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ABSTRACT The set-to-set disjoint paths problem is to find n vertex-disjoint paths si  t ji (1 ≤ i ≤ n,
{j1, j2, . . . , jn} = {1, 2, . . . , n}) between two sets of vertices S = {s1, s2, . . . , sn} and T = {t1, t2, . . . , tn}
in a graph whose connectivity is equal to n. It is a very important problem as well as the vertex-to-vertex
disjoint paths problem and the vertex-to-set disjoint paths problem. In this paper, we propose an algorithm
that generates n vertex-disjoint paths between two vertex sets in an n-Möbius cube. Much attention has been
attracted by aMöbius cube because its diameter is almost half of that of a hypercube while it can interconnect
the same number of vertices as the hypercube. We also give a proof of correctness of the algorithm and
estimate that the time complexity of the algorithm is O(n6) and the maximum length of the paths generated
by the algorithm is 2n− 2.

INDEX TERMS Fault tolerant systems, multiprocessor interconnection networks, network topology, parallel
processing, supercomputers.

I. INTRODUCTION
In these few decades, parallel computers, especially mas-
sively parallel systems have been studied enthusiastically.
Since many processing elements or vertices are connected
in a massively parallel system, an efficient interconnection
network is crucial. Hence, many topologies [1], [2], [3], [4]
have been proposed for interconnection networks and inten-
sively studied [5], [6], [7], [8], [9], [10], [11], [12], [13] to
take the place of conventional topologies such as the mesh,
the torus, and the hypercube [14]. A Möbius cube [15] is one
of such new topologies. Much attention has been attracted by
a Möbius cube because its diameter is almost half of that of
a hypercube while it can interconnect the same number of
vertices as the hypercube [16], [17], [18], [19], [20], [21].

In this paper, we follow the traditional definitions and
notations in the graph theory. A graph G consists of a pair
of a vertex set V with |V | > 0 and an edge set E(⊂ V × V )
with |E| ≥ 0. If there is an edge (x, y) in G, the vertices x and
y are adjacent and the edge (x, y) is incident to x and y. For
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two graphs G(V ,E) and G′(V ′,E ′), G′ is called a sub graph
of G if V ′ ⊂ V and E ′ ⊂ E hold. For a vertex sequence
P: x1, x2, . . . , xk with xi and xi+1 (1 ≤ i ≤ k − 1) are all
adjacent, P is called a path and the length of the path is k−1.
In this paper, we denote the path by x1 → x2 → · · · → xk
or x1  xk , and an edge (x, y) by x → y. If the path P
contains only one vertex, it is regarded a path of length 0.
For two vertices x, y(∈ G), the smallest length of the path
between them is called the distance between x and y. The
largest value among the distances of pairs of vertices in a
graph G is called the diameter of G. A graph G is called
connected if there is a path between any pair of vertices in G.
A graph G is called disconnected if G is not connected. For a
connected graphG, the smallest k such that deleting k vertices
fromGmakes the residual graph disconnected is called vertex
connectivity (or connectivity in short) of G. For two paths P:
x1 → x2 → · · · → xk and Q: y1 → y2 → · · · → yl ,
P and Q are called vertex-disjoint (or disjoint in short) if
{x1, x2, . . . , xk} ∩ {y1, y2, . . . , yl} = ∅.

We pick up the Möbius cube, which is one of the cube-
based topologies. The hypercube is the representative of
the cube-based topologies. The Möbius cube has an almost
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half diameter of that of the hypercube of the same size.
Also, we can apply recursive algorithms to the Möbius cube
because it has the recursive structure. In addition, the Möbius
cube is practical because it has a smaller average distance
compared to the other cube-based topologies of the same
size. Furthermore, the Möbius cube has a simple structure.
Duato et al. [22] insist that ‘‘Simple designs of topologies
often lead to higher clock frequencies andmay achieve higher
performance. Moreover, customers appreciate networks that
are easy to understand because it is easier to exploit their
performance.’’

The set-to-set disjoint paths problem is one of the unsolved
problems in Möbius cubes, and it is defined as follows: For
a source-vertex set S = {s1, s2, . . . , sn} and a target-vertex
set T = {t1, t2, . . . , tn} in an n-connected graph G(V ,E),
generate n paths Pi: si  t ji (1 ≤ i ≤ n) such that
{j1, j2, . . . , jn} = {1, 2, . . . , n} and the paths Pi’s are vertex-
disjoint, or simply disjoint. The problem of the set-to-set
disjoint paths is an important issue [23], [24], [25], [26], [27],
[28], [29] as well as the problems to generate vertex-to-vertex
disjoint paths [30], [31], [32], [33], [34], [35], [36], [37],
[38], vertex-to-set disjoint paths [18], [39], [40], [41], [42],
[43], [44], [45], [46], [47], [48], [49], and pairwise disjoint
paths [50], [51], [52], [53], [54].

Finding disjoint paths between two vertex sets in a mas-
sively parallel system establishes secure communication
paths that do not interfere each other. Also, the algorithm
that solves the set-to-set disjoint paths problem can be
applied to solve the vertex-to-vertex and vertex-to-set disjoint
paths problems to attain the full-bandwidth communication.
In addition, it is inevitable to operate a massively parallel sys-
tem under the existence faulty vertices and/or edges. Hence,
finding multiple disjoint paths between two vertices aug-
ments the probability to establish a fault-free path between
them.

Regarding an n-dimensional Möbius cube orMCn in short,
Kocík and Kaneko [34] have proposed an algorithm that
solves the vertex-to-vertex disjoint paths problem in O(n2)
time, and the maximum length of the paths generated by
the algorithm is 3n − 5. Moreover, Kocík et al. [18] have
proposed an algorithm that solves the vertex-to-set disjoint
paths problem in O(n4) time, and the maximum length of the
generated paths is 2n− 1.
As it is widely known, from the Menger’s theorem [55],

the maximum-flow algorithm can solve the problem of the
set-to-set disjoint paths in an arbitrary graph G(V ,E) in a
polynomial-order time of |V |. Nevertheless, if we apply the
maximum-flow algorithm to MCn, its time complexity is
impractically large since MCn has 2n vertices. In this paper,
we extend the previous work by Kaneko [56] and propose an
algorithm called S2S (set-to-set), which solves the problem
in polynomial-order time of n instead of 2n. The algorithm
is divided into three cases depending on the distribution of
the source vertices and the target vertices. For a source-vertex
set S and a target-vertex set T with |S| = |T | = n in MCn,
Algorithm S2S generates n disjoint paths between S and T .

We also present the results including the average performance
by a computer experiment.
Recently, Kaneko et al. [57] proposed a generic algorithm

that solves the set-to-set disjoint paths problem in many
cube-based topologies, which include the Möbius cube. The
algorithm takes O(n7) time inMCn, and the maximum length
of generated disjoint paths is 2n−1. On the other hand, Algo-
rithm S2S proposed in this paper takesO(n6) time to solve the
problem, and the maximum length of generated disjoint paths
is 2n−2. Therefore, out algorithm outperforms the algorithm
by Kaneko et al. regarding both the time complexity and the
path length.
The rest of the paper is structured as follows. First,

in Section II, we introduce a definition of the Möbius
cube and several lemmas related to the Möbius cube. Next,
in Section III, we explain each of three cases of Algo-
rithm S2S in detail. Then, in Section IV, we prove correct-
ness of Algorithm S2S and give its theoretical complexities.
In Section V, we report the experimental results including the
average performance of S2S. Finally, in Section VI, we give
a conclusion and future works.

II. PRELIMINARIES
This section introduces a definition of the Möbius cube and
several related lemmas.
Definition 1: An n-dimensional Möbius cube MCn (n ≥

0) is an undirected graph whose vertex set is given by {0, 1}n.
For any pair of vertices u = (u1, u2, . . . , un) and v in MCn,
an edge (u, v) exists between them if and only if the following
condition holds:

v =

{
(u1, u2, . . . , ui−1, ūi, ui+1, . . . , un) if ui−1 = 0,
(u1, u2, . . . , ui−1, ūi, ūi+1, . . . , ūn) if ui−1 = 1

where we can assume that u0 = 0 or u0 = 1. For the former
case, we callMCn as an n-dimensional 0-Möbius cube 0-MCn
while for the latter, an n-dimensional 1-Möbius cube 1-MCn.
Note that MC0 consists of a single vertex only.
If there exists an edge between two vertices u and v by the

condition in Definition 1, we say that u and v are connected
by an edge of i-th dimension, and we refer v and u as u(i) and
v(i), respectively.

For instance, 0-MC4 and 1-MC4 are shown in Fig. 1. From
Fig. 1, we can observe thatMCn is comprised of two disjoint
sub graphsMC0 andMC1 whereMCk (k ∈ {0, 1}) is induced
from the vertex set {u = (u1, u2, . . . , un) | u ∈ MCn, u1 = k}
and it is isomorphic to k-MCn−1. In addition, we introduce
MCk1k2 (k1, k2 ∈ {0, 1}), which is induced from the vertex
set {u = (u1, u2, . . . , un) | u ∈ MCn, u1 = k1, u2 = k2}, and
it is isomorphic to k2-MCn−2.

For an n-dimensional 0-Möbius cube, 0-MCn, an n-
dimensional 1-Möbius cube, 1-MCn, an n-dimensional hyper-
cube, HCn, an n-dimensional folded hypercube, FCn, and an
n-dimensional twisted cube [1], TCn, Table 1 compares them
regarding their numbers of vertices, degrees, diameters, and
average distances. From Table 1, we can see that FCn gives
the smallest diameter. However, in the up-to-date design of a
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FIGURE 1. Examples of 0-MC4 and 1-MC4.

TABLE 1. Comparison of 0-MCn and 1-MCn with other topologies.

parallel system, it is considered to be costly to increase the
degree to connect the same number of vertices [22]. Also,
we can see that TCn has a slightly smaller diameter than 0-
MCn while TCn has a much larger average distance than 0-
MCn and 1-MCn.
MCn has a routing algorithm, which generates one of the

shortest paths of length at most d(n + 2)/2e between an
arbitrary pair of vertices in O(n) time [15]. This algorithm
is referred as SP in the rest of the paper.

In implementation, we assume that every vertex can be
stored in one machine word, and choosing an edge by obtain-
ing u(i) for any vertex u can be done in O(1) time.
Lemma 1: In MCn, there is not a cycle of length 3.

Proof: Assume that there exists a cycle C: u = (u1, u2, . . . ,
un) → u(i) → u(j) → u (i < j) of length 3. Then, the i-
th bit of u(i) is ūi while the i-th bit of u(j) is ui from i < j.
Now, to revert the i-th bit of u(i) without changing the first to
(i−1)-th bits, it is necessary to perform the operation of u(i,i).
Hence, u(j) = u(i,i) = u must hold, and it contradicts that C
is a cycle of length 3. Consequently, there is not a cycle of
length 3 in MCn. �
Lemma 2: For any vertex u inMCn, exactly one edge exists

between MC0 and MC1 including u as one of its terminal
vertices.

FIGURE 2. Disjoint paths between MC0 and MC1.

Proof: For a vertex u, assume that u ∈ MCk (k ∈
{0, 1}). Then, u(i) ∈ MCk (2 ≤ i ≤ n) while u(1) ∈ MC k̄ .
Hence, exactly one edge (u,u(1)) exists between MC0 and
MC1 including u as one of its terminal vertices. �
Lemma 3: For any vertex u in MCn, there exist n paths of

lengths at most 2 between MC0 and MC1 including u as one
of their terminal vertices such that they are disjoint except for
u.

Proof: Let us consider n paths that include u as one of
their terminal vertices and span between MC0 and MC1:

Qi :

{
u→ u(i)→ u(i,1) if 2 ≤ i ≤ n,
u→ u(i) if i = 1

where Q1 is disjoint with other paths Qi (2 ≤ i ≤ n) except
for u from Lemma 2. Moreover, for two pathsQi andQj (2 ≤
i < j ≤ n), from u(i) 6= u(j) and Lemma 1, these paths are
also disjoint except for u (Fig. 2). From above discussion, the
n paths Qi (1 ≤ i ≤ n) of length at most 2 are disjoint except
for u. �

III. ALGORITHM S2S
We present Algorithm S2S in this section. For a source-vertex
set S = {s1, s2, . . . , sn} and a target-vertex set T =

{t1, t2, . . . , tn} in MCn, the algorithm generates n disjoint
paths between S and T .

A. CASE 1
Assume that S∪T ⊂ MCk (k ∈ {0, 1}) in this case. Then, the
following Procedure 1 generates n disjoint paths Pi: si  t ji
(1 ≤ i ≤ n, {j1, j2, . . . , jn} = {1, 2, . . . , n}).
Procedure 1:
Step 1: Apply Algorithm S2S recursively in MCk to gen-

erate (n − 1) disjoint paths Qi: si  t ji (1 ≤ i ≤ n − 1,
{j1, j2, . . . , jn−1} = {1, 2, . . . , n− 1}).
Step 2: If one of Qi (1 ≤ i ≤ n − 1), say Ql , includes sn,

delete the sub path sl  sn, let Ql be sn  t jl , and exchange
the indices of sl and sn.
Step 3: If one of Qi (1 ≤ i ≤ n − 1), say Qm, includes tn,

delete the sub path tn  t jm , letQm be sm  tn, and exchange
the indices of t jm and tn.
Step 4: Choose edges sn→ s(1)n and tn→ t(1)n .
Step 5: By using Algorithm SP, generate a path Qn: s

(1)
n  

t(1)n in theMC k̄ . Consequently, n disjoint paths Pi (1 ≤ i ≤ n)
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FIGURE 3. After Step 5 in Procedure 1.

are generated:

Pi :

 si
Qi t ji if 1 ≤ i ≤ n− 1,

sn→ s(1)n
Qn t(1)n → tn if i = n.

Fig. 3 depicts the status after Step 5 in Procedure 1. Note that
we use a wave line to represent a path while an arc or a line
segment is used to represent an edge.

B. CASE 2
Assume that 0 < |S ∩MCk

| < n or 0 < |T ∩MC k̄
| < n (k ∈

{0, 1}) in this case. Then, the following Procedure 2 generates
n disjoint paths Pi: si  t ji (1 ≤ i ≤ n, {j1, j2, . . . , jn} =
{1, 2, . . . , n}). Without loss of generality, we can assume that
S ∩MCk

= {s1, s2, . . . , sg}, T ∩MCk
= {t1, t2, . . . , th}, and

h ≥ g.
Procedure 2:
Step 1: For g source vertices s1, s2, . . . , sg and g target

vertices t1, t2, . . . , tg in MCk , apply Algorithm S2S recur-
sively to generate g disjoint paths Qi: si  t ji (1 ≤ i ≤ g,
{j1, j2, . . . , jg} = {1, 2, . . . , g}).
Step 2: For each vertex t l (g + 1 ≤ l ≤ h), if one of Qi

(1 ≤ i ≤ g), say Qm, includes t l , delete the sub path t l  t jm ,
let Qm be sm  t l , and exchange the indices of t jm and t l .
Step 3: For every vertex t i (g+1 ≤ i ≤ h), do the following.

First, generate n paths Ri,l (1 ≤ l ≤ n) from Lemma 3.
If among Ri,l (1 ≤ l ≤ n) exists a path R̂i: t i  t ′i(∈ MC

k̄ )
that does not include any vertex of Qi (1 ≤ i ≤ g), any vertex
of R̂i′ (g + 1 ≤ i′ < i), or any one of other target vertices,
choose it. Otherwise, find one of Qi (1 ≤ i ≤ g), say Qx , that
includes multiple vertices of Ri,l (1 ≤ l ≤ n). Then, find the
vertex t(y)i that is closest to sx along Qx , delete the sub path
t(y)i  t jx , letQx be sx  t(y)i → t i, and exchange the indices
of t i and t jx . Repeat this process until we can find (h−g) paths
R̂i (g+ 1 ≤ i ≤ h).
Step 4: Let t ′i (h + 1 ≤ i ≤ n) be t i. Then, for (n − g)

source vertices sg+1, sg+2, . . . , sn and (n− g) target vertices
t ′g+1, t

′

g+2, . . . , t
′
n in MC

k̄ , apply Algorithm S2S recursively
to generate (n− g) disjoint paths Qi: si  t ′ji (g+ 1 ≤ i ≤ n,
{jg+1, jg+2, . . . , jn} = {g + 1, g + 2, . . . , n}). Consequently,

FIGURE 4. After Step 4 in Procedure 2.

n disjoint paths Pi (1 ≤ i ≤ n) are generated:

Pi :


si

Qi t ji if 1 ≤ ji ≤ g,

si
Qi t ′ji

R̂ji t ji if g+ 1 ≤ ji ≤ h,

si
Qi t ′ji (= t ji ) if h+ 1 ≤ ji ≤ n.

Fig. 4 depicts the configuration after Step 4 in Procedure 2.

C. CASE 3
Assume that S ⊂ MCk and T ⊂ MC k̄ in this case. Then, the
following procedures generate n disjoint paths Pi: si  t ji
(1 ≤ i ≤ n, {j1, j2, . . . , jn} = {1, 2, . . . , n}) by consider-
ing four sub Möbius cubes: MCk1k2 , MCk1k̄2 , MC k̄1k3 , and
MC k̄1k̄3 where k1, k2 ∈ {0, 1} and k3 = k2 in 0-MCn, and
k3 = k̄2 in 1-MCn. When n = 3, in every sub case, it is
necessary to generate 2(= dn/2e) disjoint paths in one of
the four 1-dimensional sub Möbius cubes, which has only
two vertices. However, because two source vertices (and two
target vertices) are distributed to distinct vertices in the sub
Möbuis cube, every vertex in the sub Möbius cube has a pair
of the source and target vertices. Hence, two disjoint paths
can be generated because every pair is initially connected by
a path of length 0. In the rest of this case, we can assume
without loss of generality that |S ∩MCk1k2 | ≥ |S ∩MCk1k̄2 |.

1) CASE 3-1
First, we assume that |T ∩ MC k̄1k3 | ≥ |T ∩ MC k̄1k̄3 |. With-
out loss of generality, we can assume that S ∩ MCk1k2 =

{s1, s2, . . . , sns} and T ∩MC
k̄1k3 = {t1, t2, . . . , tnt}. Note that

ns ≥ n − ns and nt ≥ n − nt. Then, we generate n disjoint
paths Pi: si  t ji (1 ≤ i ≤ n, {j1, j2, . . . , jn} = {1, 2, . . . , n})
by the following Procedure 3.
Procedure 3:
Step 1: Find (ns − dn/2e) vertices si in S ∩ MCk1k2 such

that s(2)i 6∈ S. We can assume without loss of generality that
{s(2)
dn/2e+1, s

(2)
dn/2e+2, . . . , s

(2)
ns } ∩ S = ∅.

Step 2: Choose dn/2e edges si→ s(1)i (1 ≤ i ≤ dn/2e).
Step 3: For dn/2e vertices s(1)1 , s

(1)
2 , . . . , s

(1)
dn/2e and dn/2e

vertices t1, t2, . . . , tdn/2e, apply Algorithm S2S recursively in
MC k̄1k3 to generate dn/2e disjoint paths Qi: s

(1)
i  t ji (1 ≤

i ≤ dn/2e, {j1, j2, . . . , jdn/2e} = {1, 2, . . . , dn/2e}).
Step 4: For each vertex t l (dn/2e + 1 ≤ l ≤ nt), if one of

Qi (1 ≤ i ≤ dn/2e), say Qm, includes t l , delete the sub path
t l  t jm , let Qm be sm  t l , and exchange the indices of t jm
and t l .
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FIGURE 5. After Step 7 in Procedure 3 (in case where tl was found, and
t(1)
l 6∈ S ∩ MCk1k2 in Step 5).

Step 5: For t i (dn/2e+ 1 ≤ i ≤ nt), try to generate disjoint
paths t i  t ′i(∈ MC

k̄1k̄3 ) of lengths at most 2 as in Step 3 of
Case 2. If there is a vertex, say t l , from which a disjoint path
cannot be generated, choose an edge t l → t(1)l . If t(1)l ∈ S ∩
MCk1k2 , we can assume without loss of generality that t(1)l =
sdn/2e+1. Otherwise, that is, if t

(1)
l 6∈ S ∩MC

k1k2 , choose the
edges t(1)l → t(1,2)l and sdn/2e+1→ s(2)

dn/2e+1(= s′
dn/2e+1).

Step 6: Choose (ns − dn/2e − 1) edges si → s(2)i (= s′i)
(dn/2e + 2 ≤ i ≤ ns). Let si be s′i (ns + 1 ≤ i ≤ n). If the
vertex t l was not found in Step 5, choose the edge sdn/2e+1→
s(2)
dn/2e+1(= s′

dn/2e+1).

Step 7: If the edge t(1)l → t(1,2)l was not chosen in Step 5,
choose edges s′i → s′(1)i (dn/2e + 2 ≤ i ≤ n), and go to Step
8. Otherwise, if the edge t(1)l → t(1,2)l was chosen in Step 5,
apply Algorithm SP inMCk1k̄2 to generate one of the shortest
paths between s′

dn/2e+1 and t(1,2)l . If the path includes some
of the vertices s′

dn/2e+2, s
′

dn/2e+3, . . . , s
′
n, choose one of them,

say s′y, that is closest to t
(1,2)
l along the path, delete the sub

path s′
dn/2e+1  s′y, exchange the indices of s

′
y and s

′

dn/2e+1.

Choose edges s′i→ s′(1)i (dn/2e + 2 ≤ i ≤ n). See Figure 5.
Step 8: Let t i = t ′i (nt+1 ≤ i ≤ n). If the vertex t l

was not found in Step 5, apply Algorithm S2S recursively
in MC k̄1k̄3 to generate bn/2c disjoint paths Qi: s′i

(1)  t ′ji
(dn/2e + 1 ≤ i ≤ n, {jdn/2e+1, jdn/2e+2, . . . , jn} = {dn/2e +
1, dn/2e + 2, . . . , n}). Otherwise, if t l was found in Step
5, apply Algorithm S2S recursively in MC k̄1k̄3 to generate
(bn/2c − 1) disjoint paths Qi: s′i

(1)  t ′ji (dn/2e + 2 ≤ i ≤ n,
{jdn/2e+2, jdn/2e+3, . . . , jn} = {dn/2e+ 1, dn/2e+ 2, . . . , l−
1, l + 1, . . . , n}).

2) CASE 3-2
Now, we assume that |T ∩ MC k̄1k3 | < |T ∩ MC k̄1k̄3 |. With-
out loss of generality, we can assume that S ∩ MCk1k2 =

{s1, s2, . . . , sns} and T ∩MC
k̄1k3 = {t1, t2, . . . , tnt}. Note that

FIGURE 6. After Step 6 in Procedure 4.

ns ≥ n − ns and nt < n − nt. Then, we generate n disjoint
paths Pi: si  t ji (1 ≤ i ≤ n, {j1, j2, . . . , jn} = {1, 2, . . . , n})
by following Procedure 4.
Procedure 4:
Step 1: Find (ns − dn/2e) vertices si in S ∩ MCk1k2 such

that s(2)i 6∈ S. We can assume without loss of generality that
{s(2)
dn/2e+1, s

(2)
dn/2e+2, . . . , s

(2)
ns } ∩ S = ∅.

Step 2: Choose dn/2e edges si→ s(1)i (1 ≤ i ≤ dn/2e).
Step 3:Choose (ns−dn/2e) edges si→ s(2)i (= s′i) (dn/2e+

1 ≤ i ≤ ns). Let s′i be si (ns + 1 ≤ i ≤ n).
Step 4: Choose (dn/2e− nt) vertices t i in T ∩MC k̄1k̄3 such

that t(2)i 6∈ T . We can assume without loss of generality that
{t(2)nt+1, t

(2)
nt+2

, . . . , t(2)
dn/2e} ∩ T = ∅.

Step 5: Choose bn/2c edges t i→ t(1)i (dn/2e+1 ≤ i ≤ n).
Step 6:Choose (dn/2e−nt) edges t i→ t(2)i (= t ′i) (nt+1 ≤

i ≤ dn/2e). Let t ′i be t i (1 ≤ i ≤ nt). See Fig. 6.
Step 7: Apply Algorithm S2S recursively in MC k̄1k3 to

generate dn/2e disjoint paths Qi: s
(1)
i  t ′ji (1 ≤ i ≤ dn/2e,

{j1, j2, . . . , jdn/2e} = {1, 2, . . . , dn/2e}).
Step 8:Apply Algorithm S2S recursively inMCk1k̄2 to gen-

erate bn/2c disjoint paths Qi: s′i  t(1)ji (dn/2e + 1 ≤ i ≤ n,
{jdn/2e+1, jdn/2e+2, . . . , jn} = {dn/2e+1, dn/2e+2, . . . , n}).

IV. PROOF OF CORRECTNESS AND ESTIMATION OF
COMPLEXITIES
In this section, we prove the correctness of our algorithm and
we give the estimates of time complexity τ (n, g) of our algo-
rithm to generate g disjoint paths in an n-dimensional Möbius
cube, and maximum length λ(n) of the paths generated by our
algorithm. Proof is based on induction on n.
Lemma 4: Procedure 1 generates n disjoint paths in MCn

in τ (n − 1, n − 1) + O(nλ(n − 1)) time. The lengths of the
generated paths are at most max{λ(n− 1), bn/2c + 3}.

Proof: The (n− 1) paths Qi (1 ≤ i ≤ n− 1) generated
in Steps 1, 2, and 3 are disjoint from one another from the
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FIGURE 7. Replacement of Qx in Lemma 5.

hypothesis of induction. Also, these paths are disjoint from
sn and tn. The path generated in Steps 4 and 5 is included in
MC k̄ except for sn and tn. Hence, the path is disjoint from the
paths generated in Steps 1, 2, and 3.

Step 1 takes τ (n− 1, n− 1) time to generate (n− 1) paths
of lengths at most λ(n− 1) from the hypothesis of induction.
Step 2 takes O(nλ(n − 1)) time to check if sn is included in
Qi (1 ≤ i ≤ n − 1) or not. It takes O(1) time to delete the
sub path, updateQl , and exchange the indices. Similarly, Step
3 takes O(nλ(n − 1)) time to check if tn is included in Qi
(1 ≤ i ≤ n − 1) or not. It takes O(1) time to delete the sub
path, update Qm, and exchange the indices. Step 4 takes O(1)
time to choose two edges. In Step 5, Algorithm SP takesO(n)
time to generate the path of length at most d(n+ 1)/2e.
Hence, Procedure 1 takes τ (n− 1, n− 1)+ O(nλ(n− 1))

time to generate n disjoint paths of lengths at most max{λ(n−
1), bn/2c + 3}. Note that 2+ d(n+ 1)/2e = bn/2c + 3. �
Lemma 5: In Step 3 of Procedure 2, for every vertex t i (g+

1 ≤ i ≤ h), we can find a path R̂i.
Proof: There are n candidate paths Ri,l (1 ≤ l ≤ n).

The path R̂i′ for a vertex t i′ can block at most one of the
n candidate paths Ri,l from Lemma 1. In addition, each of
the vertices th+1, th+2, . . . , tn can block at most one of the n
candidate paths Ri,l . Therefore, if all of the n candidate paths
are blocked, at least one of the g disjoint paths Qi: si  tki
(1 ≤ i ≤ g), say Qx , must block multiple candidate paths.
Assume that the paths Ri,l1 : t i → t(l1)i → t(l1,1)i and Ri,l2 :
t i → t(l2)i → t(l2,1)i are blocked by Qx (Fig. 7). Then, from
Lemma 1, it never happens thatQx : sx  t(l1)i → tkx (= t(l2)i ).
Hence, the path sx  t(l1)i → t i is strictly shorter than Qx .
Therefore, if we replace Qx by the path sx  t(l1)i → t i and
repeat this process, we can find a path R̂i. The total number
of replacements is restricted by the total lengths of paths Qi.

�
Lemma 6: Procedure 2 generates n disjoint paths in MCn

in τ (n− 1, g)+ τ (n− 1, n− g)+O(n3{λ(n− 1)}2) time. The
lengths of the generated paths are at most λ(n− 1)+ 2.

Proof: The g paths Qi (1 ≤ i ≤ g) generated in Steps
1 and 2 are disjoint from one another from the hypothesis of
induction. The (h − g) paths generated in Step 3 are disjoint
from one another, and they are also disjoint from the paths
generated in Steps 1 and 2. The (n − g) paths generated in
Step 4 are disjoint from one another from the hypothesis
of induction. Moreover, because these paths are included in

MC k̄ , they are disjoint from the g paths generated in Steps
1 and 2, and disjoint from the (h− g) paths generated in Step
3 except for t ′g+1, t

′

g+2, . . . , t
′
h.

Step 1 takes τ (n− 1, g) time to generate g paths of lengths
at most λ(n−1) from the hypothesis of induction. Step 2 takes
O(n2λ(n−1)) time to check if t l (g+1 ≤ l ≤ h) are included
in Qi (1 ≤ i ≤ g) or not. It takes O(n) time to delete the sub
paths, update Qm’s, and exchange the indices. Step 3 takes
O(n2λ(n−1)) time to check if there is an available path Ri,l or
not. If there is not any available path, it takesO(λ(n−1)) time
to find t(y)i . Note that it is possible to find Qx while checking
the existence of an available path. It takes O(1) time to delete
the sub path, updateQx , and exchange the indices. This check
followed by the process is repeated at mostO(nλ(n−1)) times
from Lemma 5. Hence, it takes O(n3{λ(n−1)}2) time in Step
3 to find (h− g) paths R̂i (g+ 1 ≤ i ≤ h) of lengths at most
2. Step 4 takes τ (n−1, n−g) time to generated (n−g) paths
of lengths at most λ(n− 1) from the hypothesis of induction.
Hence, in total, Procedure 2 takes τ (n−1, g)+τ (n−1, n−

g) + O(n3{λ(n − 1)}2) time to generate n disjoint paths of
lengths at most λ(n− 1)+ 2. �
Lemma 7: In Step 5 of Procedure 3, there is at most one

vertex, say t l , from which any disjoint path cannot be gener-
ated.

Proof: t l exists if and only if each of the (n−1) disjoint
paths from t l to MC k̄1k̄3 is blocked by the paths generated in
Steps 4 and 5, or by the target vertices inMC k̄1k3 andMC k̄1k̄3 .
Note that each of the paths generated in Steps 4 and 5 can
block at most one of the (n− 1) paths from t l after repeating
the process as in Step 3 of Case 2. Then, because of the edge
t l → t(2)l , t(2)l is one of the target vertices in MC k̄1k̄3 . Hence,
there is a disjoint path from each of other target vertices t i
(dn/2e + 1 ≤ i 6= l ≤ nt) to MC k̄1k̄3 because t l and t

(2)
l

cannot block two distinct paths from the vertex t i. �
Lemma 8: Procedure 3 generates n disjoint paths in MCn

in τ (n−2, dn/2e)+τ (n−2, bn/2c)+O(n3{λ(n−2)}2) time.
The lengths of the generated paths are at mostmax{λ(n−2)+
4, dn/2e + 3}.

Proof: dn/2e edges chosen in Step 2 are disjoint from
one another from Lemma 2. They are also disjoint from
other source vertices from S ∩ MC k̄1k3 = ∅. dn/2e paths
generated in Steps 3 and 4 are disjoint from one another from
the hypothesis of induction. They are also disjoint from the
edges chosen in Step 2 except for s(1)i (1 ≤ i ≤ dn/2e).
Moreover, the paths are disjoint from other target vertices.
The paths t i  t ′i of lengths at most 2 generated in Step
5 are disjoint from one another. They are also disjoint from
the edges chosen in Step 2 and the paths generated in Steps
3 and 4. If either of the paths t l → t(1)l (= sdn/2e+1) or
t l → t(1)l → t(1,2)l is generated, it is disjoint from other
paths generated so far. Also, it is disjoint from other target
vertices.Moreover, if the edge sdn/2e+1→ s(2)

dn/2e+1 is chosen,
it is disjoint from other source vertices because sdn/2e+1 is
chosen such that s(2)

dn/2e+1 6∈ S in Step 1. (ns − dn/2e − 1)

edges si → s(2)i (dn/2e + 2 ≤ i ≤ ns) chosen in Step 6
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FIGURE 8. Length of paths generated by Algorithm S2S in 0-MCn.

FIGURE 9. Length of paths generated by Algorithm S2S in 1-MCn.

are disjoint from one another from Lemma 2. Also, these
edges are disjoint from other source vertices because si were
chosen such that s(2)i 6∈ S in Step 1. In Step 7, if the path
s′
dn/2e+1  t(1,2)l is generated by Algorithm SP, it is disjoint

from other paths except for s′
dn/2e+1 and t(1,2)l because it is

obtained by excluding the vertices s′i (dn/2e + 2 ≤ i ≤ n).
Also, (bn/2c − 1) edges s′i → s′(1)i chosen in Step 7 are
disjoint from one another from Lemma 2. In addition, from
S ∩ MC k̄1k̄3 = ∅, the edges are disjoint from other source
vertices. bn/2c ( or (bn/2c−1)) paths generated in Step 8 are
disjoint from one another from the hypothesis of induction.
Because these paths are all included in MC k̄1k̄3 , they are
disjoint from other paths generated in Steps 2 to 7 except for
some of their terminal vertices.

It takes O(n2) time to find (ns − dn/2e) vertices si(∈ S ∩
MCk1k2 ) such that s(2)i 6∈ S in Step 1. Step 2 takes O(n) time
to choose dn/2e edges. Step 3 takes τ (n − 2, dn/2e) time to
generate dn/2e paths of lengths at most λ(n − 2) from the
hypothesis of induction. In Step 4, it takes O(n2λ(n − 2))
time to check if t l (dn/2e + 1 ≤ l ≤ nt) are included in
Qi (1 ≤ i ≤ dn/2e) or not, and it takes O(n) time to delete
the sub paths, update Qm’s, and exchange the indices. From
the proof of Lemma 6, Step 5 takes O(n3{λ(n− 2)}2) time to
generate paths t i  t ′i paths of lengths at most 2 in Step 5.

FIGURE 10. Average execution time of Algorithm S2S in 0-MCn.

FIGURE 11. Average execution time of Algorithm S2S in 1-MCn.

It takes O(1) time to choose the edge t l → t(1)l . It takes O(n)
time to check if t(1)l ∈ S ∩ M k1k2 or not. It takes O(1) time
to choose the edges t(1)l → t(1,2)l and sdn/2e+1 → s(2)

dn/2e+1.
Step 6 takes O(n) time to choose (ns − dn/2e − 1) edges.
In Step 7, Algorithm SP takes O(n) time to generate the path
s′
dn/2e+1  t(1,2)l of length at most dn/2e. Also, it takes
O(n2) time to update this path such that it does not include
the vertices s′

dn/2e+2, s
′

dn/2e+3, . . . , s
′
n It takes O(n) time to

choose (bn/2c − 1) edges. Step 8 takes τ (n − 2, bn/2c) (or
τ (n− 2, bn/2c − 1)) time to generate bn/2c (or (bn/2c − 1))
paths of lengths at most λ(n − 2) from the hypothesis of
induction.

Hence, in total, it takes τ (n−2, dn/2e)+τ (n−2, bn/2c)+
O(n3{λ(n − 2)}2) time to generate n disjoint paths si  tki
(1 ≤ i ≤ n, {k1, k2, . . . , kn} = {1, 2, . . . , n}) whose lengths
are at most max{λ(n− 2)+ 4, dn/2e + 3}. �
Lemma 9: Procedure 4 generates n disjoint paths in MCn

in τ (n−2, dn/2e)+τ (n−2, bn/2c)+O(n2) time. The lengths
of the generated paths are at most λ(n− 2)+ 2.

Proof: The dn/2e edges chosen in Step 2 are disjoint
from one another from Lemma 2. Also, from S∩MC k̄1k3 = ∅,
they are disjoint from other source vertices. The (ns−dn/2e)
edges si → s(2)i (dn/2e + 1 ≤ i ≤ ns) chosen in Step 3 are
also disjoint from one another from Lemma 2. Moreover,
they are disjoint from other source vertices because si were
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FIGURE 12. Pseudo code of Algorithm SP.

chosen such that s(2)i 6∈ S in Step 1. Similarly, the bn/2c edges
chosen in Step 5 and the (dn/2e − nt) edges chosen in Step 6
are disjoint from one another and disjoint from other target
vertices. The dn/2e paths generated in Step 7 are disjoint from
one another from the hypothesis of induction. These paths are
disjoint from the edges chosen in Steps 2, 3, 5, and 6 except
for some of their terminal vertices because the paths are all
included in MC k̄1k3 . The bn/2c paths generated in Step 8 are
disjoint from one another from the hypothesis of induction.
These paths are disjoint from the edges chosen in Steps 2, 3,
5, and 6, and the paths generated in Step 7 except for some
of their terminal vertices because the paths are all included in
MCk1k̄2 .
In Step 1, it takes O(n2) time to find (ns − dn/2e) vertices

si(∈ MCk1k2 ) that satisfy s(2)i 6∈ S. Step 2 takes O(n) time to
choose dn/2e edges. Step 3 takes O(n) time to choose (ns −
dn/2e) edges. In Step 4, it takes O(n2) time to find (dn/2e −
nt) vertices t i(∈ MC k̄1k̄3 ) that satisfy t(2)i 6∈ D. Step 5 takes
O(n) time to choose bn/2c edges. Step 6 takes O(n) time to
choose (dn/2e − nt) edges. Step 7 takes τ (n− 2, dn/2e) time
to generate dn/2e paths of lengths at most λ(n− 2) from the
hypothesis of induction. Step 8 takes τ (n− 2, bn/2c) time to

generate bn/2c paths of lengths at most λ(n − 2) from the
hypothesis of induction.

Therefore, the time complexity of Procedure 4 is τ (n −
2, dn/2e)+τ (n−2, bn/2c)+O(n2) and the maximum length
of the generated paths is λ(n− 2)+ 2. �
Theorem 1: For a set of n vertices S = {s1, s2, . . . , sn} and

a set of n vertices T = {t1, t2, . . . , tn} in MCn, Algorithm
S2S generates n disjoint paths Pi: si  tki (1 ≤ i ≤
n, {k1, k2, . . . , kn} = {1, 2, . . . , n}). The time complexity
τ (n, n) of S2S is O(n6), and the maximum path length λ(n)
is 2n− 2.

Proof: From Lemmas 4 to 9, the generated paths are
disjoint. Also, λ(n) = 2n− 2 from λ(n) = λ(n− 1)+ 2 and
λ(2) = 2. Then, τ (n, n) = O(n6) from τ (n, n) = τ (n−1, g)+
τ (n− 1, n− g)+ O(n3{λ(n− 1)}2) and τ (n, 1) = O(n). �

V. COMPUTER EXPERIMENT
To evaluate the average performance of Algorithm S2S, we
have conducted a computer experiment as follows.
Step 1: For each of n (1 ≤ n ≤ 62), repeat Steps 2 and 3

100,000 times.
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Step 2: Choose a set of n distinct vertices S and a set of
n distinct vertices T in 0-MCn and 1-MCn. Note that it is
allowed to make S and T overlapped (S ∩ T 6= ∅).
Step 3: Apply S2S to S and T , and measure the execution

time and the path lengths.
Figs. 8 and 9 show the lengths of the paths generated

by our algorithm in 0-MCn and 1-MCn, respectively. From
these figures, we can observe that there is not a significant
difference between 0-MCn and 1-MCn. Also, the theoretical
upper bound of themaximumpath length is attainedwith only
small n, and there is a large gap between the upper bound
and the maximum lengths of the paths actually generated by
Algorithm S2S. Moreover, the average path length is almost
equal to n/3.

Figs. 10 and 11 show the average execution times of our
algorithm in 0-MCn and 1-MCn, respectively. From these fig-
ures, we can observe that there is not a significant difference
between 0-MCn and 1-MCn and the average execution times
are approximately converging to O(n2).

VI. CONCLUSION AND FUTURE WORKS
In this paper, we proposed a polynomial-order time algorithm
for the set-to-set disjoint paths problem in n-Möbius cubes.
Its time complexity is O(n6) and the maximum path length
is 2n− 2. These results show that our algorithm outperforms
the algorithm proposed by Kaneko et al. [57] regarding both
the time complexity and the path length. We also conducted
a computer experiment and showed that the maximum path
length is about n/2, the average path length is about n/3, and
the average execution time isO(n2). From these experimental
results, the maximum lengths and the average lengths of gen-
erated paths are almost equal to the diameter and the average
distance of the Möbius cube, respectively, and the average
execution time complexity is O(n2), which is necessary to
find n shortest paths in an n-Möbius cube. Hence, we can
conclude that our algorithm is not only theoretically correct
but also practically useful on average in massively parallel
systems.

Future works include theoretical analysis of the maximum
path length and the average performance of the algorithm.
Also, improvement of the algorithm to generate shorter paths
in smaller execution time is also interesting for us.
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APPENDIX
ALGORITHM SP
We give a pseudo code of Algorithm SP in Fig. 12. Note that
ei = (e1, e2, . . . , en) (1 ≤ i ≤ n) and Ei = (E1,E2, . . . ,En)
(1 ≤ i ≤ n) where ej = 0 if j 6= i and ej = 1 if j = i, and
Ej = 0 if j < i and Ej = 1 if j ≥ i. For a source vertex s and a
target vertex t in an n-Möbius cube, we call the function SP
by SP(s, t). Then, SP will return one of the shortest paths
from s to t.
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