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ABSTRACT Many studies have attempted to develop simple and efficient methods for solving global
optimization problems. Simulated annealing (SA) has been recognized as a powerful tool for performing
this task. In this study, we implemented a rejection-free Monte Carlo (RFMC) algorithm, which is a kernel
of rejection-free SA (RFSA). We showed its validity and advantage in obtaining globally optimal solution
for quadratic unconstrained binary optimization (QUBO) and spin-glass problem embedded in the Lechner–
Hauke–Zoller (LHZ) architecture. Landscapes of success probabilities of finding the globally optimal
solution as well as feasible solutions were evaluated as a function of a set of hyper-parameters used to
characterize the weights of cost and penalty functions. We demonstrated that the efficiency of RFMC was
greatly enhanced compared to that of standardMC. Furthermore, we found that the landscapes for QUBO and
those for LHZ problem show considerably different views. When we focus on a specific class of problems,
the smaller the problem size, the more scattered is the success probability. We also show that the success
probabilities can be further improved by avoiding inefficiencies due to cycling of state transitions using
short-term memory mechanisms. We suggest a reasonable strategy to tune hyper-parameters and find the
correct global solution using RFSA.

INDEX TERMS Monte Carlo, simulation, annealing, combinatorial optimization, quadratic unconstrained
binary optimization, Ising model, Lechner–Hauke–Zoller (LHZ) architecture.

I. INTRODUCTION
Combinatorial optimization is a classical, but important,
problem in the field of mathematical optimization. It focuses
on finding the optimal object from a finite set of objects,
where the set of feasible solutions is discrete or can be
reduced to a discrete set. It has a wide range of practical appli-
cations such as logistics [1], supply chain optimization [2],
and earth science problems [3], [4], [5]. Numerous algorithms
have been developed to solve the combinatorial optimization
problem; these can be classified into two classes: approx-
imation (heuristics [6] and meta-heuristics [7]) and exact
algorithms, widely known as NP-hard problems. Among
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the approximation algorithms, simulated annealing (SA) [8]
has become an increasingly powerful tool because of the
development of faster computers. It is a nature-inspired
approximate computational model and is based on prob-
abilistic simulation of the dynamic process of a physical
system. Recently, research interest in natural computing has
increased, wherein nature-inspired novel computing hard-
ware are analyzed based on interesting natural systems,
such as neural networks, molecules, DNAs, and quantum
computers.

SA, together with the Ising model [8], [9], is a classical
and convenient tool for solving various classes of combi-
natorial optimization problems. The standard SA is usually
implemented based on Markov chain Monte Carlo (MCMC)
simulation with the Metropolis (or Gibbs) rule. Although
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standard SA can be easily implemented on digital computers,
finding the globally optimal solution is challenging because it
requires tuning the hyper-parameter schedule for each prob-
lem. This is a common problem faced when using SA, heuris-
tics, and meta-heuristics. In addition, the standard SA may
become very inefficient under some situations; for example,
at low temperatures where the spin state is trapped in local
energy minima, i.e., the local solution. This is because the
spin-selection algorithm of the standard SA, in which a spin
to be inverted is chosen based on the acceptance–rejection
(AR) method [10], is a bottleneck. In the AR method with
the Metropolis rule, a trial spin is randomly proposed, and it
is accepted to be inverted with a probability a

(
1Ei

/
T
)
=

min
[
1, exp

(
−1Ei

/
T
)]

where1Ei and T denote the energy
shift due to inverting spin i and temperature of the spins,
respectively. If the state is trapped in the local solution,
then 1Ei ≥ 1E > 0, where 1E is an energy barrier
separating the minima. The time required for spins to escape
from a local minimum (escaping time [11] or waiting time
[12], [13]) via thermal fluctuations should be tSA ∼ 〈tAR〉 =
bAR〈a(1Ei/T )−1〉 ≥ bARexp

(
1E

/
T
)
, where bAR is the com-

putational time associated with a single acceptance–rejection
decision and 〈a(1Ei/T )−1〉 is the average number of repe-
titions required until a proposal is accepted. The escaping
time tAR depends on the problem size N because 1E in
an exponential factor exp

(
1E

/
T
)
depends on N and may

diverge whenN →∞ [14], [15]. For a small T and large1E
(large N ), tSA becomes very large. Then, it is likely that the
spin-selection algorithm will become a bottleneck and will
dominate over the computational time in the standard SA.

The problem of this inefficiency in the standard SA has
been frequently highlighted. It could be overcome by quan-
tum annealing (QA). In [11], Denchev et al. suggested the
advantages of QA over SA. They argued that the escaping
time tQA in QA is governed by quantum tunneling and could
be smaller than tSA for possible situations. In contrast, this
inefficiency is reduced by modifying the spin-selection algo-
rithm. This is possible because the AR method is not the only
method for spin selection required by the MCMC simulation.
More efficient algorithms can be chosen for the same task.
For example, algorithms for roulette wheel selection in a
genetic algorithm [16], which is equivalent to non-uniform
random number generation, can also be used. The task is
to return an index of a single item drawn from a set of
weights {w1, · · · ,wN } according to a probability distribu-
tion P(i) = wi/W , where wi = a

(
1Ei

/
T
)
and W =∑

1≤i≤N wi. Numerous algorithms other than the AR method
can be used for this task, including cumulative sum, Walker’s
alias method [17], [18], and partial sum tree [19]. Numerous
studies have focused on accelerating this task by employ-
ing parallel computing [18], [19], [20]. Notably, it is the
dimensionality-reduction operation that converts a set of real
values {w1, · · · ,wN } into a single integer i ∈ [1,N ] ∈ N. It is
impossible to reduce the computational time of the reduction
operation to 1/N by computing N subdivided, independent,
and similar processes in parallel using a GPU or vector

processor. This is because a reduction operation requires
communication among subdivided processes to obtain the
correct result, the overhead of which limits the effectiveness
of parallelization.

If we can implement efficient parallel reduction in the
spin-selection algorithm so that its computational time tPR
is tPR � 〈tAR〉 ∼ bARexp

(
1E

/
T
)
, we can improve the

efficiency of SA. This is known as rejection-free SA (RFSA),
where time-wasting rejection events in the algorithm are
eliminated [12], [13], [21], [22], [23], [24], [25], [26]. RFSA
has attracted considerable interest from researchers since its
invention [21]. Nevertheless, little is known regarding the
results when it is applied to combinatorial optimization. The
purpose of this study is to demonstrate validity and advantage
of RFSA in finding correct solutions of combinatorial opti-
mization problems. In this study, we investigated the potential
of rejection-free Monte Carlo (RFMC), which is a kernel
of RFSA. We considered two problems: quadratic uncon-
strained binary optimization (QUBO) [27], [28], [29], [30]
and optimization of the maximum cut problem [30], [31]
embedded in the Lechner–Hauke–Zoller (LHZ) architec-
ture [32]. A common feature of these problems is that
they have two types of objective functions to be optimized,
i.e., cost and penalty functions, along with the associated
hyper-parameters. The success probabilities of finding the
globally optimal and feasible solutions are evaluated as a
function of a set of these hyper-parameters. We present
validity and advantages of RFSA as well as new findings,
suggesting a reasonable strategy to tune the hyper-parameter
settings using RFSA.

The rest of this paper is organized as follows.
In Sec. II, we explain three essential elements to implement
RFSA and principle of operation. In Sec. III, we define
two hyper-parameters to reduce a constrained optimization
problem to an unconstrained one. We also explain freedom
of choosing these parameters and their mutual relationship.
In Sec. IV, we describe our experimental approach. In Sec. V,
we show various experimental results for QUBO and LHZ
architecture. In Sec. VI, we suggest a strategy to efficiently
tune the hyper-parameters from experimental observations.
Section VII concludes the new knowledge obtained in this
study. The Appendix provides supplemental information for
simulating the LHZ architecture.

II. IMPLEMENTATION AND PRINCIPLE OF OPERATION
In this study, we formulated all the problems using Ising spins
[8], [9], [28]. The maximum cut problem is equivalent to
finding the ground state of spin-glass from this perspective.
This section explains how to implement RFSA for the Ising
model with all-to-all connectivity and for the LHZ architec-
ture. There are three elements for RFSA that are not necessary
but sometimes implemented in the standard SA. The first is
forward computation of the energy1Ei (i= 1, · · · ,N ) before
spin selection. We need knowledge regarding a set of values
{1E1, · · · ,1EN } to obtain a set of weights {w1, · · · ,wN } in
the spin selection. This technique has already been proposed
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FIGURE 1. MCMC loop in the RFSA algorithm. The three elements (A-C) are indicated in this diagram. Non-uniform
random number generation (RNG) is implemented by the AR method in the standard SA (upper right). In contrast,
it is implemented by the other efficient dimensionality-reduction algorithm (lower right), which is considered as a
transformation of uniform random variables into non-uniform ones.

to accelerate the standard SA using parallel computing [33].
The second is non-uniform random number generation to
choose a spin to be inverted. It should generate a random
number i with the probability distribution weighted by wi.
The third is the post-selection of the best solution so far
and keeping track of it in a memory during the SA. In the
standard SA, spins are gradually cooled close to absolute
zero temperature, and the quasi-steady state at the end of the
calculation is accepted as the solution. In contrast, Ising spins
are kept at some finite temperature in our implementation.
The resultant thermal fluctuations enable us to perform the
solution search incessantly over time [34]. Figure 1 illustrates
the MCMC loop in the RFSA algorithm (cooling loop is
omitted here). In the following sections, we will discuss the
three elements in the RFSA algorithm in some detail.

A. FORWARD COMPUTATION OF THE ENERGY SHIFT
At the initialization stage of the calculation, we generate an
initial random spin configuration vector s = (s1, · · · , sN ),
where si denotes the state of the i-th spin taking a random
value of 1 or −1, and compute 1Ei for all i. Then, if spin j
is chosen to be inverted, we invert the signs of sj and 1Ej.
We also update 1Ei associated with spin i 6= j which is
connected to spin j.

In the Ising model, spin i may be connected to all the spin
j 6= i. The coupling between spin i and j is given by the matrix
elements

{
Jij
}
1≤i<j≤N , and 1Ei should be updated by spin

inversion as follows:

1Ei←−δij1Ej +
(
1− δij

) (
1Ej − 4siJijsj

)
, (1)

where si designates the state before its sign inversion. The
calculation for i 6= j includes the Hadamard product of the
J -matrix and the tensor product s⊗s of the spin configuration

vector s, which can be performed in parallel with an efficient
continuous data structure. Thus, it is possible to accelerate it
considerably using a GPU and a vector processor.

In contrast, we could not simply represent the LHZ archi-
tecture within an Ising model because it involves four-way
couplings. Although we can perform similar forward compu-
tations in the LHZ architecture, we only need to update the
value of1Ei associated with a set of neighboring eight spins
that are coupled to an inverted spin. Its calculation requires
a small calculation power but involves a noncontiguous data
structure because the memories storing eight spin config-
urations are not necessarily allocated sequentially. See the
Appendix for more details on the LHZ architecture.

B. NON-UNIFORM RANDOM NUMBER GENERATION
Numerous parallel reduction algorithms can efficiently gen-
erate non-uniform random numbers, but the best choice is
currently unproven. It should select integer i ∈ [1,N ] ∈ N
randomly with a selection probability wi

/
W . Non-uniform

random number generator (RNG) can be implemented as a
transformation of N i.i.d. uniform random variables ri ∈
[0, 1] ∈ R [26], [35] which can be generated using the
standard RNG. In our calculations, we adopted a method
based on the following properties of exponentially distributed
random variables [35]. Let x1, · · · , xN be N independent
exponentially distributed random variables with rate parame-
ters λ1, · · · , λN . Then,

min {x1, · · · , xN } (2)

is also exponentially distributed, with a rate parameter

λ = λ1 + · · · + λN . (3)
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Then, the index of the random variable that achieves the min-
imum is distributed according to the categorical distribution

Pr (i = argmin {x1, · · · , xN }) =
λi

λ
. (4)

Therefore, if we generate independent exponential random
variables y1, · · · , yN , whose rate parameters are given by
λi = wi, and calculate

i = argmin {y1, · · · , yN }, (5)

we obtain a random variable with a selection probability,
wi
/
W . The exponential random variables y1, · · · , yN with

rate parameters w1, · · · ,wN can be generated from the i.i.d.
uniform random variables r1, · · · , rN with ri ∈ [0, 1] ∈ R by
the inversion method as follows:

yi = −
1
wi

log ri. (6)

Note that random variable yi is closely connected to the
waiting time [12]. Furthermore, if we note that log x is a
monotonically increasing function of x, it follows that

i = argmini

{
log (− log ri)+max

(
1Ei
T
, 0
)}
, (7)

where we have considered the Metropolis rule wi =
a
(
1Ei

/
T
)
. In this algorithm, arg min{} in eq.(5) is a

dimensionality-reduction operation, since it involves find-
ing the index of the minimum element of a set of N val-
ues. Because such a reduction operation is routinely used
in machine learning, it is promising that efficient parallel
reduction codes, libraries and hardware engines are available.
We think this would be an advantage of the present algorithm.

C. POST-SELECTION OF THE INCUMBENT SOLUTION
(MEMORY ALGORITHM)
To find the best solution in the trajectory of the spin states
generated according to sequential application of the elements
A and B, we post-select the spin configuration that is best
thus far, record it, and keep track of it in the memory as an
incumbent solution. This can be performed for an arbitrary
timing, for example, every MC step or every annealing step.
Frequent post-selection results in an exhaustive search of
the fine solutions at the cost of calculation time because it
avoids missing a solution. Thus, there is a trade-off between
benefit and cost. Probably, the simplest strategy is as follows.
We keep track of the total energy of spins E in addition to
1Ei. We compare E and its incumbent value Ebest at some
timing, for example, every annealing step. If E is smaller
than Ebest, we update Ebest as Ebest

←− E and sbest ←− s,
where sbest is the incumbent solution. Finally, we output sbest
as a solution. Because E = − 1

4

∑
i1Ei and E should be

updated such that E ←− E + 1Ei after chosen spin inverts
for the Ising model, it is sufficient to keep track of 1Ei in
order to keep track of E . Similarly, it is also easy to keep
track of 1Ei and E for the LHZ architecture. Alternatively,
we can consider a more sophisticated post-selection method.
For example, consider the total energy of spins comprises two

parts: E = E1 + E2. We can keep track of energy E1 and
E2 as well as their shifts (1E1)i and (1E2)i due to inversion
of chosen spin separately. Then, for example, we can post-
select the incumbent solution as follows. We compare E2 and
its incumbent value Ebest

2 at some timing. If E2 is smaller
than Ebest

2 , we update Ebest
2 as Ebest

2 ←− E2 and follow the
next step: if E1 is smaller than Ebest

1 , we update Ebest
1 as

Ebest
1 ←− E1 and sbest ←− s. Finally, we output sbest as the

solution. For the QUBO problem and LHZ architecture, cost
and penalty functions can be reasonably assigned to E1 and
E2, respectively. This sophisticated post-selection can search
for the optimum solutions more exhaustively but incurs a
higher calculation cost. The elements B and C enable us to
perform an incessant solution search during calculation for
our RFSA. Note that implementing these components on a
digital computer is easy, but realizing them in QA is not
necessarily easy. This is because we require some non-natural
function or artificial intelligent agent to realize them in QA.

The performance of RFSA depends on machine time to
be spent. The larger the machine time, the higher is the
performance, which will be shown later. In contrast, it is usual
to accept, for the solution, the quasi-steady state at the end of
the calculation in QA. Then, an ensemble of solutions can be
obtained by repeating a large number of independent calcu-
lations with a short duration to improve the performance of
QA. The final solution is obtained by finding the best solution
in the ensemble of solutions obtained by repeated calcula-
tions. Its performance depends on the number of repeated
experiments, which specifies the machine time to be spent.
Therefore, RFSA and QA obtain the solution in a different
manner, that is, RFSA by a single long calculation and QA by
a series of short calculations. In other words, whereas RFSA
probabilistically approaches the solution through time series
analysis, QA approaches it by means of ensemble analysis.

D. PRINCIPLE OF OPERATION
Before we proceed, let us discuss whether RFSA explores
the globally optimum solution efficiently. To discuss this,
let us consider three models of SA shown in Fig. 2. In this
figure, model (a) indicates the most classical type of SA.
In this model, the states when the proposed spin inversion is
rejected (hereafter, rejected states) are retained together with
the states when the proposed spin inversion is accepted and
inverted (hereafter, accepted states) in the time series of a run,
forming the original chain {Sn}. The chain {Sn} is a Markov
chain and converges to the thermal equilibrium state; that
is, the statistical distribution of the states in {Sn} approaches
the Boltzmann distribution asymptotically in the limit of its
length → ∞. In contrast, model (b) is a modified version
of model (a). In this model, the rejected states are simply
disposed, and only the accepted states are retained in the time
series of a run, which makes up the smaller chain {sn}, called
the jump chain [23]. The jump chain is also a Markov chain;
however, it converges to the stationary distribution different
from the Boltzmann distribution because the rejected states
are absent [22], [23], [24].
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FIGURE 2. Schematic diagrams of three SA models. Only the MCMC loop is shown here. (a): Classical model where the original
chain

{
Sn
}

is observed. In this model, the rejected states as well as the accepted states are retained in
{
Sn
}
. In model (b), the

rejected states are disposed and only the accepted states are retained in the jump chain {sn}. In model (c), the spin-selection
algorithm is different from the AR method but has the same function as the AR method. α: acceptance rate, s∗:optimal solution,
a,b, c,d : some spin configurations.

FIGURE 3. Schematic diagrams illustrating non-uniform random number generation in the spin-selection algorithm of the RFSA
(upper) and the standard SA (lower).

Notably, the success probability of finding the globally
optimal solution should solely depend on the number of
accepted states, that is, the rejected states have no contribu-
tion because we keep track of the incumbent solution. There-
fore, as long as the number of accepted states in {Sn} and
length of {sn} are the same, models (a) and (b) should have
the same. Therefore, the performance should be independent
of whether the rejected states are retained or disposed.

Next, we focus on model (c), which corresponds to the
RFSA. In this model, no intrinsically rejected events exist,
and the solution search is driven solely by the accepted states.
A spin-selection algorithm presented in element B allows
us to realize this model. It is evident that, as long as the
length of {sn} remains the same, models (b) and (c) should
show the same performance for finding the globally optimal
solution. Nevertheless, an implicit difference exists between
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models (b) and (c). Every spin state sn in the chain {sn} is
synchronously generated with spin selection in the model (c),
whereas it is asynchronously generated in model (b) because
a geometrically distributed random number of rejected events
must be necessarily iterated after every accepted event in the
original chain {Sn} [23]. Then, the following question arises:
is model (c) more efficient than models (a) and (b)?

To answer this question, recall that the most serious prob-
lem in the standard SA is inefficiency under the low tem-
perature situation, where spins are frequently trapped in the
local minima. In this case, spin selection by the ARmethod is
inefficient and becomes a bottleneck because a large number
of iterations of rejected events are required for spins to be
successfully escaping from the local minima. The acceptance
rate α in the AR method becomes much smaller than unity,
which slows down the solution search. In contrast, we may
avoid time-consuming rejected events in the RFSA at the cost
of an increased calculation cost in the renewed spin-selection
algorithm. Therefore, the question should be discussed in the
light of the cost–benefit perspective.

To discuss the calculation cost of the spin-selection algo-
rithm of the RFSA, we illustrate its four building-blocks
(A)-(D) in Fig. 3.
(A) Generation of N i.i.d. pseudo-random real variables

(U1,U2, · · · ,UN ) that are uniformly distributed in the
(0,1) interval.

(B) Transform (U1,U2, · · · ,UN ) to N i.i.d. exponentially
distributed random variables (X1,X2, · · · ,XN ).

(C) Transform (X1,X2, · · · ,XN ) to N random variables
(Y1,Y2, · · · ,YN ).

(D) A reduction operation that finds the minimum element
in (Y1,Y2, · · · ,YN ), and return its index i (eq.(5)).

At first glance, it looks much more complicated than that
of the AR method. However, this is not necessarily serious
because the calculation in blocks (A)–(C) comprises indepen-
dent N calculations; thus, they can be accelerated by parallel
computation. Therefore, the answer for the question depends
on various factors. They include the problem size N , degree
of parallelization in the program, how efficient the reduction
operation (D) can be, and so on. Later, we will experimen-
tally demonstrate two instances showing the advantage of the
RFSA.

III. HYPER-PARAMETERS AND ANNEALING SCHEDULE
Although hyper-parameters such as temperature are dynam-
ically controlled in the RFSA, we investigate its perfor-
mance under static hyper-parameter setting in this study.
In other words, we focus attention on the performance
of the kernel of the RFSA, i.e., the rejection-free Monte
Carlo (RFMC) loop. We consider problems that have two
kinds of objective functions—cost and penalty functions—
and associated hyper-parameters. The penalty function is
introduced to replace the constrained optimization to an
unconstrained one. We must tune two hyper-parameters that
specify the weight of two functions to succeed in optimiza-
tion. Numerous techniques have been developed to tune those

parameters in the standard SA. They involve automated train-
ing using machine learning, for which, alternative hyper-
parameters should be tuned. The hyper-parameters depend
not only on the underlying dataset but also on the solution
search algorithm. Nonetheless, few studies have reported
hyper-parameter tuning for combinatorial optimization based
on RFSA [26]. Furthermore, we must pay attention to the
fact that the hyper-parameters can be defined only up to
scaling factors. Let us start with considering several choices
of hyper-parameters and their mutual relations. We will fur-
ther discuss the scaling properties of the probabilities on the
hyper-parameters.

The constrained optimization problem can be generally
formulated as finding an optimal solution s∗ that minimizes
the cost function:

s∗ = argmin
s∈S ′

Hc (s), (8)

whereS ′ denotes a finite set of spin configurations allowed by
a given constraint, which is called the feasible region. It can
be restated that

s∗ = arg min
s#∈S

Hc

(
s#
)
. (9)

under the constraint that s# is subject to

s# = argmin
s∈S

Hp (s), (10)

where S 3 S ′ denotes a finite set of extended spin configu-
rations, which we call the search space, and S − S ′ is called
the infeasible region. Hp is the penalty function [36], which
is quadratic in si for QUBO and quartic in si for the LHZ
architecture. Eq. (10) constrains swithin a feasible region S ′.
In eqs. (8) and (10), we must minimize Hp prior to Hc to
find the globally optimal solution. Note that we can use this
requirement for exhaustive post-selection of the best solution
as shown before. The task can be relaxed into a formally
simpler unconstraint global optimization that minimizes a
linear combination ofHc andHp:

H = βcHc + βpHp, (11)

where βc and βp are positive parameters and are called cost
and penalty hyper-parameters, respectively, or collectively
referred as regularization (relaxation) hyper-parameters.
They must be tuned so that the globally optimal solution
becomes the ground state of H as well as that of Hp but not
that of Hc. To improve the performance, we may tune their
value as well as their temporal schedule. Note that choice of
hyper-parameters is not unique. For example, we can rewrite
eq. (11) and define the new sets of hyper-parameters

(
Tc, kp

)
and

(
kc,Tp

)
as follows:

H = βc
(
Hc +

βp

βc
Hp

)
=

1
Tc

(
Hc + kpHp

)
, (12)

H = βp
(
βc

βp
Hc +Hp

)
=

1
Tp

(
kcHc +Hp

)
, (13)
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FIGURE 4. Hyper-parameter scheduling on their spaces. Hyper-parameter
scheduling corresponds to the trajectory and density of a series of points{(
βc , βp

)}
on the

(
βc , βp

)
-plane.

where

Tc =
1
βc
, (14)

Tp =
1
βp
, (15)

kp = k−1c =
βp

βc
. (16)

In eqs. (12) and (13), Tc and Tp are parameters that are
common for cost and penalty functionsHc andHp, which can
be regarded as temperature. It is considered that kp should be
large enough to satisfy eqs. (8) and (10).

Note that tuning the hyper-parameter schedule amounts
to designing the sequences

{
(x, y)k

}
, where (x, y)k denotes

a value of the set of hyper-parameters (x, y) in the
k-th iteration. For example, let us consider the sequence{(
βc, βp

)
k

}
. If we regard

(
βc, βp

)
as the coordinate of a

point in a two-dimensional space, the trajectory and density
of a set of the points associated with the sequence give the
annealing schedule. In the standard SA, the schedule where
kp = k−1c = const. is usually chosen, where its trajectory
gives the straight line from the origin, as shown in Fig. 4.
In this case, only one of

(
βc, βp

)
is a controllable hyper-

parameter. In general, we can choose the arbitrary sequence{(
βc, βp

)
k

}
where both of

(
βc, βp

)
can be freely controlled.

As discussed above, the strategy based on varying hyper-
parameters

(
βc, βp

)
during the simulation is called a dynamic

penalty function strategy [36].
We must pay attention to the fact that H is unique only up

to scaling factors in the optimization problem. The globally
optimal solution is invariant under the scaling transformation
H −→ µH, where µ is an arbitrary positive constant. This
means that reported values of hyper-parameters may differ
from researcher to researcher, although those parameters pro-
vide the objective function with the same globally optimal
solution. For example, suppose that H is written as eq. (11)

and that we transformHc andHp according to{
Hc −→ κcHc

Hp −→ κpHp,
(17)

where κc and κp are arbitrary positive constants, i.e., they
are scaling factors. Then, if we also transform βc and βp
according to {

βc −→ µκ−1c βc

βp −→ µκp
−1βp,

(18)

we get transformation H −→ µH from eqs. (17) and (18).
Then, we see that the globally optimal solution is invariant
under the scaling transformation:{
Hc,Hp, βc, βp

}
→

{
κcHc, κpHp, µκc

−1βc, µκ
−1
p βp

}
.

Similarly, the globally optimal solution is invariant under the
scaling transformations{
Hc,Hp, kp,Tc

}
→
{
κcHc, κpHp, µ

(
κc
/
κp
)
kp, µκcTc

}
and{
Hc,Hp, kc,Tp

}
→
{
κcHc, κpHp, µ

(
κp
/
κc
)
kc, µκpTp

}
.

This indicates that there are an infinite number of objec-
tive functions and associated hyper-parameters leading to the
same globally optimal solution. To the best of the author’s
knowledge, no commonly accepted method for normalizing
Hc and Hp is known. This might pose the problem that it
is practically difficult for researchers to share or compare the
numerical value of the optimal hyper-parameters of their own
for various problem instances.

IV. EXPERIMENTS
A. SIMULATION PLATFORM
All the simulations were performed using the Mathematicar

Ver. 13 platform on Windows 10/11 operating systems.
We implemented the algorithm involving the common ele-
ments A and C for RFSA and standard SA simulations.
For the standard SA experiment, we used the simple AR
method for elements B. In advance, we confirmed that our
method for the non-uniform random number generation for
elements B and the AR method can generate random variates
with the same probability distribution by independent simu-
lation. In Mathematicar, certain calculations can be acceler-
ated using listable built-in functions in a similar way as the
Python interpreter. Ideally, if we want to perform N similar
and independent calculations at the same time, they can be
accelerated ∼ M times compared to sequential calculations
if we can perform M calculations in parallel. This mecha-
nism would be implemented in the listable built-in functions.
An independent experiment implies that that listable built-in
function in Mathematicar can perform M ∼ 200 calcula-
tions in parallel on a single processor core. To achieve effec-
tive acceleration by parallel computing, we further designed
a data structure suitable for sequential memory access.
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The processes of the calculation of the energy shift1Ei after
inverting spin i (see eq.(1)) in QUBO problems and calcula-
tion of the argument in eq. (7) may be accelerated as such.
Furthermore, some functions can be largely accelerated by
compiling with explicitly specified data types. Furthermore,
the arg min{} task in eq. (5) might be accelerated due to
the parallel reduction technique in the built-in function of
Mathematicar. Unfortunately, details of its mechanism are
beyond the present investigation.

In addition to the above parallelization techniques intro-
duced within the MCMC loop, which corresponds to fine-
grain parallelism, we introduced coarse-grain parallelism
into our simulation using the parallel computing mechanism
built in Mathematicar. Our calculation was performed on
nine distributed computers with their own multi-core proces-
sor/processors. The hardware specifications of the computers
used for the experiment are listed in TABLE 1. In total,
83 processor cores were used, which constitute 82 slave
nodes on a distributed memory MIMD architecture with a
master node. This enables us to perform independent SA
calculations in parallel across large numbers of independent,
asynchronous nodes. Only input data and the outcome are
shared across the slave nodes via the master node using Eth-
ernet communication. After the initial states are generated,
each node follows its own SA calculation independently, and
no communication occurs until the end. Only the best results
that were post-selected in the slave nodes are reported to the
master node at the end of the calculation. Thus, no cooper-
ation and interaction occur among the slave nodes. This is
arguably the simplest parallelization scheme called parallel
independent annealing (PIA) [37], [38], [39], [40], [41] or
multiple independent runs (MIR) [42]. This coarse-grain par-
allelism was used for statistical analysis of the SA results.
We made a set of 300 SA calculations to evaluate the success
probabilities to find the exact or best-known solution for each
fixed hyper-parameter setting. If the reported best result is
feasible and its energy agrees with that of the exact or best-
known solution, it is counted as a successful solution and
success probabilities are evaluated.

In summary, we introduced both fine-grained parallelism
for accelerating calculation in each SA and coarse-grain
parallelism for accelerating statistical evaluation of the SA
results.

B. OPTIMIZATION BASED ON THE STATIC
HYPER-PARAMETER STRATEGY
A great deal of effort has been devoted to study how to tune
the hyper-parameter schedule for combinatorial optimiza-
tion using SA, but such research is still challenging. In the
following section, we focus on studying optimization using
SA under the simple static hyper-parameter strategy where
hyper-parameters are assumed to be fixed during the simu-
lation [36], because even if it is not optimal, we believe that
it should be a starting point for tuning the annealing sched-
ule further. We experimentally investigated and compared
the performance of standard SA and RFSA. Because the

hyper-parameters are fixed, our experiment amounts to sim-
ple MCMC simulations, which is a kernel of SAs. We devote
our efforts to evaluating the success probabilities of finding
the exact or best-known solution as a function of three mutu-
ally connected sets of hyper-parameters

(
βc, βp

)
,
(
kp,Tc

)
,

and
(
kc,Tp

)
. As a demonstrative example, we chose two types

of problems: QUBO and optimization of the maximum cut
problems embedded in the LHZ architecture. We visualized
the evaluated success probabilities on a three-dimensional
viewgraph.

TABLE 1. Computers used for the experiment.

V. RESULTS AND DISCUSSIONS
First, we experimentally compared the performances of three
SA models (a)-(c) shown in Sec. II. The burma14 instance in
TSPLIB [43] was used for a QUBO instance. We evaluated
the success probability Posuc of finding the globally optimal
solution as well as Pfsuc of finding the feasible solutions at the
specific set of hyper-parameters

(
βc, βp

)
. To perform statis-

tical analysis, we averaged the results over 2000 calculations
for models (a) and (b) and those over 4000 calculations for
model (c). Pisuc (i = o, f ) depend on the choice of

(
βc, βp

)
.

We chose a special
(
βc, βp

)
which gives the optimal results

for Posuc as shown later. In Fig. 5, the typical experimental
results of Posuc (black circles) and Pfsuc (blue squares) asso-
ciated with the three SA models are shown as a function of
the number of performed spin inversions NSI in the MCMC
calculation. Let us denote length of chain {xn} as |{xn}|. Then,
in models (b) and (c), NSI = |{sn}|. In model (a), NSI was
counted using a counter variable that increments its value
when the spin selection is accepted, which is implemented to
evaluate the acceptance rate α = NSI

/
|{Sn}|. The calculation

cost per experiment was also plotted as the wall-clock time
(red triangles). We can see that the wall-clock times are
almost proportional to NSI for all models. Note that the wall-
clock times for models (a) and (b) are comparable, whereas
that of model (c) is smaller by a factor of∼20. This improved
calculation efficiency clearly indicates the advantage of the
RFSA over the standard SA.
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FIGURE 5. Results of simulation for the three SA models (a)-(c) with static hyper parameter settings. The upper diagrams show the success probabilities
Po

suc (black circles) and Pf
suc (blue squares) as well as wall-clock time (red open triangles) as a function of the number of performed spin inversion NSI .

The lower diagrams show log
(

1− P i
suc
) (

i = o, f
)

as a function of NSI .

In contrast, we can see that NSI also characterizes the
performance for the SA models. In the bottom diagrams in
Fig. 5, the values of ln

(
1− Pisuc

)
are plotted against NSI .

These diagrams show that 1 − Pisuc exponentially decreases
against NSI both for i = o and f in all models. This implies
that that Pisuc can be well described by a Bernoulli trial, which
is a special case of theMarkov chain. This is consistent if {sn}
converges with its own stationary distribution very quickly.
For example, consider the probability of finding the globally
optimal solution s∗ in the chain {sn} with length NSI → ∞.
This might be equal to the probability p∗ of finding the
ground state sg in the stationary state of the chain {sn} if we
appropriately choose

(
βc, βp

)
. Unfortunately, it is not clear

whether {sn} approaches the stationary state if we consider the
chain {sn} with finite length NSI . Nonetheless, we postulate
that {sn} approaches its stationary state very quickly, so that
the probability of finding s∗ in the chain {sn} is p∗, even if
NSI is very small. Then, if we identify the finding of s∗ with
a success event, we can map the chain {sn} to another chain
{in} consisting of success (in = s) and failure (in = f ) events.
Then, the chain {in} can be identified with a Bernoulli trial
series with success probability p∗. Because we can find s∗ in
the incumbent solution if at least one success event is involved
in the chain {in}, the probability Posuc of successfully finding
s∗ in the incumbent solution should be given by

Posuc (NSI ) = 1−
(
1− p∗

)NSI
= 1− e−γNSI , (19)

where

γ = − ln
(
1− p∗

)
. (20)

This is exactly consistent with the experimental observations.
In Fig. 6, we depicted our intuitional picture for the explo-

ration process in the RFSA. The jump chain {sn} generated

FIGURE 6. Intuitional picture of the exploring process in the RFSA. A run
{sn} of the chain generated in the RFSA is schematically depicted. The
blue and red circles indicate the feasible and infeasible solutions,
respectively. The spin confgurations are never trapped to the local
solution and perform an incessant random walk. There are chances for a
transient state to be in the feasible region as well as to arrive at the
global optimal solution with a finite probability p∗. The trajectory of chain
{sn} depends on the choice of the hyper-parameters. The best solution
during the random walk is recorded as the incumbent solution.

in the MCMC iteration performs a random walk between
feasible and infeasible regions and occasionally arrives at
the globally optimal solution. In the RFSA, the trajectory
incessantly fluctuates even though βc or βp is large enough.
Therefore, the spins can always escape from the local minima
and are never trapped in the local solution as in the stan-
dard SA. However, notably, there are subtle inconsistencies
between our intuition and the experimental observations. For
example,

1. As far as the feasible solution is concerned, Pfsuc in
model (a) is apparently larger than Pfsuc in model (b),
although it should be the same by intuition.

2. Both for i = o and f , the Pisuc for model (c)
is apparently larger than the Pisuc for models (a)
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and (b), although it should be the same by
intuition.

Concerning the second point, it is likely that Pisuc is com-
parable for the three SA models because the solution search
is only driven by spin inversion, and there is no difference
among the three models. Unfortunately, the reason for this
inconsistency is not clear. In these experiments, we carefully
shared the codes for three models as far as possible to
perform a fair comparison, so that differences lie only in
the spin-selection algorithms shown in Fig. 4. Currently,
we suspect that it may come from the quality of random
numbers generated by the built-in function inMathematicar,
which uses a cellular-automata-based algorithm [44]
called ‘‘ExtendedCA’’ [45]. This point needs further
investigations.

Although there remains an unsettled problem, it is clear
from Fig. 5 that if the computational bottleneck of the SA
lies in the spin-selection algorithm, the RFSA has a potential
advantage in avoiding the time-wasted rejected events and
increasing the efficiency of the globally optimal solution
search.

Now let us discuss another advantage of the RFSA.
We evaluated Posuc as well as P

f
suc as a function of three sets

of hyper-parameters
(
βc, βp

)
,
(
kp,Tc

)
, and

(
kc,Tp

)
. We eval-

uated Pisuc on 50× 50 hyper-parameter mesh points for every
problem instance and visualized their landscapes on a three-
dimensional viewgraph. Two typical problems were chosen
for demonstrating the advantage of RFSA in comparison to
the standard SA. The first problem is the QUBO problem in
which both the cost and penalty functions are quadratic in
spin variables. The second one is optimization of the max-cut
problem (spin-glass problem in Ising spin model) embedded
in the LHZ architecture where the cost function is linear but
the penalty function is quartic in spin variables [32].

A. QUBO PROBLEM
We chose the traveling salesman problem (TSP) for demon-
stration. TSP is a typical QUBO problem; the problem is
encoded using objective functions, which are a sum of the
cost and the penalty functions that are the quadratic functions
of N 2 binary variables. The sum of the two functions must
be minimized under the condition that the penalty function
is minimized. The penalty function is constructed by L2
regularization [36] which is an equally weighted sum of
2N errors measured by the L2-distance from the feasible
region. The ground states of the penalty function are a set
of states satisfying the 2N one-hot constraint [28], [46].
QUBO can be mapped to the isomorphic Ising problem and
solved by finding the ground state of a total Hamiltonian
H of the form in eq.(11) [46]. H describes the Hamiltonian
of the Ising spins that have linear terms in spin variables
associated with external fields acting on each spin and the
quadratic terms associated with interactions between two
spins. Because linear terms can be embedded into quadratic

terms,H can be written as a sum of the quadratic terms in spin
variables.

A set of the ground states of penalty function Hp consti-
tutes the feasible region. The solution is optimal if and only
if it is in the feasible region and the ground state of H. This
condition imposes some restrictions on the area of

(
βc, βp

)
for successful optimization. Thus, the performance of SA
depends on

(
βc, βp

)
. The efficiency of the solution search is

sensitive to their choice. For sufficiently large values of βp,
SA will be pushed inside the feasible region very quickly
and will produce feasible solutions with a greater probability.
However, if βp is too large relative to βc, the search may be
restricted to only feasible regions, and the boundary of the
feasible and infeasible region on which the optimal solution
might lie cannot be explored [36]; thus, a feasible solution
that is far from the global optima is found. Conversely,
if βp is too small relative to βc, then SA may search a
very large region and will spend a lot of time in exploration
of the infeasible regions. Then, SA cannot explore in the
boundary of the feasible and infeasible regions. Eventually,
the search will find only the local optima in the infeasi-
ble region. To efficiently find the globally optimal solution,
we must find an efficient short cut through the infeasible
region. Thus, it is reasonable that

(
βc, βp

)
should be tuned

to assure convergence in the feasible region and still permit
short-cuts leading to the optimum solution through the infea-
sible region [47], [48]. Thus, βp

/
βc should be kept as low

as possible, just above the limit below which only infeasible
solutions are obtained, which is known as the minimum
penalty rule [16], [48], [49].

To confirm the minimum penalty rule, we investigated Pisuc
as a function of the static set of hyper-parameters

(
βc, βp

)
.

We used the burma14 instance for illustrative demonstration.
The distance matrix of the original problem is given by the
following symmetric matrix (21), as shown at the bottom
of the next page, where dαβ

(
= dβα

)
shows the distance

between cities α and β. To improve the calculation efficiency
as much as possible, we performed a bias removal [50], [51]
on d . We subtracted each row-minima from its corresponding
row elements and repeated the same column-wise on the
resultant matrix. Then, we replaced all the diagonal elements
to zero because they are irrelevant to the calculation of spin
dynamics using SA. Finally, we obtained matrix dmaxd∗ that
is a non-negative, asymmetric matrix with at least one zero in
each row and in each column (22), as shown at the bottom of
the next page, where dmax = max dmaxd∗, which is 753 in
the present case. The asymmetric matrix d∗ is called the
reduced cost matrix normalized by dmax . The total of the row-
minima and the subsequent column-minima being subtracted
is called the ‘‘bias’’ of the matrix. We can calculate the total
distance associated with the optimal traveling route from the
associated value of the cost function using dmaxd∗ and the
bias value.

We prepared the local field strength and the coupling coef-
ficient between spins using normalized matrix d∗ according
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to the prescription given in [28] and [46]. Explicit forms of
Hc (s) andHp (s) are given as follows:

Hi (s) = −
1
2

N∑
j=1

N∑
k=1

N∑
α=1

N∑
β=1

J (i)jα,kβsjαskβ

−

N∑
j=1

N∑
α=1

h(i)jα sjα + C
(i), (23)

where i = c, p denotes the cost and penalty functions,
respectively, and

J (c)jα,kβ = −
1
4

(
d∗αβδk,j+1 + d

∗
βαδk,j−1

)
, (24)

h(c)jα = −
1
4

N∑
k=1

N∑
β=1

(
d∗αβδk,j+1 + d

∗
βαδk,j−1

)
, (25)

C(c) =
1
4
N

N∑
α=1

N∑
β=1

d∗αβ + bias, (26)

J (p)jα,kβ = −
1
4

(
1− δj,kδα,β

) (
δj,k + δα,β

)
, (27)

h(p)jα = − (N − 2), (28)

C(p) =
1
2
N
(
N 2
− 3N + 4

)
, (29)

In eqs.(23) and (24), sjα (j, α = 1, · · · ,N ) denotes the spin
variable taking values +1 or −1, which indicate whether
city α is passed at time j. Notably, the present algorithm
is, in some sense, considered a hybrid algorithm performing
pre-processing to obtain d∗ and SA in sequence. In the fol-
lowing sections, we will present and compare the experimen-
tal results obtained for standard SA and RFSA.

1) STANDARD SA
For a reference, we performed a simulation associated with
the standard SA model (a). To make a fair comparison,
we focused on the following points:

1. We shared as many codes between the standard and
RFSA as possible. The difference lies within the spin-
selection algorithms, i.e., AR method or non-uniform
random generation.

2. The computational effort was chosen so that the mea-
sured wall-clock time of the standard SA and that of the
RFSA were comparable.

The top diagrams in Fig. 7 show the results for the standard
SA. In these figures, Pisuc has been plotted as a function of

d =



∞ 153 510 706 966 581 455 70 160 372 157 567 342 398
153 ∞ 422 664 997 598 507 197 311 479 310 581 417 376
510 422 ∞ 289 744 390 437 491 645 880 618 374 455 211
706 664 289 ∞ 491 265 410 664 804 1070 768 259 499 310
966 997 744 491 ∞ 400 514 902 990 1261 947 418 635 636
581 598 390 265 400 ∞ 168 522 634 910 593 19 284 239
455 507 437 410 514 168 ∞ 389 482 757 439 163 124 232
70 197 491 664 902 522 389 ∞ 154 406 133 508 273 355
160 311 645 804 990 634 482 154 ∞ 276 43 623 358 498
372 479 880 1070 1261 910 757 406 276 ∞ 318 898 633 761
157 310 618 768 947 593 439 133 43 318 ∞ 582 315 464
567 581 374 259 418 19 163 508 623 898 582 ∞ 275 221
342 417 455 499 635 284 124 273 358 633 315 275 ∞ 247
398 376 211 310 636 239 232 355 498 761 464 221 247 ∞



, (21)

dmaxd∗ =



0 0 440 558 664 511 385 0 90 69 87 497 272 328
0 0 269 433 612 445 354 44 158 93 157 428 264 223
299 128 0 0 301 179 226 280 434 436 407 163 244 0
447 322 30 0 0 6 151 405 545 578 509 0 240 51
566 514 344 13 0 0 114 502 590 628 547 18 235 236
562 496 371 168 149 0 149 503 615 658 574 0 265 220
331 300 313 208 158 44 0 265 358 400 315 39 0 108
0 44 421 516 600 452 319 0 84 103 63 438 203 285
117 185 602 683 715 591 439 111 0 0 0 580 315 455
96 120 604 716 753 634 481 130 0 0 42 622 357 485
114 184 575 647 672 550 396 90 0 42 0 539 272 421
548 479 355 162 167 0 144 489 604 646 563 0 256 202
218 210 331 297 279 160 0 149 234 276 191 151 0 123
187 82 0 21 193 28 21 144 287 317 253 10 36 0



, (22)
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FIGURE 7. Results of simulation on QUBO problem. Po
suc (right), Pf

suc (middle), and logα (left) as a
function of the set of hyper-parameters

(
βc , βp

)
for standard SA (top) and RFSA (bottom).

FIGURE 8. Results of simulation on QUBO problem. Po
suc (top) and Pf

suc (bottom) as a function of
hyper-parameters

(
βc , βp

)
for RFSA. The plot area is 120× 60, 600× 300, and 600×

(
1.2× 1010

)
)

from left to right.

a set of hyper-parameters
(
βc, βp

)
. The ground plane corre-

sponds to a two-dimensional hyper-parameter space
(
βc, βp

)
,

and Pisuc was visualized on three-dimensional and contour
plots. Landscapes of Pfsuc and Posuc are shown in the middle
and right diagrams, respectively. In the left diagram, the
evaluated acceptance rate α = NSI

/
|{Sn}| is shown in a

logarithmic scale. Hereafter, let us abbreviate the areas on
the

(
βc, βp

)
-plane where Pfsuc > 0 and Pfsuc ∼ 0 are

‘feasible’ and ‘infeasible’ areas, respectively, and the areas on
the

(
βc, βp

)
-plane where α > 0 and α ∼ 0 are ‘accepted’ and

‘rejected’ areas, respectively. Then, we see from Fig. 7 that
Posuc ∼ 0 if

(
βc, βp

)
is in the infeasible area or the rejected

area. This is reasonable because the globally optimal solution
must be feasible, and α = NSI

/
|{Sn}| → 0 implies Posuc→ 0

as seen from Fig. 5 (a). Note that the feasible and accepted
areas are mutually contradictory. Thus, we can obtain the
globally optimal solution only if

(
βc, βp

)
is in the very small

area that is feasible as well as an accepted area, which lies
in the vicinity of the boundary of the feasible and infeasible
areas.

2) RFSA
In turn, the bottom diagrams in Fig. 7 show the results asso-
ciated with the RFSA model (c). Because it is trivial that
α = 1 in the RFSA, the bottom left diagram is omitted.
We found that although the landscape ofPfsuc is like that of the
standard SA, Posuc is considerably improved compared with
that of the standard SA in wide ranges of

(
βc, βp

)
. This is
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FIGURE 9. Results of simulation on QUBO problem. Po
suc (right), Pf

suc (middle), and logα (left) as a
function of the set of hyper-parameters

(
kp, Tc

)
for standard SA (top) and RFSA (bottom).

FIGURE 10. Results of simulation on QUBO problem. Po
suc (right), Pf

suc (middle), and logα (left) as a
function of the set of hyper-parameters

(
kc , Tp

)
for standard SA (top) and RFSA (bottom).

because α = 1 in the RFSA. Therefore, the RFSA can release
the potentiality for exploring the globally optimal solution
hidden in the rejected area for the standard SA. We see that
Posuc is largely improved in the range bminc < βc < bmaxc
and bminp < βp < bmaxp . Although it is limited within a
small range inβc, the upper limit bmaxp is remarkably enlarged.
Fig. 8 indicates the extent to which it is enlarged. The top and
bottom diagrams show Posuc and P

f
suc, respectively. The left

diagrams are plotted in a 120×60 area on the
(
βc, βp

)
-plane,

which are same as the ones in Fig. 7. Themiddle and right dia-
grams are plotted in 600×300 and 600×

(
1.2× 1010

)
areas,

respectively. Remarkably, Posuc has an appreciable value even
for βp ∼ 1010. Note that Posuc has its maxima in the vicinity
of the boundary of the feasible and infeasible areas. This is
consistent with the minimum penalty rule [16], [48], [49],

although it is not necessarily clear why Posuc is improved in
such a vicinity. We suppose the following scenario. When we
set

(
βc, βp

)
in the feasible area and near the infeasible area,

the probability that the state of spins stays in the infeasible
region increases. Staying in the infeasible region for longmay
allow us to enlarge the solution search space effectively and
may un-cover any hidden short-cuts leading to the globally
optimum solution. This resembles the technique known as
strategic oscillation in the Tabu search method [52]. Note that
its purpose is consistent with the purpose of the relaxation
approach including the penalty function method, where the
search space is extended to include infeasible regions to
change the difficult problem to an easier one.

Similar results have been obtained in the case of different
choices of a set of hyper-parameters. Figures 9 and 10 show
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FIGURE 11. Results of simulation on QUBO problem. Po
suc (right) and

Pf
suc (left) with bias removal (top) and without bias removal (bottom) are

shown.

Pisuc (i = o, f ) and logα as a function of a set
(
kp,Tc

)
as

well as a set
(
kc,Tp

)
. Their landscapes are clearly different

from those obtained for the case of choice
(
βc, βp

)
. However,

because
(
βc, βp

)
and

(
kp,Tc

)
are connected by eqs. (14)

and a a (16), and
(
βc, βp

)
and

(
kc,Tp

)
are connected by

eqs. (15) and (16), these diagrams hold the same information
as those in Fig. 7.

In the above simulations, we used the bias removed dis-
tance matrix d∗. Fig. 11 compares Pisuc (i = o, f ) with and
without removed biases. We see that using the bias removed
matrix d∗ considerably increases the success probabilities.
Thus, a better use of d∗ would be for the problem in which
d∗ is known to be effective so far, such as the TSP and
assignment problem [50], [51].

3) SCALING CHARACTERISTICS
We found that RFSA can reveal the landscape of Posuc that
is hidden in the standard SA. Now, we focus on the scaling
characteristics of Pisuc and reveal their behaviors. We found
novel characteristics that may be helpful for strategical tuning
for hyper-parameters. To demonstrate the scaling character-
istics, we used the burma14 instance as a basis. We randomly
picked up N cities (N = 8, 9, 10, and 14), and reconstructed
newN -city TSP problems. Using the RFSA, we searched and
obtained the globally optimal solution for these problems,
which is the exact one for N = 8, 9, 10 and the best-known
one for N = 14. Figures 12–14 show the evaluated land-
scape of Pisuc as a function of

(
βc, βp

)
,
(
kp,Tc

)
, and

(
kc,Tp

)
,

respectively. Scattering of Posuc on the hyper-parameter plane
increases as N decreases. This would be reasonable because
the cost function is a function of a set of

{
Jij, hj

}
, the values of

which are scatteredwithin some range. Further discussion lies
outside the scope of this paper. We assume this observation
to be general at least for TSPs and will discuss how this
observation may be used for tuning hyper-parameters.

Notably, some other properties were scaled with N . For
example, Fig. 15 indicates the peak location βpeakc on the
βc-axis of marginal probability P̄osuc (βc). We found that βpeakc
is approximately proportional to N . Because the number of
data points is insufficient, it is unclear whether βpeakc actu-
ally scales linearly in N , especially in the range N ≥ 14.
Although it is fairly certain that some experimentally observ-
able quantities may depend on the size of the problem, further
investigation is required.

4) AVOIDING CYCLING USING SHORT-TERM MEMORY
MECHANISM
The RFSA avoids spins from getting stuck in local optima.
We have confirmed that it significantly saves computational
time and increases the efficiency for finding the globally
optimal solution. Nevertheless, inefficiencies remain which
may waste computational resources with no contribution to
finding the solution. Our RFSA scheme keeps track of the
best solution as an incumbent solution during the solution
search. In this case, it is desirable for the trajectory of spin
states to be as diverse as possible, that is, RFSA produces
trajectories as extensively as possible. This is because we
eventually find the globally optimal solution if we find at least
one trajectory leading to it.

Cycling may be problematic for diversity of trajectory.
Suppose that spins are in the local minima. RFSA probabilis-
tically selects one of the spins and inverts it with certainty
even if it increases the energy of spins. Then, it is most
probable that the same spin is selected again for next inversion
because this is the only choice that decreases the energy of
the spins. Suppose that the current solution is s, and the next
solution s′ in the neighborhood of s is chosen. If s was the
local optimum, it is likely that the next move from s′ will be
to go back to s. The spin state could cycle between the two
states. This cycling will cost an extra computational time with
no contribution to the solution search.

Cycling can be avoided by incorporating short-term mem-
ory, like Tabu lists in the Tabu search algorithm [53], [54],
which records the most recent history of the spin inversion.
Reverse inversion of the last spin inversion is then penalized
by temporally introducing a penalty in the energy shift asso-
ciated with the last spin inversion. The algorithm is schemat-
ically shown in Fig. 16 We confirmed that its calculation
cost is negligible. Using this mechanism, the spin selection
in the next transition depends on the spin selection in the
current transition. Therefore, the next state depends not only
on the current state but also on the pervious state. Because this
mechanism breaks the Markovian property of the chain {sn},
it may not necessarily meet our expectations.

We experimentally confirmed the validity of this algo-
rithm, as shown in Fig. 17. We compared the experimental
results with andwithout avoiding cycling for the same lengths
of {sn}. Themiddle and left diagrams represent the landscapes
of Posuc

(
βc, βp

)
and Pfsuc

(
βc, βp

)
with and without avoid-

ing cycling, respectively. Posuc clearly increased in the wide
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FIGURE 12. Results of simulation on QUBO problem. Po
suc (top) and Pf

suc (bottom) as a function of the set of hyper-parameters(
βc , βp

)
for RFSA. The problem size N is 8, 9, 10 and 14 from left to right.

FIGURE 13. Results of simulation on QUBO problem. Po
suc (top) and Pf

suc (bottom) as a function of the set of hyper-parameters(
kp, Tc

)
for RFSA. The problem size N is 8, 9, 10 and 14 from left to right.

area on the
(
βc, βp

)
-plane. The right diagrams indicate the

improvement ofPosuc andP
f
suc, which are the differences of the

probabilities with and without avoiding cycling. We see that
the present method was valid, at least, for a burma14 instance.
Further investigation is required to prove the general validity
of this method.

B. LHZ ARCHITECTURE
Next, let us consider the problems associated with the LHZ
architecture. Since the LHZ architecture was proposed [32],
significant research has been devoted to highlight its imple-
mentation and usability in the context of QA [55], [56].
In this study, we applied the RFSA for finding ground state

of the spin-glass embedded in the LHZ architecture, which
is mathematically equivalent to, optimization of the maxi-
mum cut problem, and investigated its characteristics. Several
peculiar characters in the landscape of Posuc as well as P

f
suc are

presented.
The LHZ architecture is an embedding model designed for

QA hardware. It comprises an extended set of physical spins
arranged on a two-dimensional lattice with local field acting
on each physical spin and four-way coupling among the near-
est neighboring physical spins. This architecture is promising
for realizing scalable QA hardware based on semiconductor
manufacturing technology. The model can embed arbitrary N
logical spins with connectivity between any two logical spins
in an extended set of N (N+1)

2 physical spins. The dataset of
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FIGURE 14. Results of simulation on QUBO problem. Po
suc (top) and Pf

suc (bottom) as a function of the set of hyper-parameters(
kc , Tp

)
for RFSA. The problem size N is 8, 9, 10 and 14 from the left to right.

FIGURE 15. (a) Marginal probability distribution P̄o
suc (βc ) obtained by

Po
suc

(
βc , βp

)
averaged over 6 ≤ βp ≤ 60 and normalized by their peak

values shown for N = 8, 9, 10, 14. (b) The peak location βpeak
c of Po

suc (βc )
is plotted as a function of N .

the optimization problems is encoded in the local fields acting
on physical spins. Details regarding the LHZ architecture are
shown in Appendix.

In this architecture, the Hamiltonian also consists of two
components, a cost function describing the interaction of
spins with local fields (eqs.(A1) and (A12)) and a penalty
function describing four-way couplings among the near-
est neighboring spins (eq.(A2)). The cost function is not
quadratic in spin variables and the penalty function is not

based on L2 regularization as in the Isingmodel. Nonetheless,
little attention has been given to this point and little is known
about how these differences influence the Pisuc. We investi-
gated the landscape of Pisuc using RFSA. As an illustrative
instance, we chose a spin-glass problem in which coupling
coefficients are chosen from random variables that are uni-
formly distributed in the range [−1, 1].We prepared anN×N
random matrix where N = 8, 10, 12, 14 and encoded it in a
cost function. The ground state of the spin-glass corresponds
to the globally optimal solution of the maximum cut problem.
Fig. 18 shows the evaluatedPfsuc andPosuc as a function of a set
of hyper-parameters

(
βc, βp

)
for the standard SA (top figure)

and for the RFSA (bottom figure). We see that Posuc ∼ 0 if(
βc, βp

)
is in the infeasible area or the rejected area, which

is similar to the QUBO case. Figures 19–21 show Pfsuc and
Posuc as a function of sets

(
βc, βp

)
,
(
kp,Tc

)
, and

(
kc,Tp

)
for

N = 8, 10, 12, 14. We see that the scattering of Posuc on the
hyper-parameter plane increases asN decreases, which is also
similar to the QUBO problem (see Figs. 12–14).

Despite these similarities in the experimental results of the
QUBO and LHZ architecture, we found certain differences
as well. For example, although we see that Posuc is almost
independent of βp in the wide range of βp < bmaxp ∼ 1010

(Fig. 12) for the QUBO problem, Fig. 19 indicates that Posuc
strongly depends on βp for the LHZ architecture. In addition,
if we compare the middle diagrams in Figs. 7 and 18, we can
see that the improvement in Posuc using RFSA is rather limited
compared to that in the QUBO problem. Most surprisingly,
we see that even the landscapes of Pfsuc largely differ for the
QUBO and the LHZ architecture. For example, Fig. 12 shows
that Pfsuc is almost unity for any βp satisfying βp

/
βc > kLp

in the QUBO problem where kLp denotes the lower limit,

whereas Pfsuc largely depends on βp in the LHZ architecture.
Thus, the feasible area is clearly much more limited for
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FIGURE 16. Block diagram of our spin-selection algorithm to avoid cycling using the short-term memory mechanism. Last spin selection is
recorded and used to penalize it in the next spin selection.

FIGURE 17. Demonstration of our proposed algorithm to avoid cycling. Po
suc (top middle) and Pf

suc
(bottom middle) on QUBO problem with avoiding cycling are shown. Left: probabilities without
avoiding cycling are shown for reference. Right: improvements in success probabilities are shown.

the LHZ architecture than the QUBO problem. Because we
can find globally optimal solution only if

(
βc, βp

)
is in the

feasible area, the limited feasible area eventually limits the
area where we can find the globally optimal solution.

This limited feasible area in LHZ architecture is interesting
as well as critical for application. For example, let us consider
the case βc = 0. In this case, an objective function solely
consists of a penalty function. We may conjecture from the
experimental observation on the QUBO problem as well
as the widespread consensus that we can successfully find
feasible solutions as long as βp > 0. However, this conjecture
is not valid in the LHZ architecture. The feasible solution
is found only around some specific βp for the LHZ archi-
tecture as shown in Fig. 19. This surprising difference indi-
cates that the conjecture based on experience in the QUBO
problem is not necessarily valid for the LHZ architecture.

Experimental results indicate that βp = 1
/
Tp should not

be very large to find the feasible solution in the LHZ archi-
tecture. In other words, we can find some optimal fixed
temperature Tp [57], [58] for finding the ground state of
the penalty function in the LHZ architecture, although we
cannot find such an optimal temperature for finding the
ground state of the penalty function associated with the one-
hot constraint. This poses a question regarding the origin of
this difference. Currently, the origin is not clear, but it is cer-
tainly caused by the difference in the structure of the penalty
functions.

Finally, we applied the algorithm to avoid cycling and
confirmed its validity even for the LHZ architecture.
Fig. 22 shows the results, which is the counterpart of Fig. 17.
The figure indicates that the proposed method is still valid for
the LHZ architecture. Note, however, that an improvement
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FIGURE 18. Results of simulation on LHZ architecture. Po
suc (right), Pf

suc (middle), and logα (left) as
a function of the set of hyper-parameters

(
βc , βp

)
for standard SA (top) and RFSA (bottom).

FIGURE 19. Results of simulation on LHZ architecture. Po
suc (top) and Pf

suc (bottom) as a function of the set of hyper-parameters(
βc , βp

)
for RFSA. The problem size N is 8, 10, 12, and 14 from left to right.

occurs largely on Pfsuc, which is contrasted with the results
for the QUBO problem where improvement occurs largely
on Posuc.

VI. STRATEGY TO EFFICIENTLY TUNE THE
HYPER-PARAMETERS
Let us consider a reasonable strategy to efficiently tune hyper-
parameters. We summarize the experimental observations
that may contribute to solve this problem:

1. It is likely that we can find the globally optimal solution
efficiently if we choose the hyper-parameters in the
vicinity of the boundary of the feasible and infeasible a
areas.

2. Feasible solutions may be found more easily and effi-
ciently than the globally optimal solution.

3. If we reconstruct a downscaled problem by randomly
selecting nodes from the original problem, we can find
its globally optimal solution more easily than the orig-
inal problem. Furthermore, the landscape of Pisuc for
such a downscaled problem are scattered over a larger
area with a slight shift.

We propose the following strategy for tuning hyper-
parameters. Our strategy consists of the following three steps.
The first step involves searching the boundary of the feasible
and infeasible areas on the hyper-parameter plane. Because
we have full knowledge regarding the feasible solutions a
priori, we can always evaluate Pfsuc. Therefore, this task may
be fulfilled easily by evaluating Pfsuc as a function of the set
of the hyper-parameters considered. If we successfully find
the boundary, we can proceed to the next step. In the second
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FIGURE 20. Results of simulation on LHZ architecture. Po
suc (top) and Pf

suc (bottom) as a function of the set of
hyper-parameters

(
kp, Tc

)
for RFSA. The problem size N is 8, 10, 12, and 14 from left to right.

FIGURE 21. Results of simulation on LHZ architecture. Po
suc (top) and Pf

suc (bottom) as a function of the set of
hyper-parameters

(
kc , Tp

)
for RFSA. The problem size N is 8, 10, 12, and 14 from left to right.

FIGURE 22. Validity of our proposal for avoiding cycling on the LHZ architecture. Po
suc (top

middle) and Pf
suc (bottom middle) on LHZ architecture with avoiding cycling are shown. Left:

results without avoiding cycling are shown for reference. Right: improvements in success
probabilities are shown.

step, we construct an artificially downscaled problem and
evaluate the total energy of spins of the incumbent solution

in the vicinity of the observed boundary as well as within the
feasible region. Then, we choose the hyper-parameter setting
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that minimizes the evaluated total energy. In the final step,
we apply the setting obtained in the second step to the original
problem and fine-tune it to obtain better results. We expect
that this procedure can be integrated with the RFSA code and
can be automated.

VII. CONCLUSION
In this study, we implemented RFSA and demonstrated its
validity and advantage over the standard SA for combinatorial
optimization. We applied it to the QUBO problem and the
spin-glass problem embedded in the LHZ architecture. The
efficiency of finding the globally optimal solution was highly
improved, especially for the QUBO problem.We investigated
the success probabilities of finding the globally optimal solu-
tion and feasible solutions as a function of a set of hyper-
parameters that specify the weighs of the cost and the penalty
functions. The RFSA can reveal structures in the landscapes
of the success probabilities, which are invisible in the stan-
dard SA.We confirmed that the globally optimal solution can
bemost efficiently found in the vicinity of the boundary of the
feasible and infeasible areas on the hyper-parameter plane.
We compared the landscapes of success probabilities for the
QUBO problem and the LHZ architecture, which highlighted
the different characteristics of the penalty functions in these
problems, i.e., L2 regularization and four-way couplings for
spin variables. We also proposed and demonstrated a novel
algorithm that incorporates short-term memory in the spin-
selection algorithm to avoid inefficiency due to cycling. Our
experimental results show that our proposed method success-
fully improved the efficiency of finding the globally optimal
solution both for the QUBO problem and the LHZ architec-
ture. Finally, we proposed a reasonable strategy to tune the
hyper-parameter settings using RFSA.

Our experimental study shows that the landscapes of the
success probabilities depend on the objective function, which
leaves room for further investigation. The penalty function
and the associated feasible solutions can be theoretically
specified if we specify a class of the problem. For example,
if we choose TSP, the penalty function is associated with
one-hot constraint, which can be theoretically specified if the
problem size N is given. In contrast, a dataset specifying the
individual problem such as a distance matrix d is encoded
only in the cost function. If we note that the globally optimal
solution can be found only within a feasible area on the hyper-
parameter plane, it might be interesting and important from
an application point of view to investigate and compare the
landscape of success probability of finding ground state for
various classes of penalty functions, or in other words, for
various classes of problems.

Finally, we note the following two remarks obtained from
this study. Nature-inspired computational models offer us
very instructive suggestions to use simulations of dynamic
processes of physical systems for solving some mathemat-
ical problems. However, we must note that our objective
is not physical simulation but obtaining some computa-
tional results. To obtain better computational results, we can

incorporate any artificial intelligence in the simulation. For
example, we can freely incorporate intelligent agents like
Maxwell’s daemon that can refer to the states of the spins and
use this information to obtain better computational results in
the simulation. If the benefit of incorporating such an agent
dominates over the computational cost and overhead induced
by it, we may use it to obtain better computational results.
In our RFSA algorithm, post-selection and keeping track of
the best solution as well as non-uniform random number
generation depending on the spin states correspond to such
intelligent agents.

APPENDIX
COST AND PENALTY FUNCTIONS FOR THE LHZ
ARCHITECTURE
This appendix presents a mathematical formulation of the
LHZ architecture that may be convenient for computer sim-
ulation. We explicitly show the updating rule for energy
shift after a spin inversion. Fig. 23 schematically shows the
configuration of the LHZ architecture. In this figure, blue
and red circles indicate the spin and plaquette introduced
in [32], respectively. If we introduce indices as shown in
Fig. 23 and denote the associated spin and plaquette variables
as sjk and Sjk , respectively, where 0 ≤ j < k ≤ N , the
Hamiltonians for the cost and penalty functions are written
as follows:

Hc

({
sjk
}
0≤j<k≤N

)
= −

N−1∑
j=0

N∑
k>j

Jjksjk , (A1)

Hp

({
Sjk
}
0≤j<k≤N

)
= −

N−2∑
j=0

N−1∑
k>j

Sjk , (A2)

where, we have embedded the external magnetic field hi into
J0i, and introduced (N + 3)× (N + 3)matrices Ĵ , ŝ, and Ŝ as

Ĵjk =

{
Jj−2k−2 2 ≤ j < k ≤ N + 2
0 otherwise,

(A3)

ŝjk =


sj−2k−2 2 ≤ j < k ≤ N + 2
1 1 ≤ j = k ≤ N + 3
0 otherwise,

(A4)

Ŝjk =

{
Sj−2k−2 2 ≤ j < k ≤ N + 1
0 otherwise,

(A5)

By introducing dummy matrix elements with fixed values
0 or 1 for Ĵjk , ŝjk and Ŝjk , we can represent Ŝjk simply as
follows:

Ŝjk = ŝjk ŝjk+1ŝj+1k ŝj+1k+1 (1 ≤ j < k ≤ N + 3). (A6)

See Fig. 24 for reference. Using Ĵ , ŝ and Ŝ, we can represent
Hc andHp as

Hc

({
ŝjk
}
1≤j<k≤N+3

)
= −〈Ĵ , ŝ〉F = −

N+3∑
j=1

N+3∑
k=1

Ĵjk ŝjk

(A7)
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FIGURE 23. An illustration of the configuration of the LHZ architecture
(for N = 7). Blue and red circles show variable sjk associated with spin
and variable, and Sjk associated with plaquette given in [32], respectively.
Note that sjj is fixed to unity for 1 ≤ j ≤ N − 1.

Hp

({
Ŝjk
}
1≤j<k≤N+3

)
= −〈1̂, Ŝ〉F = −

N+3∑
j=1

N+3∑
k=1

Ŝjk ,

(A8)

where 〈A,B〉F indicates the Frobenius inner product of two
matrices A and B [59]. From the above formulation, the initial
values of the energy shifts of cost and penalty functions
associated with an inversion ŝjk →−ŝjk are

(1Ec)jk = 2Ĵjk ŝjk , (A9)(
1Ep

)
jk = 2

(
Ŝj−1k−1 + Ŝj−1k + Ŝjk−1 + Ŝjk

)
, (A10)

respectively. If the total Hamiltonian is written as the form in
eq. (11), the energy shift is

1E jk = βc (1Ec)jk + βp
(
1Ep

)
jk . (A11)

Next, let us consider updating rules for ŝ, Ŝ, 1Ec, and
1Ep. Suppose that a spin l ′m′

(
0 ≤ l ′ < m′ ≤ N

)
is chosen

for next inversion, the sign of ŝlm is to be inverted, where
l = l ′ + 2 and m = m′ + 2. Note that only eight neighboring
spins and only four neighboring plaquettes are directly con-
nected to ŝlm and are affected by spin inversion. See Fig. 25.
Then, we can update 1Ec and 1Ep as follows:

(1Ec)l m → − (1Ec)l m ,(
1Ep

)
l m → −

(
1Ep

)
l m ,(

1Ep
)
l−1m−1 →

(
1Ep

)
l−1m−1 − 4Ŝl−1m−1,(

1Ep
)
l+1m−1 →

(
1Ep

)
l+1m−1 − 4Ŝl m−1(

1Ep
)
l−1m+1 →

(
1Ep

)
l−1m+1 − 4Ŝl−1m,(

1Ep
)
l+1m+1 →

(
1Ep

)
l+1m+1 − 4Ŝl m,(

1Ep
)
l m−1 →

(
1Ep

)
l m−1 − 4

(
Ŝl−1m−1 + Ŝl m−1

)
,

FIGURE 24. A function of dummy matrix elements given in eqs.(A3)-(A5).
A set of 1

2 N(N + 1) logical spins and 1
2 N(N − 1) plaquette variables

{
s,S

}
are embedded into a set of

(
N + 3

)
×
(
N + 3

)
matrices

{
ŝ, Ŝ

}
in which

dummy elements are embedded. Dummy elements are assigned fixed
values of 0 or 1, depending on the matrix and their indices. As a result,
Hp given by eq.(A2) is consistent with that given by eqs. (A8) and (A6).

(
1Ep

)
l−1m →

(
1Ep

)
l−1m − 4

(
Ŝl−1m−1 + Ŝl−1m

)
,(

1Ep
)
l m+1 →

(
1Ep

)
l m+1 − 4

(
Ŝl−1m + Ŝl m

)
,(

1Ep
)
l+1m →

(
1Ep

)
l+1m − 4

(
Ŝl m + Ŝl m−1

)
.

(A12)

Here, note that the variables ŝ, Ŝ, 1Ec, and 1Ep involved in
eq.(A12) are those before spin inversion. After calculation of
eq.(A12), the signs of ŝ and Ŝ must be inverted according to

ŝlm → −ŝlm
Ŝlm → −Ŝlm

Ŝl−1m → −Ŝl−1m
Ŝl m−1 → −Ŝl m−1

Ŝl−1m−1 → −Ŝl−1m−1 (A13)

Note that dummy elements should be used for calculation in
eqs,(A6), (A10), and (A12) if they are involved. Concerning
the energy shifts 1Ec and 1Ep, we must keep track of only
1
2N (N + 1) elements associated with the product of two
logical spin variables. Evidently, the present formulation is
redundant and introduces a noncontiguous data structure.
This might influence the efficiency of calculation because
it makes memory access slower. This is the inevitable price
to pay in the present formulation. To solve this inefficiency
due to memory access, we must omit dummy elements in
1Ec and 1Ep. This avoids the noncontiguous data structure
and may speed up the calculation of eq.(7). The price to pay
is that we must implement some algorithm to pick up the
correct pair of elements appearing in 1Ep and Ŝ in eq.(A12)
to calculate them. This may introduce some overhead in the
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FIGURE 25. Only values of eight neighboring spins (blue circles) and four
neighboring plaquettes (red circles) are influenced when the sign of ŝlm
is inverted (the case (l,m) = (2,5) is shown).

calculation. The optimal strategy for efficiently calculating
the energy shift 1E for the LHZ architecture is currently an
open question.
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