
Received 17 July 2022, accepted 3 August 2022, date of publication 8 August 2022, date of current version 11 August 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3197157

LMOT: Efficient Light-Weight Detection
and Tracking in Crowds
RANA MOSTAFA , HODA BARAKA, AND ABDELMONIEM BAYOUMI , (Member, IEEE)
Department of Computer Engineering, Faculty of Engineering, Cairo University, Giza 12613, Egypt

Corresponding author: AbdElMoniem Bayoumi (abayoumi@cu.edu.eg)

ABSTRACT Multi-object tracking is a vital component in various robotics and computer vision applications.
However, existing multi-object tracking techniques trade off computation runtime for tracking accuracy
leading to challenges in deploying such pipelines in real-time applications. This paper introduces a novel
real-time model, LMOT, i.e., Light-weight Multi-Object Tracker, that performs joint pedestrian detection
and tracking. LMOT introduces a simplified DLA-34 encoder network to extract detection features for the
current image that are computationally efficient. Furthermore, we generate efficient tracking features using
a linear transformer for the prior image frame and its corresponding detection heatmap. After that, LMOT
fuses both detection and tracking feature maps in a multi-layer scheme and performs a two-stage online data
association relying on the Kalman filter to generate tracklets. We evaluated our model on the challenging
real-world MOT16/17/20 datasets, showing LMOT significantly outperforms the state-of-the-art trackers
concerning runtime while maintaining high robustness. LMOT is approximately ten times faster than state-
of-the-art trackers while being only 3.8% behind in performance accuracy on average leading to a much
computationally lighter model.

INDEX TERMS Multi-object tracking, pedestrian tracking, joint detection and tracking, object detection,
deep learning.

I. INTRODUCTION
Multi-Object Tracking (MOT) is an inevitable feature in
modern autonomous robotics systems. Estimating trajectories
for objects of interest through time is crucial for a wide range
of real-world applications. Such applications may range from
indoor mobile service robots that need to navigate in a
human-friendly manner to autonomous vehicles that track
nearby vehicles and pedestrians. Therefore, such real-world
applications require a robust multi-object tracking approach
that satisfies real-time compatibility [1], [2].

A key challenge for multi-object tracking is the trade-off
between achieving high accuracy and real-time compati-
bility. Current top-performing trackers follow mainly two
paradigms: tracking-by-detection and joint-detection-and-
tracking. Tracking-by-detection approaches decouple the
detection and tracking tasks via introducing a tailored model
for each of them, leading to robust multi-object tracking.
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However, they suffer from computational inefficiency due
to having two separate models that run sequentially. On the
other hand, joint-detection-and-tracking approaches extract
detection and tracking features using a single model for better
computational efficiency.

This paper introduces a novel real-time and robust joint-
detection-and-tracking model, entitled LMOT, i.e., Light-
weight Multi-Object Tracker. LMOT simplifies the DLA-34
encoder [3] and combines it with a linear transformer to track
pedestrians in crowded environments. DLA-34 is commonly
used by the state-of-the-art trackers [4], [5], [6], [7] to extract
essential spatial and semantic information for detection;
however, it is computationally expensive and does not
fit real-time applications. Thus, we introduce a simplified
version of Deep Layer Aggregation Network (DLA-34)
to ensure computational efficiency. Additionally, to avoid
accuracy degradation, we support the simplified DLA-34
with a computationally efficient linear transformer that
generates tracking features. After that, we fuse the generated
detection and tracking features via our proposed multi-layer
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FIGURE 1. An example from the MOT17 dataset showing the robustness
of LMOT and its ability to estimate trajectories of fully occluded objects.

fusion module into a single feature map for joint-detection-
and-tracking. Furthermore, we introduce a novel enhanced
two-stage online data associationmodule that applies Kalman
filter [8] to estimate tracklets’ locations leading to tracklets
that are robust to challenging real-world scenarios.

We evaluated our model on the MOT16/17/20 datasets,
which are well-known benchmarks used by state-of-the-
art trackers. These datasets include challenging real-world
scenarios for tracking pedestrians in crowds, occlusions,
illumination, and camera motion and orientation challenges.
Such real-world experiments show the robustness of LMOT
and its ability to track objects of interest and infer their
location even when they are fully occluded, as demonstrated
in Figure 1.

To conclude, the contributions of this paper are as follows:
1) Presenting a novel real-time and robust multi-object

tracking model that achieves a significant com-
putational runtime improvement compared to the
state-of-the-art.

2) Exploring the possibility of simplifying the DLA-34
encoder to generate powerful detection features that are
computationally efficient.

3) Generating tracking features using a linear transformer
to avoid accuracy degradation caused by the simplified
DLA-34.

4) Fusing detection and tracking features in a unified
feature map using a multi-stage scheme.

Additionally, we organize the rest of this paper as follows;
Section II explores the related work to multi-object tracking
and the existing paradigms. Next, Section III discusses our
proposed model, LMOT, in detail. Then, Section IV demon-
strates our real-world experiments and discusses the achieved
results, besides showing some insightful ablation studies.1

Finally, Section V concludes our findings, highlights our
model’s limitations and proposes future research directions
to address such limitations.

II. RELATED WORK
Early tracking methodologies operate offline and perform
global optimization for the whole sequence of frames in a

1We made our code publicly available and the source code
for the developed models and experiments can be found through:
https://github.com/RanaMostafaAbdElMohsen/LMOT

fast and simple way [9], [10], [11], [12]. However, such
early methodologies tend to suffer when tackling real-world
scenarios, requiring complex features to represent objects
of interest. Thus, the current research trend of multi-object
tracking exploits the deep learning techniques advance-
ments and follows two paradigms: tracking-by-detection and
joint-detection-and-tracking.

Tracking-by-detection approaches [13], [14], [15], [16]
separate detection and tracking steps. These approaches
deal only with the current frame and usually apply popular
off-shelf detector networks to generate detection bounding
boxes for objects of interest, such as Deformable Part
Model (DPM) [17], Faster Recurrent Convolutional Neural
Networks (Faster-RCNN) [18] and Scale Dependent Pooling
(SDP) [19]. Then, they use separate tracking models to link
the detected objects over time. For instance, SORT [13]
applies Faster-RCNN [18] for detection and then employs a
Kalman filter [8] for tracking. Afterward, DeepSORT [14]
extends the SORT [13] approach by extracting distinct
features after detecting the objects of interest to help in
their re-identification through time. Moreover, Bae [15]
proposed a tracking framework that models objects’ visual
and radar features and their affinity using a confidence-based
data association model and a visual learning object model.
Alternatively, Liang et al. [16] use graph neighbor networks
to model full contextual relations for each tracklet with its
surrounding neighbor tracklets for effective data association.
Accordingly, the tracking-by-detection paradigm’s powerful
aspect is that for each task, we build the most convenient
model for its goal. However, due to independent models,
this paradigm is computationally expensive to train and slow
concerning runtime execution.

Joint-detection-and-tracking paradigm adopts a unified
framework that serves both detection and tracking. For
example, CTracker [20] chains adjacent bounding boxes
across frames to generate tracklets from consecutive frames.
Furthermore, TubeTK [21] links all sequence frames through
time to represent tracklets’ moving trajectories to attain
more global representations. Alternatively, JDE [22] gen-
erates distinctive features at objects’ centers to incorporate
them with data association and re-identification. Moreover,
CenterTrack [4] extends CenterNet [3] using its deep layer
aggregation architecture, i.e., DLA-34, to represent objects
using their center points and track them based on their offsets
in previous frames. Similarly, TraDeS [5] uses center points
to represent objects with DLA-34 backbone and generates
tracking features using a cost volume association module.

The state-of-the-art approaches consist of GSDT [6],
FairMOT [7] and Trackformer [25]. GSDT relies on
DLA-34 [3] as a backbone and applies a graph neural
network to model relations between objects of interest.
However, graph networks are computationally expensive and
require much training. On the other hand, FairMOT [7]
uses center points with a DLA-34 backbone and generates
center re-identification embeddings for data association.
However, in joint training, the re-identification loss con-
flicts with the detection loss, which harms the detection
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TABLE 1. Summary of the recent works in the literature.

performance. Moreover, these embeddings suffer from both
dimension scalability and runtime issues since the number of
embeddings increases proportional to the number of objects;
thus, FairMOT tends to be slow in crowded environments.
Alternatively, Trackformer [25] uses vision transformers as
a backbone network to model long-term dependencies and
generate global decisions using the multi-head attention
mechanism. It employs a tracking-by-attention mechanism
using track queries for consecutive frames. However, trans-
formers are computationally expensive, slow to train, and
hard to converge. We summarize the recent works in Table 1.

As opposed to the state-of-the-art, this paper introduces a
real-time multi-object tracking framework that surpasses all
state-of-the-arts from the runtime perspectivewhile achieving
a very close and comparable accuracy compared to them.
First, LMOT simplifies the DLA-34 network [3] and com-
bines it with a computationally efficient linear transformer to
generate robust detection and tracking features, respectively.
Then, LMOT fuses these feature maps and introduces an

efficient two-stage online data association technique to track
the generated detections.

III. LMOT
LMOT is a lightweight multi-object tracking approach that
combines detection and tracking tasks in one model. LMOT
is a key-point-based tracker that represents each object
of interest by its center to avoid the common problems
of tracking anchors [3]. Additionally, LMOT simplifies
the DLA-34 [3] encoder to achieve real-time performance
and supports it with a linear transformer module to avoid
accuracy drop. Accordingly, LMOT ensures computational
efficiency and generates robust features. Moreover, our
proposed multi-stage fusion module uses both detection and
tracking features to generate a single feature map. Afterward,
the detection and tracking branches take the input of the
fusion module and generate the outputs. Finally, our data
association module links the outputs in an online mode,
generating reliable tracklets. In this section, we discuss both
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FIGURE 2. Overview of LMOT architecture. Simplified DLA-34 generates crucial detection feature maps from the current image frame encoding spatial and
semantic representations. Linear transformer takes the previous image frame and its corresponding heatmap of detections’ centers as an input for
generating a feature map that represents tracking features. LMOT fuses tracking and detection feature maps to generate final detections and then
performs data association with previous tracklets to output current tracklets.

modules’ details besides our novelmulti-layer fusion and data
association modules.

A. SIMPLIFIED DLA-34 ENCODER
We introduce a simplified version of the Deep Layer
Aggregation (DLA-34) network to improve runtime by
minimizing the number of generated feature maps to account
only for objects of interest to real-world trackers. The original
DLA-34 [3] uses ResNet-34 [23] as a backbone to extract
a broad spectrum of feature maps corresponding to five
scales of the input frame, i.e., 1/2, 1/4, 1/8, 1/16, and
1/32. These feature maps represent robust semantic and
spatial detection features that merge scales in a fine-to-coarse
manner using iterative skip connections, besides hierarchical
skip connections to preserve features from shallower layers.
The goal of such scaled feature maps is to detect a wide
range of objects of different sizes where some of them are too
small, e.g., birds, frogs, and insects. However, such too-small
objects are unlikely in real-world tracking scenarios since
current real-world trackers are usually concerned with larger
objects such as pedestrians and cars. Therefore, limiting
the output to only the feature maps scaled as 1/4, 1/8,
and 1/16 leads to a massive improvement in the runtime
without much affecting the tracking performance. These
selected scales keep the necessary level of details needed for
detecting objects of interest while avoiding any unnecessary
computational overhead. As demonstrated in Figure 2,
we feed the current image frame, at time t , as an input to
the simplified DLA-34 encoder to produce the three detection
feature maps in a spatial and semantic representation.

B. LINEAR TRANSFORMER
In addition to the semantic and spatial detection features,
LMOT also extracts tracking features to help track missed
objects of interest due to occlusion or blurring. However,
a crucial constraint is to perform that efficiently to realize a
real-time module. Accordingly, we extend the functionality

of the linear transformer of Melas-Kyriazi [26] to generate
tracking features instead of performing image classification
tasks in its original version. Thus, we extended the linear
transformer architecture to take the heatmap of detections’
centers of the previous time step, besides the corresponding
image frame, as shown in Figure 2.

The linear transformer achieves a remarkably competitive
accuracy in linear computational complexity since it relies
on just a stack of feed-forward layers. First, we divide the
concatenated input into 32 patches and perform convolutional
encoding on each patch. Then, we feed the patches into a
stack of six feed-forward block layers. Finally, the resultant
features pass through a final normalization layer generating
a 256-channel output feature map with 1/16 resolution of
the original image. In addition, we note that heatmaps have
identical dimensions as image frames but with only one
channel representing the objects’ of interest centers and
concatenated to the input frame of the linear transformer.

Furthermore, it is worth mentioning that LMOT generates
a heatmap of detections’ centers for each time step via the
heatmap head of the detection branch, as shown in Figure 2.
Then, this heatmap is fed to LMOT in the consecutive time
step after being scaled to fit the input dimensions. However,
as for the initial frame, since there are neither prior frames
nor prior detections, we feed the initial image frame and an
initialized heatmap with zero values as input to the linear
transformer.

C. FUSION MODULE
Our proposed multi-layer fusion technique preserves impor-
tant spatial and semantic features while enhancing them
with tracking features generating a single feature map for
joint-detection-and-tracking. As shown in Figure 3, we fuse
the tracking features obtained from the linear transformer
into the multi-scale detection features of the DLA-34 in
a multi-layer scheme while performing up-sampling. First,
we concatenate the 256-channel feature map generated by
the linear transformer module and the 256-channel map of
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FIGURE 3. Overview of LMOT’s fusion module.

the simplified DLA-34 network together. After that, we apply
two convolutional layers while preserving the dimensions,
and then we perform up-sampling to double the dimensions
and generate a 128-channel feature map. Next, we repeat the
same series of operations on the resulting feature map to
fuse it with the remaining two feature maps of the simplified
DLA-34 module.

Furthermore, we recover the resolution of the feature
maps to quarter the input frame, which typically enhances
the detection and tracking accuracy compared to lower
resolutions [4]. Thus, we recover the necessary details
for detection and tracking while minimizing computational
overheads. Finally, it is worth mentioning that our proposed
fusion technique is much lighter compared to the decoders
used in GSDT [6] and FairMOT [7] since they rely on graph
networks and deformable convolutions, respectively.

D. DETECTION AND TRACKING BRANCHES
We feed the feature map generated from our fusion module
as an input to both our detection and tracking branches. The
detection branch consists of three parallel heads: heatmap
head, bounding boxes head, and offset head. They are
responsible for generating a heatmap of the current frame,
sizes of the bounding boxes of detected objects, and the
offset of each point of each detected object relative to that
object’s center point, respectively. Each head consists of two
3 × 3 convolutional layers, each of 256-channels, followed
by a 1 × 1 convolution layer. However, we apply a sigmoid
function to the output of the heatmap head as an extra
filtration step to bound its output values.

The heatmap head estimates the center points of the
objects of interest in the input frame at the current time
step, where potential center points correspond to regions of
high intensity in the generated heatmaps. The dimensions
of the heatmap correspond to quarter the resolution of
the input frame to match the fusion module to preserve
the necessary level of details; however, it consists of only

one channel. We train this head using a pixel-wise logistic
regression loss function, LH , with focal loss [27] using the
given ground-truth detected boxes, since it leads to better
convergence compared to the ordinary binary cross-entropy
loss [3], [4], [27], as illustrated in Eq. 1:

LH =−
1
N

∑
xy

{
(1− Ĉxy)α log(Ĉxy) Cxy = 1;
(1−Cxy)β (Ĉxy)αlog(1−Ĉxy) otherwise,

(1)

where Cxy and Ĉxy are the corresponding points at the
ground-truth and predicted heatmaps, respectively. Further-
more, α, β are focal loss hyper-parameters. Besides, N is
the given number of objects to be detected. We compute the
ground-truth heatmap by placing Gaussian-shaped peaks at
the ground-truth centers provided by the training datasets,
where we bound the value of each point between 0 and 1. The
center points in the ground-truth heatmaps have a maximum
heat intensity, i.e., a value of 1.

The bounding boxes head estimates the sizes of the
detected objects’ bounding boxes and stores that information
in the points corresponding to those objects’ centers in the
generated output. Furthermore, the offset head estimates
offsets of points inside the generated bounding boxes related
to the detected objects’ centers. Such estimated offsets help
improve the localization of the detected objects. Similar to
the heatmap head, each of these two heads generates an
output with quarter dimensions in width and height of the
input frame to match the fusionmodule. However, the outputs
of these two heads have two channels corresponding to the
width and height for the bounding boxes head and the offsets’
coordinates for the offset head, respectively. Furthermore,
we compute a joint loss function to train both heads, LSO,
as demonstrated in Eq. 2:

LSO =
1
N

N∑
1

‖s− ŝ‖1 + ‖o− ô‖1, (2)
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where s and ŝ correspond to given and predicted sizes of
each object at any given point, respectively, while o and ô
correspond to their corresponding offsets, respectively.

In addition to the detection branch, we introduce a tracking
branch that consists of a displacement head to estimate
2D displacements for detected objects. Such displacements
correspond to the difference between objects’ locations in
the current frame relative to the previous frame. The main
goal of this branch is to support the correct prediction of
heatmaps to avoidmistakes caused by fast-moving objects via
contributing to the loss function. Thus, LMOT can account
for different paces of pedestrians. Furthermore, the tracking
branch help in recovering from occlusions in crowded
environments. Accordingly, the generated output stores the
displacement information in the points corresponding to the
detected objects’ centers, similar to the bounding boxes head.
Also, this head generates an output with quarter dimensions
in width and height of the input frame while having two
channels to represent the necessary details. We train this
head via computing the loss of the predicted displace-
ment compared to the given ground-truth, as explained in
Eq. 3:

LD =
1
N

N∑
1

‖d̂ (t,t−1) − d (t,t−1)‖1, (3)

where d̂ (t,t−1) and d (t,t−1) are the predicted and ground-truth
displacements of the object, respectively.

Finally, we compute the total loss for our model by
combining the losses of the individual heads in Eq. 4 as
follows:

L = λH ∗ LH + λSO ∗ LSO + λD ∗ LD, (4)

where λH , λSO and λD are the corresponding weights of the
losses.

E. ONLINE DATA ASSOCIATION
We propose an online two-stage data association method
which relies on Kalman filter [8] for motion estimation.
We divide data association into two stages. The first
stage prioritize high-confidence detections and try associ-
ating them with all the existing tracklets in the system,
including both active and lost tracklets. The lost tracklets,
unlike the active ones, are those tracklets that were not
associated with detections within a specific time window.
In other words, we keep considering these tracklets for
some future time steps to account for possible occlusions.
After that, the second stage considers the low-confidence
and unmatched detections that remained from the first
stage and performs a second association trial with all
the remaining tracklets. Finally, we initialize unmatched
detections as new tracklets while keeping the unmatched
tracklets for some future time steps to account for possible
occlusions.

We apply a Kalman filter [8] to predict the new locations
of all the tracklets before associating them to the detections.
It is worth mentioning that such modification accounts for

the dynamic nature of the objects of interest to improve
tracking accuracy. Furthermore, we compute the intersection
over union (IOU) distance between predicted tracklets’ boxes
and detected objects’ boxes and use Jonker-Volgenant [28]
algorithm for matching between the tracklets and detected
objects, as opposed to the commonly used Hungarian and
greedy matching algorithms.

IV. EXPERIMENTS
This section explores our real-world experiments, ablation
studies, and the datasets used for training and testing.
Furthermore, we discuss our evaluation metrics for com-
paring LMOT against state-of-the-art approaches and our
experimental settings. Besides, we discuss our experimental
results and our ablation studies.

A. DATASETS
This section discusses the benchmark datasets used in our
experiments. Table 2 provides an overview of the pre-training
and evaluation datasets used for our experiments. As for
the pre-training step, it is crucial to warm up our model
via exposing it to scenarios of limited crowds to allow it to
learn necessary features about detecting humans to prepare it
to deal with more complex scenarios with massive crowds
and occlusions. Accordingly, we performed pre-training
using CrowdHuman [29], CityPersons [30] and ETH [31]
datasets, which provide bounding boxes for pedestrians in
non-crowded scenarios.

As for training, validation, and testing, we rely upon
MOT16/17/20 datasets [32], [33] that are well-known
benchmarks to evaluate multi-object tracking. MOT16/17/20
datasets involve challenging real-world scenarios, besides
being considered by the state-of-the-art trackers. For exam-
ple, MOT16/17 datasets [32] consist of outdoor scenes
with pedestrians suffering from illumination, occlusion,
and camera motion challenges. Meanwhile, MOT20 [33]
consists of much denser crowds with a challenging camera
orientation. Therefore, we trained our pre-trained model on
each of MOT16/17/20 datasets separately and evaluated our
model on the corresponding testing sequences of each of
them. We split the training sequences into two halves for the
validation phase; however, we considered the whole training
sequence for the testing phase. Furthermore, it is worth
mentioning that we performed the validation on MOT17 only
to avoid any bias. Additionally, we note that we do not have
direct access to the ground-truths of the testing sequences
of any of the MOT datasets since tests are evaluated
online on the MOT datasets platform without disclosing any
ground-truths.

It is worth mentioning that MOT16/17/20 datasets provide
two modes of evaluation: private and public modes. The
private model evaluates both the detection and tracking
capabilities of the trackers. In other words, trackers must
generate their detections. However, the public mode only
considers the tracking capabilities via providing trackers
with a set of given detections by the datasets. Accordingly,
we evaluate LMOT in both modes.
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FIGURE 4. Qualitative results of LMOT’s multi-object-tracking performance on a test sequence from MOT16/17/20 benchmarks, respectively. Each row
shows successive testing frames per benchmark with the generated tracking output boxes and identities. MOT16 sequence demonstrates blurring
challenges while MOT17/20 sequences show illumination and massive crowds challenges, respectively, besides camera orientation challenges.

TABLE 2. Summary of the datasets.

B. EVALUATION METRICS
Our main goal is to achieve a fast model with satis-
factory accuracy. Therefore, we evaluate the performance
of LMOT compared to other approaches from both the
runtime and accuracy perspectives. Accordingly, as for the
computational aspect, we compute the average processing
time per frame for LMOT compared to the state-of-the-art
and all top-performing trackers. Furthermore, it is worth
mentioning that we have performed all our experiments
on the same hardware settings, i.e., a mobile Nvidia
Geforce RTX 2070 GPU, to ensure a fair and unbiased
comparison.

On the other hand, from the accuracy perspective,
we compute both IDF1 and MOTA scores. The IDF1 score
represents the ratio of correctly identified detections over the
average number of ground-truth and computed detections,
while MOTA stands for multi-object tracking accuracy and
is computed in Eq. 5 as follows:

MOTA = 1−

∑
t (FNt + FPt + IDSt )∑

t GTt
, (5)

where t is the index of the evaluated frame,GT is the number
of ground truth objects to be detected, FP denotes the number
of false positives, FN is the number of false negatives.
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Furthermore, we consider the quality of the tracking behavior
via counting identity switches of tracklets, IDS, to asses
tracking stability. Moreover, we report the percentage of
active and lost tracklets for more than 80% of their life span,
i.e., MT and ML, respectively.

C. IMPLEMENTATION DETAILS
We pre-trained our LMOT model on CrowdHuman [29],
CityPersons [30], and ETH [31] for 60 epochs. Then,
we trained LMOT on MOT16/17/20 datasets [32], [33],
each dataset in a separate experiment, using Adam optimizer
for additional 30 epochs with a learning rate of 10−5,
where the learning rate decays to 10−6 for the last five
epochs with a batch size of 6. The input image resolution
is 544 × 960, and the output feature heads resolution is
136 × 240. Moreover, the focal loss hyper-parameters α
and β are 2 and 4, respectively. Besides, the total loss
hyper-parameters λH and λD are set to 1, and λSO is
set to 0.1. For the online data association, the threshold
score for high-confidence detections is 0.3. Furthermore,
as for the Jonker-Volegenant algorithm, we used a matching
threshold of 0.8 and 0.7 in the first and second stages,
respectively. We keep the unmatched tracklets for 30 future
frames to account for possible occlusions. We performed
all our experiments using a mobile Nvidia Geforce RTX
2070 discrete GPUwith 2304 CUDA cores and 8GB of RAM
with a frequency of 1.4 GHz.

D. BENCHMARK RESULTS
We evaluated our approach compared to the state-of-the-
art approaches, i.e., FairMOT [7] and GSDT [6], as well
as the other top-performing methods [4], [5], [20], [21] on
the testing sequences of MOT16/17/20 datasets. However,
concerning the validation results, we compared our model to
only thosemethods that reported their validation results based
on half-splitting the training sequences ofMOT17 [4], [5], [7]
to have a fair comparison with our approach.

As for the validation phase, our approach significantly
improves running time while outperforming all the other
methods in tracking accuracy, as demonstrated in Table 3.
Furthermore, LMOT achieves a comparable IDF1 score to
FairMOT [7] while outperforming the other approaches.
Additionally, LMOT demonstrates a robust tracking behavior
compared to all the other approaches, which can be shown via
the improvement in IDS, MT , and ML scores.
Concerning the testing phase, as shown in Table 4, LMOT

significantly outperforms the state-of-the-art approaches
regarding the runtime per frame in the private mode, which
corresponds to being ten times faster compared to the state-of-
the-art considering the average runtime over all the datasets.
Furthermore, concerning the tracking accuracy, LMOT
achieved a very close performance for MOT16/17 datasets
leading to an accuracy of just 2% less than the state-of-the-
art approach for each of these datasets. Additionally, LMOT
achieved an accuracy of 8% less than the state-of-the-art for
the challenging MOT20 that includes extreme scenarios with
massive crowds. Similarly, LMOT achieved very close IDF1

scores for MOT16/17 datasets to the state-of-the-art while
achieving an acceptable score forMOT20. It achieves second-
best IDF1 for MOT16/17 datasets. Overall, LMOT achieved
a significant improvement in runtime while achieving a
comparable accuracy that is 3.8% less than the state-of-the-
art on average. Thus, LMOT, as opposed to the state-of-the-
art approaches, can operate in real-time applications while
maintaining an acceptable tracking accuracy.

Furthermore, LMOT demonstrates a stable tracking behav-
ior since it outperforms the state-of-the-art approaches for
the number of identity shifts, i.e., IDS, for MOT16/20
datasets. The tracking behavior’s stability can also be shown
from the tracklets that were active or lost tracklets most of
their life span, i.e., MT and ML. LMOT achieved second
place for the percentage of mostly active tracklets and the
second minimum percentage of lost tracklets for MOT16/17.
Furthermore, as for MOT16, LMOT achieved comparable
percentages to the state-of-the-art approaches. However, the
tracking stability of LMOT was affected by the severe
occlusions caused by the massive crowds of MOT20.

All in all, LMOT is, on average, ten times faster than
the state-of-the-art while sacrificing only 3.8% of accuracy.
Accordingly, LMOT represents a real-time tracking module
while maintaining a robust performance in challenging
situations, such as those depicted in Figure 4, compared to the
other state-of-the-art approaches that severely trade-off com-
putational runtime for robustness. For example, GSDT [6]
and FairMOT [7] suffer from scalability issues and run
much slower in crowded frames. Moreover, Trackformer [25]
is computationally expensive to run and hard to train and
converge due to using a complex vision transformer. Addi-
tionally, we demonstrate further examples of our real-world
experiments via a demo at our supplementary materials.2

In addition to conventional evaluation, we evaluated
LMOT on MOT16/17/20 datasets [32], [33] in a public
detection mode to assess its tracking capabilities apart from
its ability to carry out detections. In such mode, LMOT
only performs tracking relying on a set of given detections
provided by the MOT16/17/20 datasets and then generates
tracklets for such detections. In this regard, we compared
LMOT to TrackFormer [25] and TMOH [35], which are
the top-performing approaches that support public detection
mode. The state-of-the-art approaches do not support public
detection mode due to using re-identification embeddings in
data association; thus, it is not possible to decouple detection
and tracking in their case. As shown in Table 5, LMOT
demonstrates an outstanding runtime performance achieving
a significant improvement. Furthermore, as for tracking
accuracy, LMOT is superior in MOT16/17 datasets with an
average improvement of 8% in MOTA and 6% in IDF1
while achieving a comparable performance in MOT20, i.e.,
3.8% and 4.9% less than TMOH [35] for MOTA and IDF1,
respectively. Additionally, LMOT demonstrates a smooth and
robust tracking behavior achieving the highest percentage of
mostly active tracklets and the lowest percentage of mostly

2https://scholar.cu.edu.eg/abayoumi/LMOT
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TABLE 3. Validation results on MOT17 validation sequences running on RTX 2070 Mobile GPU.

TABLE 4. Testing results on MOT16/17/20 testing sequences in private mode running on RTX 2070 Mobile GPU.

TABLE 5. Testing results on MOT16/17/20 testing sequences under the ‘‘public detector’’ protocol on 2D object tracking.

TABLE 6. MOT17 validation set results showing the effect of using pre-training datasets.

lost tracklets for MOT16/17 datasets while maintaining the
smallest number of identity shifts in MOT20. Therefore,
LMOT demonstrates a high tracking performance apart from
its ability to carry out detection.

E. ABLATION STUDIES
Furthermore, we investigated the effect of our design choices.
First, we validated the significance of performing pre-training
using CrowdHuman [29], CityPersons [30] and ETH [31]
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TABLE 7. MOT17 validation set results comparing using different backbone encoder networks in LMOT for generating detection feature maps.

TABLE 8. Impact of using prior heatmaps as an input to the linear transformer module on MOT17 validation set.

TABLE 9. Impact of using different matching algorithms for online data association on MOT17 validation set.

datasets on the MOT17 half-split validation sequences. Thus,
we considered different pre-training scenarios for LMOT.
As shown in Table 6, increasing the number of pre-training
datasets of limited crowds improves both the tracking
accuracy and behavior. Such improvement is due to the boost
in the detection capabilities of LMOT caused by warming
up our model and allowing it to learn necessary features in
limited crowds before exposing it to complex scenarios.

Additionally, we explored the significance of our proposed
simplified DLA-34 network by replacing it in LMOT
with different encoder networks. We evaluated that on the
validation sequences of MOT17, as shown in Table 7.
Accordingly, we compared our simplified DLA-34 to the
original DLA-34 and the commonly used Resnet-34 and
Resnet-50 networks [23]. DLA-34 achieves the best MOTA
and IDF1 scores; however, our simplified DLA-34 achieves
slightly less MOTA and IDF1 scores while significantly
improving runtime per frame, i.e., approximately 1.5 times
faster. On the other hand, Resnet-34 and Resnet-50 fail to
achieve a comparable performance, which consumes even
more time in Resnet-50. Therefore, our proposed simplified
DLA-34 improves the runtime while maintaining close
detection and tracking performance.

Moreover, we show the impact of using prior heatmaps
as an input to the extended linear transformer. As shown
in Table 8, prior heatmaps improve the tracking accuracy
and behavior while slightly trading-off the runtime. In other
words, prior heatmaps help generate crucial tracking features
that boost the accuracy while not affecting the runtime
performance of the model.

Finally, we evaluated the effect of using Jonker-Volegnant
algorithm [28] for our proposed online data association
technique compared to the commonly used Hungarian [36],
and greedy [4] techniques. As shown in Table 9, Jonker-
Volegnant algorithm [28] surpasses all other matching
algorithms with a 2% and 6% increase in MOTA and IDF1,

respectively, due to its ability to reduce the number of false
positives. Moreover, Jonker-Volegnant achieves the lowest
IDS compared to other matching algorithms. Furthermore,
as for the runtime, the performance of Jonker-Volegnant
algorithm is average compared to the other approaches.

V. CONCLUSION
This paper introduces a novel real-time multi-object tracking
approach entitled LMOT. We evaluated our approach on the
well-known challenging MOT16/17/20 benchmarks, demon-
strating a robust tracking performance that outperforms
the state-of-the-art approaches from a runtime perspective
while maintaining very close and comparable accuracy.
Furthermore, our experiments showed the robustness of
LMOT to occlusions and its ability to recover from them,
relying on our two-stage online data association technique.
Furthermore, our simplified DLA-34 network generates
powerful detection features while boosting the runtime.
Moreover, our extended heatmaps-based linear transformer
supported the detection features with robust tracking features
in linear complexity. However, as for future work, we will
extend our model to be able to deal with illumination and
camera viewpoint challenges, which severely affect tracking
robustness in massive crowds.
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