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ABSTRACT With the crisis of energy and environment, the integrated energy systems (IES) have a bright
prospect in future energy reform owing to the excellent economic and environmental performance. The
IES combines a large amount of renewable energy (RE), which guarantees its economic and environmental
benefits. Many uncertainties of RE threaten the performance of IES. How to promote RE consumption under
strong uncertainties is a crucial problem in the scheduling of IES. In this work, a two-stage scheduling
strategy for IES combining day-ahead scheduling and real-time scheduling is proposed to guide the system
operation. The stage of day-ahead scheduling can obtain the optimal scheduling scheme one day in advance
based on the forecast data of RE, and the stage of real-time scheduling is introduced to cope with the
uncertainties of RE. The model of IES is established based on the energy hub (EH), and the entire strategy
is implemented on this model. The model integrates various energy conversion equipment to give full play
to the advantages of coordination and complementation of IES. The improved particle swarm optimization
(IPSO) is proposed as the solution algorithm of the whole strategy, which improves the traditional PSO
through random nonlinearity change inertia weight strategy and best solution perturbation operator (BSPO).
Compared with the traditional PSO, IPSO hasmore excellent performance for solving IES schedulingmodel.
Finally, different schemes under different situations are compared.

INDEX TERMS Integrated energy systems, renewable energy consumption, scheduling strategy, optimal
scheduling, particle swarm optimization.

I. INTRODUCTION
The gradual scarcity of fossil energy reserves and the increas-
ingly severe environmental pollution have forced people to
reform the existing energy consumption patterns, and IES is
an essential technical support for this reform [1], [2], [3], [4],
and [5]. Many existing studies have achieved many excel-
lent results in energy trading [6], system modeling [7], and
technology integration [8] of IES. However, there are still
many challenges in the development process of IES.
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In order to achieve the aim of energy conservation and
emission reduction, a large amount of RE has been incor-
porated into IES [9]. The large-scale incorporation of RE is
beneficial to the development of IES, and IES is also charac-
terized by its ability to integrate a large amount of RE [10].
However, RE is full of uncertainties in the process of gener-
ating power, making it difficult for IES to fully use RE [11].
Therefore, as the amount of RE incorporated into the IES
increases, more abandoned energy (AE) appears during the
operation of IES, which is a severe waste of RE [12].
If AE can be fully consumed, the economic and environmen-
tal benefits of IES must be significantly improved.
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Therefore, effectively improving RE consumption is a cru-
cial and challenging problem. In recent years, scholars have
proposed many methods to improve energy efficiency and
RE consumption, which can be roughly divided into energy
conversion methods, optimization model methods, forecast-
ing methods, and scheduling strategy.

The energy conversion methods are represented by the
power to heat, power to hydrogen, and power to gas (P2G).
Literatures [13], [14] investigate the scheduling scheme that
transfers abandoned wind and solar energy to electric boilers
for heating. However, using electric-thermal coupling equip-
ment to dissipate energy will be restricted by seasons and
regions, which makes these schemes don’t have universal
applicability. Hydrogen conversion technology is employed
to convert redundant wind and solar power in [15]. However,
this technology is still immature and cannot be used on a
large scale in the short term. Advanced technology named
P2G is used in [16], [17]. If the energy provided by RE
in the system exceeds expectations, the redundant part can
be converted into gas through two steps: water electrolysis
and methanation. However, the cost of energy conversion
equipment applied in P2G is relatively high, which increases
the construction cost of the system while increasing RE con-
sumption. On the other hand, P2G technology requires the
construction of a large number of gas storage devices, which
makes this technology unsuitable for small energy systems.

Methods of optimization model can also improve RE con-
sumption. Literature [18] uses robust optimization to obtain a
day-ahead scheduling scheme, which is always robust under
the uncertainties of wind and solar power and considers sys-
tem safety. However, schemes gained by robust optimization
are too conservative to schedule, and some economic benefits
may be sacrificed. In literature [19], the novel data-driven
uncertainty set is employed in the novel two-stage robust
optimization model to solve the dispatch problem of multiple
microgrids. However, an effective method to overcome the
uncertainties of RE has not been proposed, and the phe-
nomenon of energy abandonment caused by uncertainty still
exists.

Improving the accuracy of forecast data can also reduce
the uncertainties of RE. In literature [20], a weather-based
hybrid method for day-ahead hourly forecasting for photo-
voltaic (PV) units is presented. In [21], a forecasting method
for the output power of wind turbines (WTs) and PV units
is proposed, which can achieve good prediction accuracy in
different weather conditions. Although the forecast accuracy
has significantly improved, there is still a gap between the
forecast and the actual operation. Therefore, the phenomenon
of energy abandonment cannot be wholly avoided.

The methods of scheduling strategy can improve RE con-
sumption by guiding the operation of IES. Scheduling strate-
gies can be divided into three categories according to the
time scale: day-ahead scheduling, intra-day scheduling, and
real-time scheduling. The above three types of scheduling
strategies can be implemented individually or in combination.
Literatures [22], [23] implement day-ahead scheduling alone,

which can achieve optimal results based on the forecast data
of RE, but does not fully consider the uncertainties of RE.
In literature [24], day-ahead and intra-day scheduling are
combined to reduce the quantity of AE. However, the short-
term forecast data used in intra-day scheduling still deviates
from the actual operation scenario. Literature [25] combines
scheduling strategies of all three time scales and achieves
good results, but the process is complicated and requires
many computing resources.

Considering preview problems, a two-stage scheduling
strategy that can effectively improve energy efficiency and
RE consumption of IES under the uncertainties is proposed.
The strategy we proposed focuses on the RE consumption
rate (RECR) in IES. Through this strategy, the RECR is
increased, and the amount of AE is reduced, which can sig-
nificantly improve the economic and environmental benefits
of IES. The original contribution of this work, which differs
from the existing studies, can be summarized as follows.

1) The two-stage scheduling strategy can effectively
improve energy efficiency and RE consumption by
implementing the real-time scheduling stage. This
scheduling strategy avoids the high cost and immature
energy conversion technologies and is suitable for all
levels of IES. The scheduling scheme output by the
two-stage scheduling strategy is closer to the require-
ments of the objective function, and the scheme will
not be too conservative.

2) Day-ahead scheduling is combined with real-time
scheduling. The scheme obtained from day-ahead
scheduling can guide the scheduling work one day
in advance, and the scheme obtained in the real-time
scheduling stage is used for adjustment based on the
day-ahead scheduling scheme. This process fully con-
siders the uncertainties of RE, which are not bound
by the accuracy of forecast data. The whole strategy
process is concise, which will not occupy too many
computing resources.

3) The IPSO is proposed to solve IES scheduling model.
A random nonlinear strategy is introduced to change
the inertia weight. The BSPO is added to the iterative
formula, which can ensure that the solution will not fall
into local optimal under the condition of many system
balance equation constraints. Through improvement,
the probability of falling into a local optimum of IPSO
is lower than that of PSO, so the solution accuracy of
IPSO is higher. Moreover, the improvement has not
destroyed the original advantages of PSO.

The structure of the rest of this paper is organized as
follows: Section II designs an IES frame and establishes
an IES model based on EH model theory. In Section III,
the two-stage scheduling strategy for IES that combines
day-ahead scheduling and real-time scheduling is proposed,
which can cope with the uncertainties of RE. Section IV
validates the superiority of this scheduling strategy
through cases study. Finally, the conclusion is summarized
in Section V.
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II. SYSTEM MODEL
The EH model is used to build the IES model, which can
illustrate the conversion and distribution of multiple energy
sources [26], [27]. The EH model consumes energy at its
entrance, such as power and natural gas infrastructure, and
provides necessary energy services at its output side. For the
EH model, energy is converted in different forms through
coupling devices, including combined heat and power (CHP)
units, electric boilers (EB), and absorption chillers [28], [29],
[30], and [31].

A variety of energy coupling devices are selected in the IES
model of this paper. The schematic diagram of the IES model
is shown in Fig. 1. The system model contains two kinds of
RE: wind energy and solar energy. The energy conversion
relationship in the IES model can be described as follows:
Ptl,e
Qtl,c
Qtl,h
V t
l,g

 =

1− vec − veb ηchp,e 1 1
u2vecCOPec u2ηchp,hCOPac 0 0
u1vebηeb,h u1

(
ηchp,h + ηgb,h

)
0 0

0 1− vchp − vgb 0 0



×


Ptbuy,e
V t
buy,g

Ptw,f ,e
Pts,f ,e

 (1)

wherePtl,e,Q
t
l,c,Q

t
l,h andV

t
l,g represent the electric load (EL),

cooling load (CL), heating load (HL), and gas load (GL) in
themodel respectively;Ptbuy,e andV

t
buy,g represent the electric

power purchased from the upper grid and the gas purchased
from the upper pipeline; Ptw,f ,e and P

t
s,f ,e represent the elec-

tric power generated by WTs and PV units that only consider
forecast data; vec, veb, vchp and vgb are the distribution coef-
ficients of electric air conditioners (EC), EBs, CHP units and
gas boilers (GB) respectively; ηchp,e and ηchp,h are the electric
power generation coefficient and heating coefficient of CHP
units respectively; ηeb,h and ηgb,h are the heating coefficient
of EBs and GBs respectively; COPec and COPac are the
refrigeration coefficients of ECs and absorption chillers (AC)
respectively; u1 and u2 are the binary variable representing
the season.

FIGURE 1. The structure diagram of the IES model.

III. SCHEDULING STRATEGY OF IES
The scheduling strategy proposed in this paper is divided
into two stages: the day-ahead scheduling stage and the real-
time scheduling stage. In the following text, the day-ahead
scheduling stage will be referred to as Stage 1, and the real-
time scheduling stage (actual operation stage) will be referred
to as Stage 2.

The steps of Stage 1 are implemented before the IES actual
operation one day in advance. In Stage 1, the day-ahead
forecast data of RE is inputted into IES scheduling model.
Then through the solution algorithm, the day-ahead optimal
scheme can be obtained. The uncertainties of RE are not
considered in Stage 1. The day-ahead forecast data of RE is
used as the only input data of the scheduling model, so it
is assumed that the day-ahead forecast data is the actual
output of the RE, and the scheduling model is regarded
as a deterministic scheduling model. Therefore, in the day-
ahead optimal scheduling scheme, IES can rely on various
energy conversion equipment to maximize RE consumption
under a specific objective function in a deterministic scenario
composed of forecast data.

The day-ahead optimal scheduling scheme is proposed
one day before the actual operation of the IES, allowing
sufficient preparation time and guiding the pre-scheduling
preparations. However, forecast data based on historical data
and weather data may deviate from the actual scenario. If no
adjustment is made during the actual operation of IES, and
the output of each unit in IES is allocated according to the
day-ahead optimal scheme, a large amount of energy will be
abandoned. Therefore, combining real-time scheduling based
on the day-ahead scheme is necessary to achieve a better
effect on RE consumption.

The steps of Stage 2 are implemented concurrently with
the IES actual operation, which applies real-time scheduling
when the day-ahead forecast data deviates from the actual
scenario. Therefore, both the output of Stage 1 and the devi-
ation between forecast data and the actual scenario are the
inputs of Stage 2. There will be two situations when the
deviation occurs: power redundancy or power shortage.
The electric power balance is considered foremost under the
above two situations. The electric power balance will be
regained by adjusting the power generation of CHP units,
power purchase from the upper grid, and power consumption
of EBs or ECs, based on the day-ahead optimal scheme. As an
essential energy conversion equipment in the system, the
CHP units act as a heat source in winter, and cooperate with
ACs to act as a cold source in summer. While regaining the
balance of electric power to change the power generation of
CHP units, its heating power output has also changed. There-
fore, the heating/cooling power units must also be adjusted
at this stage. The scheme in Stage 2 belongs to a scheme
of heating/cooling determined by electricity. Fig. 2 illustrates
the scheduling principle of Stage 2.

When there is a shortage of electric power in a certain
period, the shortage part will be supplemented by increasing
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the power generation of CHP units and the power purchase
from the upper grid. The power consumption of EBs/ECs will
also be reduced to ease the pressure of increasing generation
and purchase. When there exists redundant electric power in
a certain period, by reducing the generation of CHP units and
power purchase from the upper grid, the redundant part can be
consumed as much as possible, and the power consumption
of EBs/ECs will also be increased to ease the pressure of
reducing generation and purchase. The amount of electric
power adjustment and deviation must always be balanced
to ensure the overall balance of electric power supply and
demand. The change in heating power caused by adjusting
the electric power must also be balanced to ensure the over-
all heating balance. In the real-time scheduling process of
Stage 2, the balance of electric and heating power must be
ensured simultaneously.

Fig. 3 exhibits the process of the two-stage scheduling
strategy for IES. The two stages are performed one after
the other in sequence. Stage 1 is performed first, which is
performed before the IES actual operation one day in advance
and based on day-ahead forecast data. Stage 2 is performed
after Stage 1 and is synchronized with the IES actual opera-
tion, which belongs to real-time scheduling. Stage 2 requires
two inputs: the optimal scheme output from Stage 1, the
deviation between the actual scenario during IES operation
and the forecast data applied in Stage 1.

The optimal scheme output from Stage 1 can only be
obtained after Stage 1 is wholly completed. Therefore,
Stage 2must be implemented after Stage 1. By comparing and
subtracting between the data obtained in the actual scenario
during IES operation and the forecast data applied in Stage 1,
another input of Stage 2 called deviation part can be obtained.
The deviation part can be straightforward to show how much
the output scheme of Stage 2 needs to be adjusted based
on the output scheme of Stage 1. Inputting the deviation part
into IPSO of Stage 2, the output scheme of Stage 2 can be
obtained faster. These two schemes are not independent of
each other. The real-time scheduling scheme (output scheme
of Stage 2) can be regarded as the adjustment scheme of
the day-ahead optimal scheduling scheme (output scheme
of Stage 1).

The scheduling model of both stages is solved by IPSO,
and its details will be introduced in Section III (A). The objec-
tive functions and constraints of the scheduling model of each
stage are introduced in Sections III (B) and (C) respectively.

A. IPSO ALGORITHM
PSO is a stochastic optimization algorithm inspired by the
social interaction between birds or fish [32], [33], and [34].
PSO is recognized as an intelligent algorithm with concise
coding. [35]. In addition, the fast convergence speed of PSO is
also very suitable for solving the optimal scheduling problem
of IES [36].

The scheduling model describes the nonlinear problem,
which contains many constraints and complicated objective
functions. The scheduling problem of IES contains many

FIGURE 2. The scheduling principle of Stage 2.

FIGURE 3. The process of two-stage scheduling strategy for IES.

equality constraints relating to the balance of IES, which
makes the particles fall into the local optimal solution eas-
ily during the iterative process, and thus cannot obtain the
proper optimal solution. Therefore, this paper improves PSO
by introducing a random nonlinearity change inertia weight
strategy and adding the BSPO to propose IPSO, effectively
reducing the probability of particles falling into local optimal.

In the PSO, the information carried by each particle is a
potential solution. Personal optimal solutions and global opti-
mal solution are obtained through continuous iteration, and
the global optimal solution obtained after the iteration will
be the optimal solution output by the algorithm. In order to
achieve the optimal solution, the iterative formula of particle
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velocity and position are described as follows:
vNcur+1i = ωvNcuri + c1r1

(
pNcurbest,i − x

Ncar
i

)
+ c2r2

(
gNcerbest − x

Ncur
i

)
xNcur+1i = xNcuri + vNcuri

(2)

where Ncur is current iteration number; vNcuri and xNcuri are the
velocity and position of particle i at iteration number Ncur ;
pNcurbest,i is personal optimal solution of particle i at iteration
number Ncur ; g

Ncur
best is global optimal solution at iteration

number Ncur ; c1 and c2 represent acceleration constants;
r1 and r2 are random numbers distributed between 0 and 1;
ω is inertia weight, which is used to balance local exploration
and global exploration.

The change strategy of ω in PSO is linear change, which
will cause the particles not diversified enough and easily fall
into the local optimal. Therefore, the random nonlinearity
strategy is introduced to change the inertia weight:
ω = ωmax − (ωmax − ωmin)×

[
1− 2/

(
e2Ncur/N + 1

)]
rand(Ncur ) > 0.45
ω = ωmin − (ωmax − ωmin)×

[
2Ncur/N − (Ncur/N )2

]
rand(Ncur ) ≤ 0.45

(3)

where rand(Ncur ) is the random probability of the current
iteration number; ωmax and ωmin are the maximum and mini-
mum values ofω respectively. This strategy makes the adjust-
ment range of ω gradually compressed and shows a nonlinear
decreasing trend as a whole. The addition of probability
judgment enhances the randomness of ω under the overall
decreasing trend prevents ω from falling into a monotonous
evolution trend and improves the diversity of particles.

b = bmax −
bmax − bmin

cur∑
n=1

Nn

(N − Ncur ) (4)

In order to further prevent the algorithm from falling into
the local extremum during the iterative process, the BSPO b
has been proposed to adjust personal optimal solutions and
the global optimal solution among all particles, so that the
particles can escape from the local optimal area, and the
search range is expanded. The iterative formula of b can be
determined as (4), whereN is themaximum iteration number;
bmax and bmin are the maximum and minimum values of
b respectively. The b decreases nonlinearly as the iteration
number increases, which allows particles to perform a large-
scale search in the early stage of iteration and a precise search
in the later stage of iteration. The addition of b significantly
increases the probability of finding the optimal solution. The
iterative formula of vi and xi after the introduction of the best
solution perturbation operator becomes:

vNcur+1i = ωvNcuri + c1r1
(
b× pNcurbest,i − x

Ncar
i

)
+ c2r2

(
b× gNcerbest − x

Ncur
i

)
xNcur+1i = xNcuri + vNcuri

(5)

B. DAY-AHEAD OPTIMAL SCHEME
1) OBJECTIVE
Considering the minimization of the economic cost and envi-
ronmental cost of the IES as the objective of scheduling, the
formulation of the objective can be described as follows:

C1
obj = min

{
α1(Cope + C1

e + Cg)+ α2C
1
env

}
(6)

Cope = C1
chp + u1Cgb + u1Ceb + u2Cec + u2Cac (7)

C1
e =

T∑
t=1

cteP
t
buy,e1t (8)

Cg =
T∑
t=1

cgV t
buy,g (9)

C1
env = cCO2ηCO2

T∑
t=1

(
V t
chp,g + u1V

t
gb,g

)
(10)

where Cope is the operating cost of the system; C1
e is the cost

of electric power purchase in Stage 1; Cg is gas purchase;
C1
env is the cost of environmental protection in Stage 1, which

is set to achieve the aim of energy saving and emission reduc-
tion; α1 and α2 are the weight coefficient of the economic
benefits and environmental benefits. Equation (7) shows the
operating cost of the system, where C1

chp is the cost of CHP
units in Stage 1; Ceb, Cec, Cgb and Cac are the cost of EBs,
ECs, GBs and ACs respectively. Equation (8) describes the
cost of power purchase of the system in Stage 1, where cte is
the electricity price of the upper grid for each period;
Ptbuy,e is the power bought from the upper grid for each period;
1t is the length of the period. Equation (9) describes the
cost of gas purchase of the system in Stage 1, where cg is
the price of gas bought from the upper pipeline; V t

buy,g is the
amount of gas bought from the upper pipeline for each period.
Equation (10) shows the environmental protection cost of the
system in Stage 1, where cco2 is the cost of CO2 emission
per unit volume; ηco2 is the emission coefficient of CO2 per
unit volume of gas; V t

CHP,g and V
t
GB,g are gas consumption of

CHP units and GBs for each period respectively.

2) CONSTRAINTS
Equations (11)-(13) describe the output constraints of each
unit, where M and K are the collections of all cooling units
and heating units respectively; Ptchp,e andQ

t
m,c/Q

t
k,h represent

the output of CHP units and a certain kind of cooling/heating
units at t; Pmax

chp,e and Qmax
m,c /Q

max
k,h are the maximum output

of CHP units and a certain kind of cooling/heating units.
Equations (14)-(16) represent the output rising constraints
of each unit, where rPmax

chp,e, rQ
max
m,c and rQmax

k,h are the max-
imum output rising value of CHP units and a certain kind
of cooling/heating units. Equations (17) and (18) represent
the energy exchange constraints, where Pmax

buy,e and V
max
buy,g are

the maximum value of power purchase and gas purchase in a
period respectively. The following equations describe system
power balance constraints. Equation (19) represents electric
power balance. Equation (20) represents cooling or heating
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power balance. Equation (21) describes the balance of gas
supply and demand. The process of IPSO for the day-ahead
optimal scheme is described in Table 1.

0 6 Ptchp,e 6 Pmax
chp,e (11)

0 6 Qtm,c 6 Qmax
m,c , m ∈ M (12)

0 6 Qtk,h 6 Qmax
k,h , k ∈ K (13)

Ptchp,e − P
t−1
chp,e 6 rPmax

chp,e (14)

Qtm,c − Q
t−1
m,c 6 rQmax

m,c , m ∈ M (15)

Qtk,h − Q
t−1
k,h 6 rQmax

k,h , k ∈ K (16)

0 6 Ptbuy,e 6 Pmax
buy,e (17)

0 6 V t
buy,g 6 Vmax

buy,g (18)

Ptbuy,e + P
t
chp,e + P

t
w,f ,e + P

t
s,f ,e

= Ptl,e + u1P
t
eb,e + u2P

t
ec,e (19)

Qtm,c − Q
t−1
m,c 6 rQmax

m,c , m ∈ M (20)

Qtk,h − Q
t−1
k,h 6 rQmax

k,h , k ∈ K (21)

TABLE 1. Process of IPSO in Stage 1.

C. REAL-TIME SCHEDULING SCHEME
1) OBJECTIVE
The objective of this stage is still to pursue the minimum
cost of the system. This stage is to adjust the day-ahead
optimal scheme based on the deviation between forecast
data and the actual scenario. Therefore, the parameters in
the objective function are composed of the variables of spe-
cific costs, which can also improve computational efficiency.

The objective function of Stage 2 is as follows:
C2
obj = min

{
1Cchp +1Ce +1Cenv

}
1Cchp = C2

chp − C
1
chp

1Ce = C2
e − C

1
e

1Cenv = C2
env − C

1
env

(22)

where 1Cchp, 1Ce and 1Cenv are the amount of changes
between Stage 1 and Stage 2, in Cchp, Ce and Cenv. The cost
of ECs or EBs will also change in the real-time schedul-
ing scheme, but their changes are mainly dependent on the
changes of CHP units. Therefore, the cost variation of ECs or
EBs is a passive parameter, which is not needed to consider
in the objective function.

TABLE 2. Process of IPSO in Stage 2.

2) CONSTRAINTS
The constraints of the schedulingmodel in this stage as shown
in (23)-(27). They indicate the balance between the electric
power adjustment and the deviation, heating power balance
during electric power adjustment, and the maximum output
rising. Where 1Ptchp,e, 1P

t
buy,e, 1P

t
eb,e and 1Ptec,e are the

amount of change in Ptchp,e, P
t
buy,e, P

t
eb,e and P

t
ec,e. P

t
w,a,e and

Pts,a,e represent the actual output of WTs and PV units. The
right side of the equation in (23) expresses the deviation of
electric power bymaking the difference between forecast data
and the actual output. Equation (24) describes that the heating
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power changes caused by adjusting the electric power distri-
bution should also be balanced. Equations (25)-(27) describe
the maximum output rising constraints of CHP units, ECs,
and EBs respectively. The process of IPSO for the real-time
scheduling scheme is shown in Table 2.∣∣∣1Ptbuy,e∣∣∣+ ∣∣∣1Ptchp,e∣∣∣+ u1 ∣∣1Pteb,e∣∣+ u2 ∣∣1Ptec,e∣∣

=

∣∣∣(Ptw,f ,e + Pts,f ,e)− (Ptw,a,e + P
t
s,a,e)

∣∣∣ (23)

u1ηchp,h

∣∣∣1Ptchp,e∣∣∣
ηchp,e

+ u2ηchp,hCOPac

∣∣∣1Ptchp,e∣∣∣
ηchp,e

= u1ηeb,h
∣∣1Pteb,e∣∣+ u2COPec ∣∣1Ptec,e∣∣ (24)

(Ptchp,e +1P
t
chp,e)− (Pt−1chp,e +1P

t−1
chp,e) 6 rPmax

chp,e (25)

(Qtec,c +1Q
t
ec,c)− (Qt−1ec,c +1Q

t−1
ec,c) 6 rQmax

ec,c (26)

(Qtec,c +1Q
t
ec,c)− (Qt−1ec,c +1Q

t−1
ec,c) 6 rQmax

ec,c (27)

At the algorithm level, the particle swarms initialization,
particle iteration and termination conditions of IPSO of
stage 1 and IPSO of stage 2 are uniform. The differences
between IPSO of stage 1 and IPSO of stage 2 are in terms
of inputs, outputs and parameter settings. The differences in
inputs and outputs are illustrated in Fig. 3. The difference in
parameter settings will be explained in Section IV (A).

IV. CASES STUDY
In this section, the effectiveness of the proposed scheduling
strategy is verified. The economic benefits and environmental
benefits under different weights are discussed. The perfor-
mance of IPSO is analyzed depending on the comparisonwith
the other three algorithms.

A. OVERVIEW OF THE CASES
The scheduling strategy proposed in this paper aims to
increase RE consumption in IES under the premise of ensur-
ing system benefits. Therefore, the evaluation indicators of
this strategy are system benefits, amount of AE, and RECR.
Four cases are set in this section. The basic situation of the
four cases is as follows:

1) Case 1: Without the two-stage strategy proposed in
this paper. The day-ahead optimal scheduling scheme
is obtained directly from the day-ahead forecast data of
RE, and this scheme is implemented during the actual
operation. In the process of obtaining the day-ahead
optimal scheduling scheme, the weight of the economic
benefits α1 is 0.01, and the weight of the environmental
benefits α2 is 0.99. The uncertainties of RE will cause
deviations between the optimal scheduling scheme and
the actual scenario. When the electric power is redun-
dant, energy abandonment will occur.When the electric
power is short, it will be directly purchased from the
upper grid. This is the general scheduling method in
the current energy system.

2) Case 2: The two-stage scheduling strategy proposed
in this paper is applied. Getting the day-ahead optimal

scheduling scheme in Stage 1. The real-time schedul-
ing scheme is used to adjust the day-ahead optimal
scheduling scheme to overcome the uncertainties of RE
in Stage 2. In the process of obtaining the day-ahead
optimal scheduling scheme, the weight of the economic
benefits α1 is 0.01, and the weight of the environmental
benefits α2 is 0.99.

3) Case 3:Except the weight distribution of economic and
environmental benefits is different. Other conditions
are the same as in Case 2. In the process of obtaining
the day-ahead optimal scheduling scheme, the weight
of the economic benefits α1 is 0.03, and the weight of
the environmental benefits α2 is 0.97.

4) Case 4:Except the weight distribution of economic and
environmental benefits is different. Other conditions
are the same as in Case 2. In the process of obtaining
the day-ahead optimal scheduling scheme, the weight
of the economic benefits α1 is 0.003, and the weight of
the environmental benefits α2 is 0.997.

FIGURE 4. Input data of IES model: (a)Forecast data and actual output of
WTs and PV units. (b) Electric load and Heating load in the IES.

The weight distribution in Cases 1 and 2 is to keep Cope
and C1

env at the same order of magnitude, which considers the
economic and environmental benefits comprehensively.
The weight distribution in Case 3 attaches more importance
to the economic benefits. The weight distribution in Case 4
attaches more importance to the environmental benefits.

The above cases are set according to the control variable
method, and Case 2 is the most critical. Cases 1 and 2 use the
same weight distribution but different scheduling strategies.
Comparing Cases 1 and 2 mainly analyzes the advantages
of the two-stage scheduling strategy proposed in this paper.
Cases 2, 3 and 4 apply the strategy proposed in this paper
but with different weight distributions. Discussing Cases 2, 3
and 4 together is to analyze the results under different weight
distributions, which can illustrate the characteristics of the
strategy under different weights, and can also reflect the
applicability of the strategy under different requirements.
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Different regions have different requirements for system
scheduling, so discussing IES performance under differ-
ent requirements can also make the displayed results more
valuable.

Although the current technology for forecasting RE output
has made significant progress, in order to simulate a more
uncertain scenario to verify the effectiveness of the strategy,
we still assume that there is a large deviation between forecast
data and the actual output. All four cases include two types of
RE:WTs and PV units. Fig. 4 (a) shows the curves of forecast
data and the actual output ofWTs and PV units at each period
of a day. We assumed that the actual output of WTs and PV
units is based on the forecast data and fluctuates randomly
within a range of (-30%, 30%). The simulation scenario we
selected is a typical winter day in northern China, with EL and
HL included in the IES [18]. Fig. 4 (b) describes the curves
of EL and HL in the IES.

In terms of parameters related to the cost of IES, the gas
price cg in cases is 0.5 USD/m3; cCO2 is set to 10 USD/t and
ηCO2 is set to 2 × 10−3 t/m3; the electricity price at each
period of the day is not constant, 1:00-7:00 and 21:00-24:00
is 7 × 10−2 USD/kWh; at 8:00 and 13:00-15:00 is
14 × 10−2 USD/kWh; 9:00-12:00 and 16:00-20:00 is 21 ×
10−2 USD/kWh. Table 3 shows the parameters of the main
energy conversion equipment.

In terms of parameters related to IPSO, in Stage 1 of
Cases 2, 3 and 4, S is set to 400, D is set to 7, N is set
to 200, c1 and c2 are both set to 2.0, ωmax and ωmin are set
to 0.9 and 0.3 respectively, bmax and bmin are set to 0.8 and
0.3 respectively; in Stage 2 of Cases 2, 3 and 4, S is set
to 300, D is set to 6, N is set to 160, and the other parameter
settings are uniform with Stage 1. Since Case 1 does not
apply the strategy proposed in this paper. The only one stage
in the scheduling work of Case 1 is also solved by IPSO,
and the parameter settings are consistent with Stage 1 of
Cases 2, 3 and 4.

For the algorithm, the solution space and value in
Stage 2 are smaller than that of Stage 1, so Stage 2 is more
accessible to solve than Stage 1. Therefore, under the premise
of ensuring that the optimal result can be output, S and N
in Stage 2 can be smaller than that of Stage 1. Moreover,
Stage 2 belongs to real-time scheduling, which is performed
synchronously with the actual operation of IES. Therefore,
IPSO of Stage 2 requires higher computation speed, and
smaller S and N are beneficial to improve the computation
speed. D represents the amount of information carried by a
single particle. Since GB does not participate in the adjust-
ment in Stage 2, the particles in Stage 2 carry one less piece
of information than particles in Stage 1. Therefore, D of
Stage 2 is one less than that of Stage 1.

In terms of simulation equipment, all simulations are per-
formed on a laptop computer with an i7 3.40 GHz CPU
and 16 GB RAM. In terms of software for simulations, the
programming of system model, scheduling strategy and solv-
ing algorithm is based on MATLAB R2021a and Yalmip.
MATLAB R2021a is also used to solve the entire model.

B. ANALYSIS OF STRATEGY EFFECTIVENESS
Before the actual scheduling work, based on the forecast
data of RE, the day-ahead optimal scheduling scheme of
Cases 1 and 2 is obtained. There is no difference between the
day-ahead optimal schemes derived from the two cases.

FIGURE 5. Day-ahead optimal scheme of Case 1 and Case 2:
(a) Scheduling scheme of electric power. (b) Scheduling scheme of
heating power.

The EL peaked at 11:00 and 19:00. According to the
climatic characteristics of typical winter days, the HL was
high at night and low during the daytime. The schedul-
ing scheme of electric units in each period is shown in
Fig. 5 (a). The scheduling scheme of heating units is shown in
Fig. 5 (b). Since the day-ahead scheme comprehensively con-
siders the economic and environmental benefits, AE appears
but the amount is tiny. There will be a small amount of AE
in 2:00-4:00.

Day-ahead scheduling stage of Cases 1 and 2 is identical,
but the subsequent process of the two cases is totally different.
For Case 1, the day-ahead scheme will be directly applied for
the IES actual operation. For Case 2, the day-ahead scheme
is just the result of Stage 1, and the day-ahead scheme will
undergo real-time scheduling in Stage 2.

The day-ahead scheme obtained before the actual opera-
tion can be used as an important basis for the subsequent
stage. Due to the forecast data of RE cannot be completely
accurate, the situation in the actual operation may be different
from the day-ahead scheduling scheme.

Fig. 6 shows the actual operation of Case 1. In Case 1,
due to the uncertainties of RE in the actual operation, the
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TABLE 3. Parameters of the main energy conversion equipment.

TABLE 4. Changes in the power purchase plans of Case 1 and Case 2.

FIGURE 6. Actual operation scheme of electric power in Case 1.

amount of AE is much larger than that in the day-ahead
scheme. In Fig.6, AE appears in 1:00-5:00, 12:00-16:00 and
22:00-24:00, and the power purchase plan in the day-ahead
scheme is changed in 7:00-10:00 and 18:00-20:00. For
Case 1, when forecast data deviates from the actual scenario,
the power of each unit in the IES is still distributed according
to the day-ahead scheme. Therefore, when the actual output
of RE is greater than forecast data, the redundant part is
directly abandoned, and when the actual output of RE is
less than forecast data, the power purchase is increased to
supplement. In Case 1, the energy demands in IES can be
guaranteed, but a large amount of RE will be abandoned, and
the power purchase plan also has to be changed frequently.
The above reasons seriously affect the economic and envi-
ronmental benefits.

Fig. 7 shows the scheduling scheme in Stage 2 of Case 2.
Comparing Fig. 5 (a) and (b) with Fig. 7 (a) and (b), the
adjustments based on the day-ahead scheme in Stage 2 can
be seen. Except for the four periods where forecast data
is identical to the actual scenario (6:00, 11:00, 17:00 and
21:00), the output distributions of the rest periods are adjusted
based on the day-ahead scheme. The AE in 2:00 and 3:00
in the day-ahead scheme is absorbed in Stage 2 through the
flexible adjustments in real-time scheduling. The AE at 4:00

in the day-ahead scheme is reduced but not fully absorbed
in Stage 2. The AE appears at 5:00 in Stage 2, which did
not appear in the day-ahead scheme. The reason why the
AE at 4:00 is not fully absorbed and the new AE appears
at 5:00, is that the deviation between forecast data and the
actual scenario is too large, which exceeds the adjustment
capability of the CHP units and EBs. With the full use of the
capacity of the CHP units and EBs, only a tiny amount of AE
occurred at 4:00 and 5:00. If there is no real-time scheduling
at 4:00 and 5:00, the AE under such a large deviation will be
larger.

Comparing Fig. 6 and Fig. 7 (a), the advantages of the
strategy proposed in this paper can be seen. During the peri-
ods of electrical power redundancy (1:00-5:00, 12:00-16:00
and 22:00-24:00), the scheme in Case 1 cannot consume the
redundant power, and a large amount of AE occurs. The
scheme in Case 2 is obtained by the strategy proposed in
this paper, which makes AE only appear in two periods
(4:00 and 5:00). During the periods of electrical power
redundancy (7:00-10:00 and 18:00-20:00), the scheme in
Case 1 will increase power purchase directly to fill the
shortage. This way requires frequent changes to the power
purchase plan, which has a negative impact on the eco-
nomic benefits of IES. Since the strategy proposed in this
paper gives priority to increasing the output of CHP units
to fill the shortage, the power purchase plan of Case 2 is
only changed in 18:00-20:00. The reason why applying the
strategy proposed in this paper still needs to change the
plan, is that the shortage exceeds the adjustment range of
CHP units.

Fig. 7 (c) exhibits the details of deviations and variations of
electric power. The AE in Stage 1 and Stage 2 is different, the
AE in Stage 1 represents the energy planned to be abandoned
in the day-ahead scheme, and the AE in Stage 2 represents the
energy already abandoned during the actual operation. There-
fore, when the above two both appear in Fig. 7 (c), we use
AE1 to represent the AE in Stage 1 and AE to represent the
AE in Stage 2. Fig. 7 (d) exhibits the details of variations in
heating power. It can be seen from Fig. 7 (c) and (d) that the
electric and heating power can be kept balanced under the
real-time scheduling of Stage 2.
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FIGURE 7. Scheduling scheme of Case 2: (a) Scheduling scheme of electric power in Stage 2 (Actual operation scheme). (b) Scheduling scheme of
heating power in Stage 2 (Actual operation scheme). (c) Details of deviations and variations of electric power. (d) Details of variation of heating
power.

Table 4 compares the changes in the power purchase plans
in Case 1 and Case 2. It can be seen from Table 4 that power
purchase plan changes in Case 1 are more frequent than that
in Case 2. Fig. 10 shows the curve comparisons of RECR in
the same stage of different cases. By comparing the RECR
curves of Case 1 and Case 2 in Fig. 10, the same conclusion
can be drawn as comparing the amount of AE. Case 1 and
Case 2 have the same day-ahead scheme obtained in Stage 1,
and therefore share one curve in Fig. 10 (a). However, in
Stage 2, the RECR of Case 1 in the actual operation dete-
riorates seriously due to the lack of real-time scheduling.
In contrast, the RECR of Case 2 in the actual operation can
maintain a high level. Fig. 11 shows the curve comparisons
of RECR in the same case at different stages. By observing
Fig. 11 (a) and (b), it can be further seen that Case 1 cannot
maintain a good RECR in the actual operation without the
strategy proposed in this paper. Case 2 applies the strategy
proposed in this paper, and the RECR is further improved by
real-time scheduling in Stage 2.

Through the above comparisons, it can be seen that apply-
ing the strategy proposed in this paper can reduce the number
of periods that AE occurs, reduce the total amount of AE, and
reduce the number of periods that the power purchase plan
is changed. These advantages can significantly improve the
RE consumption and benefits of IES.

C. ANALYSIS OF RESULTS UNDER DIFFERENT WEIGHT
DISTRIBUTIONS
It can be seen in (6)-(10) that the economic benefit is mainly
related to the operating cost of the units and the cost of

purchase from the upper system of IES, and the environmen-
tal benefit is mainly associated with the carbon emission of
the units in IES. Under the same load, if the amount of AE is
small and the RECR is high, then the output of CHP and GB
in the system will be relatively reduced, so that the carbon
emissions will be reduced, and the environmental benefits
will be better. On the contrary, the environmental benefits will
be worse. Therefore, the environmental benefits are closely
related to the amount of AE and RECR.

Based on different weight distributions of the economic
and environmental benefits, Case 3 attaches more importance
to the economic benefits and Case 4 attaches more impor-
tance to the environmental benefits. The scheme in Stage 1 of
Cases 3 and 4 is shown in Fig. 8 (a) and Fig. 9 (a). Comparing
Fig. 5 (a), Fig. 8 (a) and Fig. 9 (a), it can be seen that
Case 3 has themost AE in the day-ahead scheme, noAE in the
day-ahead scheme of Case 4, andAE in the day-ahead scheme
of Case 2 was between Case 3 and Case 4. In the 1:00-8:00
of the scheme, the EL is low, and the HL and WTs output are
high. The capacity of EBs in the IES model is sufficient to
satisfy HL alone, and increasing the output of EBs can not
only fit the higher HL, but also consume the output of WTs.
However, the extensive cost of EBswill increase the operating
cost of the IES, which affects the economic benefits of IES.
In Case 3, which focuses more on the economic benefits, the
day-ahead scheme output by the scheduling strategy does not
sacrifice the economic benefits in order to consumemore RE.
On the contrary, Case 4 focuses more on the environmen-
tal benefits, the day-ahead scheme uses the capacity of EB
to completely absorb RE, which can significantly improve
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FIGURE 8. Scheduling scheme of electric power in Case 3: (a) Scheduling
scheme in Stage 1 (Day-ahead scheduling scheme). (b) Scheduling
scheme in Stage 2 (Actual operation scheme).

the environmental benefits of IES. Comparing Fig. 7 (a),
Fig. 8 (b) and Fig. 9 (b), it can be seen that the conclusion of
comparing the three cases in Stage 1 still applies in Stage 2.
Case 3 still has the most AE in Stage 2, but under the effect
of real-time scheduling, the period with AE has dropped
from 8 to 4. Case 4 still completely consumes RE under
the real-time scheduling of Stage 2. The amount of AE of
Case 2 in Stage 2 is still between Case 3 and Case 4.

A conclusion can be obtained by comparing the RECR
of the three cases in Fig. 10, which is the same as the con-
clusion obtained by comparing the AE amounts. The RECR
of Case 3, which attaches more importance to the economic
benefits, is the lowest among the three in both stages. While
the RECR of Case 4, which attaches more importance to
the environmental benefits, remains at the highest level in
both stages. By observing Fig. 11, it can be seen that, except
that RECR of Case 4 is kept at the highest level in both
stages, RECR of the other two cases under different weight
distributions both have improvement through the real-time
scheduling. The difference in the magnitude of the improve-
ment is due to the different weight distributions.

The cost of each case is shown in Table 5. The rank of the
economic benefits is Cases 3 better than Case 2 better than
Case 4. The rank of the environmental benefits is Cases 4 bet-
ter than Case 2 better than Case 3. Whatever economic or

FIGURE 9. Scheduling scheme of electric power in Case 4: (a) Scheduling
scheme in Stage 1 (Day-ahead scheduling scheme). (b) Scheduling
scheme in Stage 2 (Actual operation scheme).

environmental benefits, Cases 2, 3, and 4 with the strategy
proposed in this paper are better than Case 1.

Different weight distributions can reflect different schedul-
ing requirements. Therefore, through the above analyses, the
operation characteristics of the strategy proposed in this paper
under different scheduling requirements can be seen, and it
can be derived that the strategy proposed in this paper is
suitable for various scheduling requirements. The scheme
obtained in Case 3 is suitable for some areas where environ-
mental problems are not severe and require high economic
benefits. The scheme obtained in Case 4 is suitable for areas
with severe environmental pollution and regards environmen-
tal protection as the primary goal.

TABLE 5. Cost of each case.

D. ANALYSIS OF IPSO PERFORMANCE
In order to reflect that IPSO has more excellent performance
for solving the scheduling model, four intelligent algorithms
have been selected to observe their performance in solving
IES scheduling model, and compare their computation cost
and time under the same running situation.We selected IPSO,
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FIGURE 10. Curve comparisons of RECR in the same stage of different
cases: (a) Curve comparison of RECR in Stage 1 (Day-ahead scheduling).
(b) Curve comparison of RECR in Stage 2 (Actual operation).

PSO, GA (genetic algorithm) and GWO (gray wolf opti-
mization), which are commonly applied to solve scheduling
models.

The indicators for evaluating the performance of different
algorithms when solving the scheduling model include con-
vergence speed and calculation accuracy. The comparison of
the above indicators is illustrated in Fig. 12. The purpose of
comparing computation cost and time under the same running
situation is to demonstrate the operating characteristics and
requirements of each algorithm, and these comparison results
can provide a reference for the staff who choose this strat-
egy. The data of computation cost and time are summarized
in Table 6.

The process of using the algorithm to solve the schedul-
ing model in this work is: finding the optimal scheme for
each period according to the time sequence, and the opti-
mal scheme for each period is combined to form the whole
optimal scheme, so that the algorithm optimization is imple-
mented on every period. In order to be fair in the comparison,
the first period of Stage 1 in Case 2 is selected as the com-
mon solution object of the four algorithms. The termination
conditions of the iteration are uniformly set as: reaching
the maximum iteration number (N ), and N is uniformly set
to 400. In fact, IPSO does not need to set such a large N due
to the fast convergence speed. But in order to be consistent
with other algorithms in the comparison, the N of IPSO is
also set to 400.

Compared with PSO, the convergence speed of IPSO and
PSO is close. The convergence speed of PSO is very fast, but
it falls into the local optimal and fails to obtain the global
optimal solution, while the IPSO solution result is the global
optimal solution. The solution accuracy of GWO is better
than that of PSO, but the solution accuracy and convergence
speed are inferior to IPSO. Based on the crossover and muta-
tion of its process, the solution result of GA is closest to the

FIGURE 11. Curve comparisons of RECR in the same case at different
stages: (a) Curve comparison of RECR in Case 1. (b) Curve comparison of
RECR in Case 2. (c) Curve comparison of RECR in Case 3. (d) Curve
comparison of RECR in Case 4.

global optimal solution, but it has not reached the accuracy
of IPSO, and the convergence speed of GA is too slow, which
will affect the process of scheduling work. From the above
analysis, it can be seen that after the improvement of this
paper, the IPSO has an excellent solution accuracy for IES
scheduling model based on the reduced probability of falling
into local optimal. Moreover, the improvement of IPSO did
not affect its convergence speed, which is also particularly
important in scheduling work.

The data in Table 6 shows that the computation time of
IPSO is shorter than that of GA and GWO. However, due
to the addition of random nonlinearity change inertia weight
strategy and BSPO, the computation time of IPSO is slightly
longer than that of PSO. Since the solution object of four
algorithms is only one period, their calculation time in this
comparison is very short, and the difference is not obvious.
When solving the optimal result of multiple periods, the gap
in calculation time between each algorithm will be enlarged.

Since the utilization of CPU and RAM is constantly fluctu-
ating during the running process, the utilization of CPU and
RAM in Table 6 are the average values during the running
process. The utilization of CPU and RAM of IPSO is lower
than that of GA and GWO, which means that the compu-
tation cost of IPSO is lower than that of GA and GWO,
which can reflect that IPSO does not have high requirements
on the configuration of computing equipment. However, the
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FIGURE 12. Performance of solving IES scheduling model of IPSO, PSO,
GA and GWO.

TABLE 6. Computation cost & time of IPSO, PSO, GA and GWO.

computation cost of IPSO is slightly higher than that of PSO,
which is also due to the addition of random nonlinearity
change inertia weight strategy and BSPO. The computation
cost of IPSO is not much higher than that of PSO, which is
entirely acceptable. Therefore, the computation cost required
by IPSO is fully applicable to most computing equipment.

V. CONCLUSION
As one of the main methods to solve the problems of IES,
an intelligent scheduling strategy can significantly improve
energy efficiency and RE consumption. In this work, focusing
on the problem of deviation between the day-ahead scheme
and the actual scenario caused by the uncertainties of RE,
a two-stage scheduling strategy for IES is proposed.

Firstly, the model of IES contains many energy conversion
equipment is established, which can distribute energy reason-
ably through flexible energy conversion. This model is the
basis for implementing the strategy. Secondly, the scheduling
strategy is proposed, which consists of two stages: day-ahead
scheduling and real-time scheduling. Day-ahead scheduling
stage can output the day-ahead optimal scheduling scheme
one day in advance, which can provide early guidance for the
preparation of IES operation. The real-time scheduling stage
is synchronized with the actual operation of IES and outputs
the real-time scheduling scheme, which is the adjustment
based on the day-ahead scheme. Thirdly, by introducing ran-
dom nonlinearity change inertia weight strategy and BSPO,
IPSO is proposed as the solution algorithm of the scheduling
model.

Finally, the results and analyses in Cases Study demon-
strate the conclusions as follows:

1) Under the premise of ensuring system benefits, the
strategy proposed in this paper can effectively improve
RE consumption and reduce the amount of AE.

2) The strategy performs different operating characteris-
tics under different weight distributions, and is appli-
cable under different scheduling requirements.

3) IPSO has better solution accuracy and faster solution
speed when compared with the other three algorithms,
which makes it has better performance for solving IES
scheduling model.

In future work, we plan to consider the possible failures
in IES operation process, analyze the impact of the potential
failures, and propose a strategy to obtain an optimal scheme
after failures.

REFERENCES
[1] Z. Xu, G. Han, L. Liu, M. Martinez-Garcia, and Z. Wang, ‘‘Multi-energy

scheduling of an industrial integrated energy system by reinforcement
learning-based differential evolution,’’ IEEE Trans. GreenCommun. Netw.,
vol. 5, no. 3, pp. 1077–1090, Sep. 2021.

[2] J. Tian, R. Xu, Y. Wang, and Z. Chen, ‘‘Capacity attenuation mechanism
modeling and health assessment of lithium-ion batteries,’’Energy, vol. 221,
Apr. 2021, Art. no. 119682.

[3] Y. Ding, Q. Xu, Y. Xia, J. Zhao, X. Yuan, and J. Yin, ‘‘Optimal dispatching
strategy for user-side integrated energy system considering multiservice
of energy storage,’’ Int. J. Electr. Power Energy Syst., vol. 129, Jul. 2021,
Art. no. 106810.

[4] C. Yang and Y. Zhu, ‘‘Two-time scaled identification for multi-energy
systems,’’ Control Eng. Pract., vol. 113, Aug. 2021, Art. no. 104845.

[5] S. Zhang, W. Gu, S. Yao, S. Lu, S. Zhou, and Z. Wu, ‘‘Partitional decou-
pling method for fast calculation of energy flow in a large-scale heat and
electricity integrated energy system,’’ IEEETrans. Sustain. Energy, vol. 12,
no. 1, pp. 501–513, Jan. 2021.

[6] V.-H. Bui, A. Hussain, Y.-H. Im, andH.-M. Kim, ‘‘An internal trading strat-
egy for optimal energy management of combined cooling, heat and power
in building microgrids,’’ Appl. Energy, vol. 239, pp. 536–548, Apr. 2019.

[7] C. Lingmin, W. Jiekang, W. Fan, T. Huiling, L. Changjie, and X. Yan,
‘‘Energy flow optimization method for multi-energy system oriented to
combined cooling, heating and power,’’ Energy, vol. 211, Nov. 2020,
Art. no. 118536.

[8] J. Chang, Z. Li, Y. Huang, X. Yu, R. Jiang, R. Huang, and X. Yu, ‘‘Multi-
objective optimization of a novel combined cooling, dehumidification
and power system using improved M-PSO algorithm,’’ Energy, vol. 239,
Jan. 2022, Art. no. 122487.

[9] E. S. Parizy, S. Choi, and H. R. Bahrami, ‘‘Grid-specific co-optimization
of incentive for generation planning in power systems with renewable
energy sources,’’ IEEE Trans. Sustain. Energy, vol. 11, no. 2, pp. 947–957,
Apr. 2020.

[10] Y. Liu, S. Xie, Q. Yang, and Y. Zhang, ‘‘Joint computation offload-
ing and demand response management in mobile edge network with
renewable energy sources,’’ IEEE Trans. Veh. Technol., vol. 69, no. 12,
pp. 15720–15730, Dec. 2020.

[11] W. Jiang, K. Yang, J. Yang, R. Mao, N. Xue, and Z. Zhuo, ‘‘A multiagent-
based hierarchical energy management strategy for maximization of
renewable energy consumption in interconnected multi-microgrids,’’ IEEE
Access, vol. 7, pp. 169931–169945, 2019.

[12] Z. Guo, W. Wei, L. Chen, Z. Y. Dong, and S. Mei, ‘‘Impact of energy
storage on renewable energy utilization: A geometric description,’’ IEEE
Trans. Sustain. Energy, vol. 12, no. 2, pp. 874–885, Apr. 2021.

[13] J. Li, Y. Fu, C. Li, J. Li, Z. Xing, and T. Ma, ‘‘Improving wind power inte-
gration by regenerative electric boiler and battery energy storage device,’’
Int. J. Electr. Power Energy Syst., vol. 131, Oct. 2021, Art. no. 107039.

[14] Y. Ma, Y. Yu, and Z. Mi, ‘‘Accommodation of curtailed wind power by
electric boilers equipped in different locations of heat-supply network for
power system with CHPs,’’ J. Modern Power Syst. Clean Energy, vol. 9,
no. 4, pp. 930–939, 2021.

[15] H. Mehrjerdi, R. Hemmati, M. Shafie-khah, and J. P. S. Catalao,
‘‘Zero energy building by multicarrier energy systems including hydro,
wind, solar, and hydrogen,’’ IEEE Trans. Ind. Informat., vol. 17, no. 8,
pp. 5474–5484, Aug. 2021.

[16] Z. Zeng, T. Ding, Y. Xu, Y. Yang, and Z. Dong, ‘‘Reliability evaluation for
integrated power-gas systems with power-to-gas and gas storages,’’ IEEE
Trans. Power Syst., vol. 35, no. 1, pp. 571–583, Jan. 2020.

83348 VOLUME 10, 2022



X. Liu et al.: Two-Stage Scheduling Strategy for IES Considering RE Consumption

[17] X. Liu, S. Xie, C. Geng, and H. Cao, ‘‘Operation strategy for commu-
nity integrated energy systems considering wind and solar power con-
sumption,’’ in Proc. 40th Chin. Control Conf. (CCC), Shanghai, China,
Jul. 2021, pp. 5764–5769.

[18] S. Lu, W. Gu, S. Zhou, S. Yao, and G. Pan, ‘‘Adaptive robust dis-
patch of integrated energy system considering uncertainties of electricity
and outdoor temperature,’’ IEEE Trans. Ind. Informat., vol. 16, no. 7,
pp. 4691–4702, Jul. 2020.

[19] B. Tan, H. Chen, X. Zheng, and J. Huang, ‘‘Two-stage robust optimization
dispatch for multiple microgrids with electric vehicle loads based on a
novel data-driven uncertainty set,’’ Int. J. Electr. Power Energy Syst.,
vol. 134, Jan. 2022, Art. no. 107359.

[20] H.-T. Yang, C.-M. Huang, Y.-C. Huang, and Y.-S. Pai, ‘‘A weather-based
hybrid method for 1-day ahead hourly forecasting of PV power output,’’
IEEE Trans. Sustain. Energy, vol. 5, no. 3, pp. 917–926, Jul. 2014.

[21] M. J. Sanjari, H. B. Gooi, and N.-K. C. Nair, ‘‘Power generation forecast
of hybrid PV-wind system,’’ IEEE Trans. Sustain. Energy, vol. 11, no. 2,
pp. 703–712, Apr. 2020.

[22] Y. Sun, B. Zhang, L. Ge, D. Sidorov, J. Wang, and Z. Xu, ‘‘Day-ahead
optimization schedule for gas-electric integrated energy system based on
second-order cone programming,’’ CSEE J. Power Energy Syst., vol. 6,
no. 1, pp. 142–151, Mar. 2020.

[23] Y. Yin, T. Liu, L. Wu, C. He, and Y. Liu, ‘‘Day-ahead risk-constrained
stochastic scheduling of multi-energy system,’’ J. Modern Power Syst.
Clean Energy, vol. 9, no. 4, pp. 720–733, 2021.

[24] X. Liu, S. Xie, C. Geng, J. Yin, G. Xiao, andH. Cao, ‘‘Optimal evolutionary
dispatch for integrated community energy systems considering uncertain-
ties of renewable energy sources and internal loads,’’ Energies, vol. 14,
no. 12, p. 3644, Jun. 2021.

[25] J. Zhang, D. Qin, Y. Ye, Y. He, X. Fu, J. Yang, G. Shi, and H. Zhang,
‘‘Multi-time scale economic schedulingmethod based on day-ahead robust
optimization and intraday MPC rolling optimization for microgrid,’’ IEEE
Access, vol. 9, pp. 140315–140324, 2021.

[26] Y. Allahvirdizadeh, S. Galvani, and H. Shayanfar, ‘‘Data clustering
based probabilistic optimal scheduling of an energy hub considering
risk-averse,’’ Int. J. Electr. Power Energy Syst., vol. 128, Jun. 2021,
Art. no. 106774.

[27] M. Jadidbonab, B. Mohammadi-Ivatloo, M. Marzband, and P. Siano,
‘‘Short-term self-scheduling of virtual energy hub plant within thermal
energy market,’’ IEEE Trans. Ind. Electron., vol. 68, no. 4, pp. 3124–3136,
Apr. 2021.

[28] M. Alipour, K. Zare, and M. Abapour, ‘‘MINLP probabilistic scheduling
model for demand response programs integrated energy hubs,’’ IEEE
Trans. Ind. Informat., vol. 14, no. 1, pp. 79–88, Jan. 2018.

[29] E. Mokaramian, H. Shayeghi, F. Sedaghati, A. Safari, and H. H. Alhelou,
‘‘An optimal energy hub management integrated EVs and RES based
on three-stage model considering various uncertainties,’’ IEEE Access,
vol. 10, pp. 17349–17365, 2022.

[30] M. Kermani, E. Shirdare, A. Najafi, B. Adelmanesh, D. L. Carni, and
L. Martirano, ‘‘Optimal self-scheduling of a real energy hub considering
local DG units and demand response under uncertainties,’’ IEEE Trans.
Ind. Appl., vol. 57, no. 4, pp. 3396–3405, Jul. 2021.

[31] B. Farshidian and A. R. Ghahnavieh, ‘‘A comprehensive framework for
optimal planning of competing energy hubs based on the game theory,’’
Sustain. Energy, Grids Netw., vol. 27, Sep. 2021, Art. no. 100513.

[32] A. Ahilan, G. Manogaran, C. Raja, S. Kadry, S. N. Kumar, C. A. Kumar,
T. Jarin, S. Krishnamoorthy, P. M. Kumar, G. C. Babu, N. S. Murugan,
and Parthasarathy, ‘‘Segmentation by fractional order Darwinian particle
swarm optimization based multilevel thresholding and improved loss-
less prediction based compression algorithm for medical images,’’ IEEE
Access, vol. 7, pp. 89570–89580, 2019.

[33] L. Zhang and L. Zhao, ‘‘High-quality face image generation using par-
ticle swarm optimization-based generative adversarial networks,’’ Future
Gener. Comput. Syst., vol. 122, pp. 98–104, Sep. 2021.

[34] T. Dutta, S. Dey, S. Bhattacharyya, and S. Mukhopadhyay, ‘‘Quantum
fractional order Darwinian particle swarm optimization for hyperspectral
multi-level image thresholding,’’ Appl. Soft Comput., vol. 113, Dec. 2021,
Art. no. 107976.

[35] T. Dutta, S. Dey, S. Bhattacharyya, and S. Mukhopadhyay, ‘‘Quantum
fractional order Darwinian particle swarm optimization for hyperspectral
multi-level image thresholding,’’ Appl. Soft Comput., vol. 113, Dec. 2021,
Art. no. 107976.

[36] R. Wang, K. Hao, L. Chen, T. Wang, and C. Jiang, ‘‘A novel hybrid
particle swarm optimization using adaptive strategy,’’ Inf. Sci., vol. 579,
pp. 231–250, Nov. 2021.

XINGHUA LIU (Senior Member, IEEE) received
the B.Sc. degree from Jilin University, Changchun,
China, in 2009, and the Ph.D. degree in automation
from the University of Science and Technology of
China, Hefei, China, in 2014.

From 2014 to 2015, he was invited as a Visiting
Fellow with RMIT University, Melbourne, VIC,
Australia. From 2015 to 2018, he was a Research
Fellowwith the School of Electrical and Electronic
Engineering, Nanyang Technological University,

Singapore. He has been a Professor with the Xi’an University of Technology,
Xi’an, China, since 2018. His current research interests include integrated
energy systems, intelligent systems, cyber-physical systems, robotic sys-
tems, state estimation and control, and autonomous vehicles.

SHENGHAN XIE (Student Member, IEEE)
received the B.S. degree in electrical engineering
from the Xi’an University of Architecture and
Technology, Xi’an, in July 2020. He is currently
pursuing theM.S. degreewith theXi’anUniversity
of Technology, Xi’an, China.

His research interests include renewable energy
consumption and failure state operation of inte-
grated energy systems.

JIAQIANG TIAN received the B.S. degree in
automation from Xi’an Technological University,
Xi’an, China, in 2016, and the Ph.D. degree in con-
trol science and engineering from the University of
Science and Technology of China, Hefei, China,
in 2021.

He has been joining the Xi’an University of
Technology as a Lecturer, since July 2021. His
research interests include energy storage model-
ing, fault diagnosis and energy management, and
optimal scheduling of integrated energy systems.

PENG WANG (Fellow, IEEE) received the
B.Sc. degree from Xi’an Jiaotong University,
Xi’an, China, in 1978, the M.Sc. degree from
the Taiyuan University of Technology, Taiyuan,
China, in 1987, and the M.Sc. and Ph.D. degrees
from the University of Saskatchewan, Saskatoon,
SK, Canada, in 1995 and 1998, respectively, all in
electrical engineering.

He is currently a Professor at Nanyang Tech-
nological University, Singapore. His research

interests include power system planning and operation, renewable energy
planning, solar/electricity conversion systems, and power system reliability
analysis. He served as an Associate Editor of the IEEE TRANSACTIONON SMART

GRID and a Guest Editor of Journal of Modern Power Systems and Clean
Energy for special issues on Smart Grids. He also served as an Associate
Editor of IEEE TRANSACTION ON POWER DELIVERY and the Guest Editor-in-
Chief of CSEE Journal of Power and Energy Systems for special issues on
Hybrid AC/DC Grids for Future Power Systems.

VOLUME 10, 2022 83349


