allowing for the selection of 5 scenarios for
each season se. This procedure steps are detailed depicted in
Section III, and the parameters related to the scenario genera-
tion are summarized in Table 10. The daily market electricity
price is extracted from NYISO [53], where corresponding
days and years are shown in Table 8 and Table 9. The test sys-
tem candidate buses and branches for the planning elements
are shown in Fig. 12, with main characteristics summarized
in Table 11 [54].

The proposed planning framework is developed in
MATLAB environment, including the DNN models training
procedure, the implementation of NSGA-II and the validation
procedure. It is worth noting that the technology sodium sul-
fur (NaS) was selected for the ESs due to its high number of
lifecycles. In this work, the ES capacity rating is proportional
to their power rating, similarly to the work in [55]. In this
case, the ratio between the rated capacity and rated power
is set to 5 for all ESs. This number was extracted from the
optimal solution found in [33]. Additionally, the maximum
DoD is arbitrary set to 70% to provide a balance between
the battery lifecycle and its generation capability. The DDGs
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TABLE 8. Set of scenarios and their probability obtained by fast forward

selection and their corresponding calendar day/year for WT and PV.

TABLE 11. Characteristic of the 33-bus test system.

Line fb 1b R X Lbr - Npole phpeak  glpeak yload
i
Season Details No. # # (ohm)  (ohm) (m) (kW) (kVar)
Fall Scenario {80, 352, 694, 717, 718} 1 1 2 0.092 0.047 100 4 100 60 0.027
Day # 324,322,300, 323,324 2 2 30492 0251 500 14 90 40 0.024
Year 2008, 2011, 2015, 2015, 2015 3 3 4 0365 0.186 350 10 120 80 0.032
n?’sifzo {0.385, 0.024, 0.519, 0.048, 0.024} 4 4 5 0.380 0.194 350 10 60 30 0.016
Winter Scenario {291, 554, 586, 669, 854} 5 5 6 0817 0.706 800 21 60 20 0.016
Day # 352, 342, 374, 366, 369 6 6 7 0.187 0.618 200 6 200 100 0.054
Year 2011, 2014, 2014, 2015, 2017 7 7 8 0.710 0.235 700 19 200 100 0.054
vise {0.042, 0.403, 0.120. 0.093. 0.341} 8 8 9 1.028 0.739 1000 26 60 20 0.016
Spring Scenario (34, 103, 127, 563, 564 9 9 10 1042 0739 1000 26 60 20 0.016
Day # 94,71, 95.76. 71 10 10 11 0196 0065 200 6 45 30 0012
Year 2008. 2009. 2009. 2014. 2014 11 11 12 0374 0124 350 10 60 35 0016
S I TN R N =
Summer Scenario {152, 341, 342, 525, 619} . ’ ’
D 14 14 15 0.590 0.525 600 16 60 10 0.016
ay # 212,219, 220, 221, 224
15 15 16 0.745 0.544 750 20 60 20 0.016
Year 2009, 2011, 2011, 2013,2014
wiso {0.523,0.335, 0.014, 0.067, 0.061} 16 16 17 1286 1.718 1300 34 60 20 0.016
Tsse - 17 17 18 0.731 0.573 700 19 90 40 0.024
18 2 19 0.164 0.156 150 5 90 40 0.024
. . . . 19 19 20 1.501 1.353 1500 39 90 40 0.024
';::LE 9. The most vulnerable wind scenarios and their corresponding 20 20 21 0409 0477 400 1 90 40 0.024
) 21 21 22 0.707 0935 700 19 90 40 0.024
22 3 23 0450 0.308 450 12 90 50 0.024
Season Corresponding date max (V¥SY) 23 23 24 0.896 0.708 900 24 420 200 0.113
day month year m/s (m/s)s"" 24 24 25 0.894 0.700 900 24 420 200 0.113
Fall 19 November 2012 15.83 20.37 25 6 26 0203 0.103 200 6 60 25 0.016
Winter 18 January 2011 16.11 20.74 26 26 27 0284 0.144 300 9 60 25 0.016
Spring 12 Mars 2012 16.66 21.44 27 27 28 1.057 0932 1000 26 60 20 0.016
Summer 01 June 2010 15.55 20.01 28 28 29 0.802 0.699 800 21 120 70 0.032
29 29 30 0.506 0.258 500 14 200 600 0.054
30 30 31 0972 0961 950 25 150 70 0.040
TABLE 10. Parameter for generating scenario. 31 31 32 0310 0361 300 9 210 100 0.057
32 32 33 0340 0.529 350 10 60 40 0.016
Total 3715 2300
Parameters Unit Set belong Values o2
NP® - - 10000
NN/ - - 5/5
vt m/s Vi € Q5 4 10° ‘ ‘ ‘ ‘ : ; :
i wT —Train
v m/s Vi € Qi 26 o et
v m/s Vi € QiF 16 = s ]
Rf kW/m? Vi € Q5" 0.15 10 ‘ ] ‘ EeE_——————
RSP kW/m>? Vi € Qg 1 0 100 200 300 400 500 600 700 800 900
ebust . - 1.287 Eypdlt
lpole/o_ipole _ Vi € QLIN 65/15
ugondjgeond - Vi € Qun 47/9
77_.br,mml - - 0.05
v o " s ] 2040
1\'{ TTRI"‘” h - 2 -0.01 -0.005 0 0.005 0.01 0.015
hlaW/hzaw h - 2/3 errOrlmin =TG _ nel](l nn )
high ,; high _ i ;
hltg /hzlg h 3/4 , train. train
10 T
=
T
E 10
is the natural gas type which can be operated in PQ mode, 10— | fitom
-0.01 0 0.01 0.02 0.03

during GC mode, and droop/2™!, during IS mode. The general
parameters used in this research are summarized in Table 12.

A. DEEP LEARNING SOLUTION VALIDATION

In this section, the performance of the trained DDN models is
evaluated. As discussed in Section V, a single model is used
for predicting the single target. The corresponding hyper-
parameters for each DNN model architecture are summarized
in Table 13. The number of samples is 40000 including 70%
for the training set and 30% for the testing set. Taking advan-
tage of the BRB algorithm, training is terminated if the sum
squared error and the sum squared weights are not relatively
improved over successive training iterations (epochs) [48],
[50]. Additionally, an ef”" threshold of 10% is considered
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-0.02

error'®' = TG‘e - netl(I Yy

st, 1 test

FIGURE 13. MSE over epoch, distributed error of training set and test set
of the first DNN model for predicting 7G,.

for guaranteeing the accuracy of the DNN models. In this
case, the Fig. 13, 14 and 15 illustrate the training/testing MSE
and distributed error of the DNN model for predicting 7G;p, 1,
TGgp,1 and TGyp 1, respectively. To this end, the performance
of the trained DNN models are summarized in Table 14.
Analyzing Table 14, one can draw conclusions regarding
the DDN models errors for the three targets of interest.
First, the MSE, RMSE, and max |y| for the training and
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TABLE 12. General parameters.

Elements  Parameters  Unit/detail Values Level problem
DG e Sewh 070205 0“}“ mf;er 0 100 200 300 400 Esooh 600 700 800 900 1000
. 0C!
nPpe per unit 0.370 v v #
apBt $/kW 1300 4 v 10° . - - : :
oo $/kWh 0.003 v v
KBPG kg/kWh 201.6 v -
Mode for GC/IS PQ/2™ - v
pe MW 4.0 v - -0.1 -0.05 0 0.05 0.1
PR3S kw 100 v - error ™" <TG, - nel (N
Vv pu. 1.01/1.05 - v 1ot ‘ ‘ ‘ . ‘
ki® - 4 - v
PFPPG st - 0.4 - v
PF:DDGAth _ 0.4 _ v
XPP6 /P06 _ 20.2/0.6 - v 03 02 0.1 0 0.1 02
= s 2
WT T S’kW 1686 v - error ™ = TG, , - net*(INom")
o5 $/kW/year 46 v -
Mode for GC/IS pPQY - v FIGURE 14. MSE over epoch, distributed error of training set and test set
ﬁlm MW 0.6 v - of the first DNN model for predicting 7G,.
PYT, kW 100 v -
PV ol $/kW 2277 v :
Todm $/kW/year 21 v -
Mode for GC/IS PQ - v
2 MW 03 v -
Pilep kw 100 v -
ES SESP S/kW 300 M N 0 100 200 300 400 500 600 700 800 900 1000
Iy Epoch
Toam $/kW/year 80 v - i
ores $/kWh 350 v -
ol $/kWh 8 v -
Mode for GC/IS PQ - v
P MW 03 v -
Psl:;:ip KW 100 v _ -0.1 —OAOSI 0 0.05 0.1
ES ) 5 v v error™® = TGtmin,3 - netz(IN;'r ';’;n)
DoD™** % 70 - v - . . . ‘ ‘ ‘
nEs % 95 - v
SoC? % 50 - v
x5 - -0.6/0.6 - v
TR 5 KVA 5300 B v 0.15 -0.1 -0.05 0 0.05 0.1 0.15
—TR v error'®™™' = TG - net3(1 ey
X% - -0.6/0.6 - test.3 test
;F_T'R,lst ~ 0.75 - v — ..
LR ath v FIGURE 15. MSE over epoch, distributed error of training set and test set
PF™- - 0.75 N of the first DNN model for predicting 7Gs.
Vo p.u. 1.05 - v
Network ﬁf“s kVA/ph 6.00°,4.00° v -
7 - v TABLE 13. Hyper-parameters setting for DNN models’ architectures.
T e AV 500 yper-p g
o s AN 350 - v
SSW asw $/SSW 64.3 v - Hyper-parameters DNN Tanning Targets
G'gg‘:,,/ $/h 1.15 v - TGgp,l TGgp,Z TGsp,3
General Nr h 24 - No. of hidden layer 3 3 3
TL year 10 v - No. of neurons for hidden layer ~ 25-130-25 25-80-25 25-60-25
KERp kg/kWh 143 v - Activation fen. for hidden layer log- log- log-
gt $/kWh 34 - v sigmoid sigmoid sigmoid
pcV! S/kV 1.1 - v Activation fen. for output layer linear linear linear
Shase kVA 1000 4 4 log-sigmoid: Logistic sigmoid activation function
Vpase 3% 12.66 - v
51:'4”1 deg. 90 - v
n}l:;,ﬁh _ 15 - v

testing procedures are found around 10~* to 1077, 1072
to 10_4, and 107! to 1072 ranges, for all targets. These
results indicate the developed method significant ability to
infer adequate optimal solutions, presenting errors signifi-
cantly smaller than accepted deviations. Where respective
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variations in the errors range are due to the different units
under consideration. In terms of the criteria, the e‘f"” obtained
for TGyp 2, TGyp 2 and TGy, 3 are found less than the 10%
threshold. The e4™ is found at 7.75 x 1074, 1.06 x 1072
kWh and 1.09 x 10~2 kWh for TGy 2, TGsp» and TGy 3,
respectively. Finally, eg"" shows the ratio in percentage
for e‘zi”” over the mean target, leading to an error of less

than 1%.
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TABLE 14. Performance of trained DNN models.

Indicators Set Training targets
TGgp, TGep TGgps
- (kWh) (kWh)
MSE Train 9.29x1077 2.03x10* 2.04x10*
Test 3.13x10° 3.14x10* 3.00x10*
RMSE Train 9.64x10* 1.43x1072 1.43x1072
Test 1.77x1073 1.77x10? 1.73x1072
max|y| Train 1.50x107 1.36x10" 1.23x10!
Test 3.15x102 3.29x10"! 1.52x10"!
edmn (%) - 7.96 1.97 0.09
edmm (KWh) - 7.75%10 1.06x10? 1.09x107
e (%) - 1.44x107! 2.80x10? 0.63x102
x10°
° NSGA-II based DNN model
3.1 + Re-simulation with LOPF
3.0 %8
= o &ag’ o
?F: 441 Zg 5@%6’: :"o
= ] W?% @QQ o g0 8
gh J
& 2.9 P egﬁ@"’ eéyec’&% E 00® "
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FIGURE 16. Comparison multi-objective solutions obtained by proposed
NSGA-II based DNN model and their corresponding real values.

B. NSGA-Il PERFORMANCE BASED DNN MODEL

In this section, the performance of the proposed NSGA-II
based DNN model is evaluated. The NSGA-II is responsible
for generating the multi-objective problem solution according
to the Pareto frontier. In this work, the maximum number of
iterations and the population are set to 1000. The crossover
and mutation probability is set to 0.8 and 0.01, respectively.
These parameters were selected based on the guidelines avail-
able in [51], [56].

The solutions obtained include the Xopgv and the values
of the multi-objective function are based on DNN models’
prediction. To validate these solutions, first, the LOPF prob-
lem (98) is re-simulated for the obtained solution XgrLgyv.
Then, the solution obtained by re-simulating the LOPF is used
for calculating the real values of multi-objective functions.
Then, R-square (R2) and error indices (102)-(104) are calcu-
lated for evaluating the error between real objective functions
and those obtained by (98).

Fig. 16 shows the comparison between the real
multi-objective functions results and those obtained
by (98).

Then, Fig. 17, 18 and 19 illustrate the probability density
as a histogram and the cumulative density of the set of
errors ¢LEV™ for RESIOLEY | TCOLEV and AEMISOLEY

respectively. Where, e?LE V* denotes the set of relative errors,
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TABLE 15. Performance of NSGA-II.

Indicators NSGA-II objective functions

RESIULEV TCOLEV AEMISDLEV
R? 0.9993 1.000 0.9999
efLEV 1.98 (%) 4.71x10™ (%) 9.45%102 (%)
eJLEV 1.84x1073 1.57x10° ($/year) 3.94x10° (kg/year)
eILEV 5.27x10" (%) 1.69x102 (%) 1.36x107 (%)

compared to the max/worst relative error with eIOLEV

.
max (e?LEV .

Finally, Table 15 summarizes the R2 and errors indices

between both sets of solutions. The R? obtained for the three

objective functions are close to 1.00, eIOLEV for all objective

functions are less than 2%, whereas ezoLE V and 630 LEV

absolute and relative errors of less than 1%.

indicate

C. OPTIMAL PLANNING SOLUTION
This section presents the optimal planning solution wherein
the solution is positioned in the Pareto frontier respecting the
NSGA-II behavior. In this case, the solution can be classified
into two groups according to the 3D plan for multi-objective
function solutions shown in Fig. 20.
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FIGURE 20. Classification in Group A and Group B for the multi-objective
function’s solution obtained by NSGA-11 based DNN model.

TABLE 16. Planning solution corresponding the max/min in each
objective function for group A and the planning solution for group B.

Group Binary allocation size of _ RESI?MEV TCOLEY AEMISOLEY

No. DDGs, WTs, PVs and ESs ($/year) (kg/year)

1 1-4-1  /1-2-1/2-1-2/1-1 0.512 4.53x10°  2.85x10°

2 10-16-14 /5-5-4/4-4-4/3-3 0.275 1.53x107  2.90x10°

A 3 3-30-30 /4-4-4/4-4-4/3-3 0.284 1.78x107  2.89x10°
4 1-4-1  /1-2-2/1-1-1/1-1 0.506 4.24x10°  2.87x10°

5 8-16-15 /1-2-1/1-1-1/1-1 0.276 9.76x10°  3.02x10°

6 1-4-2  /3-3-3/4-3-4/2-2 0.478 7.93x10° _ 2.79x10°

B 1 0-2-2  /0-0-0/0-1-1/0-0 0.773 1.53x10°  2.86x10°
2 0-2-2____/0-0-0/0-0-0/0-0 0.774 1.03x10°  2.88x10°

Group A corresponds to the solution of Xorgy where all
three ISWs are installed on candidate branches of the test
system. These solutions present variations due to the alloca-
tion of different DDGs sizes in the candidate buses and their
deployment for maintaining the microgrid operation in IS
mode. Thus, affecting the evolution of the resilience index in
the Pareto frontier between ~0.2 and ~0.5. In contrast, Group
B corresponds to the solution Xop gy where none of ISWs are
allocated in the test system. Here, it is worth reminding that a
resilience index close to zero represents a high performing
network against severe events or any interruption require-
ment, i.e., load shedding. In this perspective, as expected the
resilience indices value in Group B are significantly higher
in comparison to Group A. Detailed results are presented
in Table 16 showcasing the planning solution Xorgv and
multi-objective functions corresponding to: 1) the max/min
value for each objective function for Group A, and 2) the two
solutions for Group B.

First analyzing Group A, one can observe that cases A2,
A3 and A5 show greater resilience in comparison to Al, A4
and A6. These results are due to the higher size of DDGs
allocated, providing the microgrid with better management
capacity for generation/load balancing and, consequently,
avoiding additional curtailment. Nonetheless, increasing the
size of DDGs consequently increases the TCOLEV  and
AEMISOPEY due to the additional cost associated. As can
see in Table 16, TCOLEY and AEMISOMEY for cases A2,
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FIGURE 21. Wind gust profile and the timeline of branch #12/#16/#19
availability corresponding to a selected scenario in spring.

A3 and A4 are greater than those in cases Al, A4 and A6.
In this sense, the consideration of renewable resources as
the main sources leading to a cleaner energy system can
significantly reduce AEMIS?EY | This perspective is clearly
observed comparing cases A2 to A5, where AEMIS?LEY
is significantly reduced for A2 in comparison to Al due to
its higher capacity for renewable resources. Still, RESI OLEV
presents very similar values for both cases with TC OLEV
for A2 higher in comparison to A5 due to installation cost.
From another perspective, Group B solutions feature signif-
icantly reduced resilience capacity, i.e., significantly higher
RESIOLEV i comparison to Group A. However, given their
trade-off between the three multi-objective functions, they are
still placed on the Pareto frontier, e.g., TC OLEV for the cases
in Group B are significantly lower in comparison to A1-A6.

D. RESILIENCE IMPROVEMENT

Next, in this section, the obtained optimal planning solutions
are stressed for an N-3 contingency scenario to illustrate
the system performance in face of severe operating condi-
tions. The N-3 contingency was selected corresponding to the
spring season in which multiple faults are localized in the net-
work, respectively on branches #12, #16 and #19. Following,
the network performance represented by the energy supply
level during the N-3 contingency is determined for the base
case, case Al, case A2 and case B2. The corresponding wind
gust profile and the binary state representing the availability
of branches #12, #16 and #19, according to the selected
AV are presented in Fig. 21.

Whereas Table 17 depicts the availability timeline for
branches #12, #16 and #19 along the planning horizon.
Based on this scenario, energy supply results are illustrated
in Fig. 22 for the base case and optimal planning solutions
identified in case A1, case A2 and case B2. Analyzing Fig. 22,
one can observe that the base case and case B2 are not able to
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FIGURE 22. Energy supply level and timeline event for representing
system performance for base case, case A1, case A2 and case B2.
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FIGURE 23. Microgrid formations and bus’s supply state at td for (a) Base
case (b) Case A1 (c) Case A2 (d) Case B2.

resist this severe event, leading to a direct drop-in supply from
100% to 0% at t°. As there are no ISWs placed in the network,
the microgrids could not be formed, while only ISW**° found
in the substation is open and takes down a whole test system
for clearing the faults in this N-3 contingencies. On the other
hand, cases Al and A2 allow for the formation of microgrids,
maintaining the energy supply level according to the size of
DDGs allocated. In this sense, due to the limited size of DDGs
allocated in case Al, the energy supply level drops down to
~20% at t . In contrast, case A2 shows the best performance
where the energy supply level drops down from 100% to 59%
at 14, where 41% of non-supplied loads correspond to buses
located inside locations isolated by ISWs.
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TABLE 17. Timeline of overhead line (branch) #12, #16 and #19 break
down over the planning horizon of a selected scenario in spring.

line te tbr.failo td TTRbT-fail thrrep tr’ tr
no.

8:00 - 11:00 - - 16:00 17:00
#12 9:00 6h 17:00
#16 - 10:00 - Sh 16:00 - -
#19 8:00 Sh 16:00

VIIl. CONCLUSION

In this work, a novel resilience-oriented microgrid planning
framework is proposed. The proposed framework develops
a multi-objective optimization problem formulation incorpo-
rating stochastic DL-LOPFAC models solved by NSGA-II
based on DNN. The proposed DL-LOPFAC framework pro-
vides planning solutions considering stochastic scenarios fea-
turing renewable energy and load uncertainties, HILP events
due to N-K contingencies caused by failures in overhead
lines, while simultaneously solving for both GC and IS opera-
tion modes, including detailed modeling of control and opera-
tional requirements, such as droop/2™? during islanded. Next,
in order to enable this comprehensive planning framework,
NSGA-II based on DNN models is employed to overcome the
computation burden and time execution limitations imposed
by the stochastic nature of the resilience-oriented planning
problem and consideration of the detailed systems’ model.
In this sense, by taking advantage of the proposed frame-
work predicted solutions obtained by DL-LOPFAC for the
inner level present a computation efficient solutions that do
not require numerous iterations as found in existing tradi-
tional analytical solution methodologies. Following, to ver-
ify the effectiveness of the proposed framework multiple
numerical analyses are performed. First, the performance
for the DL-LOPFAC is evaluated by obtaining significantly
reduced MSE/RMSE in relation to the expected error thresh-
old. Moreover, the maximum relative error e‘ll"” is found
significantly smaller than the threshold for the trained DNN
models, demonstrating high accuracy for the DNN mod-
els’ predicted results. Next, the proposed optimization level
NSGA-II based DNN model is validated, demonstrating
accuracy levels within accepted deviations, specifically the
worst relative error eIOLE V found is less than 2% for all fitness
functions. Finally, the overall planning solution is discussed,
indicating the proposed approach ability to deliver optimal
planning solutions capable of significantly improving the
system resilience even when subjected to HILP events such
as N-3 contingencies. Future directions of this work include
the integration of electric vehicles into the optimization prob-
lems, as these new system elements can significantly impact
the system operation, while introducing opportunities in the
area of resilience-oriented planning.

ACKNOWLEDGMENT
The author Youthanalack Vilaisarn especially thanks the
PCBEF for their support of his Doctoral Program studies.

VOLUME 10, 2022



Y. Vilaisarn et al.: Deep Learning Based Multiobjective Optimization for the Planning of Resilience Oriented Microgrids

IEEE Access

REFERENCES

[1]

[2]

[4]

[5]

[6]

[71

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

A. Hirsch, Y. Parag, and J. Guerrero, “Microgrids: A review of technolo-
gies, key drivers, and outstanding issues,” Renew. Sustain. Energy Rev.,
vol. 90, pp. 402—411, Jul. 2018, doi: 10.1016/j.rser.2018.03.040.

F. H. Jufri, V. Widiputra, and J. Jung, ‘State-of-the-art review
on power grid resilience to extreme weather events: Definitions,
frameworks, quantitative assessment methodologies, and enhancement
strategies,” Appl. Energy, vol. 239, pp. 1049-1065, Apr. 2019, doi:
10.1016/j.apenergy.2019.02.017.

Z. Li, M. Shahidehpour, F. Aminifar, A. Alabdulwahab, and
Y. Al-Turki, “Networked microgrids for enhancing the power system
resilience,” Proc. IEEE, vol. 105, no. 7, pp. 1289-1310, Jul. 2017, doi:
10.1109/JPROC.2017.2685558.

Y. Wang, A. O. Rousis, and G. Strbac, “On microgrids and resilience:
A comprehensive review on modeling and operational strategies,”
Renew. Sustain. Energy Rev., vol. 134, Dec. 2020, Art. no. 110313, doi:
10.1016/j.rser.2020.110313.

J. Kim and Y. Dvorkin, “Enhancing distribution system resilience with
mobile energy storage and microgrids,” IEEE Trans. Smart Grid, vol. 10,
no. 5, pp. 4996-5006, Sep. 2019, doi: 10.1109/TSG.2018.2872521.

Y. Wang, A. O. Rousis, and G. Strbac, “A three-level planning model
for optimal sizing of networked microgrids considering a trade-off
between resilience and cost,” IEEE Trans. Power Syst., vol. 36, no. 6,
pp. 5657-5669, Nov. 2021, doi: 10.1109/TPWRS.2021.3076128.

J. Najafi, A. Peiravi, A. Anvari-Moghaddam, and J. M. Guerrero,
“Resilience improvement planning of power-water distribution
systems with multiple microgrids against hurricanes using clean
strategies,” J. Clean. Prod., vol. 223, pp. 109-126, Jun. 2019, doi:
10.1016/j.jclepro.2019.03.141.

M. H. Amirioun, F. Aminifar, and H. Lesani, ‘“Towards proactive schedul-
ing of microgrids against extreme floods,” IEEE Trans. Smart Grid, vol. 9,
no. 4, pp. 3900-3902, Jul. 2018, doi: 10.1109/TSG.2017.2762906.

Q. Shi, F. Li, M. Olama, J. Dong, Y. Xue, M. Starke, C. Winstead,
and T. Kuruganti, “Network reconfiguration and distributed energy
resource scheduling for improved distribution system resilience,” Int. J.
Electr. Power Energy Syst., vol. 124, Jan. 2021, Art. no. 106355, doi:
10.1016/j.ijepes.2020.106355.

J. Zhu, Y. Yuan, and W. Wang, “An exact microgrid formation
model for load restoration in resilient distribution system,” Int. J.
Electr. Power Energy Syst., vol. 116, Mar. 2020, Art. no. 105568, doi:
10.1016/j.ijepes.2019.105568.

X. Wu, Z. Wang, T. Ding, X. Wang, Z. Li, and F. Li, ““Microgrid planning
considering the resilience against contingencies,” IET Gener., Transmiss.
Distrib., vol. 13, no. 16, pp. 3534-3548, Aug. 2019, doi: 10.1049/iet-
2td.2018.6816.

M. Ghasemi, A. Kazemi, A. Mazza, and E. Bompard, “A three-stage
stochastic planning model for enhancing the resilience of distribution sys-
tems with microgrid formation strategy,” IET Gener., Transmiss. Distrib.,
vol. 15, no. 13, pp. 1908-1921, Feb. 2021, doi: 10.1049/gtd2.12144.

Y. Wang, A. O. Rousis, and G. Strbac, “Resilience-driven optimal sizing
and pre-positioning of mobile energy storage systems in decentralized net-
worked microgrids,” Appl. Energy, vol. 305, Jan. 2022, Art. no. 117921,
doi: 10.1016/j.apenergy.2021.117921.

X. Hu, H. Hu, S. Verma, and Z.-L. Zhang, “Physics-guided deep neural
networks for power flow analysis,” IEEE Trans. Power Syst., vol. 36, no. 3,
pp. 2082-2092, May 2021, doi: 10.1109/TPWRS.2020.3029557.

X. Pan, T. Zhao, M. Chen, and S. Zhang, “DeepOPF: A deep neu-
ral network approach for security-constrained DC optimal power flow,”
IEEE Trans. Power Syst., vol. 36, no. 3, pp. 1725-1735, May 2021, doi:
10.1109/TPWRS.2020.3026379.

J. C. Bedoya, Y. Wang, and C.-C. Liu, “Distribution system resilience
under asynchronous information using deep reinforcement learning,”
IEEE Trans. Power Syst., vol. 36, no. 5, pp. 4235-4245, Sep. 2021.

M. Moradi-Sepahvand, T. Amraee, and S. Sadeghi Gougheri, “Deep
learning based hurricane resilient coplanning of transmission lines,
battery energy storages, and wind farms,” [EEE Trans. Ind. Infor-
mat., vol. 18, no. 3, pp. 2120-2131, Mar. 2022, doi: 10.1109/TI1.2021.
3074397.

M. Dabbaghjamanesh, A. Kavousi-Fard, and J. Zhang, ““Stochastic mod-
eling and integration of plug-in hybrid electric vehicles in reconfig-
urable microgrids with deep learning-based forecasting,” IEEE Trans.
Intell. Transp. Syst., vol. 22, no. 7, pp.4394-4403, Jul. 2021, doi:
10.1109/T1TS.2020.2973532.

VOLUME 10, 2022

(19]

(20]

(21]

(22]

(23]

(24]

(25]

[26]

(27]

(28]

(29]

[30]

(31]

(32]

(33]

(34]

(35]

[36]

(371

(38]

(391

Y. Vilaisarn, M. Moradzadeh, M. Abdelaziz, and J. Cros, “An MILP
formulation for the optimum operation of AC microgrids with hierar-
chical control,” Int. J. Electr. Power Energy Syst., vol. 137, May 2022,
Art. no. 107674, doi: 10.1016/j.ijepes.2021.107674.

M. Abdelaziz and M. Moradzadeh, “Monte—Carlo simulation based multi-
objective optimum allocation of renewable distributed generation using
OpenCL,” Electr. Power Syst. Res., vol. 170, pp. 81-91, May 2019, doi:
10.1016/j.epsr.2019.01.012.

M. Barani, J. Aghaei, M. A. Akbari, T. Niknam, H. Farahmand, and
M. Korpas, “Optimal partitioning of smart distribution systems into
supply-sufficient microgrids,” IEEE Trans. Smart Grid, vol. 10, no. 3,
pp. 2523-2533, May 2019, doi: 10.1109/TSG.2018.2803215.

A. J. Conejo, M. Carrion, and J. M. Morales, Decision Making Under
Uncertainty in Electricity Markets. Piscataway, NJ, USA: IEEE, 2010.
M. Bao, Y. Ding, M. Sang, D. Li, C. Shao, and J. Yan, “Mod-
eling and evaluating nodal resilience of multi-energy systems under
windstorms,” Appl. Energy, vol. 270, Jul. 2020, Art. no. 115136, doi:
10.1016/j.apenergy.2020.115136.

M. H. Amirioun, F. Aminifar, and H. Lesani, ‘“Resilience-oriented
proactive management of microgrids against windstorms,” [EEE
Trans. Power Syst., vol. 33, no. 4, pp.4275-4284, Jul. 2018, doi:
10.1109/TPWRS.2017.2765600.

M. H. Amirioun, F. Aminifar, H. Lesani, and M. Shahidehpour, “Met-
rics and quantitative framework for assessing microgrid resilience against
windstorms,” Int. J. Electr. Power Energy Syst., vol. 104, pp. 716-723,
Jan. 2019, doi: 10.1016/j.ijepes.2018.07.025.

J. W. Muhs and M. Parvania, ‘“Stochastic spatio-temporal hurricane impact
analysis for power grid resilience studies,” in Proc. IEEE Power Energy
Soc. Innov. Smart Grid Technol. Conf. (ISGT), Feb. 2019, pp. 1-5, doi:
10.1109/1SGT.2019.8791647.

Cost-Benefit Analysis of the Deployment of Utility Infrastructure Upgrades
and Storm Hardening Programs, Satell. Commun., Quanta Technol.,
Raleigh, NC, USA, 2009, pp. 1-108, vol. 3021.

Y. M. Darestani and A. Shafieezadeh, “Multi-dimensional wind fragility
functions for wood utility poles,” Eng. Struct., vol. 183, pp. 937-948,
Mar. 2019, doi: 10.1016/j.engstruct.2019.01.048.

T. A. Short, Electric Power Distribution Equipment and Systems.
New York, NY, USA: CRC Press, 2006.

S.Poudel, A. Dubey, and A. Bose, “Risk-based probabilistic quantification
of power distribution system operational resilience,” IEEE Syst. J., vol. 14,
no. 3, pp. 3506-3517, Sep. 2020.

F. S. Gazijahani and J. Salehi, “Robust design of microgrids with reconfig-
urable topology under severe uncertainty,” IEEE Trans. Sustain. Energy,
vol. 9, no. 2, pp. 559-569, Apr. 2018, doi: 10.1109/TSTE.2017.2748882.
M. Moradzadeh and M. M. A. Abdelaziz, “A stochastic optimal plan-
ning model for fully green stand-alone PEV charging stations,” IEEE
Trans. Transport. Electrific., vol. 7, no. 4, pp. 23562375, Dec. 2021, doi:
10.1109/TTE.2021.3069438.

M. Moradzadeh and M. M. A. Abdelaziz, “A new MILP formulation for
renewables and energy storage integration in fast charging stations,” IEEE
Trans. Transport. Electrific., vol. 6, no. 1, pp. 181-198, Mar. 2020, doi:
10.1109/TTE.2020.2974179.

B. Mukhopadhyay and D. Das, “Optimal multi-objective expansion
planning of a droop-regulated islanded microgrid,” Energy, vol. 218,
Mar. 2021, Art. no. 119415, doi: 10.1016/j.energy.2020.119415.

M. E. Shaaban and E. F. El-Saadany, “Accommodating high penetrations
of PEVs and renewable DG considering uncertainties in distribution sys-
tems,” [EEE Trans. Power Syst., vol. 29, no. 1, pp. 259-270, Jan. 2014,
doi: 10.1109/TPWRS.2013.2278847.

A. Maulik and D. Das, “Optimal operation of droop-controlled islanded
microgrids,” IEEE Trans. Sustain. Energy, vol. 9, no. 3, pp. 1337-1348,
Jul. 2018, doi: 10.1109/TSTE.2017.2783356.

P. P. Vergara, J. C. Lopez, M. J. Rider, and L. C. P. da Silva, “Optimal
operation of unbalanced three-phase islanded droop-based microgrids,”
IEEE Trans. Smart Grid, vol. 10, no. 1, pp. 928-940, Jan. 2019, doi:
10.1109/TSG.2017.2756021.

P. P. Vergara, J. C. Lopez, L. C. P. da Silva, and M. J. Rider, “Security-
constrained optimal energy management system for three-phase residential
microgrids,” Electr. Power Syst. Res., vol. 146, pp. 371-382, May 2017,
doi: 10.1016/j.epsr.2017.02.012.

P. P. Vergara, J. M. Rey, J. C. Lépez, M. J. Rider, L. C. P. D. Silva,
H. R. Shaker, and B. N. Jgrgensen, “A generalized model for the opti-
mal operation of microgrids in grid-connected and islanded droop-based
mode,” IEEE Trans. Smart Grid, vol. 10, no. 5, pp. 5032-5045, Sep. 2019,
doi: 10.1109/TSG.2018.2873411.

84363


http://dx.doi.org/10.1016/j.rser.2018.03.040
http://dx.doi.org/10.1016/j.apenergy.2019.02.017
http://dx.doi.org/10.1109/JPROC.2017.2685558
http://dx.doi.org/10.1016/j.rser.2020.110313
http://dx.doi.org/10.1109/TSG.2018.2872521
http://dx.doi.org/10.1109/TPWRS.2021.3076128
http://dx.doi.org/10.1016/j.jclepro.2019.03.141
http://dx.doi.org/10.1109/TSG.2017.2762906
http://dx.doi.org/10.1016/j.ijepes.2020.106355
http://dx.doi.org/10.1016/j.ijepes.2019.105568
http://dx.doi.org/10.1049/iet-gtd.2018.6816
http://dx.doi.org/10.1049/iet-gtd.2018.6816
http://dx.doi.org/10.1049/gtd2.12144
http://dx.doi.org/10.1016/j.apenergy.2021.117921
http://dx.doi.org/10.1109/TPWRS.2020.3029557
http://dx.doi.org/10.1109/TPWRS.2020.3026379
http://dx.doi.org/10.1109/TII.2021.3074397
http://dx.doi.org/10.1109/TII.2021.3074397
http://dx.doi.org/10.1109/TITS.2020.2973532
http://dx.doi.org/10.1016/j.ijepes.2021.107674
http://dx.doi.org/10.1016/j.epsr.2019.01.012
http://dx.doi.org/10.1109/TSG.2018.2803215
http://dx.doi.org/10.1016/j.apenergy.2020.115136
http://dx.doi.org/10.1109/TPWRS.2017.2765600
http://dx.doi.org/10.1016/j.ijepes.2018.07.025
http://dx.doi.org/10.1109/ISGT.2019.8791647
http://dx.doi.org/10.1016/j.engstruct.2019.01.048
http://dx.doi.org/10.1109/TSTE.2017.2748882
http://dx.doi.org/10.1109/TTE.2021.3069438
http://dx.doi.org/10.1109/TTE.2020.2974179
http://dx.doi.org/10.1016/j.energy.2020.119415
http://dx.doi.org/10.1109/TPWRS.2013.2278847
http://dx.doi.org/10.1109/TSTE.2017.2783356
http://dx.doi.org/10.1109/TSG.2017.2756021
http://dx.doi.org/10.1016/j.epsr.2017.02.012
http://dx.doi.org/10.1109/TSG.2018.2873411

IEEE Access

Y. Vilaisarn et al.: Deep Learning Based Multiobjective Optimization for the Planning of Resilience Oriented Microgrids

[40]

[41]

[42]

[43]

[44]

[45]
[46]
[47]
[48]
[49]
[50]

[51]

[52]

[53]

[54]

[55]

[56]

I. Alsaidan, A. Khodaei, and W. Gao, “A comprehensive battery
energy storage optimal sizing model for microgrid applications,” IEEE
Trans. Power Syst., vol. 33, no. 4, pp.3968-3980, Jul. 2018, doi:
10.1109/TPWRS.2017.2769639.

J. David, M. Van Nguyen, and N. Cohen, Algorithmic Graph Theory.
Free Software Foundation, 2012. [Online]. Available: http://code.google.
com/p/graphbook/

R. Balakrishnan and K. Ranganathan, A Textbook of Graph Theory.
New York, NY, USA: Springer, 2012.

H. E. Farag, M. M. A. Abdelaziz, and E. F. El-Saadany, ‘““Voltage and
reactive power impacts on successful operation of islanded microgrids,”
IEEE Trans. Power Syst., vol. 28, no. 2, pp. 1716-1727, May 2013, doi:
10.1109/TPWRS.2012.2223491.

M. M. A. Abdelaziz, H. E. Farag, and E. F. El-Saadany, “Optimum
droop parameter settings of islanded microgrids with renewable energy
resources,” IEEE Trans. Sustain. Energy, vol. 5, no. 2, pp. 434-445,
Apr. 2014, doi: 10.1109/TSTE.2013.2293201.

R. Tarjan, “Depth-first search and linear graph algorithms,” SIAM J.
Comput., vol. 1, no. 2, pp. 146-160, Jun. 1972, doi: 10.1137/0201010.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to
Algorithms, 3rd ed. Cambridge, MA, USA: MIT Press, 2009.

J. D. Glover, M. S. Sarma, and T. J. Overbye, Power System Analysis and
Design. Stamford, CT, USA: Cengage Learning, 2012.

H. B. Demuth and M. T. Hagan, Neural Network Design, 2nd ed. Boston,
MA, USA: Martin Hagan, 2014.

S. Haykin, Neural Networks and Learning, vols. 1-3. Amsterdam,
The Netherlands: Elsevier, 2008.

M. H. Beale, M. T. Hagan, and H. B. Demuth, Deep Learning Toolbox™
User’s Guide. Natick, MA, USA: MathWorks, 2021.

K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-II,”” IEEE Trans. Evol. Comput.,
vol. 6, no. 2, pp. 182-197, Aug. 2002, doi: 10.1109/4235.996017.

The National Renewable Energy Laboratory (NREL). Accessed:
Jan. 5, 2021. [Online]. Available: https://maps.nrel.gov/nsrdb-viewer
New York Independent System Operator. Accessed: Jan. 5,2021. [Online].
Available: http://www.nyiso.com

Y. Vilaisarn and M. Abdelaziz, “An inversion-free sparse Z power flow
algorithm for large-scale droop controlled islanded microgrids,” Int. J.
Electr. Power Energy Syst., vol. 121, Oct. 2020, Art. no. 106048, doi:
10.1016/j.ijepes.2020.106048.

H. Haddadian and R. Noroozian, ‘“Multi-microgrids approach for design
and operation of future distribution networks based on novel tech-
nical indices,” Appl. Energy, vol. 185, pp. 650-663, Jan. 2017, doi:
10.1016/j.apenergy.2016.10.120.

L. Wang, A. H. C. Ng, and K. Deb, Multi-objective Evolutionary Optimi-
sation for Product Design and Manufacturing. London, U.K.: Springer,
2011.

YOUTHANALACK VILAISARN received the B.S.
degree in electrical engineering from the National
University of Laos, Vientiane, Laos, in 2013, and
the ML.S. degree in electrical engineering from Paul
Sabatier University (TOULOUSE III), Toulouse,
France, in 2015. He is currently pursuing the
Ph.D. degree with Laval University, Quebec, QC,
Canada. His research interests include micro-
grid operation and control, power flow analysis
for microgrids, microgrid optimal operation, and
planning of microgrids.

84364

YURI R. RODRIGUES received the B.Sc. and
M.Sc. degrees in electrical engineering from the
Federal University of Itajuba, Brazil, in 2015 and
2017, respectively, and the Ph.D. degree in elec-
trical engineering from the University of British
Columbia, Canada, in 2021. He is currently an
Assistant Professor with Seattle Pacific Univer-
sity, USA. His research interests include dynam-
ics, controls and analysis of microgrids and active
distribution networks, advanced monitoring pro-
vided by phasor measurement units, integration of distributed and renewable
generation, power system short- and long-term stability, and engineering
education.

MORAD MOHAMED ABDELMAGEED ABDE-
LAZIZ (Senior Member, IEEE) was born in Cairo,
Egypt, in September, 1984. He received the B.Sc.
(Hons.) and M.Sc. degrees in electrical engineer-
ing from Ain Shams University, Cairo, Egypt, in
2006 and 2009, respectively, and the Ph.D. degree
in electrical and computer engineering from the
University of Waterloo, ON, Canada, in 2014.

He is currently an Assistant Professor with
the School of Engineering, University of British
Columbia, Kelowna, Canada. He is a Registered Professional Engineer
in the province of British Columbia. His research interests include the
applications of machine learning (ML), optimization and high-performance
computation (HPC) in smart grids, electric vehicles charging infrastruc-
ture, integration of distributed and renewable generation, electrification of
the transportation systems, power systems operation and decarbonization
and dynamics, controls and analysis of microgrids, and active distribution
networks.

Dr. Abdelaziz is an Associate Editor for IET Generation, Transmission
& Distribution and the Canadian Journal of Electrical and Computer Engi-
neering (CJECE). He has been recognized as one of the best reviewers for
the IEEE TRANSACTIONS ON SMART GRID.

JEROME CROS received the Doctoral degree
from the Institut National Polytechnique of
Toulouse, France, in 1992, where he worked on
design of brushless dc motors for automotive
applications. Since 1995, he has been a Professor
with the Electrical Engineering Department, Laval
University, Québec, QC, Canada. His research
interests include electrical machine design, mod-
eling methods, magnetic field calculation, drives,
condition monitoring, and fault diagnosis.

VOLUME 10, 2022


http://dx.doi.org/10.1109/TPWRS.2017.2769639
http://dx.doi.org/10.1109/TPWRS.2012.2223491
http://dx.doi.org/10.1109/TSTE.2013.2293201
http://dx.doi.org/10.1137/0201010
http://dx.doi.org/10.1109/4235.996017
http://dx.doi.org/10.1016/j.ijepes.2020.106048
http://dx.doi.org/10.1016/j.apenergy.2016.10.120

