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ABSTRACT When facing severe weather events, a distribution system may suffer from the loss or failure
of one or more of its components, the so-called N-K contingencies. Nevertheless, taking advantage of the
system’s isolate switches and the increasing availability of distributed energy resources (DERs), a distri-
bution system may be clustered into microgrids able to withstand such contingencies with minimal power
interruption. In this perspective, this work proposes a novel bilevel optimization framework for planning
microgrids in active distribution systems under a resilience-oriented perspective. For this, first, the outer level
optimization features a multi-objective problem seeking to optimally allocate DERs and isolate switches in
the distribution network while balancing the competing objectives of cost, resilience, and environmental
impact. Next, the inner level handles the optimization problem pertaining to the optimal operation of the
microgrids that can be created by harnessing local DERs and isolate switches allocated in the outer level.
Further, given the proposed approach resilience-oriented focus, the developed framework employes deep
learning models based on deep neural network (DNN) architectures trained using Bayesian Regularization
Backpropagation (BRB) technique. This strategy allows for avoiding the modeling simplifications typically
employed to alleviate the computational burden that can otherwise jeopardize planning solutions’ feasibility.
Thus, enabling the accurate consideration of microgrids’ operational behavior, including hierarchal controls
and the stochastic nature of loads, generation, and weather-induced line failures, especially critical aspects
under resilience-oriented planning. Simulation case studies are developed to demonstrate the effectiveness
of the developed planning framework.

INDEX TERMS Resilience, stochastic linear optimal power flow, microgrids formation, NSGA-II, deep
learning.

NOMENCLATURE
A. ABBREVIATION
AC Alternative Current system
BRB Bayesian Regularization Backpropaga-

tion
CO2 Carbon dioxide
DDG Dispatchable Distributed Generation

The associate editor coordinating the review of this manuscript and
approving it for publication was Shafi K. Khadem.

DER Distributed Energy Resource
DFS Depth First Search algorithm
DGs Distributed Generations
DL-LOPFAC Deep Learning AC-LOPF
DNN Deep Neural Network
droop/2nd Primary droop mode with a supervisory

secondary control layer
DSO Distribution System Operator

84330

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME 10, 2022

https://orcid.org/0000-0003-1030-7949
https://orcid.org/0000-0001-5796-0481
https://orcid.org/0000-0002-6657-9276


Y. Vilaisarn et al.: Deep Learning Based Multiobjective Optimization for the Planning of Resilience Oriented Microgrids

ES Energy Storage unit
GC Grid-Connected operation
HILP High Impact Low Probability
IS Islanded operation
ISW Isolate Switch
ISWsub Isolate Switch at the upstream substation
MG(s) Microgrid(s)
MILP Mixed Integer Linear Programming
NaS Technology Sodium Sulfur
N-K Level of contingencies
NREL National Renewable Energy Laboratory
NSGA-II Non-dominated Sorting Genetic Algo-

rithm II
NYISO NewYork Independent SystemOperator
O&M Operation and Maintenance
OPF/LOPF Non-Linear/Linear Optimum Power

Flow
PHEVs Plug-In Hybrid Electric Vehicles
PQ mode Active and Reactive power control mode
PV Photovoltaic unit
SPF System Performance
WT Wind Turbine unit

B. SET AND NUMBER
nbr Number of the branches in the test system
nbus Number of buses in the test system
nddg Number of DDGs in the planning problem
nes Number of ESs in the planning problem
nfeat Number of features in a vector of sample
nhl Number of hidden layers for DNN model
nisw Number of ISWs in the planning problem
nMG Number of the microgrids
npath Number of the paths search
npv Number of PVs in the planning problem
npw Number of pieces for piecewise linearization
N ′s Number of normal scenarios
N ′′s Number of severe scenarios
N pre
s Number of generated scenarios in �pre

s
nsam Number of samples for training DNN model
NT Planning horizon time e.g., 24h
nwt Number of WTs in the planning problem
R Continuous variable or real number
Z Integer variable or binary number
�BUS Set of buses in the test system
�can
DDG Set of candidate buses for DDGs

�can
ES Set of candidate buses for ESs

�can
ISW Set of candidate branches for SSWs

�can
PV Set of candidate buses for PV units

�can
WT Set of candidate buses for WT units

�LIN Set of lines or branches in the test system
�
fail
LIN Set of failure branches in the test system

�node
TG Set of targets node(s)

�′s Set of generated scenarios for normal situation
�′′s Set of generated scenarios for severe situations

considering network SPF progression phase I
and II (i.e., te→ tr )

�
′′,orig
s Original set before reduction of generated sce-

narios for severe situation considering network
SPF progression phase I and II (i.e., te→ tr )

�
pre
s Set of generated pre-scenarios for severe situa-

tions considering only network SPF progression
phase I (i.e., te→ td )

�SAM Set of DNN training samples
�se Set of seasonal periods i.e. {fall, winter, spring,

summer}
�T Set of time segment in planning horizon e.g. {1,

2,. . . ,24}

C. PARAMETERS AND VECTOR/MATRIX
AMG Adjacency matrix for generatingMGset

t
APLt,s,se Annual peak load pattern in percentage at

time t for sth scenario of season se
AV Line or branch availability binary matrix
AVI−II

s,se Reduction version of AVI−II,orig
s,se

AVI−II,orig
s,se Matrix constraining the binary element

representing the availability of branches
for sth scenario of season se, considering
full network SPF progression i.e., phase I
and II (i.e., te→ tr )

AVI
s,se Matrix constraining the binary element

representing the availability of branches
for sth scenario of season se, considering
only network SPF progression phase I (i.e.,
te→ td )

Bij,t,s,se Element of the time-coupled susceptance
matrix denotes the connection of bus i to
bus j at time t for sth scenario of season se

Bs,se 3Dmatrix containing the time coupled sus-
ceptancematrices for sth scenario of season
se

bmt,s,se Binary input parameter indicates the oper-
ation mode of the microgrid at time t for sth

scenario of season se
bi Vector of biases for ith hidden layer of

DNN architecture
Bij Element of the susceptance matrix denote

the connection of bus i to bus j
bmt Vector containing binary elements bmi,t,s,se

indicates the operation mode for each bus
at time t

BFat Binary vector represents the bus(es)
affected/non-affected by fault(s) at time t

br faili Branch location corresponding to failure
branch i

buson Bus online or bus non affected by fault(s)
busnet Vector containing binary elements

busnei,t,s,se that indicates bus energize/non-
energize at time t for sth scenario of season
se

cdf nor Normal Cumulative Distribution Function
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DDGsiten,sp Location of nth DDG of sample sp
DDGsitesp Vector containing the location of the DDGs

for sample sp
DDGsizesp Vector containing the size of DDGs for

sample sp
DDGdownt Vector containing binary elements

DDGdownn,t that indicate the nth DDG
deactivation at time t

DIJK (.) Shortest path between two point by Dijk-
stra algorithm

DoDmax Maximum Depth of Discharge allowable
for ES

EES,sizei Energy rating of ES at candidate bus i
ESsitesp Vector containing the location of the ESs

for sample sp
ESdownt Vector containing the status of the ESs (i.e.,

ESSdowni,t,s,se) at time t
f dnn

′

Activation function for the output layer
f dnni (.) Activation function for the ith hidden layer
f bust Vector containing f busn,t that indicate the

location of the controllable bus at time t for
a nth DDG

FAbr Binary matrix represents branches affected
by the different locations of faults

FAbus Binary matrix represents buses affected by
the different locations of faults

fb(br faili ) From bus of the failure overhead line of
branch i

fb, tb Set of from bus and to bus for the test case
topology

floct Vector containing the ith fault at location
i.e., floci,t at time t

Gbus Undirected graph representation by set of
vertices (nodes) NDbus and set of edge
(branch) EDbr

Gij,t,s,se Element of the time-coupled conductance
matrix denotes the connection of bus i to
bus j at time t for sth scenario of season se

Gs,se 3Dmatrix containing the time coupled con-
ductancematrices for sth scenario of season
se

Gij Element of the conductance matrix denotes
the connection of bus i to bus j

hddg Vector containing hddgm that indicate the
presents of DDG for mth MG

hhigh1 /hhigh2 Pre-determined range for determining ϕbr

for the case corresponding to higher wind
vgustt,s,se > vhighcri

hlow1 /hlow2 Pre-determined range for determining
ϕbr for the case corresponding to
vlowcri ≤ v

gust
t,s,se ≤ v

high
cri

I
br
k Maximum ampacity of the branch k
INdnn Matrix containing vector INdnn

sp for train-
ing DNN model, sp ∈ �SAM

ISWopen Vector containing the location of mth ISW
(i.e., ISW open

m ) in the open state
ISW site Vector containing the location of ISWs
kgust Constant factor for calculating wind-gust
k iω Integral gain for frequency restoration for

DDG with droop/2nd

Ks,se/KHI
s,se Level of contingencies

KDDG
CO2 Carbon emission factor in kg/kWh accord-

ing to energy generated by DDGs
KGRID
CO2 Carbon emission factor kg/kWh according

to energy imported from the main grid
LDDGi,t,s,se Set of piecewise linearization for DDG

quadratic constraint
LESi,t,s,se Set of piecewise linearization for ES

quadratic constraint
LPCCi,t,s,se Set of piecewise linearization for PCC

quadratic constraint
Lbrk,t,s,se Set of piecewise linearization for line

ampacity quadratic constraint
LFat Binary vector represents the line(s)

affected/non-affected by fault(s) at time t
Madj Adjacency matrix
mpi Active droop gain of the ith DDG unit with

primary droop/2nd

Madj
ij Binary element ofMadj represents the con-

nection between two adjacent node ij
MGDFS

m Vector of mth microgrid obtained by DFS
of mthrootMG

MGset0 Initial set of microgrid formation
MGset

m,t Set of buses in mth MG formed at time t
MGset

t Matrix containing the set of possible
microgrids formation due to fault at time
t

MSE Mean sum of squares of the DNN errors
MSW Mean sum of squares of the DNN weights
MTTRnw Specifiedmean time to repair under normal

weather conditions
N pole
i Number of the poles according to span

length of branch i
nqi Reactive droop gain of the ith DDG unit

with primary droop/2nd

netn (.) Trained DNN model for target n

P
DDG

Planning upper bound for DDGs allocation

P
ES

Planning upper bound for ESs allocation

P
PV

Planning upper bound for PVs allocation

P
WT

Planning upper bound for WTs allocation
pdnni,sp Vector of neuron pre-activation obtained

by ith hidden layer according to sample sp
Pi,t,s,se Active power injected to bus i at time t for

sth scenario of season se
PLi,t,s,se Active power load for bus i at time t for sth

scenario of season se
PPVi,t,s,se Active power generated by ith PV unit at

time t for sth scenario of season s
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PWTi,t,s,se Active power generated by ith

WT unit at time t for sth sce-
nario of season s

PGRID+t,s,se Active power imported from
the main grid at time t for sth

scenario of season se. Its cor-
responding to PPCCi=1,t,s,se > 0

PDDG,sizei Active power rating ofDDG at
candidate bus i

PES,sizei Active power rating of ES at
candidate bus i

PL,peaki,t,s,se Original active peak load from
data sheet, bus i at time t for
sth scenario of season se

PPV ,sizei Active power rating of PV at
candidate bus i

PWT ,sizei Active power rating of WT at
candidate bus i

P
bus
i Maximum installation power

allowable for DERs at candi-
date bus i

PDDGstep Step size for DDG allocation
PESstep Step size for ES allocation
PPVstep Step size for PV allocation
PWTstep Step size for WT allocation
PATHbr Matrix containing the vector

pathbri with ∀i ∈ �node
TG

PAHbus Matrix containing the vector
pathbusi with ∀i ∈ �node

TG
pathbri Vectors containing the

branches in ith road
pathbusi Vectors containing the buses

in ith road
PCVI Penalty coefficient of voltage

violation in $/kV
PFDDG,4thi , PFDDG,1sti Minimum operating power

factor allowable of the 1st/4th

quadrant of the DDG unit i
PFTR,4thi , PFTR,1sti Minimum operating power

factor allowable of the 1st/4th

quadrant of the transformer i
PV site

sp Vector containing the location
of the PVs for sample sp

PVdown
t Vector containing the status of

the PVs (i.e., PV down
i,t,se) at time

t
Qi,t,s,se Reactive power injected to bus

i at time t for sth scenario of
season se

QLi,t,s,se Reactive power load for bus
i at time t for sth scenario of
season se

QL,peaki,t,s,se Original reactive peak load from data sheet,
bus i at time t for sth scenario of season se

RCi Certain solar radiation point of the ith PV
unit, typically set to 0.15 kW/m2

RSTDi Solar radiation in standard test conditions
of the ith PV un, typically specified as 1000
W/m2

rdnnele,sp Vector containing uniform random number
between [0,1] for planning element ele for
sample sp

ri,t,s Uniform random number for generating
abri,t,s,se

rms,se Vector constraining rmt,s,se for sth scenario
of season se

rmi,t,s,se Measured solar radiation of the ith PV unit
at time t for sth scenario of season se
(kW/m2)

rESi Ratio between the rated capacity and rated
power for the ES

rootMG Vector containing root of each microgrids
round Round deployment, ‘‘1’’ for input ≥

0.5 and ‘‘0’’ otherwise
Sbase Setting power base value

S
DDG
i Capacity rating of the DDG unit i

S
ES
i Maximum rating power of the ES unit i

S
TR
i Capacity rate of the transformer
SOC0

i Initial state of charge of the ES unit
SPF0/SPF Expected/actual system performance
st iswn Status of ISW n
tr
,

Time t corresponding to first failure branch
revered

td Time t corresponding to the end of event
te Time t corresponding to the beginning of

impact or severe event
T event Time segment period of the event Phase I
tr Time t corresponding to the full system

recovery
T repair Time segment period of the event Phase II
tbr,faili,s,se Time corresponding to the moment when

branch i fail for sth scenario of season se
tbr,repi,s,se Time t when branch recovered or repared

for sth scenario of season se
tds,se Time td for sth scenario of season se
tes,se Time te for sth scenario of season se
trs,se Time tr for sth scenario of season se
TGnode Vector containing the set of target node

TGnodei with ∀i ∈ �node
TG

TL Project lifetime, typical set by 10 years
TTR Time to repair
TTRbr,faili,s,se Time to repair of the failure branch i for sth

scenario of season se
TTRbr,fails,se Vector TTR containing TTRbr,faili,s,se
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V ,V Maximum/Minimum voltage violation of
the bus

vcii , v
co
i , v

ra
i Cut-in, cut-out, and the rated speed of the

ith wind DG, respectively
vms,se Vector constraining vmt,s,se for s

th scenario
of season se

vmi,t,s,se Measured wind speed of the ith wind DG at
time t for sth scenario of season se

Vbase Setting voltage magnitude base value
vlowcri /v

high
cri Specified low and higher bound for critical

wind
V spec
GC Nominal specified voltage during grid-

connected mode
V ∗∗i Voltage reference for secondary control of

the DDG at candidate bus i operated with
droop/2nd

V ∗i Voltage reference for primary control of
the DDG at candidate bus i operated with
droop/2nd

vgustse Vector containing 3-Second wind gust in
proportional to vworstse

vmse Matrix constraining vms,se for season se
vworstse Vector of wind scenario contains the word

wind speed in m/s
W i Matrix of weight for ith hidden layer of

DNN architecture
wloadi Weighing coefficient of loads
WT sitesp Vector containing the location of the WTs

for sample sp
WTdownt Vector containing the status of the WTs

(i.e., WT downi,t,s,se) at time t
Ybus
s,se 3D matrix containing the time couple

admittance matrix Ybus
t,s,se at time t for sth

scenario of season se
Zi,t,s,se Time coupled impedance of branch i at

time t for sth scenario of season se
Z0
i Initial impedance value for branch i
adnn0,sp Vector input sample sp for DNN architec-

ture
adnni,sp Vector of neuron activation obtained by ith

hidden layer according to sample sp
abr,newi,t,s,se Updated number for abri,t,s,se at time t =

tbr,repi,s,se
abri,t,s,se Binary element represents the availability

of branch i at time t of season se
adnn

′

sp Neuron activation obtained by the output-
layer according to sample sp

ηDDG Power efficiency of the DDG
ηESi Efficiency of the energy storage
µcond , σ cond Mean and Standard deviation of the normal

distribution for conductor’s fragility curve
µpole, σ pole Mean and Standard deviation of the normal

distribution for pole’s fragility curve
πbr,nvul Vulnerability threshold for distribution

branch

πbri,t,se Failure probability of the branch i at time t
of season se, considering πpolesi,t,se and π

cond
i,t,se

πcondi,t,se Failure probability for a conductor of
branch i at time t of season se

πPolei,t,se Failure probability for single pole of
branch i at time t of season se

π
poles
i,t,se Failure probability considering all poles of

branch i at time t of season se
πwisos,se Probability for both wind and solar sce-

nario for sth scenario of season se obtained
by forward reduction technique

π se Matrix in 3D format containing the failure
probability πbri,t,se for season se

σ curt Cost of load curtailment in $/kWh
σ fuel Fuel cost for DDG in $/kWh
σDDGO&M Cost $/kWh for O&M the DDG
σESO&M Cost $/kWh/year for O&M the ES
σ ISWO&M Cost $/year for O&M the ISW
σPVO&M Cost $/kWh/year for O&M the PV
σWTO&M Cost $/kWh/year for O&M the WT
σPCCt,s,se Market energy price in $/kWh correspond-

ing to time t for sth scenario of season se
σESINS Installation cost $/kWh of ES at candidate

bus i
σ
ES,E
INV Investment cost $/kWh for energy density

rating for ES
σ
ES,P
INV Investment cost $/kW for power rating for

ES
σDDGINV Investment cost for DDG in $/kW
σPVINV Investment cost for PV in $/kW
σ SSWINV Investment cost in $ per allocated ISW
σWTINV Investment cost for WT in $/kW
1t Step time (i.e., 1 segment = 1 hour)

D. CONTINUOUS VARIABLES
EESi,t,s,se Energy SOC of the ES unit i at time t for sth

scenario of season se
Pbrk,t,s,se Active power flowing across the transmission

branch k at time t for sth scenario of season se
Pchi,t,s,se Active power charge by ith ES unit at time t

for sth scenario of season se
Pdchi,t,s,se Active power discharge by ith ES unit at time

t for sth scenario of season se
PDDGi,t,s,se Active power generated by DDG i at time t

for sth scenario of season se
PPCCi,t,s,se Active power imported/exported from/to the

main grid across the ith PCCof theMGat time
t for sth scenario of season se

PPV ,usei,t,s,se PV’s adjusting power output and used at time
t for sth scenario of season se

PWT ,usei,t,s,se WT’s adjusting power output used at time t
for sth scenario of season se
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Qbrk,t,s,se Reactive power flowing across the transmis-
sion branch k at time t for sth scenario of
season se

QDDGi,t,s,se Reactive power generated by the ith DDG unit
at time t for sth scenario of season se

QESi,t,s,se Reactive power generate/receive of the ith ES
unit, at time t for sth scenario of season se

QPCCi,t,s,se Reactive power exchange with the main grid
across the ith PCC of the MG at time t for sth

scenario of season se
uvi,t,s,se Integrator output of secondary voltage

restoration of ith DDG unit operating with
droop/2nd at time t for sth scenario of season
se

Vi,t,s,se Voltage magnitude of the bus i at time t for sth

scenario of season se
δi,t,s,se Voltage magnitude angle of bus i at time t for

sth scenario of season se
δMG
f busi,t ,t,s,se

Phase angle of the frequency controllable bus
f busi,t at time t for sth scenario of season se

δMGt,s,se Phase angle of the bus where the frequency
control act at time t for sth scenario of season
se

E. INTEGER AND BINARY VARIABLES
bcurti,t,s,se Binary variable for load curtailment (1: load

shaded and 0: load fed) for bus i at time t for
sth scenario of season se

bDDG,sizei Integer variable for DDG allocation at candi-
date bus i

bESi,t,s,se Binary variable indicates the status of ES i.e.
1: discharge and 0: charge

bES,sizei Integer variable for ES allocation at candidate
bus i

bISWi Binary decision variable for ISW allocation at
candidate branch i

bPV ,sizei Integer variable for PV allocation at candidate
bus i

bWT ,sizei Integer variable for WT allocation at candi-
date bus i

F. FUNCTION AND METRIC
AEMISDDG Annual CO2 emission in kg/kWh/year

according to DDGs generation
AEMISDDG,dl AEMISDDG based on DNN model
AEMISGRID Annual CO2 emission in kg/kWh/year

according to power imported from main
grid

AEMISGRID,dl AEMISGRID based on DNN model
AEMISOLEV Total CO2 emission, use as an objective

function for the outer level problem
AEMISOLEV ,dl AEMISOLEV based on DNN model
AOMCDDG Annual O&M cost for DDGs in

$/kWh/year

AOMCDDG,dl AOMCDDG based on DNN model
AOMCES Annual O&M cost for ESs in

$/kWh/year
AOMC ISW Annual O&M cost for ISWs in $/year
AOMCPV Annual O&M cost for PVs in

$/kWh/year
AOMCWT Annual O&M cost for WTs in

$/kWh/year
CDDG,dl CDDG based on DNN model
CCURT
t,s,se Cost of energy curtailment during IS

mode at time t for sth scenario of season
se

CDDG Total cost in $ for DDGs considering TL
CDDG
t,s,se Cost of natural gas consumption by the

DDG units at time t for sth scenario of
season se

CES Total cost in $ for ESs considering TL
C ISW Total cost in $ for ISWs considering TL
CPCC
t,s,se Cost of energy imported from the sub-

station across the PCC of the microgrid
at time t for sth scenario of season se

CPV Total cost in $ for PVs considering TL
CVI
t,s,se Cost of voltage violation at time t for sth

scenario of season
CVI ,MGs
t,s,se Cost of voltage violation considering

MGs at time t for sth scenario of season
se

CWT Total cost in $ for WTs considering TL
CPCES,E Total capital cost for ESs in $/kWh
CPCES,P Total capital cost for ESs in $/kW
CPCDDG Total capital cost for DDGs in $/kW
CPC ISW Total capital cost for ISWs in $
CPCPV Total capital cost for PVs in $/kW
CPCWT Total capital cost for WTs in $/kW
EMISDDGs,se Daily CO2 emission in kg/kWh accord-

ing to DDGs generation
EMISGRIDs,se Daily CO2 emission in kg/kWh accord-

ing to power imported from main grid
INSCES Installation cost in $ for ESs
OFMILPs,se Normalized objective function forMILP

problem at time t for sth scenario of
season se

OFMILP,MGss,se Normalized objective function forMILP
problem considering microgrid forma-
tions at time t for sth scenario of season
se

OMCDDG
s,se Pre-representation O&M cost for DDGs

in kWh/day for sth scenario of season se
RESI Basic resilience index
RESIOLEV Resilience index considering SPF pro-

gression phase I and II, use as an objec-
tive function for the outer level problem.

RESIOLEV ,dl RESIOLEV based on DNN model
TCOLEV Total cost in $, use as an objective func-

tion of the outer level
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TCOLEV ,dl TCOLEV based on DNN model
TGsp,n Target n for training DDN model corre-

sponding to LOPF solution of sample sp
XMILP Vector containing the decision variables

for the MILP problem formulation
XOLEV Vector containing the decision variables

for the outer level problem

I. INTRODUCTION
Power distribution systems are currently undergoing a major
transition toward sustainability. The key drivers for this
transition include the need to control electricity costs to mit-
igate global climate change, enhance/replace aging infras-
tructure, and provide reliable service [1]. On the other
hand, the increasing recurrence of extreme weather events is
demanding significant changes to the distribution networks’
operation and design. Extreme weather events can cause
power outages in what would otherwise be a reliable distri-
bution system. In fact, many distribution utilities worldwide
are increasingly suffering from power outages due to High
Impact Low Probability (HILP) events. For instance, in the
ten years from 2003 to 2013 more than 70 million customers
in theUnited States were affected byHILP events [2]. In order
to address this issue, major efforts toward distribution system
resilience enhancement have been introduced recently. In this
context, resilience generally refers to the ability of the system
to anticipate and withstand extreme HILP events, allowing
for a rapid recovery from possible interruptions due to the
event [3]. To date, power distribution utilities are on the
lookout for practical solutions to increase their distribution
systems’ resiliency, allowing for continuous supply for criti-
cal loads, e.g., hospitals and data centers, during HILP events
[4]. To this end, resilience enhancement solutions have been
recently put forward in the literature. Generally, these solu-
tions can be categorized into 1) planning and infrastructure-
oriented strategies, and 2) operational strategies. The first
kind of solution mainly focuses on preventive actions to
protect the power distribution system against contingencies
that may arise due to HILP events, e.g., distributed energy
resource (DER) allocation [5], optimal sizing [6] and hard-
ening [7]. On the other hand, operational strategies seek to
improve the load restoration ability in case of a HILP event,
e.g., pro-active operation [8], network configuration [9], and
microgrids (MGs) formation [10].

The concept of microgrids planning for resilience enhance-
ment was recently introduced in the literature. The majority
of the work in this area opted for a multi-stage optimiza-
tion problem for delivering the optimal resilience enhance-
ment solutions. Generally, the outer level is dedicated to the
investment decisions pertaining to the planning elements.
On the other hand, the inner level deals with the microgrids
operation strategy to hedge the contingencies as well as
to consider the microgrids operation and control behavior.
In [11], the authors proposed a two-stage model for plan-
ning microgrids considering both economics and resilience

enhancement. In this work, the determination of the optimal
site/size of the DERs and the backup distribution lines were
considered. The problem was formulated as a master/sub-
problem and solved iteratively. The master problem focused
on deploying DERs and distribution lines while the sub prob-
lem identified the extreme events scenarios allowing for up
to N-3 contingencies. The solution delivered by this method
improved the ability of the microgrids to restore the power
supply to loads during contingencies using either DERs or
backup distribution lines. Still, this work lacked in terms
of accounting for the AC optimal power flow representing
the microgrid operation with hierarchical control. In [12] a
stochastic planning model was proposed for enhancing the
distribution systems’ resilience using a microgrid formation
strategy. The proposed method was formulated as a multiple-
stage optimization model. The upper stage dealt with the
optimal line hardening and distributed generation (DG) allo-
cation while the lower stage dealt with the optimum operation
strategies,i.e., network reconfiguration, microgrids formation
and demand-side management. This work considered the
uncertainty of loads as well as the uncertainty of the damage
in the feeders caused by the weather events. Still, this work
only considered dispatchable DG units. Renewable energy
resources and energy storage units were not considered.
Additionally, the microgrid hierarchical control structure was
not considered in modeling the microgrid operation. The
work in [6] focused on developing a planning model for
the optimal sizing of isolated networked MGs considering
the trade-off between economics and resilience enhancement.
In this work, the problem was formulated as a three-level,
wherein the first level focused on the optimal sizing of the
DERs and energy storage considering the normal operation
(without contingencies). The second level coordinated with
the third level allowed for considering both normal operation
and emergency operation of isolated networked MGs. For
each level, the AC optimal power flow has been used for
delivering theminimumof the generation cost, load shedding,
or both according to the operation condition (i.e., normal and
emergency). A time-coupledAC optimal power flow has been
simulated for 4 representative days to allow for the uncertain
characteristics of the seasonal load profile. Still, renewable
energy resources were not considered in this work. Moreover,
the location of the DERs and storage were pre-predetermined
a priori to the solution. Authors in [13] proposed the optimal
sizing of mobile energy storage system in networked MGs.
This work considered renewable energy resources, i.e., pho-
tovoltaic (PV), wherein different scenarios were adopted for
considering the uncertain characteristic of the PV generation
as well as the load. Still, the microgrid hierarchical control
structure was not considered in modeling the microgrid oper-
ation. Moreover, this problem was limited to the optimal
sizing and placement of mobile energy storage, while the
location and size of PV and DGs were pre-predetermined a
priori.

In regards to the existing resilience-oriented microgrids
planning methodologies, one of the main concerns is the
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computational burden. Attempting to manage their compu-
tational burden, existing work endeavored to minimize the
problem size by omitting renewable energy resources, pre-
specifying the location of some resources, neglecting the
microgrid hierarchical control structure, and/or considering
a limited number of stochastic scenarios. While these tech-
niques can reduce the problem size, they on the other hand
render the planning problem incomplete and only applicable
to particular planning instances. As a possible solution to
this problem, the concept of deep learning can provide an
attractive solution for handling computationally demanding
problems, i.e., its ability to significantly increase the compu-
tation performance of large scale analysis/optimization prob-
lems make their solution more attainable in comparison to
traditional methods. For instance, the concept of deep learn-
ing has been applied for in the development of power flow
and optimal power flow tools, respectively, [14] and [15].
In these works, the deep learning technique was used for
enhancing the performance and computation efficiency of the
power flow/optimal power flow solution approach. Still, the
concept of AC microgrids considering hierarchical control
solutions has not been introduced in this work and making its
application not appropriate for microgrid planning problems.
On the other hand, the work in [16], proposes the use of
deep learning for the restoration problem of critical loads
after experiencing a major outage. In this work, the deep
Q-learning method is applied for speeding up the solution
approach, making the problem solvable for small distribu-
tion system up to large-scale network. However, there is no
consideration of the microgrid concept and its planning in
this work. Next, a new planning problem based on deep
learning for a resilient transmission system is introduced in
[17]. In this work, a deep learning technique is adopted to
forecast the load growth while improving the forecasting
task compared to an existing method. Still, the concept of
microgrids is also not introduced in this work. Recently,
in [18], the concept of microgrid has been introduced while
coordinating several renewable resources and Plug-In Hybrid
Electric Vehicles (PHEVs). In this work, the deep learning
technique is adopted to forecast the renewable output seeking
to mitigate the uncertainty caused by the renewable energy
elements in the microgrid. While the deep learning technique
is adopted in this work, this work only discusses the operation
stage and presents a simplified problem by omitting the hier-
archical control philosophy of the microgrid in its problem
formulation.

Considering the abovementioned advancements and cur-
rent challenges described in the literature, in this work, a new
general framework for resilience-oriented microgrid(s) plan-
ning is proposed exploiting deep learning technique ability to
alleviate the computational burden associated with planning
problemwithout sacrificing modelling accuracy. The remain-
der of this paper is organized as follows: First, a basic out-
line for the proposed resilience-oriented microgrid planning
framework is presented in Section II. Subsequently, the prob-
lem formulation for the outer and inner levels is described in

Section III. Then, the data preparation stage for the proposed
planning approach is presented in Section IV. Next, the deep
learning approach for a stochastic optimal operation level is
discussed in Section V. Later, Section VI exhibits the details
of the optimal microgrid planning approach Non-dominated
Sorting Genetic Algorithm II (NSGA-II) based deep neu-
ral network (DNN) models. Finally, sections VII and VIII
present the results and conclude the paper, respectively.

II. PROPOSED RESILIENCE-ORIENTED PLANNING
FRAMEWORK
The availability of isolate switches (ISWs) along with the
locations and capacities of the DERs, including DG units,
renewable DG units and energy storage (ES) units, are salient
for the successful creation ofMG(s) in a distribution network.
Additionally, the optimal operation of the MG’s resources
should be considered to ensure the MG successful operation,
minimize its operational costs and maximize its resilience.
As such, the proposed resilience-oriented planning frame-
work seeks to identify the optimal allocation of DERs and
ISWs in a distribution network considering the optimal oper-
ation of the MG(s) that will be created using these compo-
nents. To this end, the analyzed problem is formulated as
a stochastic bilevel optimization framework. First, an outer
level featuring a metaheuristic multi-objective optimization
is adopted for the optimal allocation of the DERs and ISWs
seeking to balance the competing objectives of cost, resilience
and environmental impact. Then, an inner level is proposed
to handle the optimization problem pertaining to the optimal
operation of the MG(s) that can be created by the DERs
and ISWs allocated in the outer level. The problem of the
MG’s optimal operation is cast as a linear optimum power
flow (LOPF) problem. In this work, the adopted LOPF
model considers the operational behavior of the MG in both
grid-connected (GC) and islanded (IS) modes of operation.
Additionally, different scenarios are considered to account
for the stochastic nature of the HILP events, as well as
renewable DG units. In this sense, despite using a LOPF
model, the detailed modeling of MGs and consideration of
different stochastic scenarios in the inner level along with
the metaheuristic nature of the outer level make solving the
LOPF, for each of the stochastic scenarios for each individ-
ual in the metaheuristic optimization’s population, using a
numerical optimization solver computationally challenging.
In other words, the combination of the need for numerous
iterations to solve the LOPF of the inner level and the large
populations from the metaheuristic presented in the outer
level before reaching the final planning solution, make this
problem computationally extremely demanding that it may
be unsolvable with the traditional analytical methods. In this
sense, in this work, a deep learning technique is adopted for
deriving the information required from the LOPF solution for
the stochastic scenarios under consideration. With this tech-
nique, DNN models are developed and trained to predict the
solution delivered by the inner level that comprises the LOPF
solution with the numerous stochastic scenarios, significantly
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reducing the computation burden, and thus eliminating the
possible requirement for modelling simplication. This new
perspective provides an effective strategy for solving MG
planning framework, overcoming computation constraints
that limit the consideration of detailed systems’ modeling and
scenarios, which are especially critical features for guarantee-
ing feasible solutions under a resilience-oriented outlook.

The proposed planning framework comprises four cas-
cading stages for delivering the final optimal allocation of
the DERs and switches. 1) The first stage is concerned
with data preparation. In this stage, the distribution system
under consideration and its planning elements are identified
along with the uncertainty scenarios describing the stochastic
nature of the system and the planning elements. The target
system for this work is a typical distribution system with
the ability to disconnect from the main grid via a main
isolate switch, denoted by ISWsub. The planning elements
include dispatchable distributed generation (DDG), wind tur-
bine (WT), PV, ES and ISW. Candidate buses and branches
are specified as potential locations for the system’s planning
elements. Stochastic scenarios are considered for allowing
for the uncertainty associated with the MG(s) creation, i.e.,
HILP, and operation (renewable generation and load). These
uncertainty scenarios are seasonal and include a set of sce-
narios representing the normal operation of the system and
another set of scenarios representing the severe HILP events
in which N-K contingencies occurred in the network within
a certain time interval. 2) The second stage corresponds to
the problem formulation of the proposed stochastic bilevel
optimization framework. In this formulation, the outer level’s
objective functions are cost, resilience and environmental
metrics (indices) that depend on the solution of LOPF for
different stochastic scenarios in the inner level. 3) The third
stage seeks to deliver the deep learning models that are
used to determine the stochastic LOPF dependent indices
required for the outer level. To this end, a set of sample DERs
and switches allocation is developed considering randomly
generated combinations of possible installation decisions for
the candidate planning elements’ locations and capacities.
Next, the stochastic LOPF is solved using a numerical opti-
mization solver for each of the allocation samples under
consideration for each of the stochastic scenarios. Based on
the LOPF solutions obtained for these samples, the outer
level cost, resilience and environmental indices are calcu-
lated. The calculated indices are considered the target values
of the allocation samples. The allocation samples and their
corresponding target values are then employed for training
the DNN models that map the planning elements installa-
tion decisions to the outer level’s cost, resilience and envi-
ronmental indices. Finally, in the fourth stage, the optimal
planning approach is held. Using a population-based meta-
heuristic optimization exploiting the DNN models derived in
the third stage, the optimal solution describing the optimal
allocation of DERs and ISWs is determined by respecting
the optimal trade-off between the multi-objective functions,
i.e., resilience, economic and environmental impact. Each of

these four stages is individually addressed in the following
sections.

III. STAGE 1: DATA PREPARATION
In this section, the first stage responsible for data preparation
is addressed, including the modeling of the distribution sys-
tem and planning elements, as well as generation uncertainty,
normal operation and HILP event scenarios.

A. DISTRIBUTION SYSTEM AND PLANNING ELEMENTS
The distribution system considered in this work is a typi-
cal distribution network with the ability to disconnect from
the main grid via a main ISWsub located at the upstream
interfacing substation. Candidate buses and branches for the
installation of DERs and isolation switches, respectively, are
assumed to be selected arbitrarily by the distribution system
operator (DSO). The planning elements include the DDGs,
WTs, PVs, ESs and ISWs. In GC mode, the DDGs are con-
trolled to inject constant amounts of power prespecified by a
higher level control layer typically seeking to realize an eco-
nomic benefit [19]. On the other hand, in the islanding mode
of operation, the DDGs are controlled using primary droop
mode with a supervisory secondary control layer (droop/2nd)
control to follow the load variation and maintain the system
voltage and frequency within adequate bounds, allowing for
quick synchronization back with the main grid when it is
ready. TheWTs and PVs are intermittent resources and are as
such operated in power control mode to allow for maximum
power tracking. The ESs are interfaced with a power elec-
tronic inverter and are controlled in a power control mode to
inject/absorb power from the microgrid as needed. The ISWs
are used to isolate faults according to the considered N-K
contingencies.

B. WT AND PV GENERATION MODEL
The power generated by the WTs and PVs depends on the
wind velocity and solar irradiance, respectively, and can be
modeled using (1) and (2) similar to the work in [20].

PWTi,t,s,se =



0, vmi,t,s,se < vcii , v
m
i,t,s,se ≥ v

co
i

PWT ,sizei

(
vmi,t,s,se − v

ci
i

)
(vrai − v

ci
i )

,

vcii ≤ v
m
i,t,s,se ≤ v

ra
i

PWT ,sizei ,

vrai < vmi,t,s,se < vcoi ,

∀i∈�can
WT , ∀t ∈�T , ∀s∈�′s ∪�

′′
s , ∀se∈�se

(1)

PPVi,t,s,se =



PPV ,sizei

(
rmi,t,s,se

)2/(RSTDi − RCi ),

rmi,t,s,se ≤ R
C
i

PPV ,sizei

(
rmi,t,s,se

)2/RSTDi ,

RC < rmi,t,s,se < RSTDi

PPV ,sizei , rmi,t,s,se ≥ R
STD
i ,
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∀i ∈ �can
PV , ∀t ∈�T , ∀s∈�′s ∪�

′′
s ,∀se∈�se

(2)

where, PWTi,t,s,se denote an active power generated by ith WT
unit at time t for sth scenario of season se.PWT ,sizei is the active
power rating of WT unit at candidate bus i. vmi,t,s,se denote
a measured wind speed of the ith WT unit at time t for sth

scenario of season se. Then, vcii , v
co
i and vrai denotes cut-in,

cut-out, and the rated speed of the ith WT unit, respectively.
�can
WT is the set of candidate buses for WT units. �T is the

set of time segment in planning horizon. �′s, �
′′
s and �se are

the set of generated scenarios for normal situation, severe
situation and seasonal periods, respectively. Then, for (2),
PPVi,t,s,se denote an active power generated by ith PV unit at
time t for sth scenario of season se. PPV ,sizei denote the active
power rating of PV unit at candidate bus i. rmi,t,s,se denote
a measured solar radiation in kW/m2 of the ith PV unit at
time t for sth scenario of season se. RSTDi and RCi are the
solar radiation in standard test conditions and certain solar
radiation point of the ith PV unit, respectively. �can

PV is the set
of candidate buses for PV units.

In this work, it is assumed that theWTs and PVs are operat-
ing with a unity power factor. Thus, there is no reactive power
injected by these units leading to (1) and (2) exclusively
representing active power relations.

C. LOAD MODEL
The varying seasonal behavior of the loads is modeled using
the annual peak load pattern [21]. In this sense, the load on
bus i ∈ �BUS at time t ∈ �T can be calculated as the
multiplication between the peak demand at this bus and the
annual peak load factor at time t ∈ �T for the season under
consideration. The active and reactive power demand for bus
i at time t for scenarios s and season se can be calculated
using (3) and (4).

PLi,t,s,se =
(
APLt,s,se

/
100

)
× PL,peaki,t,s,se ,

∀i ∈ �BUS , ∀t ∈ �T , ∀s ∈ �′s ∪�
′′
s ,

∀se ∈ �se (3)

QLi,t,s,se =
(
APLt,s,se

/
100

)
× QL,peaki,t,s,se ,

∀i ∈ �BUS , ∀t ∈ �T , ∀s ∈ �′s ∪�
′′
s ,

∀se ∈ �se (4)

where, PLi,t,s,se and Q
L
i,t,s,se are the active and reactive power

load for bus i at time t for sth scenario of season se. Then,
PL,peaki,t,s,se and Q

L,peak
i,t,s,se denotes original active and reactive peak

load from data sheet of bus i at time t for sth scenario of season
se. APLt,s,se is an annual peak load pattern in percentage at
time t for sth scenario of season se. �BUS is the set of buses
in the test system.

D. OPERATION SCENARIOS
Given the resilience-based planning perspective of the pro-
posed work, two sets of scenarios have been considered.

First, scenarios representing normal system operations with-
out contingencies are addressed. Second, scenarios repre-
senting severe HILP events, in which N-K contingencies
occur during a certain time interval are tackled. These sce-
nario generation processes are described in the following
subsections.

1) NORMAL OPERATION SCENARIOS
In the normal operation scenarios, the system is assumed
to operate in GC mode considering uncertainties associated
with the renewable resources. For this, historical data sets
comprising different 24-hours time series of wind speeds and
solar irradiance are considered. Next, based on this data a
fast forward reduction approach is employed [22], extracting
a number of normal scenarios (N ′s) per season representing
the uncertainty associated with the renewable resources. This
step seeks to avoid the higher computation burden, while
keep a good approximation of the system. The wind speed
and solar irradiance in a given scenario s can be expressed
by (5) and (6), respectively.

vms,se = [vm1,s,se, v
m
2,s,se, . . . , v

m
NT ,s,se], ∀s ∈ �

′
s, ∀se ∈ �se

(5)

rms,se = [rm1,s,se, r
m
2,s,se, . . . , r

m
NT ,s,se], ∀s ∈ �

′
s, ∀se ∈ �se

(6)

where, vms,se and r
m
s,se are the vectors constraining vmt,s,se and

rmt,s,se for sth scenario of season se, respectively. Then, NT
denote planning horizon time.

2) SEVERE HILP OPERATION SCENARIOS
For scenarios representing the operation of the distribution
system under severe HILP events, a similar approach to the
work developed in [23] is employed. In this sense, by using
the component availability matrix AV, the availability of the
different system components (e.g., branch) at different time
segments in the planning horizon is depicted. This matrix
allows for the identification of the contingency level, as well
as the fault location(s) at any instant in the planning horizons.
This in turn enables the development of effective microgrid
formation solutions that can meaningfully improve distribu-
tion system resiliency. For considering the distribution system
operation under severe HILP events, the following assump-
tions are made in this work:

1) Severe wind events are considered the main source of
contingencies affecting the distribution network, simi-
lar to the work developed in [23].

2) Only overhead lines are considered to be vulnerable
to severe winds. Distribution substations and under-
ground lines are able to withstand severe winds as
depicted in [24].

3) The distribution system buses are assumed to be geo-
graphically close enough that the trajectory of the wind
passing through the distribution network causes the
entire network to be exposed to the same weather con-
ditions [25].
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FIGURE 1. Evolution of network’s system performance during a severe
event.

a: SYSTEM PERFORMANCE ANALYSIS FOR HILP SCENARIOS
SELECTION
Next, considering the aforementioned assumptions, when a
severe wind event arises, the supply availability and the cor-
responding system performance progress through multiple
phases along�T , leading to the typical progression curve for
the system performance (SPF) during a severe event depicted
in Fig. 1 [3], [23]. In this perspective, the system performance
can be represented as a function of the electricity supply
level at time t , being divided into Phase I and II, where
Phase I represents the disturbance progress period between
the event start, te, and maximum system degradation state, td ,
i.e. T event = te− td , and Phase II depicts the recovery period
between the maximum degradation time until reparations
conclusion, i.e., T repair = td − tr . Here it is important to
note that there is typically a lead time in Phase II between
the moment where the event disturbance progression stops
and the time where repairs’ impact is effectively observed,
i.e., tr

′

.
Detailed descriptions of Phase I and II leading to the devel-

oped weather-related algorithm for HILP scenarios selection
and component availability matrix AV derivation are follow-
ing presented.

b: PHASE I: DISTURBANCE PERIOD
Assuming the event start and progression, during Phase I the
affected system clusters into multiple MGs with topologies
respecting local resources availability and ISWs allocated in
the network. The formation of MGs allows the system to
improve its withstanding ability against the N-K contingen-
cies caused by the severe wind and enhance the maintenance
of the loads’ service. In this sense, given this work focus on
resilience-based planning, the single most vulnerable wind
scenario needs to be identified for each season in order to
stress the system performance under worst-case condition,
i.e., vworstse . For this, based on works [26], [27] wind gusts can
be calculated using (7), where the system’s most vulnerable
scenario under a resilience perspective is given by the wind
scenario within the matrix vmse containing the highest wind

FIGURE 2. Generic fragility curve for single pole and conductor against
wind gust.

velocity.

vgustse = kgustvworstse , ∀se ∈ �se (7)

where, vmse is a matrix constraining vms,se for season se. v
gust
se

is a vector containing 3-Second wind gust in proportional to
vworstse . Then, kgust is the constant factor for calculating vgustse .
Following, the failure probability of overhead lines for

season se can be extracted by mapping poles and conductors’
fragility curve for the calculated wind gust profile vgustse . The
fragility curve can be generated using the normal cumulative
distribution function as generically illustrated in Fig. 2 for the
distribution overhead line depicted in [24].

Here, it is worth noting that a branch fails if a con-
ductor, or any pole overhead line, connected between two
adjacent nodes fails. In this sense, the total failure proba-
bility of the distribution overhead line should be calculated
using (8a)-(8d).

π
pole
i,t,se

(
vgustt,se

)
= cdf nor (vgustt,se , µ

pole
i , σ

pole
i ),

∀i ∈ �LIN , ∀t ∈ �T , ∀se ∈ �se (8a)

πcondi,t,se

(
vgustt,se

)
= cdf nor (vgustt,se , µ

cond
i , σ condi ),

∀i ∈ �LIN , ∀t ∈ �T , ∀se ∈ �se (8b)

π
poles
i,t,se

(
vgustt,se

)
= 1−

[ (
1− πpolei,t,se

(
vgustt,se

))N pole
i

]
,

∀i ∈ �LIN ,∀t ∈ �T ,∀se ∈ �se (8c)

πbri,t,se

(
vgustt,se

)
=

πcondi,t,se

(
vgustt,se

)
+ π

poles
i,t,se

(
vgustt,se

)
−πcondi,t,se

(
vgustt,se

)
× π

poles
i,t,se

(
vgustt,se

),
∀i ∈ �LIN ,∀t ∈ �T ,∀se ∈ �se (8d)

where, πpolei,t,se and πcondi,t,se denotes the failure probability for
a single pole and conductor of branch i at time t of season
se. cdf nor (.) denote a normal cumulative distribution func-
tion. Then, µpole, σ pole, µcond and σ cond denotes the mean
and standard deviation of cdf nor (.) for pole and conduc-
tor’s fragility curve. Next, N pole

i denote number of the poles
according to span length of branch i. While, πpolesi,t,se in which

denote a failure probability considering N pole
i of branch i at

time t of season se. At the end, πbri,t,se is a failure probability

of the branch i at time t of season se, considering πpolesi,t,se and
πcondi,t,se . In this work, a set of lines or branches in the test system
denoted by �LIN .

In this case, eqs. (8a) and (8b) define the failure proba-
bility for a single pole and conductor during vgustt,se based on
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the normal cumulative distribution function with parameter
µpole, σ pole,µcond and σ cond . Eqs. (8c) and (8d) determine the
general formulation for dealing with the failure probability
of branch i according to the number of poles N pole

i for the
overhead line of branch i, assuming that the poles and con-
ductor in the distribution system have the same characteristics
and age. For this, N pole

i can be estimated based on the span
length of the distribution overhead line [28]. For distribution
systems, the span length is typically between 100 ft to 150 ft,
significantly shorter when compared to those used for the
transmission system [29].

The failure probability obtained for the branches is stored
in 3D matrix π se (9). Next, similar to the work in [24],
non-vulnerable branches are identified and disregarded by
π se = 0|π se

(
πbri,t,se < πbr,nvul

)
. Where, πbr,nvul denote a

vulnerability threshold for distribution branch. Following, for
enlarging the possibility space of N-K contingencies, N pre

s
scenarios ofAV are generated and represented byAVI

s,se con-
sidering Phase I. Where, N pre

s denote a number pre-scenarios
for severe situations considering only network SPF pregres-
sion phase (i.e., te→ td ).

π se
(
vgustse

)
=

 πbri,t,se · · · πbri,NT ,se
...

. . .
...

πbrnbr ,t,se · · · πbrnbr ,NT ,se

, ∀se ∈ �se

(9)

AVI
s,se =

 abri,t,s,se · · · abri,NT ,s,se
...

. . .
...

abrnbr ,t,s,se · · · abrnbr ,NT ,s,se

,
∀i ∈ �LIN , ∀t ∈ �T , ∀s ∈ �pre

s ,

∀se ∈ �se (10)

where, abri,t,s,se is 0 if the ith branch fails at time t for sce-
nario s of season se, otherwise, abri,t,s,se = 1. abri,t,s,se can
be determined by comparing the failure probability πbri,t,se to
the generated uniformed random binary number (i.e., ri,t,s),
as expressed by (11).

abri,t,s,se =

{
abri,t−1,s,se × 1, πbri,t,se ≤ ri,t,s
abri,t−1,s,se × 0, πbri,t,se > ri,t,s,

∀i ∈ �LIN , ∀t ∈ �T , ∀s ∈ �pre
s ,

∀se ∈ �se (11)

c: PHASE II: RESTORATION PERIOD
Once the system reaches the maximum degradation condi-
tion, Phase II begins repairing the system until all branches
are fully recovered at tr and the system is back to normal
operation, i.e., grid connected. In this sense, considering the
time to repair (TTR) overhead lines dependency on the wind
velocity at the time of failure, i.e., t = tbr,faili,s,se [23], while
aware that due to safety reasons, there are no repair actions
implemented until the end of the event at tds,se [23]. The
weather-related restoration time expressed by (12a) and (12b)

is employed for determining TTR, and ϕbr
(
vgustt,s,se

)
is deter-

mined using uniform distributed sampling ϕ ∼ U [h1, h2]

as depicted in (12c) [23], [30]. Once TTRbr,fails,se and tds,se are
determined, the recovered time for a single branch i can be

determined by tbr,repi,s,se = tds,se + TTRbr,faili,s,se . Thus, at tbr,repi,s,se ,

abri,t,s,se(t
br,rep
i,s,se ) = abr,newi,t,s,se = 1, which represents that branch

i is recovered and turned back to the online state. Finally,
the branch availability matrix considering Phase I and II
AVI−II,orig

s,se can be obtained updating AVI
s,se with the new

abr,newi,t,s,se information as shown in (12a)-(12d).

TTRbr,fails,se

=

[
TTRbr,fail1,s,se ,TTR

br,fail
2,s,se , . . . ,TTR

br,fail
nbr ,s,se

]
,

∀s ∈ �′s, ∀se ∈ �se (12a)

TTRbr,faili,s,se

= round
(
ϕbr

(
vgust
t=tbr,faili,s,se ,s,se

)
.MTTRnw

)
,

∀i ∈ �fail
LIN , ∀s ∈ �

pre
s , ∀se ∈ �se (12b)

ϕbr
(
vgustt,s,se

)
=


1, if vgustt,s,se < vlowcri
ϕ ∼ U [hlow1 , hlow2 ], if vlowcri ≤ v

gust
t,s,se ≤ v

high
cri

ϕ ∼ U [hhigh1 , hhigh2 ], if vgustt,s,se > vhighcri ,

∀i ∈ �fail
LIN , ∀s ∈ �

pre
s , ∀se ∈ �se (12c)

AVI−II,orig
s,se

=



abr1,1,s,se, a
br,new
1,t=tbr,repi,s,se ,s,se

, . . . , abr,new1,NT ,s,se

abr2,1,s,se, a
br,new
2,t=tbr,repi,s,se ,s,se

, . . . , abr,new2,NT ,s,se

...

abrnbr ,1,s,se, a
br,new
nbr ,t=t

br,rep
i,s,se ,s,se

, . . . , abr,newnbr ,NT ,s,se

,

∀s ∈ �
′′,orig
s , ∀se ∈ �se (12d)

where, TTRbr,fails,se is a vector TTR containing TTRbr,faili,s,se .

Whereas, TTRbr,faili,s,se denote a time to repair of the failure

branch i for sth scenario of season se. tbr,faili,s,se is a time cor-
responding to the moment when branch i fail for sth scenario
of season se.MTTRnw denotes a specified mean time to repair
under normal weather conditions. vlowcri and vhighcri are the spec-
ified low and higher bound for critical wind. Then, hhigh1 /hhigh2
are the pre-determined range for determining ϕbr for the case

corresponding to higher wind vgustt,s,se > vhighcri , while hlow1 /hlow2
are for the case corresponding to vlowcri ≤ v

gust
t,s,se ≤ v

high
cri . Next,

tbr,repi,s,se denote a time t when branch recovered or repared for
sth scenario of season se, while abr,newi,t,s,se is an updated number

for abri,t,s,se at time t = tbr,repi,s,se .�fail
LIN is a set of failure branches

in the test system.�pre
s is a set of generated pre-scenarios for

severe situations considering only network SPF progression
phase I (i.e., te → td ). �

′′,orig
s is an original set before
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FIGURE 3. Weather-related algorithm for generating branch availability
matrix.

reduction of generated scenarios for severe situation consid-
ering network SPF progression phase I and II (i.e., te→ tr ).

Next, the highest impact scenarios are determined for each
season se until reaching the desired number of samples, i.e.,
N −

(
KHI
s,se
)
are chosen first, where N −

(
Ks,se

)
denotes N-K

contingencies for scenarios s, se, Ks,se corresponds to the
number of fault locations that occurred in the network for
scenarios s, se. In case the highest impact selected scenar-
ios do not reach the expected number of samples, available
space(s) are fulfilled by the scenarios N −

(
KHI
s,se − 1

)
, then

N −
(
KHI
s,se − 2

)
until the N-1 contingency. The procedure for

generating the AV matrix is illustrated in Fig. 3.

AVI−II
s,se = AVI−II,orig

s,se {N − (K )}, ∀s ∈ �′′s ,

∀se ∈ �se (13)

where, AVI−II
s,se is the reduction version of AVI−II,orig

s,se .

IV. STAGE 2: PLANNING PROBLEM FORMULATION
In this section, the problem formulation is detailed
for both outer and lower levels, including respective

discussions on objective functions, constraints, and decision
variables.

A. OUTER LEVEL: OPTIMAL ALLOCATION LEVEL
The outer level problem formulation is responsible for the
allocation of the planning elements including the DDGs,
WTs, PVs, ESs and ISWs. For this, the following multi-
objective problem formulations are developed.

1) OBJECTIVE FUNCTION - OUTER LEVEL
The multi-objective function for the outer level considers
three main perspectives, i.e., 1) resilience enhancement,
2) economic benefit, and 3) environmental impact mitiga-
tion. The proposed optimization problem is solved using
multi-objective optimization. This allows the solution to this
problem to entail the best trade-off between these possibly
conflicting objectives and enables the selection of the optimal
design under each objective’s consideration i.e., through the
Pareto set. In this work, each objective detailed described in
the following subsections.

a: RESILIENCE INDEX
The resilience index is responsible for ensuring the system’s
capacity to withstand HILP events. For this, the system’s
loss performance considering the duration of degradation and
the importance of rapid recovery has been used [3]. The
resilience index considering Phase I and II can be expressed
using (14a).

RESI =
1

tr − te

∫ tr

te

[
SPF0 (t)− SPF (t)

SPF (t)

]
dt (14a)

Then, by considering the set of scenarios s and season
se according to Fig. 2, eq. (14a) can be re-formulated
into (14b)-(14c). This perspective allows for combining the
multiple inner level season and scenarios information, i.e.,
∀s ∈ �′′s and ∀se ∈ �se, in a way to determine a single value
for the outer level resilience index.

RESIs,se

=
1

trs,se − tes,se

∫ trs,se

tes,se

×

(∑
i∈�BUS P

L
i,t,s,se−

∑
i∈�BUS (1−b

curt
i,t,s,se)P

L
i,t,s,se∑

i∈�BUS P
L
i,t,s,se

)
dt,

∀s ∈ �′′s , ∀se ∈ �se (14b)

RESIOLEV

=

∑
s∈�se

1
N ′′s

∑
s∈�′′s

RESIs,se (14c)

where, tes,se and t
r
s,se corresponding to the beginning and end

of the event for sth scenario of season se. Next, bcurti,t,s,se denote
binary variable for load curtailment (i.e., 1: load shaded and
0: load fed) for bus i at time t for sth scenario of season se.
N ′′s is the number of severe scenarios.

84342 VOLUME 10, 2022



Y. Vilaisarn et al.: Deep Learning Based Multiobjective Optimization for the Planning of Resilience Oriented Microgrids

b: ECONOMIC INDEX
The second objective function relates to the economic benefit,
i.e., capital cost, installation cost, and operation and mainte-
nance (O&M) cost for ISWs [31] and DERs [32], [33], [34].
Where, eq. (15) defines the total cost as the second objective
function for the outer level. Eqs. (16a)-(16c) determine the
capital and O&M cost for the DDG, while (16d) normalizes
the cost (16a) and (16c) for DDG units by considering the
planning lifetime TL. Similarly, eqs. (17a)-(18c) summarize
the capital and O&M cost for the allocated WTs and PVs.
In term of the ES, (19a) and (19b) determine the capital cost
depending to ES power and energy density, respectively. The
annual O&M cost and the installation cost for the ES can be
calculated using (19c) and (19d), respectively. In (19e) the
normalized cost for ES considering TL is expressed. Finally,
the cost for ISWs can be determined using (20a)-(20c).

TCOLEV
=

(
CDDG

+ CPV

+CWT
+ CES

+ C ISW

)
(15)

CPCDDG
=

∑
∀i∈�canDDG

(
PDDG,sizei σDDGINV

)
(16a)

OMCDDG
s,se = Sbase

(
σ fuel

/
ηDDG

+σDDGO&M

)∑
∀i∈�canDDG

∑
∀t∈�T

× PDDGi,t,s,se, ∀s ∈ �
′
s, ∀se ∈ �se (16b)

AOMCDDG
=

365
4

∑
∀se∈�se

∑
∀s∈�′s

(
πwisos,se OMC

DDG
s,se

)
(16c)

CDDG
= CPCDDG

+ TL × AOMCDDG (16d)

CPCPV
=

∑
∀i∈�canPV

(
PPV ,sizei σPVINV

)
(17a)

AOMCPV
=

∑
∀i∈�canPV

(
PPV ,sizei σPVO&M

)
(17b)

CPV
= CPCPV

+ TL × AOMCPV (17c)

CPCWT
=

∑
∀i∈�canWT

(
PWT ,sizei σWTINV

)
(18a)

AOMCWT
=

∑
∀i∈�canWT

(
PWT ,sizei σWTO&M

)
(18b)

CWT
= CPCWT

+ TL × AOMCWT (18c)

CPCES,P
=

∑
∀i∈�canES

(
PES,sizei σ

ES,P
INV

)
(19a)

CPCES,E
=

∑
∀i∈�canES

(
EES,sizei σ

ES,E
INV

)
(19b)

AOMCES
=

∑
∀i∈�canES

(
PES,sizei σESO&M

)
(19c)

INSCES
=

∑
∀i∈�canES

(
EES,sizei σESINS

)
(19d)

CES
=

(
CPCES,P

+ TL × AOMCES

+CPCES,E
+ INSCES

)
(19e)

CPC ISW
=

∑
∀i∈�canISW

(bISWi σ ISWINV ) (20a)

AOMC ISW
= 8760

∑
∀i∈�canISW

(bISWi σ ISWO&M ) (20b)

C ISW
= CPC ISW

+ TL × AOMC ISW (20c)

where, for (16a)-(16c) PDDGi,t,s,se is a variable denotes an active
power generated by DDG i at time t for sth scenario of season

se. Then, PDDG,sizei denotes an active power rating of DDG
at candidate bus i. σDDGINV , σDDGO&M and σ fuel are the DDG’s
investment cost in $/kW, O&M cost in $/kWh and fuel cost
in $/kWh, respectively. ηDDG denotes a power efficiency of
the DDG unit. Sbase is the setting power base value. πwisos,se
is a probability for both wind and solar scenario for sth sce-
nario of season se obtained by forward reduction technique.
�can
DDG is the set of candidate buses for DDG units. In term

of (17a)-(18c), σPVINV and σWTINV denotes the investment cost in
$/kW for PV and WT, respectively. Then, σPVO&M and σWTO&M
denotes the O&M cost in $/kWh/year for the PV and WT.
Then, for the energy storage unit in (19a)-(19d), PES,sizei and
EES,sizei denotes active power rating and energy rationg of the
ES at the candidate bus i, respectively. Then, σES,PINV and σES,EINV
are the investment cost in $/kWh for energy density rating
and power rating of the ES unit, respectively. While, σESO&M
and σESINS are the O&M cost in $/kWh/year and installation
cost in $/kWh for ES, respectively. At the end,�can

ES is the set
of candidate buses for ES units. Finally, for (20a) and (20b),
bISWi is the binary decision variable for ISW allocation at
candidate branch i. σ ISWINV and σ ISWO&M are investment cost in
$ per allocated ISW and it O&M cost in $/year, respectively.
�can
ISW is the set of candidate branches for SSWs.

c: ENVIRONMENTAL IMPACT INDEX
The environment impact index aims to reduce the car-
bon footprint due to energy purchases from the main grid
and energy generated by DDG [34], [35]. The annual
carbon emission can be calculated using the expressions
below. Eqs. (21a) and (21b) are the CO2 emission quantity
and their annualized kg/year from the DDGs generation.
Eqs. (21c) and (21d) represent the CO2 emission depending
on the power imported from the main grid. Finally, (22)
defines the total annualized Carbon emission as the third
objective function for the outer level.

EMISDDGs,se = KDDG
CO2 Sbase

∑
∀i∈�DDG

∑
∀t∈�T

PDDGi,t,s,se,

∀s ∈ �′s, ∀se ∈ �se (21a)

AEMISDDG =
365
4

∑
∀se∈�se

∑
∀s∈�′s

(
πwisos,se EMIS

DDG
s,se

)
(21b)

EMISGRIDs,se = KGRID
CO2 Sbase

∑
∀t∈�T

PGRID+t,s,se ,

∀s ∈ �′s, ∀se ∈ �se (21c)

AEMISGRID =
365
4

∑
∀se∈�se

∑
∀s∈�′s

(
πwisos,se EMIS

GRID
s,se

)
(21d)

AEMISOLEV = AEMISDDG + AEMISGRID (22)

where, KDDG
CO2 and KGRID

CO2 are the carbon emission factor in
kg/kWh according to energy generated by DDGs and energy
imported from the main grid, respectively. PGRID+t,s,se denotes
active power imported from the main grid across the ith PCC
of the MG at time t for sth scenario of season se.
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TABLE 1. Decision variables type and set belonging for the outer level
problem.

2) CONSTRAINTS AND DECISION VARIABLES - OUTER LEVEL
Next, the system’s constraints and decision variables for opti-
mizing the outer level are following depicted.

a: DISCRETE SIZE FOR DERS CONSTRAINT:
The DERs size was discretized with a fixed step [35].

PDER,sizei = bDER,sizei PDERstep ,

∀DER ∈ {DDG,PV ,WT ,ES}, ∀i ∈ �can
DER

(23)

EES,sizei = rESi × P
ES,size
i , ∀i ∈ �can

ES (24)

where, bDER,sizei denotes the integer variable for DER allo-
cation at candidate bus i. PDERstep is the step size for DER
allocation. Finally, rESi is a ratio between the rated capacity
and rated power for the ES.

b: MAXIMUM BUS POWER ALLOWABLE CONSTRAINT
The DER(s) connected to an individual bus must respect the
technical constraints defined by (25) [35]:∑

∀DER∈{DDG,PV ,WT ,ES}
PDER,sizei ≤ P

bus
i ,

∀i ∈ �BUS (25)

where, P
bus
i is a maximum installation power allowable for

DERs at candidate bus i.

c: INSTALLATION DISCRETE BINARY CONSTRAINTS

0 ≤ bDER,sizei ≤ P
DER

/PDERstep ,

∀DER ∈ {DDG,PV ,WT ,ES}, ∀i ∈ �can
DER (26)

0 ≤ bISWi ≤ 1, ∀i ∈ �can
ISW (27)

where, P
DER

denotes a planning upper bound for DER alloca-
tion in the system. bISWi is a binary decision variable for ISW
allocation at candidate branch i.

3) DECISION VARIABLES FOR OUTER LEVEL
The decision variables for optimizing the outer level are
summarized in Table 1. Here one should note that variables
associated with each planning element are respectively set to
zero for the case that the optimization decides to not place
these elements on the candidate buses or branches. Otherwise,
these variables are the integer numbers respecting the upper
bounds defined in (26)-(27), and the binary value ‘1’ for bISWi .

FIGURE 4. Basic scheme of the single microgrid base ISWsub.

B. INNER LEVEL: OPTIMAL POWER FLOW FOR
MICROGRIDS
This level presents the problem to be solved using the
proposed machine learning based technique. Still, first, a pre-
problem formulated as a Mixed Integer Linear Program-
ming (MILP) model similar to the work in [19] is developed.
This inner level optimization solutions provide the sample
solutions needed to train the proposed machine learning-
based strategy using the upper level solutions as inputs. For
this, this problem models the ability of microgrids to operate
in both GC and IS mode, depending on the operation status of
the ISWsub as shown in Fig. 4. Details on the problem formu-
lation and optimization strategy including objective function,
constraints and decision variables are following depicted.

1) OBJECTIVE FUNCTION AND CONSTRAINTS INNER LEVEL
The objective function formulated for the optimal operation
in the inner level is expressed by (28a)-(28e). First, in (28a)
the objective function is obtained by normalizing the four
terms as a single total operation cost to be minimized. The
first term in (28a) represents the cost of power exchange
between the microgrid and the main grid, which can be deter-
mined using (28b). Then, the second term is given by (28c),
which refers to the fuel consumption cost for the DDG units
in use at theMGs [36], [34]. As onemay observe, (28a), (28b)
and (28c) are restricted to the GCmode due to the association
of the binary input bmt,s,se, i.e., b

m
t,s,se is the binary number

that denotes the operation status for ISWsub along�T , where
bmt,s,se = 1 represents the microgrid operation in islanding
mode, otherwise bmt,s,se = 0 denotes the system operation in
GC mode. In this sense, bmt,s,se can be used as multiplication
and integrated in the MILP model for allowing the objective
function and constraints pertaining to the operation mode for
microgrid. The third term given by (28d) represents the cost
for load curtailment, being restricted to IS mode only [37].
The last term depicted in (28e) represents the voltage vio-
lation index. This term seeks to improve the voltage quality
of the microgrid during both operation modes. For this, the
following assumptions are made: 1) during GC mode, the
DDG units are operated in active and reactive power control
(PQ) mode [38], [39], 2) during IS mode the DDG units are
operated under a secondary control layer with V ∗∗ identically
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set for all DDG units.

OFMILPs,se

=

∑
t∈�T

 CPCC
t,s,se

(
1− bmt,s,se

)
+CDDG

t,s,se
(
1− bmt,s,se

)
+CCURT

t,s,se b
m
t,s,se + C

VI
t,s,se

, ∀s ∈ �′s ∪�′′s ,
∀se ∈ �se (28a)

CPCC
t,s,se

= Sbase
(
σPCCt,s,seP

PCC
i=1,t,s,se

)
1t, ∀t ∈ �T , ∀s ∈ �′s ∪�

′′
s ,

∀se ∈ �se (28b)

CDDG
t,s,se

= Sbase
(∑

i∈�DDG
PDDGi,t,s,se

(
σ fuel

/
ηDDG + σDDGO&M

))
1t,

∀t ∈ �T , ∀s ∈ �′s ∪�
′′
s , ∀se ∈ �se (28c)

CCURT
t,s,se

= Sbase
(
σ curt

∑
i∈�BUS

bcurti,t,s,sew
load
i PLi,t,s,se

)
1t,

∀t ∈ �T , ∀s ∈ �′s ∪�
′
s, ∀se ∈ �se (28d)

CVI
t,s,se

= Vbase

(
PCVI

[∑
i∈�BUS

( (
1− bmt,s,se

)
V spec
GC

+bmt,s,seV
∗∗
i −Vi,t,s,se

)])
1t,

∀t ∈ �T , ∀s ∈ �′s ∪�
′′
s , ∀se ∈ �se (28e)

Subject to:

V ≤ Vi,t,s,se ≤ V , ∀i ∈ �BUS , ∀t ∈ �T ,

∀s ∈ �′s ∪�
′′
s , ∀se ∈ �se (29)

0 ≤ bcurti,t,s,se ≤ b
m
t,s,se, ∀i ∈ �BUS , ∀t ∈ �T ,

∀s ∈ �′s ∪�
′′
s , ∀se ∈ �se (30)

Pi,t,s,se =
( ∑

j∈�BUS GijVi,t,s,se
−
∑

j∈�BUS Bijδj,t,s,se

)

=


PPCCi,t,s,se + P

DDG
i,t,s,se

+PWT ,usei,t,s,se + P
PV ,use
i,t,s,se

+Pdchi,t,s,se − η
ES
i Pchi,t,s,se

−PLi,t,s,se
(
1− bcurti,t,s,se

)
,

∀i ∈ �BUS , ∀t ∈ �T , ∀s ∈ �′s ∪�
′′
s ,

∀se ∈ �se (31)

Qi,t,s,se =
(
−
∑

j∈�BUS BijVi,t,s,se
−
∑

j∈�BUS Gijδj,t,s,se

)

=

 +QPCCi,t,s,se + Q
DDG
i,t,s,se

+QESi,t,s,se
−QLi,t,s,se

(
1− bcurti,t,s,se

)
,

∀i ∈ �BUS , ∀t ∈ �T , ∀s ∈ �′s ∪�
′′
s ,

∀se ∈ �se (32)

Pbrk,t,s,se = gi(k)j(k)
(
Vi,t,s,se − Vj,t,s,se

)
+ bi(k)j(k)(δi,t,s,se − δj,t,s,se),

∀k ∈ �LIN , ∀t ∈ �T , ∀s ∈ �′s ∪�
′′
s ,

∀se ∈ �se (33)

Qbrk,t,s,se =
(
bi(k)j(k)

(
Vi,t,s,se − Vj,t,s,se

)
+gi(k)j(k)

(
δi,t,s,se − δj,t,s,se

) ),
∀k ∈ �LIN , ∀t ∈ �T , ∀s ∈ �′s ∪�

′′
s ,

∀se ∈ �se (34)

Lbrk,t,s,se =



α1
st

n Pbrk,t,s,se + β
1st
n Qbrk,t,s,se

−γ 1st I
br
k Vi(k),t,s,se ≤ 0

−α1
st

n Pbrk,t,s,se + β
1st
n Qbrk,t,s,se

−γ 1st I
br
k Vi(k),t,s,se ≤ 0

−α4
th

n Pbrk,t,s,se − β
4th
n Qbrk,t,s,se

−γ 4th I
br
k Vi(k),t,s,se ≤ 0

α4
th

n Pbrk,t,s,se − β
4th
n Qbrk,t,s,se

−γ 4thI
br
k Vi(k),t,s,se ≤ 0,

n = 1, 2, . . . , npw, ∀t ∈ �T , ∀k ∈ �LIN ,

∀i ∈ �BUS , ∀s ∈ �′s ∪�
′′
s , ∀se ∈ �se

(35)

PDDGi,t,s,se =

( [
−k iω

(
δMGt,s,se − π

/
2
)/
mpi
]
bmt,s,se

+
(
1− bmt,s,se

)
PDDGi,t,s,se

)
,

∀i ∈ �DDG, ∀t ∈ �T , ∀s ∈ �′s ∪�
′′
s ,

∀se ∈ �se (36)

QDDGi,t,s,se =

([(
V ∗i −Vi,t,s,se + u

v
i,t,s,se

)/
nqi
]
bmt,s,se

+
(
1− bmt,s,se

)
QDDGi,t,s,se

)
,

∀i ∈ �DDG, ∀t ∈ �T , ∀s ∈ �′s ∪�
′′
s ,

∀se ∈ �se (37)

Vi,t,s,sebmt,s,se = V ∗∗i bmt,s,se, ∀i ∈ �DDG, ∀t ∈ �T ,

∀s ∈ �′s ∪�
′′
s , ∀se ∈ �se (38)

S
DDG
i = PDDG,sizei , ∀i ∈ �DDG (39)

mpi = 1ω
/
S
DDG
i , ∀i ∈ �DDG (40)

nqi = 1V
/
2χDDGS

DDG
i , ∀i ∈ �DDG (41)

0 ≤ PDDGi,t,s,se ≤ S
DDG
i , ∀i ∈ �DDG, ∀t ∈ �T ,

∀s ∈ �′s ∪�
′′
s , ∀se ∈ �se (42)

χDDGS
DDG
i ≤ QDDGi,t,s,se ≤ χ

DDGS
DDG
i , ∀i ∈ �DDG,

∀t ∈ �T , ∀s ∈ �′s ∪�
′′
s , ∀se ∈ �se

(43)

−PDDGi,t,s,setg
(
cos−1 PFDDG,4thi

)
≤ QDDGi,t,s,se ≤ P

DDG
i,t,s,setg

(
cos−1 PFDDG,1sti

)
,

∀i ∈ �DDG, ∀t ∈ �T , ∀s ∈ �′s ∪�
′′
s ,

∀se ∈ �se (44)

LDDGi,t,s,se =


α1

st

n PDDGi,t,s,se + β
1st
n QDDGi,t,s,se

− γ 1stS
DDG
i ≤ 0

α4
th

n PDDGi,t,s,se − β
4th
n QDDGi,t,s,se

− γ 4thS
DDG
i ≤ 0,

n = 1, 2, . . . , npw, ∀t ∈ �T ,∀i ∈ �DDG

∀s ∈ �′s ∪�
′′
s , ∀se ∈ �se (45)
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0 ≤ PWT ,usei,t,s,se ≤ P
WT
i,t,s,se, ∀i ∈ �WT , ∀t ∈ �T ,

∀s ∈ �′s ∪�
′′
s , ∀se ∈ �se (46)

0 ≤ PPV ,usei,t,s,se ≤ P
PV
i,t,s,se, ∀i ∈ �PV , ∀t ∈ �T ,

∀s ∈ �′s ∪�
′′
s , ∀se ∈ �se (47)

S
ES
i = PES,sizei , ∀i ∈ �ES (48)

0 ≤ Pdchi,t,s,se ≤ S
ES
i bESi,t,s,se, ∀i ∈ �ES ,

∀t ∈ �T , ∀s ∈ �′s ∪�
′′
s ,

∀se ∈ �se (49)

0 ≤ Pchi,t,s,se ≤ S
ES
i

(
1− bESi,t,s,se

)
, ∀i ∈ �ES ,

∀t ∈ �T , ∀s ∈ �′s ∪�
′′
s , ∀se ∈ �se (50)

χESS
ES
i ≤ QESi,t,s,se ≤ χ

ESS
ES
i , ∀i ∈ �ES , ∀t ∈ �T ,

∀s ∈ �′s ∪�
′′
s , ∀se ∈ �se (51)

LESi,t,s,se

=



α1
st

n

(
Pdchi,t,s,se − P

ch
i,t,s,se

)
+ β1

st

n QESi,t,s,se

− γ 1stS
ES
i ≤ 0

−α1
st

n

(
Pdchi,t,s,se − P

ch
i,t,s,se

)
+ β1

st

n QESi,t,s,se

− γ 1stS
ES
i ≤ 0

−α4
th

n

(
Pdchi,t,s,se − P

ch
i,t,s,se

)
− β4

th

n QESi,t,s,se

− γ 4thS
ES
i ≤ 0

α4
th

n

(
Pdchi,t,s,se − P

ch
i,t,s,se

)
− β4

th

n QESi,t,s,se

− γ 4thS
ES
i ≤ 0,

n = 1, 2, . . . , npw, ∀t ∈ �T , ∀i ∈ �ES ,

∀s ∈ �′s ∪�
′′
s , ∀se ∈ �se (52)

EESi,t,s,se

=


SOC0

i E
ES,size
i +

(
ηESi Pchi,t,s,se − P

dch
i,t,s,se

)
1t,

t = 1

EESi,t−1,s,se +
(
ηESi Pchi,t,s,se − P

dch
i,t,s,se

)
1t,

t ≥ 2,

∀i ∈ �ES , ∀t ∈ �T , ∀s ∈ �′s ∪�
′′
s ,

∀se ∈ �se (53)

DoDmaxEES,sizei

≤ EESi,t,s,se ≤ E
ES,size
i , ∀i ∈ �ES , ∀t ∈ �T ,

∀s ∈ �′s ∪�
′′
s , ∀se ∈ �se (54)

EESi,t=NT ,s,se
≥ SOC0

i E
ES,size
i , ∀i ∈ �ES , ∀s ∈ �′s ∪�

′′
s ,

∀se ∈ �se (55)

−S
TR
i
(
1− bmt,s,se

)
≤ PPCCi,t,s,se ≤ S

TR
i
(
1− bmt,s,se

)
, ∀i ∈ �PCC , ∀t ∈ �T ,

∀s ∈ �′s ∪�
′′
s , ∀se ∈ �se (56)

χTRS
TR
i
(
1− bmt,s,se

)
≤ QPCCi,t,s,se ≤ χ

TRS
TR
i
(
1− bmt,s,se

)
, ∀i ∈ �PCC ,

∀t ∈ �T , ∀s ∈ �′s ∪�
′′
s , ∀se ∈ �se (57)

LPCCi,t,s,se

=


α1

st

n PPCCi,t,s,se + β
1st
n QPCCi,t,s,se − γ

1stS
TR
i ≤ 0

−α1
st

n PPCCi,t,s,se + β
1st
n QPCCi,t,s,se − γ

1stS
TR
i ≤ 0

−α4
th

n PPCCi,t,s,se − β
4th
n QPCCi,t,s,se − γ

4thS
TR
i ≤ 0

α4
th

n PPCCi,t,s,se − β
4th
n QPCCi,t,s,se − γ

4thS
TR
i ≤ 0,

n = 1, 2, . . . , npw, ∀t ∈ �T , ∀i ∈ �PCC ,

∀s ∈ �′s ∪�
′′
s , ∀se ∈ �se (58)

−PPCCi,t,s,setg
(
cos−1 PFTR,4thi

)
≤ QPCCi,t,s,se ≤ P

PCC
i,t,s,setg

(
cos−1 PFTR,1sti

)
,

∀i ∈ �PCC , ∀t ∈ �T ,

∀s ∈ �′s ∪�
′′
s , ∀se ∈ �se (59)

Vi,t,s,se
(
1− bmt,s,se

)
= VGC

spec
(
1− bmt,s,se

)
, ∀i ∈ �PCC ,

∀t ∈ �T , ∀s ∈ �′s ∪�
′′
s ,

∀se ∈ �se (60)

δi,t,s,se
(
1− bmt,s,se

)
= 0, ∀i ∈ �PCC , ∀t ∈ �T ,

∀s ∈ �′s ∪�
′′
s , ∀se ∈ �se (61)

where, for the objective function PPCCi,t,s,se denotes an active
power imported/exported from/to the main grid across the
ith PCC of the MG at time t for sth scenario of season se.
σPCCt,s,se is the market energy price in $/kWh corresponding to
time t for sth scenario of season se. While σ curt is cost of
load curtailment in $/kWh. bcurti,t,s,se denote a binary variable
for load curtailment (1: load shaded and 0: load fed) for
bus i at time t for sth scenario of season se. wloadi is the
weighing coefficient of load at bus i. Vbase is a setting voltage
magnitude base value. PCVI denotes a penalty coefficient
of voltage violation in $/kV. V spec

GC is a nominal specified
voltage during GC mode. V ∗∗i denote a voltage reference for
secondary control of theDDGat candidate bus i operatedwith
droop/2nd. Vi,t,s,se denotes a voltage magnitude of the bus i at
time t for sth scenario of season se.

In term it constraints, first for (29)-(35) V and V are
maximum/Minimum voltage violation of the bus. Pi,t,s,se and
Qi,t,s,se denotes the active and reactive power injected to bus
i at time t for sth scenario of season se. Gij and Bij are the ele-
ment of the conductance and susceptance matrix denotes the
connection of bus i to bus j, respectively. PWT ,usei,t,s,se and PPV ,usei,t,s,se
are respectively the PV andWT’s adjusting power output and
used at time t for sth scenario of season se. Pdchi,t,s,se and P

ch
i,t,s,se

denotes the active power charge and discharge by ith ES unit at
time t for sth scenario of season se, respectively. ηESi is a effi-
ciency of the energy storage. δj,t,s,se is the voltage magnitude
angle of bus i at time t for sth scenario of season se., QPCCi,t,s,se
denotes a reactive power exchange with the main grid across
the ith PCC of the MG at time t for sth scenario of season se.
QDDGi,t,s,se is a reactive power generated by the ith DDG unit at
time t for sth scenario of season se.QESi,t,s,se is a reactive power
generate/receive of the ith ES unit, at time t for sth scenario
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of season se. Pbrk,t,s,se and Q
br
k,t,s,se are the active and reactive

power flowing across the transmission branch k at time t for
sth scenario of season se. gi(k)j(k) and bi(k)j(k) denotes the
conductance and susceptance between bus i to j of branch k .
Lbrk,t,s,se is a set of piecewise linearization for line ampacity

quadratic constraint. I
br
k denotes a maximum ampacity of the

branch k . For the DDG’s constraints (36)-(45), k iω denotes
an integral gain for frequency restoration for DDG with
droop/2nd. δMGt,s,se denotes a phase angle of the bus where the
frequency control act at time t for sth scenario of season se.
mpi and nqi are the active and reactive droop gain of the ith

DDG unit with primary droop/2nd. V ∗i is a voltage reference
for primary control of the DDG at candidate bus i operated
with droop/2nd. uvi,t,s,se is an integrator output of secondary
voltage restoration of ith DDG unit operating with droop/2nd

at time t for sth scenario of season se. S
DDG
i is a capacity

rating of the DDG unit i.1ω and 1V are respectively a
maximum angular frequency and voltage magnitude devia-
tion. χDDGand χDDG are the minimum/maximum ratio for
determining lower/upper bound of DDG’s reactive power.

PFDDG,1thi and PFDDG,4sti denotes minimum operating power
factor allowable of the 1st/4th quadrant of the DDG unit i.
LDDGi,t,s,se is a set of piecewise linearization for DDG quadratic

constraint. For the ES’s constrains (48)-(55), S
ES
i is maximum

rating power of the ES unit i. bESi,t,s,se denotes a binary variable
indicates the status of ES (i.e. 1: discharge and 0: charge).χES

and χES are the minimum/maximum ratio for determining
lower/upper bound of ES’s reactive power. LESi,t,s,se is a set of
piecewise linearization for ES quadratic constraint. EESi,t,s,se
denotes an energy SOC of the ES unit i at time t for sth

scenario of season se. SOC0
i is an initial state of charge of the

ES unit.DoDmax is a maximumDepth of Discharge allowable

for ES. Finally, for (56)-(59) S
TR
i is a capacity rate of the

transformer. χTR and χTR are the minimum/maximum ratio
for determining lower/upper bound of reactive power flowing
across TR. LPCCi,t,s,se is a set of piecewise linearization for PCC
quadratic constraint., PFTR,1sti and PFTR,4thi are the minimum
operating power factor allowable of the 1st/4th quadrant of the
transformer i.

For these constaints, the inequality (29) represents the
general constrain that guarantees the voltage magnitude for
different individual buses within magnitude limits. Eq. (30)
guarantees load curtailment during IS mode. The micro-
grid model is obtained using the power flow model given
by (31)-(35). Constraints (31) and (32) are the linear ver-
sion of the node-based power flow equation that refers to
the power injected to theith bus of the microgrid [19]. It is
worth noting here that, (31) and (32) have been generally
formulated for all buses. Thus, the variables representing the
power exchange and generation (i.e., by DDG, WT, PV, ES)
that are not relevant to the power flow equations written for
bus i can be disregarded by setting the upper bound for these
variables to zeros. Next, eqs. (33) and (34) are the linear
version defining the active and reactive power flowing along

FIGURE 5. Steady state model for DDG unit operate with droop/2nd in IS
mode and their feasible operation region for both GC and IS mode.

a branch k in the microgrid. Where, i(k) and j(k) denote buses
i and j located at the upstream and downstream of branch k ,
respectively. Finally, (35) is the piecewise linearization of the
quadratic constraint limiting the line ampacity.

The DDG units are modeled using the steady state
model (36)-(45). Fig. 5 shows the steady state model
employed for representing operation constraints for the DDG
units with droop/2nd. Details of the derivation of the DDG
unit operation constraints can be found in [19]. Constraints
(36) and (37) define the active and reactive power generated
by the DDG units during IS or GC mode. These constraints
are composed of two terms associated with the binary input
bmt,s,se. The first term of these constraints refers to the oper-
ation of the DDG unit under droop/2nd control during IS
mode. The second terms represent the operation of the DDG
unit in PQ mode during GC mode. As one may observe, the
activation of the terms in (36) and (37) are conditioned to
the binary input bmt,s,se status. Eq. (38) guarantees the voltage
of the DDG bus restoration to the nominal secondary setting
voltage in IS mode. Eq. (39) defines the apparent power equal
to the DDG allocated unit rated size. In this work, loads are
considering to be shared proportionally to the capacity of the
DDG units [37], [39]. Thus, the active and reactive droop gain
can be calculated via the capacity-based model as expressed
in (40) and (41). Eqs. (42) and (43) establish minimum and
maximum boundary limits to the active and reactive power.

Constraint (44) guarantees that the relationship between
the active and reactive power of a DDG unit is greater than
the minimum set power factor. Finally (45) represents the set
of piecewise linearization that ensures the operation of the
DDGunit respecting its rated capacity S

DDG
i . Constraints (46)

and (47) represent the power outputs of the WTs and PVs
considering their actual MPPT power PWTi,t,s,se and PPVi,t,s,se.
ES constraints are depicted in (48)-(55). For this, in this
work, ES units are operated in PQ mode via its power elec-
tronic inverter interfaced (48). Nevertheless, with the power
electronic interface, the ES can be operated with droop/2nd
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control similar to the work in [19]. Constraints (49)-(50)
guarantee that the ES units’ operations are restricted within
the feasible operation region. In these constraints, the binary
variable bESi,t,s,se is introduced in (49) and (50) to avoid simul-
taneous charging and discharging states. Eq. (51) ensures that
the reactive power delivered by the ES units respect their
maximum and minimum reactive power allowable setting.
As the ES unit is connected through an inverter, (52) defines
the piecewise linearization representing the quadratic con-
strain for limiting the output to the maximum rated power
denote by S

ES
i . In (53) update SOC for the ES are obtained for

each time segment based on the charging/discharging energy
flows, as well as considering the round-trip efficiency ηESi
[32], [40]. Constraint (54) guarantees that the energy stored in
the ES is restricted by its rated capacity and minimum energy
storage setting. Finally (55) ensures that the energy stored in
the ES is available at the end of the planning horizons and
ready for the next days.

Constraints for the power exchange between the micro-
grid and the main grid at the substation are given by
(56)-(61). The constraints (56)-(59) guarantee the power
exchange is restricted by transformers’ feasible opera-
tion. First, (56) and (57) limit the active and reactive power
exchange respecting to the transformer rated power. As well,
the introduction of bmt,s,se in (56) and (57) allows for deac-
tivating these constraints during IS mode. Then, (58) is the
piecewise linearization representing the quadratic constrain
for limiting the active and reactive power exchange under the
transformer rated capacity. The operation for transformer lim-
its above the minimum power factor setting is given by (59).
Finally (60) and (61) refer to the grid connected power flow
conditions for voltage magnitude and phase angle at the
PCCMG imposed by the main grid during GC mode.

The piecewise constraint coefficients for (35), (45), (52)
and (58) can be calculated using (62a)-(62d). Details on
the derivation of piecewise constrains coefficients for the
quadratic constraints can be found in [19].

α1
st ,4th
n = cos

(
ϕ1

st ,4th
n +

(
n1

st ,4th
− 1

)
ϕ
1st ,4th
sel

/
n1

st ,4th
pw

)
,

n = 1, 2, . . . , npw (62a)

β1
st ,4th
n = sin

(
ϕ1

st ,4th
n +

(
n1

st ,4th
− 1

)
ϕ
1st ,4th
sel

/
n1

st ,4th
pw

)
,

n = 1, 2, . . . , npw (62b)

γ 1st ,4th
= cos(ϕ1

st ,4th
sel

/
2n1

st ,4th
pw ), n = 1, 2, . . . , npw

(62c)

ϕ
1st ,4th
0 = ϕ

1st ,4th
sel

/
2n1

st ,4th
pw , n = 1, 2, . . . , npw (62d)

2) DECISION VARIABLES - INNER LEVEL
The decision variables for the MILP model seeking to opti-
mize microgrids’ operation are summarized in Table 2.

V. STAGE III: OPTIMAL OPERATION BASED ON DEEP
NEURAL NETWORK (DNN) LEARNING
The detailed modeling of the multiple components involved
in microgrids for ensuring adequate operating conditions

TABLE 2. Decision variables for MILP model for microgrid optimal
operation.

during GC and IS modes, makes it unfeasible to solve this
problem using a MILP formulation due to the stochastic
nature of the problem, and consequently, the implied high
computational burden. In this sense, seeking to overcome
these limitations while not reducing the modeling complexity
in order to ensure feasible resilient solutions, a novel method-
ology using DNN technique is proposed. For this, effective
training samples for the DNN models are necessary. These
samples are composed of 1) the set of input samples for com-
binations of switch allocation and resources; and 2) the set of
targets for the LOPF dependent indices used for determining
the multi-objective functions of the outer level. To obtain
this data, the LOPF model depicted in the Section III is
used considering microgrid formation indicators-based N-K
contingencies level. Here, given that the LOPF is simulated
for set of sample inputs belonging to �s, �′′s and �se, which
are independent to each other, parallel computing can be
employed as shown in Fig. 6. For this, any third-party solution
based on well-knows multi-CPU cores or multi-GPU cores
can be applied.

A general outline of this process based on the stochastic
deep learning AC linear optimum power flow (DL-LOPFAC)
approach considering microgrids operation and control is
presented in Fig. 6. Details for obtaining the set of input
samples, as well as the targets provided by the LOPF model
are described in the following section.

A. SET OF SAMPLE INPUTS AND TARGETS
The set of input samples is a combination of possible allo-
cations for the DDGs, WTs, PVs, ESs and ISWs, where
INdnn denotes the matrix including a set of sample sp which
belonging to a set of DNN training samples �SAM , that can
be expressed by (63a)-(63b).

INdnn
=

[
INdnn

1 ; IN
dnn
2 ; . . . ; IN

dnn
sp

]
, sp ∈ �SAM

(63a)
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FIGURE 6. Proposed optimal operation for hierarchical microgrids based
on deep-learning technique.

INdnn
sp =



round
(
rdnna,sp

)
round

(
rdnnb,sp.

P
DDG

PDDGstep

)
PDDGstep

round

(
rdnnc,sp.

P
WT

PWTstep

)
PWTstep

round

(
rdnnd,sp.

P
PV

PPVstep

)
PPVstep

round

(
rdnne,sp.

P
ES

PESstep

)
PESstep



,

sp ∈ �SAM
a ∈ �can

ISW
b ∈ �can

DDG
c ∈ �can

WT
d ∈ �can

PV
e ∈ �can

ES

(63b)

The vector INdnn
sp is dependent on the candidate location

of the ISW and resources, where nfeat denotes the number
of features for a single DNN training sample input, in this
case nfeat = nddg + nwt + npv + nes + nisw, rdnnsp is a
uniform random number between [0,1]. In this work, the
uniform random is generated one time as a matrix with a size
nfeat×nsam representing a whole�SAM training sample inputs
before being classified into subset according to the candidate
location of switch and resources as seen in (63b). In this way,
it guarantees that the generated random numbers cover all
possible configurations in the space nfeat × nsam.
The set of targets is identified by the outer level’s indices

dependent on the decision variables of the LOPF prob-
lem. In this case, from (14b)-(22) the identified indices are
RESIOLEV , AOMCDDG, AEMISDDG and AEMISGRID, where
TGsp,n denotes the DNN targets n corresponding to LOPF
solution sample sp, the identification targets for training the
DNN model can be given by (64)-(66).

TGsp,1
=RESIOLEV , ∀sp ∈ �SAM (64)

TGsp,2

=


AOMCDDG/(

365
4
Sbase

(
σ fuel

/
ηDDG + σDDGO&M

)
)

or

AEMISDDG/(
365
4
SbaseKDDG

CO2 )

=

∑
∀se∈�se

∑
∀s∈�s

(
πwisos,se

∑
∀i∈�DDG

∑
∀t∈�T

PDDGi,t,s,se

)
,

∀sp ∈ �SAM (65)

TGsp,3

=AEMISGRID/(
365
4
SbaseKGRID

CO2 )

=

∑
∀se∈�se

∑
∀s∈�s

(
πwisos,se

∑
∀i∈�DDG

∑
∀t∈�T

PGRID+t,s,se

)
,

∀sp ∈ �SAM (66)

The first target (64), RESIOLEV , is dependent on LOPF’s
decision variable bcurti,t,s,se. It is responsible for the training of
the DDN model for accounting bcurti,t,s,se of the inner level.
This allows the trained DNN model enables to predict the
resilience index value which is corresponding to the first
objective function as discussed in section IV. The second
target (65) is related to AOMCDDG and AEMISDDG indices
dependent on the LOPF’s decision variables PDDGi,t,s,se. It char-
acterizes both indices shared by the same variable i.e., PDDGi,t,s,se
and leading to the possibility to predict only a single value for
determining these two indices. As can see in (65), TGsp,2 can
be calculated via AOMCDDG, or AEMISDDG, as those indices
are dependent on the same PDDGi,t,s,se. In this case, the prediction
results according to TGsp,2 can be used for re-calculating
AOMCDDG and AEMISDDG respecting their corresponding
multiplication constant requirement. These re-calculated pro-
vide the predicted results for AOMCDDG and AEMISDDG

which is necessary for determining the second/third objective
function for the outer level (i.e., TCOLEV and AEMISOLEV )
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FIGURE 7. Flowchart for generating the microgrid indicator matrices and
vectors for time t ∈ �T for scenarios s of season se.

accordingly. Finally (66) corresponds to AEMISGRID which
is dependent to PGRID+i,t,s,se , leading to the representation of the
predicted value of the trained DNN model for the annualized
CO2 emission by the power imported from the main grid
during GC mode, similar to (21d) in section IV.

B. MICROGRID FORMATION
The microgrid formation is the intermediate step within the
stochastic optimal operation level. This step delivers the nec-
essary indicators for optimal operation level representing the
microgrids formation due to N-K contingencies level. These
indicators are thematrices and vectors that represent the time-
coupling topologies of the test system during severe scenarios
�′′s . The methodology for delivering the microgrid formation
indicators respecting the LOPF problem is detailed illustrated
in Fig. 7.

1) FAULT INFLUENCE PATH
First, the affected branch and bus pathfinder is proposed
for searching the path(s) from the original fault location
until the end branch (terminal edge) and end node (leaves
node) respecting the graph representation of the network.
This search algorithm is deployed in order to automatically

search the path(s) whenever a single fault is located in the
network. The respective step-by-step description of the algo-
rithm solution is detailed in the following sections.

a: STEP 1: REPRESENTATION OF THE SYSTEM TOPOLOGY
Let the reference system topology be represented by the undi-
rected graphGbus

= (NDbus,EDbr), where NDbus are the set
containing the vertices or nodes representing the buses in the
reference system, while EDbr are the edge set representing
the branch connected between two adjacent nodes in the test
system. In this case, the adjacency matrix of Gbus is the
nbus×nbus matrix denote byMadj

= [Madj
ij ] withMadj

ij defined
by (67) [41].

Madj
ij =

{
1, if NDbusi NDbusj ∈ ED

br

0, otherwise
(67)

As Gbus is an undirected graph, the adjacency matrix is
the symmetrical square matrix with Madj

ij = Madj
ji . Here it

is important to note that in case there is a reconfiguration
in the reference system, Gbus and Madj should be updated
accordingly.

b: STEP 2: DETERMINATION OF THE TARGET NODES TGnode

Based on the graph Gbus, the shortest path by Dijkstra’s
algorithm is adopted for determining the path(s), or road
map(s), between the failed branch and the target node(s),
where fb

(
br fail

)
denotes the start node for the shortest path,

i.e. fault location, while the end of the shortest path is the
target node including the root node and leave nodes. More
detail about Dijkstra’s algorithm can be found in [41], [42].
The target nodes can be identified using the adjacency

matrix Madj, determining the row of Madj with summation
equal to one. In this sense, let i and j denote the row and
column of Madj,

∑nbus
j=1 M

adj
i,j = 1 indicates that node i is an

end node with no connection elsewhere.

c: STEP 3: DETERMINATION OF THE PATH(S)
Once the target nodes are identified, Dijkstra’s algorithm
is employed for determining the shortest path between the
start node fb

(
br fail

)
and the target nodes TGnodei . For this,

considering the system topology information available in the
Gbus matrix, where the weight of all branches is set to one,
given that any connection between two nodes is established
by a unique path for a radial distribution system.
The Dijkstra’s algorithm solution (DIJK ) identifies the

shortest path between two nodes, respectively fb
(
br fail

)
and

TGnodei , can be expressed by eq. (68).

pathbusi

(
fb
(
br fail

)
,TGnodei

)
= DIJK

(
fb
(
br fail

)
,TGnodei

)
, ∀i ∈ �node

TG (68)

Next, the branch path denoted by pathbri vector can be
obtained by identifying the edges located within the solu-
tion path fb

(
br fail

)
to TGnodei . Following, vectors pathbusi

and pathbri belonging to a set of targets node(s) �node
TG are
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stored in matrices PATHbus and PATHbr, respectively. These
matrices are responsible for determining the fault-influenced
branch and bus matrices, being detailed elaborated on in the
following section.

2) FAULT INFLUENCED BRANCH AND BUS MATRICES
Following, once affected paths are determined, clearing
procedures must be established to successfully isolate the
fault and ensure the system’s resilience. In this sense,
the representation of affected bus(es) and branch(es) by the
respective fault(s) must be performed to enable planning
algorithms solutions. These representations are respectively
held by matrices LFa and BFa, describing affected bus(es)
and branch(es). In addition, the establishment of rules to
ensure the adequate allocation of candidate ISWs able to
isolate the upstream and downstream of a branch fault is
fundamental [43], [44]. For this, the following rules are
established:

1) If the fault is found on the branch equipped with ISW,
the fault stays in the middle of the branch and has been
cleared by this ISW.

2) If the fault is located on the branch without ISW, the
fault, in this case, is cleared by the nearby ISWs located
along the searching paths.

A detailed description of bus and branch affected matrices
is presented in the following sections.

a: BRANCH AFFECTED MATRIX (LFA)
The branch, or line, affected matrix LFa is the binary matrix
assembling all binary vectors LFat with t belong to �T ,
where an online branch is represented by ‘‘1’’, i.e., non-
affected branch, and affected branches by the fault(s) are
represented by ‘‘0’’. For determining this matrix, first, the
binary matrix denoted by FAbr is required. FAbr is the binary
square matrix nbr × nbr , in which its ith single row describes
the set of affected branches corresponding to the location
of a single fault br faili where i ∈ �LIN . Once matrix FAbr

is obtained, a generic ith fault located at a branch ‘‘a’’, i.e.,
floci,t = a, due to the severe event at a time ‘‘t’’, allows for
the determination ofLFat by the row ‘‘a’’ ofFAbr. Moreover,
FAbr is useful for manipulating the elements of LFat in case
multiple faults are featured in the test system (i.e., floci,t ∈
�floc). To this end. the location of the fault(s) can be identified
by looking up on time segment t of AVI−II

s,se .
If there is more than a single fault located in the system.

Let, floctbe a vector containing the locations of the faults,
where its elements can be identified using AVI−II

s,se . LFat at
time t can be determined by looking up the multiple rows
of FAbr considering the correspondent element number of
vectors floct as described in (69), where

∏
denotes the

Hadamard multiplication.

LFat =
∏

i∈�floc

[
◦FAbr (floci, :)

]
(69)

Finally, LFa is obtained by repeating the same method-
ology for LFat for t ∈ �T . Here one must note that, if no

TABLE 3. Algorithm for determining FAbus{br fail
i }.

fault(s) occurs at time t , especially in the normal scenarios,
i.e.,�s, the elements of LFat can be simply set by the vector
constrained element of ‘1’.

b: BUS AFFECTED MATRIX (BFA)
Similar to the branches analysis, buses locatedwithin the fault
zone bounded by the ISWs must be deactivated. In this sense,
to represent this information, the binary matrix denoted by
BFa containing the bus(es) affected is required, where the
BFa is an assembly of the binary vectorsBFat where t ∈ �T ,
with term(s) equal to ‘‘1’’, corresponding to an online bus,
and ‘‘0’’ for those affected by the fault(s) and deactivated.

Following the binary matrix denoted by FAbus is required.
FAbus is a non-square matrix due to nbus = nbr + 1, where
the ith single row of FAbus describes the set of affected
buses corresponding to the location of a single fault location
br faili given i ∈ �LIN . Once this matrix FAbus obtained, the
BFat can be determined by looking up to the row ‘‘a’’ of
FAbus. Similar to FAbr, FAbus can be used for determining
BFat in case the case there is a multi-fault in the network
i.e., floci,t ∈ �floc.
For determining FAbus, first PATHbr and PATHbus have

been determined for br faili ∈ �LIN . Then, FAbusbr
fail
i is

obtained searchingPATHbrbr faili andPATHbrbr faili using the
proposed algorithm described in Table 3.

For the case with multiple faults, a Hadamard multiplica-
tion

∏
is used according to FAbus

{floct }. Eq. (70) shows the
formulation for determining BFat based on floct .

BFat =
∏

i∈�floc

[
◦FAbus (floci, :)

]
(70)

Similarly, BFat is repeatedly determined for t ∈ �T
and then stored in BFa. For the case where there is no
fault at time t , the methodology described above can be
skipped and BFat can be simply a set vector containing the
element ‘1’.
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TABLE 4. Formation of matrix containing microgrid set.

3) MICROGRID FORMATION SET
The matrix MGset

t is used for indicating the set of possible
microgrid formations once the fault is eliminated. In this
sense, taking advantage of the Depth First Search (DFS)
technique the matrix MGset

t for a generic floct and ISW site

is obtained employing the proposed algorithm described in
Table 4 for all t ∈ �T . This is possible as the DFS technique
allows the proposed algorithm able to track a set of micro-
grid(s) according to their roots noted by rootMG which is
corresponding to the location of the switch(es). More details
about the DFS can be found in [45], [46].

4) MICROGRID FORMATION INDICATORS
In this section, the time dependent microgrid formation
indicators are determined. These indicators are the binary

TABLE 5. Algorithm for determining bmt .

matrices and binary vectors representing the time-coupled
microgrid tropology and operation, especially during the
N-K contingencies scenarios. The methodology applied for
determining these indicators is described in the following
subsection.

a: SYSTEM BUSES OPERATION MODE
The system buses’ operation modes are described by matrix
bm. Matrix bm assembles the binary vectors bmt containing
the binary elements responsible for indicating the operation
mode, i.e., GC or IS, of each system bus; where, the element
of bmt is ‘‘1’’ if the corresponding bus is located in the
microgrid area, otherwise ‘‘0’’ for those buses connected to
the main grid. The formation of bmt can be expressed by (71).
For the determine bmt , the algorithm in Table 5 is adopted.

bmt = [bm1,t , b
m
2,t , . . . , b

m
nbus,t ] (71)

b: NON-ENERGIZED SYSTEM BUSES
The microgrid can be operated in IS mode when there is at
least a single DDG unit localized within the microgrid. In this
sense, let a vector MGset

m,t define the set of mth microgrid
found at time t , if there is no DDG unit installed in MGset

m,t ,
this MGset

m,t can not operate in IS mode. For this reason,
a binary vector busnet is adopt for indicating that the buses
within the microgrid cannot be energized due to the lack of
local DDG(s); where, the element of busnet is ‘‘1’’ when the
corresponding bus is located in awithDDG(s), otherwise ‘‘0’’
for those buses located in microgrids lacking local DDG(s).
The general formation for busnet is shown in (72). Then, the
general algorithm for determiner busnet for an instance time
t ∈ �T is shown in Table 6.

busnet = [busne1,t , bus
ne
2,t , . . . , bus

ne
nbus,t ] (72)

c: FREQUENCY-CONTROLLED BUSES AND DEACTIVATED
DDGS
According to (36) there is a need to identify the location of
buses with frequency control capability within the microgrid.
Nonetheless, if more than a single microgrid is created, the
frequency-controlled bus for each formed microgrid should
be identified. For this, the vector f bust is employed. Its ele-
ments indicate the location of frequency-controlled buses for
each DDG. Still, there might be cases where a DDG is located
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TABLE 6. Algorithm for forming busne
t .

TABLE 7. Algorithm for determining f bust and DDGdown
t .

within the fault area. In this case, the binary vector DDGdownt
is used, where elements corresponding to DDGs standing in
fault areas are set to zero, otherwise set to ‘‘1’’. (73) and (74)
show the formation for f bust and DDGdownt , respectively.

f bust = [f bus1,t , f
bus
2,t , . . . , f

bus
nddg,t ] (73)

DDGdownt = [DDGdown1,t ,DDGdown2,t , . . . ,DDGdownnddg,t ]

(74)

Table 7 shows the algorithm adopted for determining f bust
and DDGdownt .

d: WT, PV AND ES OPERATION STATUS
WT, PV and ES can not maintain the microgrid operation
in IS without DDG support. In this sense, WTs, PVs and
ESs that are located inside a non-successful IS microgrid
should be deactivated. For this, vectors indicating the WTs,
PVs and ESs deactivation status can be determined by simply
mapping their location with busnet and can be as expressed
by (75a)-(75c).

WTdownt = busnet (WT sitesp ) (75a)

PVdown
t = busnet (PV site

sp ) (75b)

ESdownt = busnet (ESsitesp ) (75c)

where,WTdownt ,PVdown
t andESdownt are the vector containing

the status of the WTs (i.e., WT downi,t,s,se), PVs (i.e., PV
down
i,t,s,se)

and ESs (i.e., ESdowni,t,s,se) at time t , respectively. Then,WT sitesp ,
PV site

sp and ESsitesp are respectively the vector containing the
location of the WTs, PVs and ESs for sample sp.

e: TIME-COUPLED Y bus

The initial system impedance is determined via the original
system topology, i.e., Zi,t,s,se = Z0

i . Still, during severe event
analysis, the impedance of overhead line branches changes
as the system topology adapts, i.e., opening the switch of an
overhead line leads to an equivalent impedance Zi,t,s,se = ∞.
In this sense, the binary matrix LFa is used for updating
Zi,t,s,se at an instance time t , where the element ofLFa can be
used as a multiplication for modifying the impedance Zi,t,s,se
as expressed in (76).

Zi,t,s,se = (1/LFai,t,s,se)Z0
i , ∀i ∈ �BUS , ∀t ∈ �T ,

∀s ∈ �′s ∪�
′′
s , ∀se ∈ �se (76)

The time-coupled Ybus
s,se can be expressed by (77a) using

the methodology found in [47]. Conductance matrix G and
susceptance matrix B along the planning horizon �T can be
obtained using (77b) and (77c).

Ybus
s,se =

[
Ybus
1,s,se,Y

bus
2,s,se, . . . ,Y

bus
NT ,s,se

]
,

∀s ∈ �′s ∪�
′′
s , ∀se ∈ �se (77a)

Gs,se = real
(
Ybus
s,se

)
(77b)

Bs,se = imag
(
Ybus
s,se

)
(77c)

C. INTEGRATION OF MICROGRID FORMATION
INDICATORS TO INNER LEVEL OPTIMIZATION
In this section, the microgrid formation indicators are inte-
grated into the LOPF problem allowing the capture of multi-
microgrid topology and the status of available resources over
the planning horizon �T . For this, the LOPF formulation
updated according to the multi-microgrid formation indica-
tors is listed as follows:

1) OBJECTIVE FUNCTION
With a new bmt , the formulation (28a) and (28e) were replaced
by (78a) and (78b), as shown at the bottom of the next page,
to introduce bmi,t,s,se.

2) CONSTRAINTS
The update constraints considering the microgrids formula-
tion indicators can be listed as follows:(
1− busnei,t,s,se

)
≤ bcurti,t,s,se ≤ b

m
i,t,s,se, ∀i ∈ �BUS , ∀t ∈ �T ,

∀s ∈ �′s ∪�
′′
s , ∀se ∈ �se (79)
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Pi,t,s,se

=

( ∑
j∈�BUS Gij,t,s,seVi,t,s,se

−
∑

j∈�BUS Bij,t,s,seδj,t,s,se

)

=


PPCCi,t,s,se + P

DDG
i,t,s,se

+PWT ,usei,t,s,se + P
PV ,use
i,t,s,se

+Pdchi,t,s,se − η
ES
i Pchi,t,s,se

−PLi,t,s,se
(
1− bcurti,t,s,se

)
, ∀i ∈ �BUS , ∀t ∈ �T ,

∀s ∈ �′s ∪�
′′
s , ∀se ∈ �se (80)

Qi,t,s,se

=

(
−
∑

j∈�BUS Bij,t,s,seVi,t,s,se
−
∑

j∈�BUS Gij,t,s,seδj,t,s,se

)

=

 +QPCCi,t,s,se + Q
DDG
i,t,s,se

+QESi,t,s,se
−QLi,t,s,se

(
1− bcurti,t,s,se

)
,

∀i ∈ �BUS , ∀t ∈ �T , ∀s ∈ �′s ∪�
′′
s , ∀se ∈ �se

(81)

Pbrk,t,s,se

=

(
gi(k)j(k),t,s,se

(
Vi,t,s,se − Vj,t,s,se

)
+bi(k)j(k),t,s,se

(
δi,t,s,se − δj,t,s,se

) ),
∀k ∈ �LIN , ∀t ∈ �T , ∀s ∈ �′s ∪�

′′
s , ∀se ∈ �se

(82)

Qbrk,t,s,se

=

(
bi(k)j(k),t,s,se

(
Vi,t,s,se − Vj,t,s,se

)
+gi(k)j(k),t,s,se

(
δi,t,s,se − δj,t,s,se

) ),
∀k ∈ �LIN , ∀t ∈ �T , ∀s ∈ �′s ∪�

′′
s , ∀se ∈ �se

(83)

PDDGi,t,s,se

=


[
−k iω

(
δMG
f busi,t ,t,s,se

− π
/
2
)/

mpi

]
bmi,t,s,se

+

(
1− bmi,t,s,se

)
PDDGi,t,s,se

,
∀i ∈ �DDG, ∀t ∈ �T , ∀s ∈ �′s ∪�

′′
s ,

∀se ∈ �se (84)

QDDGi,t,s,se

=

[(V ∗i − Vi,t,s,se + uvi,t,s,se)/nqi ] bmi,t,s,se
+

(
1− bmi,t,s,se

)
QDDGi,t,s,se

,
∀i ∈ �DDG, ∀t ∈ �T , ∀s ∈ �′s ∪�

′′
s , ∀se ∈ �se

(85)

Vi,t,s,sebmi,t,s,se
= V ∗∗i bmi,t,s,se, ∀i ∈ �DDG,∀t ∈ �T , ∀s ∈ �′s ∪�

′′
s ,

∀se ∈ �se (86)

0 ≤ PDDGi,t,s,se ≤ S
DDG
i DDGdowni,t,s,se, ∀i ∈ �DDG, ∀t ∈ �T ,

∀s ∈ �′s ∪�
′′
s , ∀se ∈ �se (87)

χDDGS
DDG
i DDGdowni,t,s,se

≤ QDDGi,t,s,se ≤ χ
DDGS

DDG
i DDGdowni,t,s,se, ∀i ∈ �DDG,

∀t ∈ �T , ∀s ∈ �′s ∪�
′′
s , ∀se ∈ �se (88)

0 ≤ PWTi,t,s,se ≤ P
WT ,0
i,t,s,seWT

down
i,t,s,se, ∀i ∈ �WT , ∀t ∈ �T ,

∀s ∈ �′s ∪�
′′
s , ∀se ∈ �se (89)

0 ł ePPVi,t,s,se ≤ P
PV ,0
i,t,s,sePV

down
i,t,se, ∀i ∈ �PV , ∀t ∈ �T ,

∀s ∈ �′s ∪�
′′
s , ∀se ∈ �se (90)

0 ≤ Pdchi,t,s,se ≤ S
ES
i bESi,t,s,seES

down
i,t,s,se, ∀i ∈ �ES , ∀t ∈ �T ,

∀s ∈ �′s ∪�
′′
s , ∀se ∈ �se (91)

0 ≤ Pchi,t,s,se ≤ S
ES
i

(
1− bESi,t,s,se

)
ESdowni,t,s,se, ∀i ∈ �ES ,

∀t ∈ �T , ∀s ∈ �′s ∪�
′′
s , ∀se ∈ �se (92)

χESS
ES
i ESdowni,t,s,se

≤ QESi,t,s,se ≤ χ
ESS

ES
i ESdowni,t,s,se, ∀i ∈ �ES , ∀t ∈ �T ,

∀s ∈ �′s ∪�
′′
s , ∀se ∈ �se (93)

−S
TR
i
(
1− bmi,t,s,se

)
≤ PPCCi,t,s,se ≤ S

TR
i
(
1− bmi,t,s,se

)
, ∀i ∈ �PCC , ∀t ∈ �T ,

∀s ∈ �′s ∪�
′′
s , ∀se ∈ �se (94)

χTRS
TR
i
(
1− bmi,t,s,se

)
≤ QPCCi,t,s,se ≤ χ

TRS
TR
i
(
1− bmi,t,s,se

)
, ∀i ∈ �PCC ,

∀t ∈ �T , ∀s ∈ �′s ∪�
′′
s , ∀se ∈ �se (95)

Vi,t,s,se
(
1− bmi,t,s,se

)
= VGC

spec
(
1− bmi,t,s,se

)
, ∀i ∈ �PCC , ∀t ∈ �T ,

∀s ∈ �′s ∪�
′′
s , ∀se ∈ �se (96)

δPCCi,t,s,se
(
1− bmi,t,s,se

)
= 0, ∀i ∈ �PCC , ∀t ∈ �T ,

∀s ∈ �′s ∪�
′′
s , ∀se ∈ �se (97)

where, Gij,t,s,se and Bij,t,s,se are the element of the time-
coupled conductance and susceptance matrix denotes the
connection of bus i to bus j at time t for sth scenario of season

OFMILP,MGss,se =

∑
t∈�T


CPCC
t,s,se

(
1− bmi=1,t,s,se

)
+CDDG

t,s,se

(
1− bm

∀i∈�DDG,t,s,se

)
+CCURT

t,s,se b
m
∀i∈�BUS ,t,s,se

+ CVI ,MGs
t,s,se

, ∀s ∈ �′s ∪�′′s , ∀se ∈ �se (78a)

CVI ,MGs
t,s,se = Vbase

(
PCVI

[∑
i∈�BUS

busnei,t,s,se

( (
1− bmi,t,s,se

)
V spec
GC

+bmi,t,s,seV
∗∗
i − Vi,t,s,se

)])
1t, ∀t ∈ �T , ∀s ∈ �′s ∪�

′′
s ,

∀se ∈ �se (78b)
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se, respectively. gi(k)j(k),t,s,se and bi(k)j(k),t,s,se are the time-
coupled conductance and susceptance between bus i to j of
branch k , at time t for sth scenario of season se. δMG

f busi,t ,t,s,se

denotes a phase angle of the frequency controllable bus f busi,t
at time t for sth scenario of season se.
First, (30) is replaced by (79) for allowing the load at the

individual bus to curtail during IS mode while forcing bcurti,t =

1 for any bus i that corresponds to the bus non-energize
busnei,t,s,se. Then, equations (80)-(84) are power flow con-
straints considering the microgrids topology using the time-
coupled Ybus

s,se. The updated constraints for the DDG units
are expressed by (84)-(85). Compared to (36)-(38), bmi,t,s,se is
introduced in (84)-(86), allowing the problem consideration
of an individual DDG unit’s operation, i.e., GC or IS mode.
Moreover, for (84), δMG

f busi,t ,t,s,se
is dependent on frequency-

controlled buses. Eqs. (42) and (43) are replaced by (87) and
(88) for accounting for the status of the DDG units i.e., online
or failure. The inequalities (89)-(93) guarantee thatWTs, PVs
and ESs are deactivated in case they are located inside a non-
successful IS microgrids. Finally, eqs. (94)-(97) defined the
updated power exchange constraints by introducing bmi,t .

3) MILP MODEL FOR LOPF CONSIDERING MICROGRIDS
FORMATION
According to the updated LOPF problem formulation, the
MILP model used for the deep-learning approach can be
summarized as follows:

min
XMILP

OFMILP,MGss,se (98)

Subject to:
• Voltage and load curtailment constraints: (29), (79)
• Power flow constraints: (80)-(83), (35)
• DDG operation constrains: (39)-(41), (44), (45),
(84)-(88)

• WT and PV operation constrains: (89), (90)
• ESS operation constraints: (48), (52)-(55), (91)-(92)
• Power exchange constraints: (58), (59), (94)-(97)

D. DEEP NEURAL NETWORK (DNN) MODEL
At this stage, for each sample sp, the identified
targets (64)-(66) can be calculated using the results obtained
by the LOPF solution. Then, a set of sample inputs INdnn

and the calculated targets (64)-(66) are used for training the
DDN models, wherein 70% of the samples were arbitrarily
selected for the training procedure and the remaining samples
for the testing procedure. For simplicity, a single DNNmodel
is trained for predicting the single identification target. In this
work, each DDN model employed is formed as a multi-
layer feedforward neural network with three levels, i.e.,
a single input layer, several hidden layers and a single output
layer [48], [49]. Fig. 8 shows the basic scheme for a multi-
layer feed-forward neural network architecture.

According INdnn and targets (64)-(66), a general DNN
model architecture designed for a single sample can be

FIGURE 8. General scheme of multi-layer feed-forward neural network
architecture for predicting a single identified target.

expressed by (99)-(101).

adnn0,sp = INdnn
sp , sp ∈ �SAM (99)

adnni,sp = f dnni

(
Wiadnni−1,sp + bi

)
,

i = 1, 2, .., nhl, sp ∈ �SAM (100)

adnn
′

sp = f dnn
′
(
Wnhl+1a

dnn
nhl ,sp + bnhl+1

)
,

sp ∈ �SAM (101)

The input layer of the hidden layer receives the vector of
input adnn0,sp expressed by (99). Then, each layer in the hidden
layer computes their neuron pre-activation pdnni,sp regarding
the weight matrix (i.e., Wi) and biases vector (i.e., bi), the
activation function f dnni (.) employed to pdnni,sp for delivering
the neuron activation for the next layer (100). In the end, the
output layer computes a single prediction neuron activation,
ntar = 1, using the neuron activation adnnnhl ,sp that is obtained
by the last layer of the hidden layer (101). In this work,
f dnni (.) is a sigmoid activation function for the hidden layer,
while the output layer linear activation function is denoted
by f dnn

′

(.) is used. Finally, the DNN model has been trained
via the Bayesian Regularization Backpropagation (BRB)
algorithm [48]. This algorithm is a backpropagation-based
approach focused on minimizing the mean sum of squares
of the network errors (MSE) during the DDN model train-
ing. Moreover, seeking to minimize and make the network
response smoother, as well as likely to reduce overfitting
impact [48], [50]. The proposed algorithm also includes the
network regularization based on the network sum of mean
square weights (MSW).

As can be seen in Fig. 6, the prediction obtained by the
trained DDN model should satisfy the criteria. In this work,
the errors indicated in (102) have been used as a criterion cal-
culated for every round of DNN training completion. Then,
(103) and (104) are calculated for illustrating the performance
of the model for different types of errors.

ednn1 = 100%×max


∣∣∣TGsp − netn (INdnn

sp

)∣∣∣
TGsp

,
∀sp ∈ �test

SAM (102)

ednn2 = mean
(∣∣∣TGsp − netn(INdnn

sp )
∣∣∣),

∀sp ∈ �test
SAM (103)
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ednn3 = 100%×
mean

(∣∣∣TGsp − netn(INdnn
sp )

∣∣∣)
mean

(
TGsp

) ,

∀sp ∈ �test
SAM (104)

where, netn
(
INdnn

sp

)
is the prediction results for the input

sample INdnn
sp using the DNN model corresponding to target

n. First, ednn1 represents the relative error between the pre-
diction and real value. In this case, we apply a maximum
for delivering the worst error over the vector of relative
error. Then, ednn2 and ednn3 represent the mean absolute and
relative errors, presenting more generalized perspectives in
comparison to ednn1 .

In this work, the hyper parameters are randomly selected
for every round of DNN training, i.e., (a) activation function
for hidden layers, (b) activation function for outer layer,
(c) number of layers and corresponding neurons in the hid-
den layers. According to the BRB algorithm, the training
round stops if the sum squared error and the sum squared
weights are not improved over subsequent training iterations
(epochs) [48], [50]. Then, trained DNN models are vali-
dated through the testing set until satisfying the criteria ednn1
threshold, guaranteeing that the worst relative error between
the target and prediction is less than ednn1 . Finally, trained
DNN models are used for predicting the targets and calcu-
lating the LOPF dependent indices RESIOLEV , AOMCDDG,
AEMISDDG and AEMISGRID for the outer level. In this sense,
let netn(XOLEV ) be a trained DDN network for target n
depending on XOLEV , the LOPF dependent indices for the
outer level calculated using the trained DNN model can be
expressed by (105)-(109b).

RESIOLEV ,dl = net1(XOLEV ), ∀sp ∈ �SAM (105)

TCOLEV ,dl
=

(
CDDG,dl

+ CWT

+CPV
+ CES

+ C ISW

)
(106)

CDDG,dl
= CPCDDG

+ TL × AOMCDDG,dl

(107a)

AOMCDDG,dl
= net2 (XOLEV )

×

(
365
4
Sbase

(
σ fuel

/
ηDDG + σDDGO&M

))
(107b)

AEMISOLEV ,dl = AEMISDDG,dl + AEMISGRID,dl (108)

AEMISDDG,dl = net2(XOLEV )(
365
4
SbaseKDDG

CO2 ),

∀sp ∈ �SAM (109a)

AEMISGRID,dl = net3(XOLEV )(
365
4
SbaseKGRID

CO2 ),

∀sp ∈ �SAM (109b)

VI. STAGE IV: SOLUTION FOR OPTIMUM PLANNING
The proposed multi-objective optimization problem incorpo-
rating the DNN models for the resilience-oriented planning

of microgrids can be summarized as follows:

min
XOLEV

(
RESIOLEV ,dl,TCOLEV ,dl,AEMISOLEV ,dl

)
(110)

s.t.:
• DERs size constraint: (23), (24)
• Maximum allowable bus power constraint: (25)
• ISWs and DERs installation constraints: (26), (27)
The proposed problem has been solved using the

population-based multi-objective optimization approach
NSGA-II [51]. Fig. 9 shows the general outline of the pro-
posed optimum planning NSGA-II based on DNN models.
The NSGA-II is widely used for multi-objective optimization
problems due to its computational efficiency and faster con-
vergence compared to the other techniques [51]. Moreover,
the solution delivered byNSGA-II is closed to the true Pareto-
optima frontier [51]. Additional details on NSGA-II and its
implementation can be found in [51].

In the beginning, the first iteration at gen = 0 the NSGA-II
starts generating an initial random parent population with
npop individuals. In this work, a single individual includes
the combination of the genes representing the allocation of
the planning elements i.e., ISWs, DDGs, WTs, PVs and ESs.
Fig. 10 shows the structure of an individual or a chromosome.
Then, considering every single individual, the multi-objective
function can be determined from two directions A and B. For
the following iteration gen > 0 the NSGA-II starts forming
an npop child offspring population using the genetic operators,
i.e., selection, crossover, and mutation [51]. Similar to the
parent population, the multi-objective functions are evaluated
for npop child individuals, and a new parent population is
determined.

First, the child population is combined with the parent
population forming a mixed population with 2×npop individ-
uals. Then, a new parent population is developed by select-
ing npop individuals from the mixed population using the
fast non-dominated sorting technique [51]. According to this
technique, individual(s) classified in the lowest rank of the
frontier are selected and moved up to the highest frontier
until the number of selected individuals reach npop. If the
last ranked individuals cause the quantity to exceed npop, the
crowding distance is applied for selecting the remainder indi-
viduals. This process is repeated until satisfy the NSGA-II
criteria.

VII. NUMERICAL RESULTS
To validate the proposedmethod, the IEEE 33-bus test system
is selected. This system is a typical distribution network with
the ability to be disconnected from the main grid via the main
isolated switch, i.e., ISWsub, installed at the upstream inter-
facing substation. Distribution lines infrastructure is assumed
as a typical overhead power line, with loads weighing coeffi-
cient proportional to the annual peak load, Fig. 11, similar
to the work found in [19]. The wind speed and irradiance
data sets are obtained via the scenario generation procedure
described in Section III using fast forward reduction. For this,
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FIGURE 9. Optimum planning approach.

data series extracted from NREL [52] comprising the hourly
profile for 10 years, respectively 2008-2017 for Victoria-BC,
Canada, of wind speed in MPH (miles per hour) and for
irradiance in w/m2 are employed. Details pertaining to the

FIGURE 10. Structure of chromosome for NSGA-II.

FIGURE 11. Seasonal annual load pattern.

FIGURE 12. 33-bus test system with candidate buses and branches.

obtained set of scenario reductions are shown in Table 8.
Based on the obtained data sets, the most vulnerable wind
scenarios summarized in Table 9 are used for generating
severe operation scenarios. For accounting for the uncer-
tainty of the N-K contingencies, N pre

s is set sufficiently high,
N pre
s = 10000, allowing for the selection of 5 scenarios for

each season se. This procedure steps are detailed depicted in
Section III, and the parameters related to the scenario genera-
tion are summarized in Table 10. The daily market electricity
price is extracted from NYISO [53], where corresponding
days and years are shown in Table 8 and Table 9. The test sys-
tem candidate buses and branches for the planning elements
are shown in Fig. 12, with main characteristics summarized
in Table 11 [54].

The proposed planning framework is developed in
MATLAB environment, including the DNN models training
procedure, the implementation of NSGA-II and the validation
procedure. It is worth noting that the technology sodium sul-
fur (NaS) was selected for the ESs due to its high number of
lifecycles. In this work, the ES capacity rating is proportional
to their power rating, similarly to the work in [55]. In this
case, the ratio between the rated capacity and rated power
is set to 5 for all ESs. This number was extracted from the
optimal solution found in [33]. Additionally, the maximum
DoD is arbitrary set to 70% to provide a balance between
the battery lifecycle and its generation capability. The DDGs

VOLUME 10, 2022 84357



Y. Vilaisarn et al.: Deep Learning Based Multiobjective Optimization for the Planning of Resilience Oriented Microgrids

TABLE 8. Set of scenarios and their probability obtained by fast forward
selection and their corresponding calendar day/year for WT and PV.

TABLE 9. The most vulnerable wind scenarios and their corresponding
date.

TABLE 10. Parameter for generating scenario.

is the natural gas type which can be operated in PQ mode,
during GCmode, and droop/2nd, during ISmode. The general
parameters used in this research are summarized in Table 12.

A. DEEP LEARNING SOLUTION VALIDATION
In this section, the performance of the trained DDNmodels is
evaluated. As discussed in Section V, a single model is used
for predicting the single target. The corresponding hyper-
parameters for each DNNmodel architecture are summarized
in Table 13. The number of samples is 40000 including 70%
for the training set and 30% for the testing set. Taking advan-
tage of the BRB algorithm, training is terminated if the sum
squared error and the sum squared weights are not relatively
improved over successive training iterations (epochs) [48],
[50]. Additionally, an ednn1 threshold of 10% is considered

TABLE 11. Characteristic of the 33-bus test system.

FIGURE 13. MSE over epoch, distributed error of training set and test set
of the first DNN model for predicting TG1.

for guaranteeing the accuracy of the DNN models. In this
case, the Fig. 13, 14 and 15 illustrate the training/testingMSE
and distributed error of the DNNmodel for predicting TGsp,1,
TGsp,1 and TGsp,1, respectively. To this end, the performance
of the trained DNN models are summarized in Table 14.

Analyzing Table 14, one can draw conclusions regarding
the DDN models errors for the three targets of interest.
First, the MSE, RMSE, and max |y| for the training and
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TABLE 12. General parameters.

testing procedures are found around 10−4 to 10−7, 10−2

to 10−4, and 10−1 to 10−2 ranges, for all targets. These
results indicate the developed method significant ability to
infer adequate optimal solutions, presenting errors signifi-
cantly smaller than accepted deviations. Where respective

FIGURE 14. MSE over epoch, distributed error of training set and test set
of the first DNN model for predicting TG2.

FIGURE 15. MSE over epoch, distributed error of training set and test set
of the first DNN model for predicting TG3.

TABLE 13. Hyper-parameters setting for DNN models’ architectures.

variations in the errors range are due to the different units
under consideration. In terms of the criteria, the ednn1 obtained
for TGsp,2, TGsp,2 and TGsp,3 are found less than the 10%
threshold. The ednn2 is found at 7.75 × 10−4, 1.06 × 10−2

kWh and 1.09 × 10−2 kWh for TGsp,2, TGsp,2 and TGsp,3,
respectively. Finally, ednn3 shows the ratio in percentage
for ednn2 over the mean target, leading to an error of less
than 1%.
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TABLE 14. Performance of trained DNN models.

FIGURE 16. Comparison multi-objective solutions obtained by proposed
NSGA-II based DNN model and their corresponding real values.

B. NSGA-II PERFORMANCE BASED DNN MODEL
In this section, the performance of the proposed NSGA-II
based DNN model is evaluated. The NSGA-II is responsible
for generating themulti-objective problem solution according
to the Pareto frontier. In this work, the maximum number of
iterations and the population are set to 1000. The crossover
and mutation probability is set to 0.8 and 0.01, respectively.
These parameters were selected based on the guidelines avail-
able in [51], [56].

The solutions obtained include the XOLEV and the values
of the multi-objective function are based on DNN models’
prediction. To validate these solutions, first, the LOPF prob-
lem (98) is re-simulated for the obtained solution XOLEV.
Then, the solution obtained by re-simulating the LOPF is used
for calculating the real values of multi-objective functions.
Then, R-square (R2) and error indices (102)-(104) are calcu-
lated for evaluating the error between real objective functions
and those obtained by (98).

Fig. 16 shows the comparison between the real
multi-objective functions results and those obtained
by (98).

Then, Fig. 17, 18 and 19 illustrate the probability density
as a histogram and the cumulative density of the set of
errors eOLEV

∗
1 for RESIOLEV , TCOLEV and AEMISOLEV ,

respectively.Where, eOLEV
∗

1 denotes the set of relative errors,

FIGURE 17. Probability density as histogram and cumulative density
curve of relative error eOLEV ∗

1,RESI for RESIOLEV .

FIGURE 18. Probability density as histogram and cumulative density
curve of relative error eOLEV ∗

1,TC for TCOLEV .

FIGURE 19. Probability density as histogram and cumulative density
curve of relative error eOLEV ∗

1,AEMIS for AEMISOLEV .

TABLE 15. Performance of NSGA-II.

compared to the max/worst relative error with eOLEV1 =

max
(
eOLEV

∗
1

)
.

Finally, Table 15 summarizes the R2 and errors indices
between both sets of solutions. The R2 obtained for the three
objective functions are close to 1.00, eOLEV1 for all objective
functions are less than 2%,whereas eOLEV2 and eOLEV3 indicate
absolute and relative errors of less than 1%.

C. OPTIMAL PLANNING SOLUTION
This section presents the optimal planning solution wherein
the solution is positioned in the Pareto frontier respecting the
NSGA-II behavior. In this case, the solution can be classified
into two groups according to the 3D plan for multi-objective
function solutions shown in Fig. 20.
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FIGURE 20. Classification in Group A and Group B for the multi-objective
function’s solution obtained by NSGA-II based DNN model.

TABLE 16. Planning solution corresponding the max/min in each
objective function for group A and the planning solution for group B.

Group A corresponds to the solution of XOLEV where all
three ISWs are installed on candidate branches of the test
system. These solutions present variations due to the alloca-
tion of different DDGs sizes in the candidate buses and their
deployment for maintaining the microgrid operation in IS
mode. Thus, affecting the evolution of the resilience index in
the Pareto frontier between∼0.2 and∼0.5. In contrast, Group
B corresponds to the solutionXOLEV where none of ISWs are
allocated in the test system. Here, it is worth reminding that a
resilience index close to zero represents a high performing
network against severe events or any interruption require-
ment, i.e., load shedding. In this perspective, as expected the
resilience indices value in Group B are significantly higher
in comparison to Group A. Detailed results are presented
in Table 16 showcasing the planning solution XOLEV and
multi-objective functions corresponding to: 1) the max/min
value for each objective function for Group A, and 2) the two
solutions for Group B.

First analyzing Group A, one can observe that cases A2,
A3 and A5 show greater resilience in comparison to A1, A4
and A6. These results are due to the higher size of DDGs
allocated, providing the microgrid with better management
capacity for generation/load balancing and, consequently,
avoiding additional curtailment. Nonetheless, increasing the
size of DDGs consequently increases the TCOLEV and
AEMISOLEV due to the additional cost associated. As can
see in Table 16, TCOLEV and AEMISOLEV for cases A2,

FIGURE 21. Wind gust profile and the timeline of branch #12/#16/#19
availability corresponding to a selected scenario in spring.

A3 and A4 are greater than those in cases A1, A4 and A6.
In this sense, the consideration of renewable resources as
the main sources leading to a cleaner energy system can
significantly reduce AEMISOLEV . This perspective is clearly
observed comparing cases A2 to A5, where AEMISOLEV

is significantly reduced for A2 in comparison to A1 due to
its higher capacity for renewable resources. Still, RESIOLEV

presents very similar values for both cases with TCOLEV

for A2 higher in comparison to A5 due to installation cost.
From another perspective, Group B solutions feature signif-
icantly reduced resilience capacity, i.e., significantly higher
RESIOLEV in comparison to Group A. However, given their
trade-off between the threemulti-objective functions, they are
still placed on the Pareto frontier, e.g., TCOLEV for the cases
in Group B are significantly lower in comparison to A1-A6.

D. RESILIENCE IMPROVEMENT
Next, in this section, the obtained optimal planning solutions
are stressed for an N-3 contingency scenario to illustrate
the system performance in face of severe operating condi-
tions. The N-3 contingency was selected corresponding to the
spring season in which multiple faults are localized in the net-
work, respectively on branches #12, #16 and #19. Following,
the network performance represented by the energy supply
level during the N-3 contingency is determined for the base
case, case A1, case A2 and case B2. The corresponding wind
gust profile and the binary state representing the availability
of branches #12, #16 and #19, according to the selected
AVI−II,are presented in Fig. 21.

Whereas Table 17 depicts the availability timeline for
branches #12, #16 and #19 along the planning horizon.
Based on this scenario, energy supply results are illustrated
in Fig. 22 for the base case and optimal planning solutions
identified in caseA1, caseA2 and case B2. Analyzing Fig. 22,
one can observe that the base case and case B2 are not able to
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FIGURE 22. Energy supply level and timeline event for representing
system performance for base case, case A1, case A2 and case B2.

FIGURE 23. Microgrid formations and bus’s supply state at td for (a) Base
case (b) Case A1 (c) Case A2 (d) Case B2.

resist this severe event, leading to a direct drop-in supply from
100% to 0% at te. As there are no ISWs placed in the network,
the microgrids could not be formed, while only ISWsub found
in the substation is open and takes down a whole test system
for clearing the faults in this N-3 contingencies. On the other
hand, cases A1 and A2 allow for the formation of microgrids,
maintaining the energy supply level according to the size of
DDGs allocated. In this sense, due to the limited size of DDGs
allocated in case A1, the energy supply level drops down to
∼20% at td . In contrast, case A2 shows the best performance
where the energy supply level drops down from 100% to 59%
at td , where 41% of non-supplied loads correspond to buses
located inside locations isolated by ISWs.

TABLE 17. Timeline of overhead line (branch) #12, #16 and #19 break
down over the planning horizon of a selected scenario in spring.

VIII. CONCLUSION
In this work, a novel resilience-oriented microgrid planning
framework is proposed. The proposed framework develops
a multi-objective optimization problem formulation incorpo-
rating stochastic DL-LOPFAC models solved by NSGA-II
based on DNN. The proposed DL-LOPFAC framework pro-
vides planning solutions considering stochastic scenarios fea-
turing renewable energy and load uncertainties, HILP events
due to N-K contingencies caused by failures in overhead
lines, while simultaneously solving for both GC and IS opera-
tionmodes, including detailedmodeling of control and opera-
tional requirements, such as droop/2nd during islanded. Next,
in order to enable this comprehensive planning framework,
NSGA-II based on DNNmodels is employed to overcome the
computation burden and time execution limitations imposed
by the stochastic nature of the resilience-oriented planning
problem and consideration of the detailed systems’ model.
In this sense, by taking advantage of the proposed frame-
work predicted solutions obtained by DL-LOPFAC for the
inner level present a computation efficient solutions that do
not require numerous iterations as found in existing tradi-
tional analytical solution methodologies. Following, to ver-
ify the effectiveness of the proposed framework multiple
numerical analyses are performed. First, the performance
for the DL-LOPFAC is evaluated by obtaining significantly
reduced MSE/RMSE in relation to the expected error thresh-
old. Moreover, the maximum relative error ednn1 is found
significantly smaller than the threshold for the trained DNN
models, demonstrating high accuracy for the DNN mod-
els’ predicted results. Next, the proposed optimization level
NSGA-II based DNN model is validated, demonstrating
accuracy levels within accepted deviations, specifically the
worst relative error eOLEV1 found is less than 2% for all fitness
functions. Finally, the overall planning solution is discussed,
indicating the proposed approach ability to deliver optimal
planning solutions capable of significantly improving the
system resilience even when subjected to HILP events such
as N-3 contingencies. Future directions of this work include
the integration of electric vehicles into the optimization prob-
lems, as these new system elements can significantly impact
the system operation, while introducing opportunities in the
area of resilience-oriented planning.
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