
Received 17 July 2022, accepted 31 July 2022, date of publication 8 August 2022, date of current version 26 August 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3197219

A New Pointwise Convolution in Deep Neural
Networks Through Extremely Fast and
Non Parametric Transforms
JOONHYUN JEONG , INCHEON CHO , EUNSEOP SHIN ,
AND SUNG-HO BAE , (Member, IEEE)
Department of Computer Science and Engineering, Kyung Hee University, Yongin-si 17104, Republic of Korea

Corresponding author: Sung-Ho Bae (shbae@khu.ac.kr)

This work was supported in part by the Institute of Information and Communications Technology Planning and Evaluation (IITP) Grant
funded by the Korea Government Ministry of Science and ICT (MSIT) under Grant 2022-0-00759 and, in part by the Institute of
Information and Communications Technology Planning and Evaluation (IITP) grant funded by the Korea Government Ministry of Science
and ICT (MSIT) Artificial Intelligence Innovation Hub under Grant 2021-0-02068.

ABSTRACT Some conventional transforms such as Discrete Walsh-Hadamard Transform (DWHT) and
Discrete Cosine Transform (DCT) have been widely used as feature extractors in image processing but rarely
applied in neural networks. However, we found that these conventional transforms can serve as a powerful
feature extractor in channel dimension without any learnable parameters in deep neural networks. This paper
firstly proposes to apply conventional transforms on pointwise convolution, showing that such transforms
can significantly reduce the computational complexity of neural networks without accuracy degradation on
various classification tasks and even on face detection task. Our comprehensive experiments show that the
proposed DWHT-based model gained 1.49% accuracy increase with 79.4% reduced parameters and 49.4%
reduced FLOPs compared with its baseline model on the CIFAR 100 dataset while achieving comparable
accuracy under the condition that 81.4% of parameters and 49.4% of FLOPs reduced on SVHN dataset.
Additionally, our DWHT-based model showed comparable accuracy with 89.2% reduced parameters and
26.5% reduced FLOPs compared to the baseline models on WIDER FACE and FDDB datasets.

INDEX TERMS Efficient deep neural network architecture, pointwise convolution, discrete Walsh-
Hadamard transform, discrete cosine transform.

I. INTRODUCTION
Large Convolutional Neural Networks (CNNs) [1]–[4], [5]
and automatic Neural Architecture Search (NAS) based net-
works [6]–[8] have evolved to show remarkable accuracy
on various tasks such as image classification [9], [10] and
object detection [11] by taking advantage of huge amount of
learnable parameters and computations. However, these large
number of weights and high computational costs enabled
only limited applications for mobile devices that are con-
strained by power consumption, memory space and compu-
tation costs [12].

With regard to solving these problems, [13]–[16] proposed
parameter and computation efficient blocks while maintain-
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ing almost same accuracy compared to other heavy CNN
models. All of these blocks utilized depthwise separable con-
volution which deconstructed the standard convolution sized
of (3 × 3 × C) into spatial information specific depthwise
convolution (3 × 3 × 1) and channel information specific
pointwise (1 × 1 × C) convolution. The depthwise sepa-
rable convolution achieved comparable accuracy compared
to standard spatial convolution with significantly reduced
parameters and FLOPs. These reduced resource requirements
made the depthwise separable convolution as well as point-
wise convolution (PC) more widely used in modern CNN
architectures.

Nevertheless, we point out that the existing PC layer is
still computationally expensive and occupies a large propor-
tion in the number of weight parameters [13]. Although the
demand toward the PC layer has been and will be growing
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exponentially in modern neural network architectures, there
have been a few studies on improving its efficiency.
[15] proposed a grouped version of PC layer which splits
a feature map into groups in terms of channel dimension,
for reducing number of learnable parameters. In a similar
manner, [17] presented a structured version of group PC
layer with divide and conquer algorithm by recursively halv-
ing feature maps in channel dimensions. However, these pre-
vious works require learnable parameters for the PC layer
(parametric-PC).

In this paper, we propose a new PC layer formulated by
non-parametric and extremely fast conventional transforms.
While deep neural networks are capable of extracting dis-
tinctive feature representations [18]–[23], the conventional
time-to-frequency transforms have importantly been used as
feature extractor in image processing and video compression
due to their ability to reduce dimensionality of signals by con-
centrating energy into the low-frequency regions [24], [25]
and to extract local features by decomposing image signals
into various texture types [26]. Also, there are fast transform
algorithms (e.g., Cooley-Tukey algorithm [27]) which sig-
nificantly reduce the computation complexity by reusing the
output of the previous step in butterfly-like pipeline architec-
tures.

We point out that, although the transform algorithms
have shown promising performance in feature representa-
tion and dimensionality reduction, they have hardly been
incorporated into CNNs [28]. In this paper, we aim to
answer following question: Can conventional transforms
(e.g. DiscreteWalsh-Hadamard Transform (DWHT) and Dis-
crete Cosine Transform (DCT)) which were frequently used
as spatial feature extractors [26], [29]–[31] also serve as
a feature extractor in channel dimension of deep neural
networks?

Through comprehensive experiments, we found that,
although both of these transforms do not require learnable
parameters, they can effectively capture the feature repre-
sentation in channel dimension. Specifically, without any
learnable parameters, orthogonality of these conventional
transforms helps to reduce feature representational bottle-
neck (See Section IV-C1). Therefore, proposed PC layer
equipped with these conventional transforms can sufficiently
extract feature information in channel dimension. Also, this
non-parametric property enables our proposed CNN mod-
els to be significantly compressed in terms of the number
of parameters, allowing CNNs to be applied in low-power
and complexity applications (i.e., efficient distributed train-
ing, less communication between server and clients), [32].
We note that especially DWHT is considered to be a good
replacement of the conventional PC layer, as it requires no
floating point multiplications but only additions and subtrac-
tions (i.e., multiplication with binarized weights in +1/− 1)
by which the computation overheads of PC layers can be
significantly reduced. Furthermore, DWHT can take a strong
advantage of its fast version where the computational com-
plexity of the floating point operations is reduced fromO(n2)

to O(n log n). These non-parametric and low computational
properties construct extremely efficient neural network from
the perspective of parameter and computation as well as
enjoying accuracy gain.

Our contributions are summarized as follows:
• We propose a new PC layer formulated with conven-
tional transforms which can significantly reduce com-
putational resources (memory usage, FLOPs).

• We demonstrate effectiveness of our proposed PC layer
compared to conventional PC layer in terms of accuracy
and computational resources on various classification
tasks and even on face detection task.

• We investigate the optimal block structure and network
hierarchy position for our prposed PC layer, along with
analysis on orthogonality, which helps to reduce feature
representation bottleneck.

II. RELATED WORK
A. DECONSTRUCTION AND DECOMPOSITION
OF CONVOLUTIONS
For reducing computational complexity of the existing
convolution methods, several approaches of rethinking and
deconstructing the naive convolution structures have been
proposed. [2] factorized a large sized kernel (e.g., 5× 5) in a
convolution layer into several convolution layers with small
sized (3×3) kernels. [33] pointed out the limitation of existing
convolution in the fixed receptive field. Consequently, they
introduced learnable spatial displacement parameters, show-
ing flexibility of dilation in the convolution layers. Based
on [33], [34] proved that the standard convolution can effec-
tively be deconstructed as a single PC layer with the spatially
shifted channels. Based on that, they proposed a very efficient
convolution layer, namely active shift layer, by replacing
spatial convolutions with shift operations.

It is worth noting that the existing PC layer takes the huge
proportion of computation and the number of weight param-
eters in modern lightweight CNN models [13], [14], [16].
Specifically, MobileNet-V1 [13] requires 94%, 74% of the
overall computational cost and the overall number of weight
parameters for the PC layer, respectively. Therefore, there
were attempts to reduce computational complexity of the PC
layer. [15] proposed ShuffleNet-V1 where the features are
decomposed into several groups over channels and the PC
operation was conducted for each group, thus reducing the
number of weight parameters and FLOPs by the number of
groups G. However, it was proved in [16] that the memory
access cost increases as G increases, leading to slower infer-
ence speed. Similarly to the aforementioned methods, our
work is to reduce computational complexity and the number
of weight parameters in a convolution layer. However, our
objective is more oriented on finding out mathematically effi-
cient algorithms based on fast divide and conquer algorithms
by utilizing the property of fixed harmonic kernels.

B. QUANTIZATION
In neural networks, quantization has been used to reduce the
number of bits in weights and/or activations. [35] applied
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8-bit quantization on weight parameters, which enabled con-
siderable speed-up with small drop of accuracy. [36] applied
16-bit fixed point representation with stochastic rounding.
Based on [37] which pruned the unimportant weight connec-
tions through thresholding the values of weight, [38] success-
fully integrated the pruning, 8 (or less) bit quantization and
huffman encoding. The extreme case of quantized networks
was evolved from [39], which approximated weights with the
binary (+1,−1) values. From [39] as the milestone, [40],
[41] constructed Binarized Neural Networks (BNN) which
stochastically binarize the real valued weights and activations
during training. These binarized weights and activations lead
to significantly fast run-time by replacing floating point mul-
tiplications with 1-bit XNOR operations.

Based on BNN [40], [41], a Local Binary CNN
(LBCNN) [42] was proposed that utilizes binarized
non-learnable weights in spatial convolution based on the
conventional local binary patterns [43], thus replacing mul-
tiplications with addition/subtraction operations in spatial
convolution. Ourwork shares some similarity to LBCNN [42]
in using binary fixed weight values. However, the local binary
patterns cannot be applied on the PC layers consisting of
much larger portion of the parameters and computation in
neural networks [13] compared to the spatial convolution lay-
ers. Also, applying good mathematical properties to reduce
computations (e.g., the harmonic property of DCT/DWHT
kernels) was not considered in LBCNN.

C. CONVENTIONAL TRANSFORMS
Several transform techniques have been applied for image
processing and compression [44]–[46]. Discrete Cosine
Transform (DCT) has been used as a powerful feature extrac-
tor [26]. For an N -point input sequence, the basis kernel of
DCT is defined as a list of cosine values as below:

Cm = [cos(
(2x + 1)mπ

2N
)], 0 ≤ x ≤ N − 1 (1)

where m is the index of a basis, and DCT captures higher
frequency information in the input signal as m increases.
This property led DCT to be widely applied in image/video
compression techniques that emphasize the powers of image
signals in low frequency regions [47].

Discrete Walsh Hadamard Transform (DWHT) is a very
fast and efficient transform by using only +1 and −1 ele-
ments in kernels. These binary elements in kernels allow
DWHT to compute without any multiplication operations
but addition/subtraction operations. Therefore, DWHT has
been widely used for fast feature extraction in many practical
applications, such as texture image segmentation [29], face
recognition [30], and video shot boundary detection [31].

Furthermore, DWHT can take advantage of a structured-
wiring-based fast algorithm (Algorithm 1, Figure 12) as well
as allowing very high efficiency in encoding the spatial infor-
mation [48]. The basis kernel matrix of DWHT is defined

using the previous kernel matrix as below:

HD
=

(
HD−1 HD−1

HD−1
−HD−1

)
, (2)

where H0
= 1 and D ≥ 1. In this paper, we denote HD

m as the
m-th row vector of HD in Eq. 2. Additionally, we adopt a fast
DWHT algorithm to reduce computational complexity of the
PC layer in neural networks, resulting in extremely fast and
efficient ones.

III. METHOD
We propose a new PC layer which is computed with conven-
tional transforms. The conventional PC layer can be formu-
lated as follows:

Zijm = W>m · Xij, 1 ≤ m ≤ M (3)

where (i, j) is the spatial index, and m is the output channel
index. In Eq. 3, N and M are the number of input and output
channels, respectively. Xij ∈ RN is a vector of input X at the
spatial index (i, j), and Wm ∈ RN is a vector of m-th weight
W in Eq. 3. For simplicity, the stride is set as 1 and the bias
is omitted in Eq. 3.
Our proposedmethod is to replace the learnable parameters

Wm with the bases in the conventional transforms. For exam-
ple, replacing Wm with HD

m in Eq. 3, we now can formulate
the newmultiplication-free PC layer using DWHT. Similarly,
the DCT basis kernels Cm in Eq. 1 can substitute for Wm in
Eq. 3, formulating another new PC layer using DCT. Note
that the normalization factors in the conventional transforms
are not applied in the proposed PC layer, because Batch
Normalization [49] performs a normalization and a linear
transform which can be viewed as a normalization in the
existing transforms.

The most important benefit of the proposed method comes
from the fact that the fast algorithms of the existing trans-
forms can be applied in the proposed PC layers for further
reduction of computation. Directly applying our proposed PC
layers yields computational complexity of O(N 2). Adopting
the fast algorithms, we can significantly reduce the computa-
tional complexity of the PC layer fromO(N 2) toO(N logN )
without any change of the computation results.

We demonstrate the pseudo-code of our proposed fast
PC layer using DWHT in Algorithm 1 based on the fast
DWHT structure shown in Figure 1. In Algorithm 1, for
logN iterations, the even-indexed channels and odd-indexed
channels are added and subtracted in an element-wise man-
ner, respectively. The resulting elements which were added
and subtracted are placed in the first N/2 elements and the
last N/2 elements of the input of next iteration, respec-
tively. In this computation process, each iteration requires
only N operations of addition and subtraction. Consequently,
Algorithm 1 yields complexity of O(N logN ) in only addi-
tion and subtraction. Compared to the existing PC layer
that requires complexity of O(N 2) in multiplication, our
method is extremely efficient compared to the conventional
PC layer in terms of computation costs (as shown in Figure 2)
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FIGURE 1. Entire architecture of our proposed fast DWHT-based PC layer.
xi denotes each of input feature map divided with channel dimension.
Each of feature map numbered with even and odd channels are summed
to be first half of output feature maps (i.e. sky blue shaded part) while
subtracted (i.e. red shaded part) to be the other half of output feature
maps. This structured addition and subtraction process is repeated log2n
times. Therefore, computational complexity reduces to O(nlog2n) without
any multiplication.

and power consumption of computing devices [50]. Note
that, similarly to fast DWHT, DCT can also be computed
fast with a butterfly architecture which recursively decom-
poses the N -point input sequence into two subproblems of
N/2-point DCT [51].

Compared to DWHT, DCT takes advantage of using more
natural shapes of cosine basis kernels, which tend to provide
better feature extraction performance through capturing the
frequency information. However, DCT inevitably needs mul-
tiplications for inner product between C and X vectors, and a
look up table (LUT) for computing cosine kernel bases which
can increase the processing time and memory access. On the
other hand, as mentioned, the kernels of DWHT consist
only of +1,−1 which allows for building a multiplication-
free module. Furthermore, any memory access towards ker-
nel bases is not needed if our structured-wiring-based fast
DWHT algorithm (Algorithm 1; Figure 12) is applied. Our
comprehensive experiments in Section III-A and III-B show
that DWHT is more efficient than DCT when being applied
in the PC layer in terms of trade-off between the computation
cost and accuracy.

Note that, for securing more general formulation of our
proposed PC layer, we padded zeros along the channel axis if
the number of input channels is less than that of output chan-
nels while truncating the output channels when the number
of output channels shrink compared to that of input channels
as shown in Algorithm 1.

Figure 1 shows the architecture of the fast DWHT algo-
rithm described in Algorithm 1. This structured-wiring-based
architecture ensures that the receptive field of each output

Algorithm 1 Pointwise Convolution Using Fast DWHT

Input: Input feature map X ∈ RB×N×H×W

Output: Output feature map X ∈ RB×M×H×W

1: n← log2 N
2: if N<M then
3: ZeroPad1D(X , axis=1) F pad zeros along channel

axis
4: end if
5: for i← 1 to n do
6: o← X [:, :: 2, :, :] F Odd numbered feature maps
7: e← X [:, 1 :: 2, :, :] F Even numbered feature maps
8: X [:, : N/2, :, :]← o+ e F Added to be first half of

output
9: X [:,N/2 :, :, :]← o−e F Subtracted to be the other

half of output
10: end for
11: if N>M then
12: X ← X [:, : M , :, :] F Truncate along channel axis
13: end if

FIGURE 2. Comparison of the number of multiplications between our
new PC layers and the conventional PC layer. x axis denotes logarithm of
the number of input channels which range from 20 to 2n. For simplicity,
the number of output channels is set to be same as that of the input
channel for all PC layers.

channels is N , meaning that each output channel is fully
reflected against all input channels through log2 N iterations.
This property allows the proposed PC layer to fully capture
the input channel correlations.

For successfully fusing the proposed PC layer into neural
networks, we explore two themes: i) the optimal block search
for the proposed PC layer; ii) the optimal insertion strategy
of the proposed block found by i), in a hierarchical manner
on the blocks of networks. We assumed that there is the opti-
mal block unit structure and optimal hierarchy level (high-,
middle-, low-level) position in the neural networks favored by
these non-learnable transforms. Therefore, we conducted the
experiments for the two aforementioned themes accordingly.
We evaluated the effectiveness for each of our networks
in accuracy according to the number of learnable weight
parameters and FLOPs. For comparison, we counted total
FLOPs with summation of the number of multiplications,
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additions and subtractions performed during the inference.
Unless mentioned, we followed the default experimental set-
ting as 128 batch size, 200 training epochs, 0.1 initial learning
rate where 0.94 ismultiplied per 2 epochs, and 0.9momentum
with the 5e-4 weight decay value using SGD optimizer. In all
the experiments, the model accuracy was obtained by taking
average of Top-1 accuracy values from three independent
training results.

A. OPTIMAL BLOCK STRUCTURE FOR THE
CONVENTIONAL TRANSFORMS
From a microscopic perspective, a block is the basic unit
of neural networks, and it determines the efficiency of the
weight parameter space and computation costs in terms of
accuracy. Accordingly, to find the optimal block structure for
our proposed PC layer, we perform comprehensive experi-
ments to find out the optimal block including the proposed
layer based on ShuffleNet-V2 [16]. The proposed block and
its variant blocks are listed in Figure 3. As shown in (c) and (d)
of Table 1, the ReLU [52] activation function significantly
harms the accuracy of our neural networks equipped with
the conventional transforms. This is because the harmonic
kernels in conventional transforms tend to produce symmetric

FIGURE 3. Structures of the block units under test: (a) the basic block of
ShuffleNet-V2; (b) the block using random constant pointwise
convolution (RCPC) layers; (c) the block using conventional transform
pointwise convolution (CTPC) layers with ReLU applied after each of CTPC
layer; (d) our proposed block using CTPC layers without ReLU. (b) is the
block with randomly initialized weights by the uniform distribution
U(−1/

√
N/2,1/

√
N/2) in the PC layer, where N is the number of input

channels. These random weights are fixed during training.

TABLE 1. Performance result of the block units in Figure 3 on CIFAR100
dataset. All the experimented models are based on ShuffleNet-V2 with
width hyper-parameter 1.1× which we customized to make the number
of output channels in Stage-2, -3, -4 as 128, 256, 512, respectively, for
comparison with DWHT having 2n input channels. We replaced all of
13 basic blocks with stride 1 (i.e., (a) block) in the baseline model with
(b), (c), (d) blocks, respectively. (c)-DWHT w/ ReLU denotes that CTPC
layer in (c) block is based on DWHT, while (d)-DCT w/o ReLU denotes that
CTPC layer in (d) block is based on DCT.

distributions with zero mean where much information can be
eliminated by rectifying the negative valued coefficients. Fur-
ther analysis on the reason for this phenomenon is described
in Section IV-A. Additionally, we find out that the proposed
PC layer yields approximately 1.16% higher accuracy com-
pared to the PC layer with randomly initialized and fixed
weights as shown in Table 1. These results imply that DWHT
and DCT kernels can better extract better feature represen-
tations in channel dimension compared to the kernels which
are randomly initialized and non-learnable. Compared to the
baseline model in Table 1, DCT w/o ReLU and DWHT w/o
ReLU blocks yield approximately 2.3% accuracy drop under
the condition that 42% and 49.5% of learnable weight param-
eters and FLOPs are reduced, respectively. These results
imply that the proposed blocks (i.e., (c) and (d) in Figure 3)
are still inefficient in trade-off between accuracy and compu-
tation costs of neural networks, leading us to more exploring
to search the optimal neural network architecture for the
proposed PC layer. In the next subsection, we address this
problem through applying conventional transforms on the
optimal hierarchy level features (See Section III-B). Based
on our comprehensive experiments, we set the block structure
(d) as our default proposed block which will be exploited in
all the following experiments.

B. OPTIMAL POSITION FOR THE PROPOSED BLOCKS IN
HIERARCHY LEVEL
In this section, we search on the optimal position of the
proposed blocks in hierarchy level of neural networks. The
optimal hierarchy level is defined such that the proposed net-
works have the minimal number of learnable weight param-
eters and FLOPs without accuracy drop. It is noted that
applying our proposed block on the high-level position in the
network provides much more reduced number of parameters
and FLOPs rather than applying it on low-level position,
because channel depth increases exponentially as the layer
goes deeper in the network.

In Figure 4, we applied our optimal block (i.e., (d) block in
Figure 3) on high-, middle- and low-level positions, respec-
tively. In our experiments, we evaluate the performance of
the networks depending on the number of blocks where the
proposed optimal block is applied. The model under test
is denoted as (transform type)-(# of the proposed blocks)-
(hierarchy level in Low (L), Middle (M), and High (H) where
the proposed optimal block is applied). For example, DWHT-
3-L indicates the neural network model where the first three
blocks in ShuffleNet-V2 consist of the proposed blocks,
while the other blocks are the original blocks of ShuffleNet-
V2. We fixed all the blocks with stride of 2 in the baseline
model as in the original ShuffleNet-V2 blocks.

Figure 4 shows the performance of the proposed methods
depending on the transform types {DCT, DWHT}, hierarchy
level positions {L, M, H} and the number of the proposed
blocks that replace the original ones in the baseline {3, 6,
10} in terms of Top-1 accuracy and the number of learnable
weight parameters (or FLOPs). Since the baseline model has
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FIGURE 4. Performance curve of the proposed networks according to the
hierarchy level of the block position on CIFAR100, Left: in the viewpoint
of the number of learnable weight parameters (Params), Right: in the
viewpoint of the number of FLOPs. The performance of the baseline
models was evaluated by ShuffleNet-V2 with the width hyper-parameter
of 0.5×, 1×, 1.1×, 1.5×. Our models are all experimented with 1.1× in
width, and each dot in the figures represents the mean accuracy for the
3 network instances. Note that the upper left part from the blue line
(baseline performance) is the superior region (i.e., better trade off
between accuracy and computation resources) while lower right part
from blue line is the inferior region.

only 7 blocks in the middle-level Stage (i.e., Stage-3), we per-
formed the middle-level experiments only for DCT/DWHT-
3-M and -7-M models where the proposed blocks are applied
from the end of Stage-3 in the baseline model. In Figure 4, the
performance of our 10-H (or 10-L), 6-H (or 6-L), 3-H (or 3-L)
models (7-M and 3-M only for middle-level experiments) is
listed in ascending order of the number of learnable weight
parameters and FLOPs.

As shown in the first column of Figure 4, the proposed
block achieved much better trade-off between the number of
learnable weight parameters (or FLOPs) and accuracy on the
high-level position compared to the baseline models. Mean-
while, applying the proposed block on middle- and low-level
features yields slightly and severely worse performance in
trade-off between accuracy and the number of parameters (or

TABLE 2. Performance result of hierarchically applying our optimal block
on CIFAR100 dataset. All the models are based on MobileNet-V1 with the
width hyper-parameter of 1×. We replaced both stride 1, 2 blocks in the
baseline model with the optimal block that consists of [3× 3 depthwise
convolution - Batch Normalization - ReLU - CTPC - Batch Normalization] in
series.

FLOPs), respectively. This tendency is shown similarly for
both DWHT-based models and DCT-based models, implying
that there can be the optimal hierarchy level position of
blocks favored by conventional transforms. We conjecture
that enforcing learnable weight kernels of low level layers
to be fixed during training impedes the low level features
to play a principle role in maximally extracting information
from input [53] and prevents rich information flowing from
low-level to high-level layers thus leading to accuracy degra-
dation due to the information bottleneck.

We also note that our DWHT-based models showed
slightly higher or same accuracy with less FLOPs in all the
hierarchy level positions compared to our DCT-basedmodels.
This is because the fast version of DWHT does not require
any multiplication but needs a small amount of addition and
subtraction operations compared to the fast version of DCT
while it also has the sufficient ability as a feature extractor in
channel dimension with the exquisite wiring-based structure
(Figure 1).
For verifying the generality of the proposed method,

we also applied our methods into MobileNet-V1. Inspired
by the above results showing that the optimal hierarchy level
position for conventional transforms can be found in the
high-level, we replaced high-level blocks of baseline model
(MobileNet-V1) to verify the effectiveness of the proposed
method. The experimental results are described in Table 2.
Remarkably, as shown in Table 2, our DWHT-6-H model
yielded the 1.49% increase in Top-1 accuracy even under
the condition that the 79.4% of parameters and 49.4% of
FLOPs are reduced compared with the baseline 1× model.
This outstanding performance improvement comes from the
depthwise separable convolutions used in MobileNet-V1,
where the PC layers play dominant roles in computation costs
and memory space, i.e., they consume 94.86% in FLOPs
and 74% in the total number of parameters in the whole
network [13]. The full performance results for all the hier-
archy level positions {L, M, H} and the number of blocks
{3, 6, 10} (exceptionally, {3, 7} blocks for the middle level
experiments) are described in Appendix A.
We further applied our MobileNet-V1 based models on

SVHN dataset [54] in table 3. As on CIFAR100, we note the
tendency that applying conventional transforms on high-level
layers enables the baseline model to be extremely lightweight
and computationally efficient also maintains on svhn dataset.
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TABLE 3. Performance result of hierarchically applying our optimal block
on SVHN dataset. The experimental settings are the same as in table 2.

Especially, DWHT-6-H model showed comparable accuracy
with the baseline model under the condition that 81.4% of
parameters and 49.4% of FLOPs are reduced.

IV. EXPERIMENTS AND ANALYSIS
In this section, we analyze the significant accuracy degrada-
tion of applying ReLU after our proposed PC layer. We also
analyze the active utilization of 3× 3 depthwise convolution
weight kernel values which takes an auxiliary role for conven-
tional transform being non-learnable. Additionally, not only
for classification task, we demonstrate task domain generality
of the proposed method on face detection task with extensive
experiments.

A. HINDRANCE OF ReLU IN FEATURE REPRESENTABILITY
As shown in Table 1, applying ReLU after conventional
transforms significantly harmed the accuracy. This is due to
the properties of conventional transform basis kernels that
both HD

m in Eq. 2 and Cm in Eq. 1 have the same number
of positive and negative parameters in the kernels except for
m = 0 and that the distributions of absolute values of positive
and negative elements in kernels are almost identical. These
properties imply that the output channel elements that have
under zero value should also be considered during the forward
pass; when forwarding Xij in Eq. 3 through the conventional
transforms if some important channel elements in Xij that
have larger values than others are combined with negative
values of Cm or HD

m , the important feature information in the
output Zijm in Eq. 3 can reside in the value range under zero.
Figure 5 shows that all the hierarchy level activations from
both DCT and DWHT based PC layer have not only positive
values but also negative values in almost same proportion.
These negative values possibly include important feature
information in channel dimension. Thus, applying ReLU on
activations of PC layers which are based on conventional
transforms discards crucial feature information contained in
negative values that must be forwarded through, leading to
significant accuracy drop as shown in the results of Table 1.
Figure 6 demonstrates above theoretical analysis by showing
that as the negative valued coefficients are fully rectified (i.e.,
F =ReLU), the accuracy is significantly degradedwhile fully
reflecting the negative valued coefficients (i.e., g = 1) shows
the best accuracy. From above kernel value based analysis and
its experiments, we do not use non-linear activation function
after the proposed PC layer.

FIGURE 5. Histograms of hierarchy level (low-level, middle-level,
high-level) activations after the proposed PC layer based on conventional
transforms, Top: DWHT, Bottom: DCT. Both DWHT and DCT models are
based on ShuffleNet V2 1.1× model where we replaced all of stride
1 blocks with (d)-DWHT w/o ReLU and (d)-DCT w/o ReLU blocks,
respectively in Figure 3.

FIGURE 6. Ablation study of negative slope term g in activation
function F , which is defined as F (x) = max(0, x)+ g ∗min(0, x). The
performance of models were evaluated based on {DCT or DWHT}-13-H
ShuffleNet-V2 1.1× where we applied F as an activation function after
every DCT or DWHT based PC layer and Batch Normalization layer.

B. ACTIVE 3× 3 DEPTHWISE CONVOLUTION WEIGHTS
In Figure 7 and Appendix B, it is observed that 3× 3 depth-
wise convolution weights of last 3 blocks in DWHT-3-H
and DCT-3-H have much less near zero values than that of
baseline model. That is, the number of values which are apart
from near-zero is much larger on DCT-3-H and DWHT-3-H
models than on baseline model. We conjecture that these
learnable weights whose values are apart from near-zero
were actively fitted to the optimal domain that is favored
by conventional transforms. Consequently, these weights are
actively and sufficiently utilized to take the auxiliary role for
conventional transforms which are non-learnable, deriving
accuracy increase compared to the conventional PC layer as
shown in Figure 4.
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FIGURE 7. Histogram of 3× 3 depthwise convolution weights in the third
block, out of last 3 blocks. DCT-3-H and DWHT-3-H models are based on
ShuffleNet V2 1.1× model with (d) block. Baseline model is ShuffleNet V2
1.1× model.

To verify the impact of activeness of these 3×3 depthwise
convolution weights in the last 3 blocks, we experimented
with regularizing these weights varying the weight decay
values. Higher weight decay values strongly regularize the
scale of 3 × 3 depthwise convolution weight values in the
last 3 blocks. Thus, strong constraint on the scale of these
weight values hinders active utilization of these weights,
which results in accuracy drop as shown in Figure 8.

FIGURE 8. Ablation study of weight decay values (5e-4, 2e-3, 1e-2, 1e-1).
We applied these weight decay values only on 3× 3 depthwise
convolution weights of last 3 blocks in DCT-based model and
DWHT-based model, while all the other learnable weights were
regularized with weight decay of 5e-4.

C. ORTHOGONALITY
In this section, we show that DCT and DWHT based PC
layers can efficiently regularize the deep neural networks and
reduce the representational bottleneck by its orthogonality.
Formally, Orthogonality in DCT and DWHT based PC layer
is given as below:

Wi ·Wj = 0 (4)

where i 6= j and 0 ≤ i, j ≤ M and W is C in Eq. 1 or HD in
Eq. 2.

1) RANK ANALYSIS
Previous works [55]–[59] showed the regularization effect of
orthogonal kernel matrix, which enables faster convergence
in training and consequently improved the accuracy. More-
over, Orthogonality ensures the kernel matrix to be full rank,

which helps to reduce the representational bottleneck in the
feature maps [60], [61]. Formally, we can rewrite the Eq. 3 as
matrix multiplication as below:

Z = WX (5)

where W ∈ RM×N , X ∈ RN×whB, B is the number of batch
size and w, h is width and height of the input X . Rank(Z )
is upper bounded to min(M ,N ) (assuming whB � N ). The
weight of DCT and DWHT based PC layers have full rank
property originated from the orthogonality, enabling Rank(Z )
to have its upper-bound value (i.e. min(M ,N )), while con-
ventional PC layers are not ensured to have its upper-bound
value. As the Rank(Z ) is maximized, it helps resolving the
representational bottleneck which hinders the discriminative
encoding of feature maps in channel dimension [60]. Without
any cost, DCT and DWHT based PC layers naturally have
orthogonal filter groups for each output channels (i.e. inter-
channel orthogonality [55]). With this inter-channel orthog-
onality, DCT and DWHT based PC layers not only reduce
redundancy and ensure diversity of kernels but also resolve
the representational bottleneck in the channel dimension.
Consequently, DCT and DWHT based PC layers showed
better performance than conventional PC layers as shown in
Table 2 and 3.

2) IMPACT OF ORTHOGONALITY
In order to verify the effect of inter-channel orthogonal-
ity in DCT and DWHT based PC layers, we enforced the
inter-channel orthogonality to be destroyed in the DCT and
DWHT based PC layers by maximizing the orthogonality
regularization term as below:

argmax
W

λ||WW T
− I ||2F (6)

where λ is the regularization coefficient and W is the kernel
matrix of DCT (i.e. C in Eq. 1) and DWHT (i.e. HD in Eq. 2)
based PC layers. λ is decayed 0.1, 0.01 and 0.0001 at 20,
50 and 70 epoch, respectively following the observation of
[55]. As shown in Figure 9, DCT and DWHT based models
always suffered from significant accuracy degradation when
the orthogonality is destroyed. Accuracy is severely degraded
evenwhen the orthogonality is weakly destroyed.Without the
inter-channel orthogonality, DCT and DWHT cannot suffi-
ciently extract feature representations in channel dimension
due to lack of equipping the diverse filters and suffer from
the representational bottleneck in feature maps, consequently
showing a severe accuracy loss.

D. COMPARISON WITH OTHER ORTHOGONAL KERNELS
As the kernels of DCT and DWHT have inter-channel orthog-
onality, we compared our DCT and DWHT based PC layers
with other orthogonal kernel matrices regularized with Soft
Orthogonality [59], [62], [63] (namely, SO) and Spectral
Restricted Isometry Property [55] (namely, SRIP).
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FIGURE 9. Ablation study of non-orthogonal coefficient λ (1e-8, 1e-7,
1e-6, 1e-5). We applied the non-orthogonal regularization term only on
DCT or DWHT based PC layers. The performance of models were
evaluated with MobileNet-V1 1× model on CIFAR100 dataset.

1) SETUP
We randomly initialized the weights of corresponding PC
layers as RCPC layer in Figure 3. These weights are then
regularized to be orthogonal for every training iteration with
SO or SRIP method. For fair comparison with DCT and
DWHT based PC layers, gradients for cross entropy loss are
not updated on these layers.

2) RESULTS
In Table 4, DCT and DWHT based models obviously
showed better accuracy than other orthogonal-regularized
kernel matrices, which demonstrates the superior ability as a
powerful feature extractor in such well-designed and orthog-
onal DCT and DWHT based PC layers over other orthogonal
filters.

TABLE 4. Performance comparison between DCT, DWHT based PC layers
and other orthogonal-regularized PC layers. The performance of models
were evaluated with MobileNet-V1 1× model on CIFAR100 dataset.

E. FACE DETECTION
In order to demonstrate the domain-generality of the pro-
posed method, we conducted comprehensive experiments on
applying our proposed PC layers to object detection, specifi-
cally to the face detection task.

1) SETUP
For the face detection schemes such as anchor design, data
augmentation and feature-map resolution design, we fol-
lowed [64] which is one of the baseline methods in face

detection field. It is noted that there is a huge demand on
real-time face detection algorithms having high detection
accuracy, which leads us to applying our PC layers to a
lightweight face detection network. Therefore, instead of
using VGG16 [2] as backbone network as in [64], we set
MobileNet-V1 0.25× as our baseline backbone model where
extra depthwise separable blocks are added for detecting
more diverse scales of face in the images. In this baseline
model, we replaced the conventional PC layers within last 3, 6
blocks with our DCT/DWHT based PC layers. We trained all
the models on theWIDER FACE [65] train dataset and evalu-
ated on WIDER FACE validation dataset and Face Detection
Data Set and Benchmark (FDDB) dataset [66].

2) RESULTS
In Table 5, our DWHT-3-H and DWHT-6-H models showed
comparable or even higher mAP values than the baseline
model on all the WIDER FACE subsets with significantly
reduced number of learnable parameters and FLOPs. Espe-
cially, DWHT-3-H model achieved 0.27% higher mAP than
the baseline model under the condition that 79% of parame-
ters and 16% of FLOPs are reduced on Hard subset. Regard-
ing DCT-3-H and DCT-6-H models, they showed a solid
improvement of mAP on Easy and Medium subsets with
significantly reduced number of parameters and FLOPs com-
pared to the baseline model. Furthermore, on FDDB dataset,
our DWHT-6-H and DWHT-3-H models showed comparable
or even 0.09% higher AP than the baseline model with signif-
icantly reduced number of learnable parameters and FLOPs.
Our DCT-basedmodels showed a small degree of degradation
in AP compared to the baseline model, which is a mild
degradation considering the reduced amount of parameters
and FLOPs. Consequently, our comprehensive experiments
on both datasets reveal the generality of our proposedmethod,
enabling neural networks to be extremely lightweight and
reduce the computational overhead.

TABLE 5. Quantitative comparison between the baseline model and our
DCT/DWHT-based models on WIDER FACE validation dataset and FDDB
dataset. For WIDER FACE dataset, we evaluate mAP of Easy, Medium and
Hard subsets which correspond to large, medium and small scale faces,
respectively. For FDDB dataset, AP means the true positive rate at 1,000
false positives and all the models were evaluated with discontinuous
criterion.

V. CONCLUSION
We propose the new PC layers through conventional trans-
forms, which allow the neural networks to be efficient in
complexity of computation and learnable weight parameters.
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FIGURE 10. Performance curve of the proposed networks according to
the hierarchy level of the block position on CIFAR100, Left: in the
viewpoint of the number of learnable weight parameters, Right: in the
viewpoint of the number of FLOPs. The performance of baseline models
was evaluated by MobileNet-V1 architecture with width hyper-parameter
0.2×, 0.35×, 0.5×, 0.75×, 1×, 1.25×. Our proposed models were all
experimented with 1× setting, and each dot in the figures represents
mean accuracy of 3 network instances. Our models are experimented
with 10-H, 6-H, 3-H models (first row), 7-M, 3-M-Rear, 3-M-Front models
(second row) and 10-L, 6-L, 3-L models (final row), listed in ascending
order of the number of learnable weight parameters and FLOPs.

With the purpose of successfully fusing our PC layers into
deep neural networks, we found the optimal block unit struc-
ture and hierarchy level position in neural networks for con-
ventional transforms, showing accuracy increase and great
feature representability in channel dimension. We further
revealed the hindrance of ReLU in terms of feature represen-
tation, the activeness of depthwise convolution weights on the
last blocks and the effect of orthogonality in our proposed
neural network. Finally, we showed the superiority of our
method on the other task with the use of a low number of
parameters and FLOPs.

LIMITATIONS AND FUTURE WORKS
While the scope of our method is currently restricted to
small and medium scale datasets, we believe that scaling
up to a much larger datasets such as ImageNet is a totally
new research frontier, where a minimal amount of learnable
parameters are necessarily required in PC layer due to the
increased scale and difficulty of the dataset.

APPENDIX A
GENERALITY OF APPLYING PROPOSED PC LAYERS IN
OTHER NEURAL NETWORKS
In Figure 10, for the purpose of finding more definite hier-
archy level of blocks favored by our proposed PC lay-
ers, we subdivided our middle level experiment scheme;
DCT/DWHT-3-M-Front model denotes the model which
applied the proposed blocks from the beginning of Stage-3
in the baseline while DCT/DWHT-3-M-Rear model denotes
the model which applied from the end of Stage-3. The per-
formance curves of all our proposed models in Figure 10
show that if we apply the proposed optimal block within the
first 6 blocks in the network, the Top-1 accuracy is mildly or
significantly deteriorated compared to the required computa-
tional cost and number of learnable parameters, informing us
the important fact that there are the definite hierarchy level
blocks which are favored or not favored by our proposed PC
layers in the network.

APPENDIX B
HISTOGRAM OF 3 × 3 DEPTHWISE CONVOLUTION
WEIGHTS IN HIGH-LEVEL BLOCKS
See Fig. 11.

FIGURE 11. Histograms of 3× 3 depthwise convolution weights, Top:
histogram of first block out of last 3 blocks, Bottom: histogram of second
block out of last 3 blocks. DWHT-3-H and DCT-3-H models are based on
ShuffleNet-V2 1.1× model with (d)-DWHT w/o ReLU and (d)-DCT w/o
ReLU block in Figure 3, respectively. Baseline model is ShuffleNet-V2
1.1× model.

APPENDIX C
ALGORITHM FLOWCHART
See Fig. 12.
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FIGURE 12. Flowchart of fast DWHT-based PC layer (Figure 1,
Algorithm 1).
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