
Received 17 June 2022, accepted 29 July 2022, date of publication 8 August 2022, date of current version 12 August 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3197169

RealROI: Discovering Real Regions of
Interest From Geotagged Photos
KWANG WOO NAM 1, (Member, IEEE), AND KWANGSOO YANG 2, (Member, IEEE)
1School of Computer, Information, and Communication Engineering, Kunsan National University, Gunsan 54150, Republic of Korea
2Department of Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA

Corresponding author: Kwang Woo Nam (kwnam@kunsan.ac.kr)

This work was supported in part by the National Research Foundation of Korea (NRF) Grant by the Korean Government through the
Ministry of Science and ICT (MSIT) under Grant 2020R1F1A1048432; in part by the Korea Agency for Infrastructure Technology
Advancement (KAIA) Grant by the Ministry of Land, Infrastructure and Transport under Grant RS-2022-00143336; and in part by the U.S.
National Science Foundation under Grant 1844565.

ABSTRACT Given a set of geotagged photos with a view direction, the discovering real regions of
interest (DRRI) problem identifies real regions of Interest (RealROIs) in the photos. The problem is important
in many societal applications, including tourist route recommendations and travel advertisements. Much
work utilized geotagged photos to discover regions of interest or routes and to provide recommendations
according to similar preferences. However, these approaches are not ideal for identifying RealROIs because
the usage of geotagged photos is limited to the GPS coordinates of the photo. To remedy this issue,
we propose the DRRI problem that can use geometric and directional information to identify the interesting
regions and develop novel algorithms to discover RealROIs in photos based on the direction in which the
photos were taken. Our experimental results and case studies show that our approach outperforms the related
work.

INDEX TERMS Geotagged photos, region of interest, social data mining, recommendations.

I. INTRODUCTION
A. BACKGROUND
With recent advancements in mobile technology, the inte-
gration of sensor devices such as GPSs in smartphones
and cameras has become extremely common. Images or
videos captured through these devices include various spa-
tial information, such as GPS, time, and directional infor-
mation. We refer to these images as geotagged photos [1].
Recently, millions of users have shared geotagged photos
through social platforms such as Instagram, Facebook, Twit-
ter, and Flickr to represent their interests and experiences.
Much work has been conducted to utilize these geotagged
photos to discover regions of interest (ROI) or routes [2], [3]
and to provide recommendations according to similar
preferences [4], [5], [19], [20], [21].

Most smartphones have built-in magnetometers, mak-
ing them ideal for collecting photos with directional
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information. For example, 15 percent of the geotagged dataset
from Flickr has camera direction information. Photos from
social media services such as Facebook are often taken
directly from smartphones, and the corresponding geotag-
ging rate is expected to be much higher than that for Flickr
photos [6].

However, despite these technological advancements, tradi-
tional approaches have focused only on GPS locations. In this
paper, we propose a novel problem and algorithm that can
use geotagged photos with camera directions and identify real
regions of interest.

B. PROBLEM DEFINITION
Given a set of geotagged photos with a known view direc-
tion, the discovering real regions of interest (DRRI) problem
identifies the real regions of interest (RealROIs) in geotagged
photos. The problem is important in many societal appli-
cations, such as tourist route recommendations and travel
advertisements. Recently, much work has focused on the
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locations of photos and identified social groups based on
these locations [4], [7], [8], [9], [10].

Traditionally, geotagged photos have only been associ-
ated with GPS information. In contrast, geotagged pho-
tos include additional information such as the direction
in which the photo was taken and the angle of the cam-
era at the time of capture. For example, spatially tagged
media content provides directional and topological infor-
mation to identify interesting spatial regions or points
of interests (POIs). In this paper, we utilize geomet-
ric, directional and topological information, and identify
RealROIs.

C. CONTRIBUTIONS
The traditional approach to POI identification is not ideal to
identify RealROIs in several ways due to the nature of photos.
First, although the GPS location of a vehicle or person is
the same as that of the object of interest in a given case, the
location of the photo may differ from that of the photographer
or object of interest.

FIGURE 1. GPS ROIs and RealROIs.

Consider the example in Figure 1(a). The Statue of Liberty
in New York is located on an island; as many photos are
taken from boats, the ROI generated by existing GPS-based
algorithms locates on the river which is some distance from
the Statue of Liberty. Second, the location of the photographer
can widely vary based on the distance between the object of
interest and the location from which the image was captured.
As shown in Figure 1(b), this issue may result in a situation
in which the RealROIs cannot be generated. Third, a point of
interest (POI) in traditional photos has a circular shape based
on (x, y) coordinates, but the target of a photo is linearly
aligned to the viewpoint of a photographer. This results
that regions not in the photo are excluded from the ROI.
Therefore, ROIs with GPS coordinates (GPS ROIs) cannot
represent the RealROIs.

To remedy this issue, we propose a novel approach that can
use the directions of camera views and identify ROIs based
on view directions. Our new approach identifies cointeresting
points in different view directions and groups these cointer-
esting points to find RealROIs.

The remainder of this paper is structured as follows.
Section 2 reviews the related work. Section 3 intro-
duces the concept of RealROIs. Section 4 defines extro-

verted/introverted RealROIs and describes the corresponding
algorithms. In Section 5, we will evaluate our algorithms
and show that our approach outperforms the related work.
Section 6 shows cast studies and discusses our algorithms.

II. RELATED WORK
A. MINING GEOTAGGED PHOTOS
The discovery of ROIs provides a basis for product recom-
mendations, advertisements, and tourist destination recom-
mendations. POIs are conventionally determined based on a
user’s location. In [11], a user’s location and time information
were used to extract and analyze travel routes. Each user
was identified by the ID of the shared photo, and the travel
route for each user was extracted. In [2], the authors focused
on both the identification of POIs from Flickr photos and
association mining among the identified POIs. For certain
points, the data were preprocessed such that only one photo
was used.

Geotagged photos have been extensively used in exist-
ing studies for estimating ROIs. Kisilevich et al. [1] pro-
posed an algorithm that considers user information through
Photo-DBSCAN, thus addressing the issues caused by high-
frequency uploaders. DBSCAN is useful for clustering points
of interest. In particular, the proposed algorithm based on
geotagged photos directly searches the user ROI to obtain
clustering results. Moreover, Zeng et al. [12] discovered the
movement patterns of users and clustered the locations shared
by geo-photo users to obtain POIs for different cities. In [13],
the authors analyzed user-generated travel routes from Flickr
photo datasets to recommend tourist destinations for spe-
cific regions. In [4], the authors applied sequential trajectory
pattern mining to Flickr photos. In addition to the research
described above, various studies have considered only GPS
data coordinates for applications such as POI extraction, route
extraction, and travel route recommendations. While this
approach is suitable for locating user ROIs, it is not sufficient
for extracting objects of particular interest to the user, even
within an ROI. To explore a large region in a short amount of
time, it is necessary to find the regions or objects of greatest
interest among existing POIs.

B. MINING PHOTOS WITH VIEW DIRECTIONS
GPS information can only be used to identify the location
at which a geotagged photo was taken, and the location can
be far from real objects in an arbitrary view direction [6].
Park et al. [6] developed a method to estimate the exact
direction in which a photo is taken by comparing the
GPS coordinates and 3D model information contained in a
geotagged photo. Additionally, this approach was used to
find objects of interest. The concepts of inward and out-
ward photos proposed in [14] and [15] are very similar
to the view direction concept we introduce. Notably, novel
methods were developed to detect and classify photos posted
on social media sites (e.g., Flickr) using inward and outward
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photos with view directions. Hotspots were detected using
DBSCAN and a grid-based approach [16]. Three types of
POIs were classified based on the direction from which the
photo was taken. First, the points at which photos were taken
both inside and outside a POI were designated as hotspots
within the ROI. Second, points with many photos taken in one
direction were also classified. Third, points with photos taken
in all directions were classified. Although the hotspots were
classified using the direction information from the photos,
the location and direction information of the user was also
considered. This approach is useful for locations where user
interest does not vary, such as tourist destinations; however,
it is insufficient for locations where user interest varies, such
as shopping malls.

Hirota et al. [14], [15], [16] obtained spatial properties
such as shooting locations or ROIs through clustering and
classification based on grids. Methods based on grids have a
common problem; notably, the identification of ROIs depends
on the size of the predefined grid. Instead, our paper presents
a novel concept called cointeresting points among various
views directions. Cointeresting points are not limited by the
predetermined cell size of a grid and can be used to detect
ROIs of both small and large sizes.

III. PRELIMINARIES
First, we consider the example in Figure 2. Four photos
(i.e., p1 to p4) of an attraction were taken. The algorithms
presented in previous studies performed clustering based on
the photograph locations to discover ROIs and assess simi-
larities. Accordingly, as shown in Figure 2, p1, p2, p3, and p4
do not form a meaningful ROI cluster because the number
of photos cannot meet the minimum density threshold for
density clustering.

FIGURE 2. Examples of introverted and extroverted ROIs.

The objective of this paper is to use the view direction of
each photo to find ROIs that cannot be found using existing
algorithms. The arrows starting from the locations of users
(i.e., p1, p2, p3, and p4) represent the view directions and
distances of the photos in Figure 2(a). Stars (i.e., i1, i2, i3,
i4, i5, and i6) are the intersection points between two view
directions. In this example, we can identify four view direc-

tions (i.e., p1, p2, p3, and p4) and six intersections (i.e., i1,
i2, i3, i4, i5, and i6) among these view directions. We refer to
the intersection of two view directions as cointeresting points
(coIP). Intuitively, the clustering of coIPs can produce the
RealROI, which we call the introverted RealROI. Figure 2(a)
is also an example of a RealROI that cannot be identified in
the traditional approach.

In addition, we can identify some semantic regions by
discovering photos taken from the ROI facing outwards.
Figure 2(b) depicts a case in which photos of the surround-
ing landscape are taken from an observatory. For example,
many photos of the New York cityscape are taken from the
Empire State Building observatory. In this case, the algorithm
for finding intersections does not perform well. However,
by drawing a straight line in the opposite direction from
which the photo was taken, the intersections can be found.
This method also works well in indoor environments in which
GPS signals cannot be received. For example, the user may
also want to take photos of art hanging from a wall in a
museum. Accordingly, the intersections among the reverse
view directions of photos can be found by considering the
forward and reverse directions together; this reverse co-origin
point of interest is called orgIP. A region that forms a cluster
when the reverse coIP reaches a certain threshold can be
defined as an extroverted RealROI for common user inter-
est. The following sections describe the algorithms used to
establish introverted and extroverted RealROIs.

TABLE 1. Notations and descriptions.

IV. DISCOVERING RealROIs
The proposed approach follows three main steps: 1) construc-
tion of view segments from geotagged photos, 2) identifica-
tion of cointeresting points, and 3) clustering of cointeresting
points to find the RealROI.

A. DISCOVERY OF INTROVERTED RealROIs
Database of geotagged photos P consists of view direction
and distances taken by various users, P = {p1, p2, . . . , pn.
The geotagged photo is defined as follows.
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Definition 1 (Geotagged Photo, p): A geotagged photo p
with a view direction is a tuple of

(pid, uid, uri, loc, d, t)

where pid is the photo identifier, uid is the identifier of the
owner of the photo, uri is the identifier of the location and
filename of the actual photo file, loc represents the spatial
coordinates of the photo, d is the photographing azimuth, and
t is the time at which the photo was taken.

A geotagged photo has unique pid and uid information.
The uri can be used to identify the geographic location of
a user. In addition, a camera with a built-in GPS can pro-
duce the coordinates (i.e., latitude and longitude) of a photo
location (i.e., loc). Ed is the view direction of a geotagged
photo (i.e., the azimuth of the lens center). The geomagnetic
azimuth information of the camera can be obtained with a
geomagnetic sensor. t is the time at which the photo was
taken, as represented by a long-type timestamp, such as Unix
epoch time.

FIGURE 3. A cointeresting point between pa and pb.

Figure 3 shows an example of geotagged photos with view
directions. Two photos (i.e., pa and pb) were taken toward the
same target. pa.d is expressed as an angle θ in the clockwise
direction with respect to the north and has a real value ranging
from 0 to 360.
Definition 2 (Minimum andMaximumViewDistances, dmin

and dmax): The minimum view distance is dmin, and the
maximum view distance is dmax for geotagged photo p.

In our approach, we use the minimum view distance dmin
and the maximum view distance dmax to identify coIPs based
on two geotagged photos. The view distance (i.e., dmin and
dmax) is important for identifying a RealROI. For example,
for a photo taken at home or in an art gallery, the photo view
will be restricted, ranging from 30 cm to 10 m. Sometimes,
the target-point far from the location where a photo was
taken (e.g., the Eiffel Tower or a natural landscape) may
have a large photo view, ranging from 30 m to 100 m. This
view distance can be used to remove unimportant coIPs and
identify the RealROI. If dmin and dmax are too small or large,
then the algorithmmay createmany intersections among view
directions, and most of them will be irrelevant. We can use

dmin and dmax to construct view segments from geotagged
photos.
Definition 3 (View Segment, −→vs ): Given the minimum and

maximum view distances dmin and dmax and a geotagged
photo pa, a view segment is a directed line segment

−→vs pa = (pa.dmin, pa.dmax)

where pa.dmin is the starting point of the segment and pa.dmax
is the end point toward pa.d from pa.loc.
Figure 3 illustrates a view segment for pa: (i.e., −→vs pa

(pa.dmin, pa.dmax)) and a view segment for pb: (i.e.,
−→vs pb =

(pb.dmin, pb.dmax)).
Definition 4 (Cointeresting Point, coIP): Given two geo-

tagged photos pa and pb, and an intersection point between
−→vs pa and −→vs pb with dmin and dmax (i.e., lx), a cointeresting
point is defined as

coIPpa,pb = (lx, pa, pb) , where pa.uid 6= pb.uid .

Assume that two different users have taken photos facing
the same attraction. Then it is evident that there is a potential
attraction at the point where the two view segments of the
two photos intersect each other. We refer to this point as a
cointeresting point coIP between the two geotagged photos.
A coIP is an intersection point between two view segments
and is located at lpa,pb based on (lat, long). A coIP has the
form of a tuple (lpa,pb , pa, pb) for two photos pa and pb. Users
may take many photos facing the same point of interest and
share these photos to others. However, a certain target object
may not be attractive since one user took many photos of the
same object of interest (e.g., photos of a child in his or her
home). To address this issue for high-frequency uploaders,
the corresponding coIPs are excluded with the condition
pa.uid 6= pb.uid .
Definition 5 (Neighborhood coIP): Let ε be the distance

threshold. Two cointeresting points coIPpa,pb and coIPpq,pr
are neighboring if the following condition is satisfied:

dist(coIPpa,pb .lx − coIPpq,pr .lx) < ε

We use the density-based clustering method (e.g., DBSCAN)
to group coIPs and discover RealROIs. The proposed density-
based clustering method requires three user-specified param-
eters: (1) the distance threshold ε, (2) the density threshold k ,
(3) and the minimum user threshold m with a unique ID uid.
Definition 6 (Core coIP): A core coIP is a coIP if the

following conditions are satisfied:
1) |neighborhood coIP| ≥ k
2) |unique users in the neighborhood coIP| ≥ m.

where k is the density threshold of a geotagged photo and m
is the minimum user threshold for a given uid.

A core coIP and its neighborhood are considered as one
cluster. A coIP is a core coIP if the number of neighborhood
coIPs within a given radius ε from the coIP is at least k and
if the number of neighborhood users (i.e., uids) is at least m.
Definition 7 (Noise and Border coIPs): A coIP is a noise

coIP if the coIP is not a core coIP and none of its neighbors
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are core coIPs. A coIP is a border coIP if the coIP is not a
core coIP and at least one of its neighbors is a core coIP.

Given the definitions of core, border, and noise coIPs, our
proposed approach incrementally groups two core coIPs to
construct a cluster. If the core coIP is close enough to another
core coIP, we group these two coIPs to construct one cluster.
Noise coIPs are discarded.
Definition 8 (Introverted RealROIs, iRealROIs): Given the

distance threshold ε, minimum number of coIPs k and mini-
mum number of distinct uids m within ε,

iRealRoI = {colPl ∈ colP ∧ colPm ∈ colP|

densityConnected(coIPl,coIPmε, k,m)}.

When coIPl and coIPm are core coIPs or border coIPs with
the minimum number of neighborhood coIPs, the two coIPs
are reachable within a given distance threshold ε. We can
define this as densityConnected(coIPl, coIPmε, k,m).

Algorithm 1 Discovering IRealROIs
Input: P, dmin, dmax, ε, k, m
Output: A set of iRealROIs, IRealROI
1: IRealROI← ∅// A set of iRealROIs
2: CoIP← ∅// A set of coIPs
3: // Construct a set of view segments based on dmin and

dmax
4: foreach p ∈ P do
5: −→vs ← extract a view segment from p using dmin, dmax
6: Pv← Pv ∪ (

−→vs , p)// add −→vs to Pv with p
7: CoIP← find coIPs among view segments in Pv
8: IRealROIs← CoIP_Clustering(CoIP, ε, k, m)
9: return IRealROI

Algorithm 1 shows the procedure of finding a set
of iRealROIs. The first step is constructing a set of view
segments with all photos based on dmin and dmax and camera
view directions (lines 4-6). Then, the coIPs are identified
from the set of view vectors Pv. A plane sweep algorithm
is used to identify line segment intersections (line 7). In this
step, a line intersection algorithm can be used. Next, clusters
are formed with a density-based algorithm and the additional
condition m (line 8). Our approach uses a modified density
clustering algorithm for coIPs. Finally, the function returns
a set of iRealROIs which are produced from density-based
clustering (line 9).

Algorithm 2 shows the modified DBSCAN algorithm with
condition m. First, neighbors within a certain radius ε are
identified (line 4). If the number of neighboring points is
less than k or the number of users is less than m, a coIP
is classified as noise (lines 5). If the core coIP condition
is satisfied, all neighbors are designated as iRealROIi with
core coIPs (line 8). Additionally, the core coIP conditions
can be checked for all neighbors and will be expanded to
the satisfied neighbors in the same iRealROIi (lines 10-17).
Then, neighbors at neighboring points are identified
(lines 11-12). If coIPcur meets the core coIP condition, the

remaining coIPcur neighbors, excluding noise COIPs, are
added to the current iRealROIi (lines 15-16). The added
neighbors are then checked repeatedly again (line 10). After
the while loop finished, the iRealROIi is added to IRealROI
(line 18). Finally, IRealROI is returned when the algorithm is
finished (line 20).

Algorithm 2 CoIP_Clustering
Input: CoIP, ε, k, m
Output: A set of iRealROIs, IRealROI
1. i← 1
2. foreach coIPa ∈ CoIP do
3. if ! IsROI(coIPa) then
4. X ← NeighborhoodCoIPs(CoIP, coIPa, ε)
5. if |X | < k ∨ |owners (X)| < m then
6. Mark_AsNoise(coIPa )
7. else
8. Mark_AsRoI(all(X ), iRealROI i)
9. Push(all(X ) )
10. While X 6= ∅ do
11. coIPcur ← Pop(X )
12. Y ← NeighborhoodCoIPs(CoIP, coIPcur , ε)
13. if |Y | ≥ k ∧ |owners (Y )| ≥ m then
14. foreach coIPb ∈ Y do
15. if ! IsNoise (coIPb)∧ ! IsRoI(coIPb) then
16. Mark_AsRoI(coIPb, iRealROI i)
17. Push(coIPb)
18. IRealROI← IRealROI ∪ iRealROI i
19. i← i+ 1
20. return IRealROI

Many existing studies have sought to find spatially coin-
terested user groups. A spatially cointerested user group is
the basic unit for recommendation in location-based services.
In the traditional approach, density-based clustering is the
most popular algorithm for discovering spatially cointerested
groups. However, this approach can be limited when users are
dispersed, as shown in Figure 4. Although users are strongly
interested in the same spatial feature, traditional methods
cannot discover these user groups.
Definition 9 (Cointerested Real Users: CRUs): A CRU is

a set of cointerested users who own the geotagged photos of
a coIP in an iRealROI.

One of the notable advantages of the proposed view
direction-based algorithm is that it can discover a spatially
cointerested group to make recommendations from dispersed
users and photos. Additionally, we can obtain explanatory
knowledge from the directionality information among vari-
ous IRealROIs and CRUs that are distributed in a geographi-
cal space, as shown in Figure 4.

Algorithm 3 shows a generalized algorithm that can dis-
cover CRUs for an iRealROI. An iRealROI is a set of coIPs
that are of consistent interest to the same target object.
In definition 4, we define each coIP to contain information
about cointeresting geotagged photos. For each coIP in the
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FIGURE 4. Example of an iRealROI and a CRU.

iRealROI, the algorithm can find aCRU by collecting the uids
of the users in coIPx .pa and coIPx .pb (line 3).

Algorithm 3 Discovering CRUs From an iRealROI
Input: iRealROI
Output: CRU
1. CRU← ∅
2. foreach coIPx ∈ iRealROI do
3. CRU ← CRU ∪ coIPx .pa.uid ∪ coIPx .pb.uid
4. return CRU

B. DISCOVERY OF EXTROVERTED RealROIs
A RealROI can be obtained from an iRealROI based on the
view directions of photos, and an extroverted RealROI can
be used to find RealROIs based on the opposite extensions
of view directions. This method uses not only the photos
taken facing the target object but also photos taken of the
surrounding scenery from a RealROI. This is useful, for
example, where the user wants to capture the scenery of
Manhattan from the Empire State Building observatory or the
surrounding natural scenery from the top of a tall mountain.
The extroverted RealROI method can be used to supplement
the introverted RealROI method. This is useful for finding
RealROIs when the introverted RealROI method may miss.
Definition 10 (Reverse View Segment,←−vs ):Given a reverse

view direction
←

d and a maximum view distance
←

dmax ,
a reverse view segment for a geotagged photo pa is a directed
line segment

←−vs pa = (pa.loc, pa.
←

dmax)

where pa.loc is the starting point of the reverse view segment
and pa.

←

dmax is the end point toward pa.
←

d from pa.loc.
When a user takes a photo in the view direction d , the

reverse direction of the photo is defined as
←

d . Figure 5 shows
two reverse view directions pa.

←

d and pb.
←

d , which originate
from pa.loc and pb.loc, respectively. Assume that the reverse
view directions are infinitely long. This will lead to many
unnecessary operations and make the computation slower.
To remedy this issue, we use

←

dmax to limit the effective part

FIGURE 5. An interesting origin point between pa and pb.

of the view direction. A reverse view segment←−vs pa is a valid

segment from pa.loc to pa.
←

dmax that can start from the same
effective origin point.
Definition 11 (Co-Origin Point of Interest, orgIP): Given

two geotagged photos pa and pb, a co-origin point of interest
can be defined as

orgIPpa,pb = (
←−
lx , pa, pb) where pa.uid 6=pb.uid

where
←−
lx is an intersection point between two reverse view

segments←−vs pa and
←−vs pb within

←

dmax .
An orgIP is a point at which reverse view directions inter-

sect, denoted as location lx. An orgIP can be represented as a
tuple (

←−
lx , pa, pb) for two photos pa and pb, and this represen-

tation is similar to that for a coIP. Given geotagged photos
taken facing outward from nearby points by two different
users, we can see that there is a candidate origin point for
the two photos when two user view segments ←−vs intersect
each other. We refer to this intersection as the location of a
co-origin point of interest orgIP between the two photos.
The extroverted RealROI algorithm uses the same density-

based clustering approach as the one used for the introverted
RealROI algorithm. Therefore, we skip the details because
Definitions 5 to 7 can be extended to deal with extroverted
RealROI.
Definition 12 (Extroverted RealROIs, eRealROIs): Given

distance threshold ε, the minimum number of orgIPs k and
the minimum number of distinct uids m within ε,

eRealRoI = {orgIPl ∈ orgIP ∧ orgIPm ∈ orgIP|

densityConnected(orgIPl, orgIPmε, k,m)}.

The algorithm for finding eRealROIs is the same as that for
finding iRealROIs after replacing coIPwith orgIP. Therefore,
a detailed algorithm is not presented.

C. ALGEBRAIC COST MODEL
We developed a cost model for the proposed algorithm to
estimate the computational cost. Let n be the number of line
segments. The cost of the proposed algorithm consists of
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two major parts. The first part involves finding all intersec-
tions to create coIPs among−→vs segments. The corresponding
cost is O(n2). Let k be the number of intersections. Then,
the cost can be reduced to O((n+ k) log n) by using the
Bentley–Ottmann algorithm [17]. The second part involves
establishing a set of clusters using the density-based cluster-
ing method at a cost of O(k log k) [18]. Therefore, the total
cost of the proposed approach is O ((n+ k) log n+ k log k).

V. EXPERIMENTAL EVALUATION
We conducted experiments to evaluate the performance of the
proposed algorithms. We wanted to answer four questions:
(1) What is the effect of the distance threshold ε, (2) What is
the effect of the density threshold k , (3) What is the effect of
the minimum user threshold m, and (4) What is the effect of
the view distances dmin and dmax?

A. EXPERIMENTAL SETUP
We used a real-world geotagged photos dataset from Flickr
in the experiments. We used photos from around New
York within a 100 km radius of 40.730610 degrees lat-
itude and −73.935242 degrees longitude. We collected
578,155 geotagged photos using the Flicker API and chose
87,442 geotagged photos with view directions. We con-
ducted experiments using two methods: (1) the GPS ROI
method and (2) the RealROI method. The algorithms were
implemented in Python run in Windows 10. All experiments
were performed on an Intel i7-4770 3.40 GHz 4-Core CPU
with 16 GB RAM.

B. EFFECT OF THE DISTANCE THRESHOLD
The first experiment evaluated the effect of the distance
threshold ε to validate the efficiency and stability of the
algorithm. The average size of the discovered area and dis-
tance threshold ε were used to construct a neighborhood.
Figure 6 shows the average size of the discovered area (m2).
The distance threshold was varied from 100 m to 500 m. The
average size of the RealROI increases linearly, whereas
the average size of the GPS ROI increases quadratically.

FIGURE 6. Effect of the distance threshold (ε).

We obtained similar results when we varied k from 5 to 25.
Notably, when the size of an attraction increases linearly,
photographers will be distributed in two main portions of the
surrounding area.

It is important to note that when the distance threshold
decreases (e.g., 100 m and 200 m), the average size of the
RealROI area becomes larger than that of the GPS ROI. This
is because photographers located in very small areas when the
size of the ROI is larger than the photo area.

FIGURE 7. Effect of the density threshold (k).

C. EFFECT OF THE DENSITY THRESHOLD
The second set of experiments evaluated the effect of the den-
sity threshold on the robustness of the algorithm. We varied
the value of k and compared the performance of the GPS
ROI and RealROI methods (see Figure 7). Robustness was
measured based on the number of discovered areas.We varied
the density threshold k from 5 to 25. As k increases, the
number of RealROIs decreases. However, the number of
GPS ROIs significantly decreases compared to number of
RealROIs. We obtain similar results when we increase the
maximum distance threshold dmax from 100 m to 500 m
because a limited number of RealROIs are available in real-
world datasets. Thus, the proposed RealROI algorithm is
robust at different density thresholds.

D. EFFECT OF THE MINIMUM USER THRESHOLD
The third set of experiments evaluated the effect of the min-
imum user threshold on the performance of the algorithm.
We varied the value of the minimum user threshold m. Per-
formance was assessed based on the number of discovered
RealROIs. We evaluated the minimum user threshold m at
values of 3 and 4. The distance threshold dmax was varied
from 100 m to 500 m when k varied from 5 to 25.

Figure 8 shows that the number of RealROIs for a
minimum user threshold of 3 significantly decreases com-
pared with that for a threshold of 4. The minimum user
threshold m is the number of unique users within a distance
threshold ε. Thus, a high minimum user threshold value leads
to more robust results than those for a low value. However,
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FIGURE 8. Effect of the minimum user threshold (m).

FIGURE 9. Effect of the view distance (dmin and dmax ).

as k increases, the difference between the number of discov-
ered RealROIs for each minimum user threshold decreases.

E. EFFECT OF THE VIEW DISTANCE
In the final experiments, we evaluated the effect of the
minimum view distance dmin and maximum view distance
dmax on the robustness and performance of the algorithm.
We varied the value of the minimum view distance dmin from
10 m to 50 m. Performance was based on the number of
discovered coIPs. As shown in Figure 9, we evaluated the
algorithm formaximum view distances dmax of 100m, 200m,
300 m, 400 m, and 500 m. The GPS ROI method was eval-
uated for reference. The number of coIPs decreases linearly
with increasing maximum view distance dmax . Additionally,
the differences among results in each case were relatively
constant.

VI. CASE STUDY AND DISCUSSIONS
A. CASE STUDY
In this section, we show an example case study comparing
RealROIs and GPS ROIs around Redbull Arena. Red Bull
Arena is a soccer-specific stadium in Harrison, New Jersey,
USA, that is home to the New York Red Bulls of Major

League Soccer, as shown in Figure 5(a). During the sea-
son, many spectators take pictures and share them through
social networking services during matches at the stadium.
As described in Section 4, our experimental datasets were
collected from Flickr. More than a thousand photos were
taken in the area around the stadium. RealROIs andGPSROIs
were simultaneously identified around the stadium. When
changing the parameters in the experiment, the variations in
GPS ROIs and RealROIs around the stadium clearly demon-
strate the strength of the proposed RealROI algorithm.

In this case, we evaluated the effect of the distance thresh-
old ε to validate the efficiency and stability of the algorithm.
The distance threshold εwas varied from 100m to 300m, and
the minimum user threshold k was fixed at five. Figure 10(b)
shows a RealROI and a GPS ROI when ε = 100 m and
k=5. In the figure, the red dots are the GPS locations of the
photos. Blue stars are the coIPs among the view directions
of the photos. Additionally, a yellow polygon is a RealROI.
The yellow translucent polygon is the RealROI found with
the proposed algorithm, and the blue translucent polygon is
the GPS ROI found with the traditional algorithm. In this
figure, we found that the RealROI covers a much larger area
than the GPS ROI, and this area includes the entire stadium.
Additionally, the GPS ROI area is smaller and skewed to one
side of the stadium.

FIGURE 10. Case study: RealROI vs. GPS ROI around Redbull Arena.

Figure 10(c) and Figure 10(d) show the RealROI and the
GPS ROI when ε was changed to 200 m and 300 m under
the same conditions. In these figures, we can see interesting
changes in the RealROI and GPS ROI. In contrast to the
growing GPS ROI when ε increases, the RealROI remains
almost invariably the same. The change in the GPS ROI
is a common result of traditional density-based clustering.
However, the size of the RealROI slightly changes and the
RealROI covers the actual stadium ROI. This result was
consistent with the expected result. Similar results to those
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in this case were obtained for other famous ROIs, such as the
Statue of Liberty in NewYork. The results of the experiments
in Section 4.b support the robustness and effectiveness of the
proposed approach in real-world cases.

B. DISCUSSIONS
Our proposed approach achieves a significant performance
improvement over the related work. This improvement was
obtained by using three key components: 1) construction
of view segments from geotagged photos, 2) identification
of cointeresting points, and 3) clustering of cointeresting
points to find the RealROI. The core idea of our algorithm
is to use geometric and directional information to identify
the real regions of Interest (RealROIs). The existing method
with only GPS datasets fails to find RealROIs due to a lack
of directional information. The case study shows that our
approach correctly identifies RealROIs whereas the related
work cannot find RealROIs. We also see that our approach
produces more stable results over the changes of parameters
compared to the related work.

VII. CONCLUSION
In this paper, we propose a novel algorithm that discovers
the RealROI from geotagged photos from social media with
camera view directions. The proposed RealROI algorithm
was verified to be superior to the traditional GPS ROI method
based only on GPS coordinates because it can find Real-
ROIs that cannot be found using GPS coordinates alone and
identify ROIs in high-density POI areas. In this paper, algo-
rithms for discovering RealROIs require significant comput-
ing times. In future studies, we will propose methods based
on indexing to optimize the execution time of this algorithm.
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