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ABSTRACT The Fitness Dependent Optimizer (FDO) is a recent metaheuristic algorithm that was developed
in 2019. It is one of the metaheuristic algorithms that has been used by researchers to solve various
applications especially for engineering design problem. In this paper, a comprehensive survey conducted
about FDO and its applications. Consequently, despite of having competitive performance of FDO, it has
two major problems including low exploitation and slow convergence. Therefore, a modification of FDO
(MFDO) is proposed for solving FDO issues. MFDO used two methods to enhance the performance of
FDO: firstly, optimizing the range of weight factor between 0 and 0.2 which is used for finding fitness weight.
Secondly, using sine cardinal mathematical function to update fitness weight and pace which is referred to the
speed of the bees. To evaluate the performance of MFDO, 19 classical benchmark functions and CEC2019
benchmark functions are used. MFDO compared against all the enhancement of FDO and also it is compared
with Grey Wolf Optimization (GWO), Chimp Optimization Algorithm (ChOA), Genetic Algorithm (GA),
and Butterfly Optimization Algorithm (BOA). Statistical results proved that MFDO achieved significant
performance compared to other algorithms. Finally, MFDO is used to solve three applications: Welded Beam
Design (WDB), Pressure Vessel Design (PVD), and Spring Design Problem. Results proved that MFDO
outperformed well in solving these applications against FDO, Gravitational Search Algorithm (GSA), GA,
and Grasshopper Optimization Algorithm (GOA).

INDEX TERMS Modified fitness dependent optimizer, fitness dependent optimizer, metaheuristic algo-

rithm, optimization algorithm.

I. INTRODUCTION
Metaheuristic algorithms are optimization methods that aim
to find the best solution to a problem. In other words, meta-
heuristics are a set of intelligent strategies to improve the effi-
ciency of heuristic procedures [1].They can be divided into
four main categories; swarm intelligence based, evolution-
based, physics-based and human-related algorithms [2].
Swarm Intelligence Algorithms (SIA) are used by many
researchers in a variety of fields to solve different problems.
SIAs are part of the nature- inspired based algorithms. The
ability of natural swarm-based systems is inspired by the
behavior of some social living beings, such as bees, birds, and
ants. Because of having several agents to form a population,
SIAs have high flexibility and, high efficiency to produce
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good results in terms of speed, cost, and robustness [3]. In SI,
simple rules are performed by agents, and there is no central-
ized control structure in order to predict individual agent’s
behavior [4]. SI’s have two main concepts which are labor
division and self-organization. Self-organization refers to the
ability to create procedures for developing agents without
depending on external sources. On the other hand, the labor
division represents the work process into spited number of
tasks [5].

Metaheuristic algorithms have been used to solve different
optimization problems. Finding the maximum or minimum
value of some function are the aim of using these algorithms:
the minimum time to make a specific trip, the minimum cost
for doing a mission, and so on [6]. Nonetheless, these algo-
rithms also have some inadequacies in terms of finding global
optima, making a tradeoff between its two main essential
aspects exploration and exploitation.
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Metaheuristic algorithms due to having high performances
are utilized to solve real-world problems apparently elec-
tromagnetics problem [7], engineering design problems [8],
constrained optimization problems [9], economic problem
[10], medical problem [11] and task planning problems [12].
They are applied successfully to various engineering and
sciences problems, e.g. electrical engineering (to find the
optimal solution for power generation), in civil engineering
(to design the bridges, buildings), data mining (classifica-
tion, prediction, clustering, system modeling), communica-
tion (radar design, networking) [13].

The nature-inspired metaheuristic algorithms can be based
on intelligence swarm [14]. Genetic Algorithm(GA) pro-
posed by J Holland [15]. It is very common and have been
used to solve many application problems. After GA, differ-
ent algorithms had been proposed such as Particle Swarm
Optimization (PSO) [16], Ant Colony Optimization (ACO)
[17], Artificial Bee Colony (ABC) [18], Bat Algorithm (BA)
[19], Cuckoo Search (CS) [20], Firefly Algorithm (FA)
[21], Krill Herd (KH) [22]. none the less Recent meta-
heuristic algorithms, namely whale optimization algorithm
(WOA) [23], Rain Water Algorithm (RWA) [24], Grasshop-
per Optimization Algorithm (GOA) [25], Farmland Fertility
(FF) [26], Emperor Penguins Colony (EPC) [27]Harris
hawks optimization (HHO) [28], Learner Performance based
Behavior algorithm (LPB) [29], FDO.

Initially, the FDO was presented by Jaza and Tarik [30].
To investigate the reproductive technique, and their mass
decision making behaviors of bee swarm(mimicking the col-
lective behavior of bee swarm in finding new hives). The
proposed algorithm somewhat based on PSO. Thus, in agent
position updating mechanism mimics PSO algorithm but in
various way. FDO due to the use of fitness weight (fw)
technique are its power of exploration and exploitation, easily
restricted into local optima, quicker convergence speed and
solve some real-world problems better than other metaheuris-
tic algorithms. (FDO was able to provide very competitive
results compared with some metaheuristic algorithms and
it has also applied to a several real problems showed a
substantial betterment).

FDO has a more competitive result compared with other
metaheuristic algorithms, and it has also been applied to
solve several real-world problems namely, aperiodic antenna
array designs (AAAD), Frequency modulated sound waves
(FM) [30], Rainfall data [31], One-Dimensional Bin Packing
Problem [32], Pressure Vessel Design(PVD), task assignment
problem [33].

Metaheuristic algorithms have issues in terms of find-
ing optimum solution. Therefore, metaheuristic algorithms
have abilities to resolve intricate optimization problems
[34]. Nevertheless, metaheuristic algorithms based on the
stochastic mechanism have ability to gain global optima
and overcome local optima [35]. Metaheuristic algorithms
depend on the including the interaction among swarm could
ensure the efficient of exploration [36] and balancing between
exploration and exploitation [37]. Based on the information
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collected in this survey, there are several papers that has been
done about FDO, which can be seen in Figure (1).
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FDO-PID
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FIGURE 1. FDO and its variations.

The main contribution of this paper is to collect all the
researches in a survey in order to clarify all the methods
and techniques for researchers. This survey focused on FDO
in different aspects: FDO detail, limitations, modifications,
hybridization, applications and its results. The second contri-
bution is proposing modified FDO (MFDO) in order to solve
the issues of FDO which are poor exploitability and having
low convergence speed. Finally, FDO is used to solve real
world application:

The residue of the paper outline begins with describing
FDO, its characteristics, and limitations followed by pro-
viding different FDO modifications, which have been used
to solve various problems. Following, different applications
of FDO are presented. After that, the proposed MFDO is
presented. The results of the MFDO are evaluated against the
original FDO and other common algorithms. Finally, conclu-
sion is presented with future works on FDO and MFDO.

Il. FDO ALGORITHM

FDO is a recent designed swarm intelligent algorithm which
was proposed by Abdullah and Rashid [30]. It is based on
the bee swarming characteristics during proliferation process
for finding better hives. The position updating mechanism
of FDO slightly mimics of the PSO algorithm. After ini-
tializing population of scout bee randomly in the search
space, finding best hives is the main purpose of the search
agents which are the scout bees. The scout bees ignore the
previous solution if it is not better than current solution [33].
Despite of ignoring the low solution, scout bees change their
position based on the previous best position if the solution
does not improve. Scout bee population is represented as
Xi(i=1,2,...,n) [31], [38].

Two methods are used to search inside the search space
by scout bees: fw and scout bee movement process. In this
algorithm, the scout bee updates its current position based on
the pace to obtain better solution. The scout bee movement is
calculated as follows:

Xi+1 = Xi 1 + pace (1)

where x denotes the artificial search agent (scout bee),
i represents the current search agent, ¢ is the current iteration.
The movement rate and direction of the artificial search agent
can be discovered by the pace. pace is also depends on the
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FIGURE 2. Flowchart of the FDO [32].

value of fw and randomization technics. Equation (2) presents
the calculation of fiw based on best fitness and current fitness:

XiTt fitness
fw= X | wf (2)
i,t fitness
where Xl-’ft fitness denotes the fitness function of the global best

solution, X; ; fimess 18 the current best solutions of the scout
bee, and wf denotes the weight factor and it has the rang of [0,
1]. Furthermore, FDO has a random number » which is based
on the Levy flight method. This random variable is between
—1 and 1. Furthermore, FDO has three different conditions
for calculating pace value based on the fw and r. Equation (3)
represents the conditions of pace value. However, wf does not
have effect on the Equation (2) when wf'is equal to zero. The
pace value is calculated by multiplying current position with
r. As can be seen in Equation (3), if wf = 1. Then, if wfequal
to zero pace can be calculated by multiplying distancepestbee
with r Thereafter, if (1>fw>0) and r<0 pace equal pace*
—1. Also, in otherwise condition Equation (3) showed how
can calculate the pace.

pace
X' if fw=1
ffw=0
iffw>0and fw < landr <0
if fw>0andfw <landr >0
3)

where distancepest bee denotes the variation in the current
agent from the best agent. Therefore, it can be calculated by

. *
distancey,,, .7
pace* — 1

. *
dtstancehest heefw
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Algorithm 1 Pseudo Code of FDO
Initialize scout bee population X; ,(i=1, 2, ..., n)
while iteration (t) limit not reached
setting wf value by 0
Jor each artificial scout bee X; ;
find best artificial scout bee X:z
generate random-walk r in [-1, 1] range
if(Xit fitness == 0) (avoid divide by zero)
fitness weight = 0
else
calculate fitness weight. Equation (2)
end if
calculate distance pes; pee used in Equation (4)
if (fitness weight = 1)
calculate pace using Equation (3)
else if (fitness weight = 0)
calculate pace using Equation (3)
else calculate pace using Equation (3)
if (random number < 0)
calculate pace using Equation (3)
end if
end if
end if
calculate X,+1,; Equation (1)
if(Xi+1,i fitness < X ; ; fitness)
move accepted and pace saved
else
calculate X, 11 ; Equation (1) with previous pace
if (Xi+1.i fitness < X; ; fitness)
move accepted and pace saved

else
maintain current position (don’t move)
end if
end if
end for
end while
Equation (4):
distancepess pee = X* — Xi; “)

Algorithm (1) and Figure (2) presents the detail of FDO
algorithm.

A. LIMITATIONS OF FDO

Metaheuristic algorithms have both efficiency and limitation
for obtaining optimal solution and having better convergence
speed. Therefore, FDO has limitations because of presence
multiple randomized parameter such as fw, wf, pace, updating
Equation, best updating solution, and Levy flight. Conse-
quently, according to paper [38] FDO has issue in terms of
convergence so it has low convergence because of setting wf
to zero. Having improper balance between exploration and
exploitation is another problem related to FDO since FDO
uses fitness of best agent, current fitness, and wf. Using pace
based on randomization is also making unbalanced between
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TABLE 1. Limitations of FDO against five algorithms.

FDO CJADE IPOP-CMA-ES PSO SHADE GA
F Avg. Avg. Avg. Avg. Avg. Avg.
TF1 7.47E-21 -1400 1.00E-08 4.2E-18 0 748.5972
TF2 9.39E-06 3045.822 1.00E-08 0.003154 9000 5.971358
TF3 8.55E-07 2944296 1.00E-08 0.001891 40.2 1949.003
TF4 6.69E-04 3379.984 1.00E-08 0.001748 0.000192 21.16304
TF5 23.501 -1000 1.00E-08 63.45331 0 133307.1
TF6 1.42E-18 -895.466 1.00E-08 4.36E-17 0.596 563.8889
TF7 0.544401 -779.176 7.01E-02 0.005973 4.6 0.166872
TF8 -2285207 -679.064 20.9 -7.10E+11 20.7 -3407.25
TF9 14.56544 -571.738 4.34 10.44724 27.5 25.51886
TF10 4.00E-15 -499.953 1.00E-08 0.280137 0.0769 9.498785
TF11 0.568776 -400 2.25 0.083463 0 7.719959
TF12 19.83835 -274.825 1.72 8.57E-11 23 1858.502
TF13 10.2783 -99.8952 2.16 0.002197 50.3 68047.23
TF14 1.05E+02 3192.957 708 150 0.0318 130.0991
TF15 1.73E+02 201.3478 259 188.1951 3220 116.0554
TF16 2.34E+02 330.4337 3.75E-01 263.0948 0.913 383.9184
TF17 4.31E+02 464.117 343 466.5429 30.4 503.0485
TF18 222.9682 501.1961 40.01 136.1759 72.5 118.438
TF19 22.7801 610.7729 2 741.6341 1.36 544.1018

both phases. FDO has poor performance due to refining its
solution. This problem derived from using fixed value for
wf and achieving low results by using pace Equations [30].
Results conducted from literature shows that FDO has poor
performance against different algorithms such as PSO, GA,
SHADE, CJADE, IPOP-CMA-ES [38]. Table (1) proves that
FDO has low exploitation capability in unimodal test func-
tions. While FDO shows its weakness in exploration in solv-
ing test function 8. Regarding the balancing issues between
exploration and exploitation phase, FDO also has limitations
against GA and SHADE as it can be seen in Table (1).

Ill. MODIFICATIONS

Different modifications of FDO are presented in this section.
Based on our knowledge FDO has three modifications which
are Chaotic FDO (CFDO) [33], Improved FDO, and Adaptive
FDO (AFDO).

A. IFDO

In optimization algorithms, randomizations have great impact
on exploration and exploitation. Thus, there are various tech-
niques can be used to generate random numbers. Therefore,
FDO have several areas based on randomization such as Levy
flight mechanism, fw and wf. FDO original use O for wf.
However, paper [38] used a range value for wf which is [0, 1].
Also, the same researchers used alignment and cohesion

VOLUME 10, 2022

method in order to find new position. Equation (5) shows the
technic that was added to Equation (1) in original FDO.

Xi1+1 = Xiy + pace + (alignment™

&)

cohesion

where alignment is the Scouts’ pace that is matched to
the other scouts in the neighborhood. Cohesion is a scout’s
behavior that causes agents to steer towards the center of
mass of the neighborhood. Thus, FDO algorithm uses the wf
to control fw value that is zero in the original FDO. Paper
[30] mentioned that fw is either O or 1. It can be seen from
Equation (7); this mechanism in the FDO tends the result to
slow convergence. Therefore, IFDO improved the fiv through
calculating a weight factor value in the range [0, 1] by using
random mechanism. Also, fw is calculated in Equation (6) if
one of these conditions are true X; ; fimess = 0, fw = 0, thus,

fw>wf:

fw=fw—wf (6)
Otherwise, fw is calculated based on Equation (7):
fw — Xig,ﬁt fitness 7)
Xi,tﬁlness

As results, IFDO is better than FDO in exploring solutions
in the search space. Consequently, IFDO evaluated using
two different test functions (classical and IEEE CEC2019
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benchmark functions). Furthermore, it is compared against
several algorithms, namely, FDO, PSO, WOA SSA, DA, and
GA. Therefore, IFDO is better than FDO in terms of selecting
scout bee position, avoiding local optima, and it has faster
convergence against FDO [38].

B. CHAOTIC FDO

CFDO used chaotic map that is a nonlinear mecha-
nism [39].Therefore, chaotic map have dynamic and nonlin-
ear behavior that is the reason to be used by many researchers
with in the optimization algorithms [40]. Thus, 10 chaotic
maps applied inside FDO in two various ways. First, it was
used to initialize the scout bee population, but FDO use
stochastic mechanism for this process. Second, instead of
using Levy flight mechanism, a chaotic map was used to
generate the random variable r. Furthermore, this mechanism
was used to create better population inside boundary of the
search space. Singer map had significant results compared
to other 9 chaotic maps so singer map was used to initialize
population and generate random number in order to improve
FDO. As aresult, CFDO performed well compared to original
FDO with regard to the speed of convergence and avoiding
local optima [33].

C. HYBRIDIZATION

Hybridizing the powerful properties of various algorithms is
the one of the most popular mechanism that is used to improve
the performance of metaheuristic algorithms [41]. Since FDO
proposed, one hybridization was proposed by researchers.
The following section presents the hybridization of FDO:

1) HYBRID SINE COSINE AND FITNESS DEPENDENT
OPTIMIZER (SC-FDO)

Paper [31] presented hybridization FDO with Sine Cosine
Algorithm (SCA). Thus, FDO is slow in terms of convergence
speed and it does not have proper balance between exploita-
tion and exploration. SCA was embedded in FDO to refine
the optimal solution. SCA is an optimization algorithm that
was used for solving optimization problems [42]. In addition,
pace equation is modified in SC-FDO algorithm according
to following Equation(8), as shown at the bottom of the
next page, where, r is a Levy random number. Also, rl, r2
and r3 are random variables, X, represents the global best
solution, X;; is the current solution of the scout bee. And,
fw is the fitness weight in the range of [0, 1]. Equation (8)
represents all the conditions as follow: If XZ‘t = X;  the pace
is calculated. Therefore, if fw is equal to 1, the pace can be
calculated. Thus, if fw > 0, fw < 1, and r is less than zero,
the pace is calculated. Subsequently, if fw > 0, fw<1, and r is
greater than or equal zero, pace is found. By modifying pace
equation mechanism, scout bees can obtain proper balance
between exploration and exploitation phase.

In addition, r/, r2 and r3 variables transform searching
mechanism to exploitation. Thus, r/ is calculated according
to Equation (9). Where ¢ is represents the current iteration,
tmax denotes the maximum iteration and it is a constant
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variable. Moreover, r2 shows the direction of the movement,
and r3 parameter is the random weight. Furthermore, the
scout bee’s movement is defined by Equation (10)

nm=ﬁ0—§0 ©)

distancepest bee = rg‘X;t —Xit (10)

The proposed algorithm was used to improve FDO in terms
of having slow convergence and trapping into local optima.
So, Equation (11) describes fw calculation:

fw = |:X;kt fitnessi| (1])
Xi,t fitness

After adding the three various conditions to fw. Then, this

parameter is calculated based on the following conditions:

if fw, > wf; (12)

ant = th — Wft

nfw; = fw;

In Equation (12) and (13), f represents the current fitness
weight and new fw at the t;, iteration represented by nfw;. wf;
represents the current weight factor in the range [0, 1]. During
increasing iterations, wf value decreased from wf to zero.
Therefore, to tune random fw, another type of fw parameter
was proposed. This type of fw was used for the best solution
that was found so far by any scout bee over all the iterations.
Global fitness weight denoted by fiw* used to refine wf.

Results proved that the exploitation capability of the
FDO was improved by merging SCA features. SC-FDO was
obtained the better neighboring search and achieved promis-
ing solutions by having better exploration [31].

IV. APPLICATIONS OF FDO

Based on the literature, FDO has been used to solve several
real-world problems. In this section, the conducted applica-
tions present that FDO and its modifications were adapted to
solve them.

A. APERIODIC ANTENNA ARRAY DESIGN
This application is used in wireless communication systems
and developed in1960s. Generally, it can be classified into
two types for initial array antennas design: thin antenna
arrays and non-uniform antenna arrays. The optimal array
pattern design is achieved by increasing channel capacity of
wireless communication systems [43]. Antenna arrays are
utilized in a variety of applications such as radios [44], radar
[45], GPS [46]. Additionally, Designers of aperiodic arrays
have to rely on different of techniques, such as randomly
putting components using function of probability density.
Therefore, real-number vectors represent a position in non-
uniform arrays. To avoid discordant lobes most of antenna
array use the boundary element technic [47].

Therefore, this problem can be improved in terms of a
vector of real numbers by optimized element position to
get the peak side lobe level (SLL) in non-uniform arrays.
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Furthermore, to avoid grating lobes, the space of particular
element should be limited for traditional periodic arrays.

The 10 elements of a non-uniform isotropic array are used
to design the problem. On each side, just four element posi-
tions require to be optimized. Thus, the four-dimensional of
this optimization problem shows in Equation (14).

X; € (0,2.25) |X; — Xj| > 0.254 > min {X;} > 0.125,.
i=1,2,34i#] (14)

Nonetheless, elements should be greater than 0.12510 and
smaller than 2.0A0. Thus, lambda (1) is the Greek alphabet
indicates the wavelength [48]..Due to of these causes, every
element boundary can be larger than 0 and smaller than 2.25.

FDO was used to optimize this problem over 200 iterations.
So, twenty artificial scout search agents were utilized. FDO
achieved optimal solution in iteration 78 and obtained these
results: {0.713, 1.595, 0.433, 0.130}.

B. FREQUENCY MODULATED (FM) SOUND WAVES

FM is a modulation in which the encoding of information in
a carrier wave is altered in the instantaneous frequency for
the signal [49]. FDO was applied on FM sound waves to
improve the FM parameters which have important role in a
variety of modern music systems. Thus, this problem has six
vectors can be optimized: X = {al, wl, a2, w2, a3, w3}. The
objective of this problem is to generate a sound that shows in
Equation (15). The target sound represented in Equation (16)
which is very likely to Equation [50].FDO can achieve the
global best value converges result with 30 scout bees and for
200 iterations from iteration 64.

y(t) = ay.sin(wy.t. + ap.sin(wy.t.0 + az.sin (ws.t.0)))
(15)
vy (1) = 1.0%sin((5.0).t + 1.5%sin(4.8..6 + 2*sin (4.9.1.09)))
(16)

where 67 = 2/100, and the parameter ¢ should be in the
range [—6.4, 6.35]. The aim fitness function minimizes the
summation of square root between both the target wave with
the minimum value while # equals100 turns. The estimated
wave is calculated according to Equation (17) [30].

C. ONE-DIMENSIONAL BIN PACKING

One-dimensional bin packing problem can be defined as a
packing set of items with various specifications into identi-
cal bins [51]. AFDO was used to obtain better solution for
this problem. Paper [32] proposed AFDO used first fit (FF)
heuristic mechanism embedded inside FDO. FF it is a greedy
algorithm that tries to set every new item into the first bin
in which it fits [52]. Thus, through FF technic the scout
bee population was initialized. AFDO algorithm achieved the
final optimal solution compared to the original FDO. The
experimental results of AFDO reached the minimum number
of used bins and achieved a better item packing of bins. It also
obtained better efficiency in gaining solutions for instances
with the smallest minimum. Average fitness values from three
standard datasets compared with the PSO, Jaya, and crow
search(CS) algorithms, results presented that AFDO achieved
higher performance [32].

D. PROPORTIONAL INTEGRAL DERIVATIVE (PID)
CONTROLLER

PID controller known as Integral Proportional Derivative
(I-PD) and it is the most common controllers that were
utilized in industry [53]. FDO technique was applied for
various constraints including Governor Dead Band (GDB),
Generation Rate Constraint (GRC), Time Delay (TD), and
Boiler Dynamics (BD) in PID/I-PD controllers. Optimizing
this problem among thirty runs obtained significant improve-
ment in respect of overshoot, undershoot, and settling time
while it was compared to other techniques such as Teaching
Learning Based Optimization (TLBO), PSO and FA [54].

E. PEDESTRIAN EVACUATION MODELING

Evacuation of pedestrian’s model used for decreasing neg-
ative aspects in case of emergency like, fire, deaths and
earthquake. Primarily, evacuation models can be classified
into two types: continuous model and discrete model [55].
FDO was applied on a cellular automata model which is
a discrete type model. Additionally, the pedestrian’s model
required speed and stretch from the exit door. Also, these two
parameters used to obtain the evacuation time as it can be seen
in Equation (18). Where pedestrian’s stretch from the exit
door as denoted by dist, and the pedestrian’s speed denoted
by desired speed.

100
() — _ 2 dist
f&x) = Z(y (t) = yo(®)) a7 evecTime = (%) * desiredSpeed (18)
t=0
Xi,t*” if fw=1
Xi: + ri cos (r)* (r;fX;t — ,-‘,) *r if fw=0
Pace = % - 5ot Kp . ®)
(X,-J + P sin(ra)(riX;, — Xi,,) ) —1 if fw> Oand fw < land r <0
(Xi,t + r1*sin(r2)(r;‘X;, — X,;,) *fw) if fw>0and fw < land r >0
VOLUME 10, 2022 83921
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The pedestrian’s stretch from the exit door dist can be calcu-
lated as follow Equation:

DIST = \/(Xz —X)?+ (Y2 - 1)? (19)

where the coordinate of pedestrian’s location denoted by
X1 and Y, and coordinate of the locations of exit door is
represented by X, and Y.

Finally, FDO reached the global best solution through
searching the best location of the exit door during the
evacuation operation, and it obtined optimum solution with
57 iterations. Additionally, IFDO was appllied to the same
problm and achieved better result against FDO since IFDO
gained optimum solution with 38 iterations [38].

F. PRESSURE VESSEL DESIGN (PVD) PROBLEM

PVD s a class in classical engineering problem. It is used for
designing tank to hold gases or liquids. Thus, PVD depends
on various parameter such as size, contents, pressure, mass
and materials [56]. Therefore, PVD have four variables can
be optimized such as: shell thickness Ty, inner radius R,
thickness of the head T}, and barring head L. Therefore,
constraints of the problem can be calculated according to
following Equations:

=1,2,3,4
= [X1XoX3X4] = [TsThRL]

FX) = 0.6224X,X3Xy + 1.7781X,X7
+3.1661X7X, 4 19.84X7X; (20)

<3

Variable range 0 < X1, X5 <99 and 10 < X3, X4 < 200
Therefore, the main aim of optimizing this problem is
to minimize the total cost. Thus, optimizing PVD problem
has to be done based on the following constraints which are
represented in Equation (21), (22), (23), and (24).

g1(X) = X; +0.0193X3 < 0 1)
g2(X) = —X3 + 0.00954X3 < 0 (22)

_ 4
(X)) = XXy — gnxg’ +1.296.000 <0 (23)
g4(X) = X4 +240 < 0 (24)

Therefore, FDO applied to solve PVD and obtained best
solution compared to GA, WOA and PSO. However, CFDO
was also used to solve PVD so it acquired higher performance
against FDO while CFDO achieved these results: 7y = 1.54,
Tp = 6.10, R 30.58, and L = 73.29 [33].

G. TASK ASSIGNMENT PROBLEM

Task assignment is one of the main steps to ensure the capa-
bilities of efficient exploitation of the distributed or parallel
computing systems. It is a nondeterministic polynomial (NP)
problem. It is working on assigning tasks among various pro-
cessors of a distributed computer system [57]. The objective
of optimizing task assignment is to reduce the execution cost
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Algorithm 2 Pseudo Code of MFDO
Initialize scout bee population X; ,(i=1, 2, ..., n)
while iteration (t) limit not reached
setting wf value by [0,0.2 Jrange
Jor each artificial scout bee X; ;
find best artificial scout bee X:z
generate random-walk r in [-1, 1] range
if(Xi t fimess== 0) (avoid divide by zero)
fitness weight = 0
else
calculate fitness weight. Equation (27)
end if
calculate distance pest pee used Equation (4)
if (fitness weight = 0)
calculate pace using Equation (28)
else if (fitness weight = 1)
calculate pace using Equation (28)
else calculate pace using Equation (3)
if (random number < 0)
calculate pace using Equation (3)
end if
end if
end if
calculate X,+1,; Equation (1)
if(Xi+1,i fitness <X , ; fitness)
move accepted and pace saved
else
calculate X1 ; Equation (1) with previous pace
if (Xi+1.i fitness < X; ; fitness)
move accepted and pace saved
else
maintain current position (don’t move)
end if
end if
end for
end while

for every task in order to gain high throughput. Equation (25)
presents the objective function of the problem:

FO =YY" Cyxy (25)

J=1j=1

where C;; denotes the cost of every task, X;; refer to the task
whether the task is allocated to a specific processor or not.
Consequently, if the task is designated to specific processor
Xjj = 1, Otherwise X;; = 0.

Thus, FDO applied to solve task assignment problem and it
outperformed well. FDO achieved best performance against
other algorithms. CFDO also used to solve this problem
and it obtained better achievement. Thus, researchers used
task assignment regarding to a department which have five
employees with five tasks. The execution time for whole the
tasks limited between 10 and 99 [33].

VOLUME 10, 2022



J. F. Salih et al.: Modified Fitness Dependent Optimizer for Solving Numerical Optimization Functions

IEEE Access

V. PROPOSED MFDO
Despite of having better performance against several com-
mon algorithms, FDO still requires further improvement due
to having low convergence, not refining solutions, and not
avoiding local optima.

Considering, the shortcomings of the basic FDO,
a Modified FDO (MFDO) is proposed in this paper to
enhance the performance of original FDO. In this paper,
FDO was modified based on two great methods. These
two methods improve the performance of FDO to solve its
limitations. The following section describes both methods.

A: CEC 04

Fitness

Weight factor value

FIGURE 3. Affecting wf on benchmark functions (A) for CEC04 and
(B) for CECO5.

A. OPTIMAL WF RANGE
Original FDO utilizes pace as the factor of movement and
the agent trend. Thus, fw used for controlling pace. One
way to refine the pace value, fw should be improved while
this improvement cannot be done without enhancing global
fitness, current fitness, and wf. wf has been focused on in
this paper in order to use optimal value for it. Reference
to [30] if wfis equal to one, FDO has better convergence and
the exploration is weak. However, it has low convergence,
if the wf is equal to zero because the FDO tries to do more
exploration. Therefore, the range value of wf'is [0, 1]. Paper
[38] used this range to choose wf in order improve FDO.
Despite of using value of wf in its range, wf still requires
further improvement. Therefore, experimental test has been
done in order to shrink the range between 0 and 1. So, in this
experiment, 496 numbers were chosen between 0 and 1.
Then, MFDO was tested using each number over 500 itera-
tions. Thirty agents were used in the population and results
conducted using 30 runs in order to obtain average value.
Figure (3) illustrates that how different numbers affect the
performance of MFDO for different benchmark functions.
Based on the experiment, it can be said that the best range
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to achieve optimal results by MFDO is [0, 0.2]. CEC2019
benchmark functions were used in this experiment and only
5 functions are presented as follows:

Overall, this experiment has shown that MFDO has no
effect on the CEC06, CEC07 in CEC2019 benchmark func-
tions because results fluctuated illogically. Therefore, it can
be said that wf does not have impact to solve both of the
functions. Figure (4) illustrates the experimental results of wf.

A: CEC 06

Fitness

‘Weight factor value

B: CEC07

Fitness

‘Weight factor value

FIGURE 4. Affecting wf on benchmark functions (A) for CEC06 and
(B) for CECO7.

B. ADDING SINC FUNCTION PARAMETER STRATEGY

The sinc function is a mathematics function which is the
abbreviation ‘“‘sine cardinal”, denoted by sinc(x). There
are two conditions on the real line can be represented as
Equation (26) [58].

1 ifx=0
sinc(x) = (26)
S otherwise
Consequently, previous section presented importance of wf
and its effects on the fw, and agent movement. Therefore, sinc
method is used to improve fw parameter from Equation (2) in
basic FDO and the new equation implemented which can be
seen in Equation (27).

fw = it finess *sinc(w *wf) 27)
Xi,t fitness
where X, fitess Tepresents the fitness function of the global

best solution, X; ; fimess is the current best solutions of the
scout bee, and wf indicates the weight factor and it has the
rang of [0, 0.2].
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TABLE 2. Comparing MFDO against FDO, IFDO, SC-FDO and CFDO using classical benchmark functions.

MFDO FDO IFDO SC-FDO CFDO
F Avg. STD Avg. STD Avg. STD Avg. STD Avg. STD
TF1 2.62E-59 1.41E-58 2.32E-82 8.62E-82 5.38E-24 2.74E-23 0.00E+00 0.00E+00 6.44E-51 3.46543E-50
TF2 2.52E-28 9.98E-28 1.33E-29 2.71E-29 0.534345844  1.620259633 0.00E+00 0.00E+00 4.02E-34 2.02891E-33
TF3 1.29E-13 2.40E-13 6.76E-15 8.70E-15 2.88E-07 6.90E-07 0.00E+00 0.00E+00 1.81E-06 5.60366E-06
TF4 3.61E-13 7.54E-13 1.95635E-13 1.31E-13 2.60E-04 9.11E-04 0.00E+00 0.00E+00 7.95E-06 4.27333E-05
TFS 1.06E+00 1.57E+00 1.24E+00 1.49E+00 1.94E+01 3.31E+01 2.69E-01 2.69E-01 1.68E+01 31.4405605
TF6 1.92E-32 2.23E-32 8.73E-33 9.28E-33 4.22E+06 8.15E-09 2.02E-02 5.53E+02 2.01E-01 0.502499011
TF7 5.09E-01 2.95E-01 6.81E-01 3.22E-01 5.68E-01 3.14E-01 4.49E-02 5.98E+02 5.75E-01 3.54E-01
TFS8 -3.76E+03 4.18E+02 -3.61E+03 2.10E+02 -2.92E+06 2.24E+05 -1.02E+04 2.90E+04 -1.04E-+04 1.29E+04
TF9 1.95E+00 9.91E-01 2.52E+00 1.18E+00 1.35E+01 6.66E+00 0.00E+00 0.00E+00 5.64E-01 3.04E+00
TF10 5.15E-15 1.42E-15 6.10E-15 1.77E-15 5.18E-15 1.67E-15 3.26E-15 3.66E-15 1.48E-15 1.32E-15
TF11 6.04E-02 3.45E-02 7.18E-02 4.55E-02 0.525690405 8.90E-02 0.00E+00 0.00E+00 9.26E-02 1.25E-01
TF12 7.05E-08 3.62E-07 2.07E-02 7.76E-02 1.81E+01 2.57E+01 4.54E-02 5.61E-02 1.19E+00 7.97E-01
TF13 3.66E-04 1.97E-03 3.66E-04 1.97E-03 4.10E+09 1.50E-05 1.73E-01 1.90E-01 6.79E-01 2.87E-01
TF14 1.63E+00 7.46E-01 1.76E+00 1.01E+00 2.68E-07 4.68E-07 6.36E+01 9.01E+01 5.50E+00 3.92E+00
TF15 3.07E-04 4.87E-19 3.19E-04 5.94E-05 4.03E-16 9.25E-16 2.28E+02 2.37E+02 3.10E-03 1.12E-02
TF16 -1.03E+00 0.00E+00 -1.03E+00 0.00E+00 9.14E-16 3.61E-16 3.55E+02 3.61E+02 -1.03E+00 2.80E-03
TF17 -1.01E+00 3.07E+01 23.82013 2.15E-01 2.38E+01 1.24E-01 5.17E+02 5.25E+02 -1.03E+00 3.01E+01
TF18 3.00E+00 4.44E-16 3.00E+00 4.58E-11 2.24E+02 2.68E-05 1.56E+02 1.68E+02 1.93E+01 3.51E-03
TF19 -3.86E+00 2.66E-15 -3.86E+00 2.66E-15 3.15E+01 1.32E-03 7.09+02 7.31E+02 -2.64E+00 5.17E-01

Moreover, to enhance the FDO from the perspective of con-
vergence speed, the pace updating mechanism of the MFDO,
guides the search agents to obtained proper balance between
exploration and exploitation, improved pace updating equa-
tion is calculated based on the following:

iffw =0
iffw=1

where X; ; is the current solution, r denotes a random number
in the [1, —1 ] range, the weight factor of the agent repre-
sented by wfe [0, 0.2]. Also, distance best bee is the result of
subtracting the value of Xl.’ft from X; ; and 7 is a mathematical
constant. If fw=0, the pace calculated according to case one
in Equation (28). However, if the current solution is equal to
global best solution, pace is calculated by multiply distance
best bee, r, and sinc(;r (approximately equal to 3.14159)*wf).

X *r*sinc(w * wf)

(28)

pace =1 :
distancepest bee 1" sinc(r *wi)

C. EXPERIMENTAL RESULTS

In order to verify the performance of MFDO, two differ-
ent types of benchmark functions such as CEC2005 and
CEC2019 are used. Thus, the average (Ave), probability
value (P-value) and standard deviation (Std) of the obtained
results are used as evaluation of the performance testing.
Therefore, all algorithms are run in MATLAB program-
ming tool of personal computer, an Intel (R) Core (TM)
17-7600 CPU, 2.80 GHz processor with 8 GB RAM under
windows 10 operating system, and also 500 iterations used
for each of the run of the algorithms.
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1) CLASSICAL BENCHMARK TEST FUNCTIONS

Classical benchmark test functions are selected to test the
performance of MFDO. They have various characteristics,
such as, unimodal, multimodal and composite test functions.
Every set of these test functions is utilized to evaluate differ-
ent aspects of the algorithm. Thus, unimodal functions have
a single optimum that is used for exploitation, and conver-
gence speed of the algorithm. Nevertheless, multimodal is
used for testing the local optima, exploration levels in which
they have multi optimal solutions. Moreover, the composite
benchmark functions are generally combined of versions of
other test functions [30]. Table (2) shows classical benchmark
functions.

Table (2) presents comparison of five algorithms that were
run 30 times by using 30 search agents with ten dimensions.
In each test, calculating the average and standard devia-
tion calculated by using 500 iterations. Also, it shows the
comparison results of MFDO against IFDO, FDO, SCFDO
and CFDO. Therefore, TF12 and TF18 results showed that
MEFDO generally provided best results than the other algo-
rithms. MFDO also achieves better results for solving TF5,
TF7, and TF11 against FDO, IFDO and CFDO. Thus, MFDO
achieved better results in solving TF6, TF13, TF16 and TF19
against the compared algorithms. Furthermore, MFDO in
all TF at least have one better result than other presented
algorithm. The results show that the MFDO in eleven TF
best than original FDO, Also MFDO have sixteen prefer-
able results compared with IFDO and MFDO surpasses in
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TABLE 3. Comparing MFDO With GWO, ChOA, GA, And BOA using CEC2019 benchmark functions.

MFDO GWO ChOA GA BOA
F Avg. STD Avg. STD Avg. STD Avg. STD Avg. STD
CECO01 4.92E+07 468E+07 2.13E+08 3.07E+08 4.24E+09 9.67E+09 5.32E+04 7.04 E+04 5.89E+04  1.14E+04
CEC02 1.73E+01 (0. 00E+00 1.83E+01  3.04E-04  1.84E+01  1.86E-02  1.74E+01 1.73E+01  1.89E+01  2.91E-01
CEC03 127E+01  gg88g-15 1.37E+01 723 E-15 137E+01  7.11E-06  127E+01  1.37E+01  1.37E+01  6.17E-04
CEC04 2.82E+01 [ 52E+01 3.01E+02 6.87E+02  5.93E+03 2.86E+03 6.23 E+04 6.20E+04 2.09E+04  7.71E+03
CEC05 1.09E+00 492E-02 2.43E+00  2.52E-01 4.21E+00 8.87E-01  7.54E+00 7.28E+00  6.18E+00  7.08E-01
CEC06 9.28E+00  ¢.16E-01 1.19E+01  7.31E-01  122E+01  6.83E-01  7.40E+00 6.69E+00  1.18E+01  7.71E-01
CEC07 6.00E+01 §95E+01 5.35E+02 2.92E+02  1.01E+03  1.79E+02  7.92E+02  6.98E+02  1.04E+03  2.15E+02
CEC08 4.13E+00  4.63E-01 S5.40E+00  9.94E-01  6.78E+00  1.56E-01  6.10E+00  5.82E+00  6.34E+00  3.59E-01
CEC09 239E+00 3.09p.02 1.47E+01  5.00E+01  4.49E+02  2.45E+02 531 E+03 529 E+03  2.27E+03  8.11E+02
CEC10 1.63E+01  6.66E+00 2.15E+01  6.85E-02  2.15E+01  7.20E-02  2.01E+01  2.00E+01  2.15E+01  7.95E-02
TABLE 4. Comparing MFDO with modifications Of FDO Using CEC2019 benchmark functions.
MFDO FDO IFDO SC-FDO CFDO
F Avg. STD Avg. STD Avg. STD Avg. STD Avg. STD
CECO01  4.92E+07 4.68E+07  6.59E+07  7.13E+07  2.65E+03  1.39E+04 4.25E+04 4.26E+04 8.93E+08  2.02E+09
CEC02 1.73E+01 0.00E+00  1.73E+01  1.03E-09  4.00E+00  1.00E-05 1.73E+01  1.73E+01  1.75E+01  3.16E-01
CEC03  127E+01 8.88E-15 1.27E+01 1.07E-11  1.37E+01  4.82E-09 1.27E+01 127E+01  127E+01  4.13E-11
CEC04 28E+01 1.52E+01 2.84E+01  9.74E+00  3.12E+01  129E+01  1.59E+03  2.05E+03  5.20E+01  1.89E+01
CEC05  1.10E+00 4.92E-02  1.13E+00  4.65E-02  1.13E+00  7.06E-02  1.69E+00 1.71E+00 1.17E+00  1.57E-01
CEC06  928E+00  6.16E-01  8.86E+00  7.30E-01  121E+01  5.21E-01  827E+00 8.33E+00  1.10E+01  1.21E+00
CEC07  6.00E+01 8.95E+01  5.02E+01 8.57E+01  1.16E+02  1.03E+01  5.93E+01  8.99E+01  8.02E+02  2.17E+02
CEC08 4.13E+00 4.68E-01  4.45E+00 4.25E-01 4.94E+00 8.91E-01 4.50E+00 4.53E+00 4.95E+00  7.35E-01
CEC09 238E+00 3.09E-02 2.40E+00  3.73E-02  2.47E+01  3.10E-15  4.85E+00 4.92E+00 2.88E+00  4.93E-01
CEC10 1.63E+01 6.66E+00 1.87E+01  5.01E+00 2.07E+01  4.44E-16 1.81E+01  1.84E+01  2.00E+01  1.03E-02

fourteen TF than CFDO. However, the MFDO was worse than
the SC-FDO in ten TF. Moreover, the results show that the
MFDO in TF18 and TF12 better overall in comparison with
the selected comparator algorithms.

2) CEC2019 BENCHMARK TEST FUNCTIONS
To measure the algorithm’s performance, CEC2019 is used to
evaluate MFDO. Thus, it consists of ten multimodal bench-
mark functions and they are enhanced test functions for
optimization [59]. The proposed MFDO is compared with
five common nature inspired algorithms, namely FDO [30],
Grey Wolf Optimization (GWO) [60], Chimp Optimization
Algorithm (ChOA) [61], GA [15], and Butterfly Optimization
Algorithm (BOA) [62]. Each algorithm runs thirty times
using 30 search agents and a maximum number of 500
iterations was used to find the optimum solution. Then, the
average and standard deviation of the results were obtained
and presented in this section.

Table (3) shows the proposed MFDO has the first rank
as it outperformed well in seven test functions compared to
the other algorithms in CEC02, CEC04, CECO05, CECO07,
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CECO08, CEC09 and CEC010. GWO, GA, and BOA have
the second, third, and fourth ranks, respectively in average
results. However, the ChOA recorded the least rank in the
performance comparison.

The reason behind this achievement is that range of wf is
[0, 0.2] and sinc function is used for finding fw. Also, this
sinc function used to find pace for two equations from four
conditions.

Moreover, when comparing MFDO with FDO [30], and
its three different modifications such as IFDO [38], SCFDO
[31], and CFDO [31] for CEC2019 benchmark test functions
it can be seen that the average of MFDO is well competitive
with other algorithms. Table (4) presents MFDO algorithm
that produce the smallest average fitness for whole instances.
It also shows comparison of MFDO with three different
modifications of FDO and original FDO. The modifications
are IFDO [38], SCFDO [31], and CFDO [31]. Results proved
that MFDO achieved optimum results against the compared
modifications. The reason behind these improvements shows
that MFDO improvement has great impact and it is better than
the previous modifications.
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TABLE 5. The WILCOXON rank-sum test for CEC2019 benchmark
functions.

F MFDO vs. FDO (P value)
CECO01 0.62040
CEC02 0.04177
CECO03 1.45600
CEC04 0.42896
CECO05 0.01441
CECO06 0.01441
CEC07 0.01441
CECO08 0.01695
CEC09 0.03514
CEC10 0.01837

However, Wilcoxon rank-sum test was used to calculate
p value on achieved results in order to show the statistical
results. Wilcoxon rank-sum test also called Mann—Whitney U
test which is a nonparametric test used to compare two sam-
ples from populations with the same distribution [63]. Thus,
the p value is determined by using the Wilcoxon rank-sum
test and it should be less than 0.05 in order to be significant.
Table (5) presents the p value of MFDO algorithm against
the original FDO because FDO algorithm was already tested
against common algorithm such as PSO, GA, DA, WOA and
SSA [30].

As it can be seen from Table (5), MFDO statistically
achieved higher performance against FDO in 7 benchmark
functions while it was not improved well in the other three
benchmark functions. Overall, it can be said that MFDO
statistically improved the capacity of FDO algorithm.

D. CONVERGENCE EVALUATION

In order to evaluate the convergence of MFDO, CEC2019
benchmark functions are used. MFDO and FDO has been run
it separately and observed the best solution in each iteration.
Both algorithms have run over 500 and 100 iterations using
30 agents. Using both of the iterations gave the same conver-
gence rate. Therefore, Figure (5) illustrates the convergence
rate between FDO and MFDO. As it can be seen that MFDO
enhanced the convergence against FDO. Overall, based on
the results that have shown in previous sections, MFDO
improved the performance of FDO in terms of exploitation
and improving the convergence speed. The reason behind
the improvement of MFDO is that MFDO used two great
methods: shrinking the range of wf and using sinc method
to update fiw which affects pace value.

E. MFDO REAL WORLD APPLICATION

The MFDO is used as a trainer to solve real-world application
problems. In this section, the proposed algorithm is used
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FIGURE 5. Convergence curves of the MFDO and FDO algorithms on four
representative test functions; (A) for CEC02, (B) for CEC04, (C) for CEC08
and (D) for CEC10.

to solve three problems which are Welded Beam Design
(WDB), PVD and Spring Design Problem.

1) WELDED BEAM DESIGN (WDB)

Welding is a method that is used for joining metal pieces using
heat, pressure, or both, and with or without the additional
material. It depends on various design parameters, including
design for minimum cost f (x) based on bar buckling load,
weld stress, bending stress and end deflection. WDB con-
sidered a feasible set of dimensions Aa(x;), [(xp), t(x3) and
b(x4). The WDB problem can be represented mathematically
as follow:

Minf(X)= 1.10471X>X,+0.04811X3X, (14.0—X,)
(29)

Constraints are:
21(X) = Tmax—7(x) >0 (30)
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22(X) = omax—0(x) >0 (31)
23(X) = X4=X; = 0 (32)
24(X) = 5 — 0.1047X3X,40.04811X5X4(14.0+X7) > 0
(33)
g5(X) = X;—0.125 > 0 (34)
26(X) = Smax—8(x) >0 (35)
27(X) = P (x) —=P > 0 (36)

where the values of loads and stresses are given as P = 6000
b, Tiax = 13,600 psi, and 0,4, = 30,000 psi and 8,4 = 0.25.
Also, the variables limitations are given as: 0.125>x1>5,
0.1>x7>10, 0.1>x3>10, 0.125>x4>5.

Weld stress 7(x) has two components: t’ is the primary
stress and T” is the secondary torsional stress. T(x) is found
by Equation (37). o (x) bar bending stress is computed using
the Equation (38). Equation (39), (40) are used to calculated
bar buckling load (Pc), §(x) bar end deflection sequential
[64], [65], [66], [67]. Figure (6) illustrates the parameters of
welded beam design problem.

T(X) = \/ (r/)2+21”r”& + (x")? (37)
2R
o(X) = OPL (38)
 XaX3

X2x? 5
\/4.013E% + () X [E
Pc (X) = 12 (1- oL E) (39)
4PL3
(X)) = —4— 40
((X) X% (40)

Finally, Different algorithms have been used to solve this
problem, such as Gravitational Search Algorithm (GSA),
GOA, and GA. Thus, MFDO and FDO have been applied
to solve this problem in order to obtain the global best
solution by finding the least cost. Thirty agents are used
over 100 iterations. Results show that the proposed algorithm
was more efficient than FDO to achieve optimum solution.
Table (6) shows that MFDO achieved higher performance
against FDO, GSA, GA, GOA [68], [69].

FIGURE 6. Welded beam design.
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TABLE 6. Comparison of MFDO against common algorithms for solving
welded beam design.

Algorithms Mean
MFDO 2.45E+00
FDO 2.49E+00
GSA 3.58E+00
GA 3.65E+13
GOA 2.72E+00

TABLE 7. Comparison of MFDO with common algorithms for solving the
pressure vessel design problem.

Algorithms Mean
MFDO 6.54E+03
FDO 5.33E+ 04
GSA 8.93E+03
GA 2.18E+05
GOA 1.40E+05

2) PRESSURE VESSEL DESIGN (PVD)

PVD is a classical engineering problem. The aim of optimiz-
ing PVD function is to minimize the cost. Thus, it can be
optimized through minimize Forming, material, and welding.
PVD involves four decision variables to be optimized: X
denoted thickness of the pressure vessel Ts, X, is defined
for thickness of the head Th, X3 stands for inner radius of
the vessel R, and X4 is on behalf of length of the vessel
without counting the head L, as presented in Figure (7) [56].
Section 4.6 described PVD in detail.

PVD had been solved by different algorithms so Table (7)
shows results [69]. Therefore, FDO and MFDO are applied
to optimize this problem. Thirty agents and 100 iterations
have been used to solve this problem. The proposed algorithm
outperforms well by obtaining result (6.54E4-03) compared
to other algorithms [69].

T | L | T

FIGURE 7. Pressure vessel design problem.

3) SPRING DESIGN PROBLEM

Spring design is the type of mechanical design problems that
was presented in Siddall [72]. The aim of this engineering
design problem is achieving a helical compression spring
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FIGURE 8. Spring design problem.

TABLE 8. Comparison of MFDO with common algorithms for solving
spring design Problem.

Algorithms Mean
MFDO 1.38E-02
FDO 1.39E-02
GSA 2.08E-02
GA 2.93E+14
GOA 1.65E-02

with the minimum volume. This problem has three variables
that can be optimized as they are shown in Figure (8) : X
the number of spring coils(NV), X> wire diameter(d), and X3
mean coil diameter(D) [68]. Furthermore, N is integer, d is
a discrete variable, and D is continuous. Thus, the bounds
on the variables are: 0.5< X; <2.0, 0.25< X, <1.30, and
2.0< X3 <15.0[70]. Spring design problem can be calculated
mathematically as follows:

Minf(X) = (X3+2)X2X} (41)
Subject to:
F=1o K% “2)
ST Tssxd T
%) — 4X3 — XX, L “3)
BT 1256620 — XD | 5108X2
. 140.45X,
X)=1-—""<0 44
23(X) XX (44)
. X1 + X
2i(X) = 1_%— <0 (45)

MEFDO algorithm has been applied to solve this problem with
30 agents over 100 iterations. The results in table (8) show
that MFDO superior to other algorithms for optimizing this
problem.
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VI. CONCLUSION AND FUTURE WORKS

In this study, a comprehensive survey of FDO and its
applications presented. Then, based on the limitations of
FDO, MFDO proposed in order to enhance the performance
of FDO.

By experimental simulations on using wf between 0 and 1,
MFDO used the range of wfbetween 0 and 0.2. Then, wf was
used to find fw. Also, sinc method was used in three places
inside MFDO to find fw and pace.

MFDO applied to solve classical benchmark functions and
CEC2019 benchmark functions. MFDO achieved best results
compared to original FDO. Overall, MFDO improved the
performance of FDO in terms of exploitation and balancing
between exploration and exploitation phases. It outperforms
well against FDO, IFDO, SCFDO, CFDO, GA, GWO, BOA
and ChOA. Furthermore, statistical results proved that MFDO
achieved significant results compared to FDO.

As a result, MFDO performance is better than FDO
in terms of avoiding local optima and refining the opti-
mum results based on the improvements that were added to
MFDO.

Therefore, MFDO also has the capability to address real
world applications; three real-life problems were selected:
welded beam design, pressure vessel design, and spring
design problem. In all applications, the MFDO outperformed
the FDO, GSA, GA, and GOA.

This study can be used by researchers in order to modify or
hybridize FDO with new recent algorithms. MFDO can also
be used to solve real world problems in the field on medicine
and business planning.
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