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ABSTRACT As the importance of utility condition is increasingly acknowledged, the use of asset manage-
ment technologies in the electric power industry has rapidly grown. The global trend of asset management
follows risk management that accounts for the probability and consequences of failures. Because asset
management systems tend to be composed of various legacy systems, each of which is installed and designed
to collect data according to a certain data type and acquisition purpose, it is necessary to develop a system that
cleans and integrates data acquired from each legacy system. This study explores the development of an asset
management system for a transmission system as a representative linear asset consisting of different segments
in a sequence. First, the configurations and characteristics of linear asset datasets are analyzed. Second,
an automatic data cleaning system, equipped with six types of data cleaning functions for extracting dirty
data from entire datasets, is proposed. An algorithm for data imputation, which is essential for estimating
the remaining useful life, is developed based on principal component analysis—iterative algorithm (PCA-IA).
Afterward, the performance of the proposed system is verified using actual data with the help of the Korea
Electric Power Corporation (KEPCO). Specifically, to evaluate the performance of the proposed system,
an automatic cleaning process is demonstrated using actual legacy datasets.

INDEX TERMS Transmission system, data cleaning, database management, data imputation, principal
component analysis, linear asset, machine learning.

I. INTRODUCTION

Thus far, the convergence of information and communi-
cation technology (ICT) and power systems has driven
the maintenance of power systems to evolve from time-
based maintenance (TBM) to condition-based maintenance
(CBM). Alternatively, in recent years, prognosis-based main-
tenance (PBM) of power systems with the help of machine
learning (ML) techniques has been explored in research stud-
ies. In any case, because of the diversification of energy
sources, including of renewable energy, and the complexity of
power grids, the reliability of power systems has become an
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even more important concern. One task of the power system
operator is to determine the optimal replacement timing by
considering the remaining useful life, damages from failure,
and replacement costs of assets. The risk-based replacement
priority method, which is implemented using a risk matrix
consisting of the probability of failure (PoF) and consequence
of failure (CoF), has been used to reduce maintenance costs.
For this reason, many power system operators across the
world have already started using asset management sys-
tems (AMYS) to increase their business value [1].

The risk assessment algorithm is composed of six steps as
follows: (1) data understanding, (2) data capture and analy-
sis, (3) data quality evaluation, (4) data cleaning processing,
(5) data quality re-evaluation, (6) data continual management.
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The transmission system in power system plays a role in
transmitting power over long distances, so a failure may
cause a wide-area blackout with huge economic loss. For
reliable transmission system operation, three types of legacy
systems are installed and operated in South Korea according
to handled data type as follows: (1) asset specification legacy
system, (2) asset inspection and diagnosis legacy system,
(3) loading information system [2]. A transmission system
is a representative linear asset in which lines are connected
to each other in order, and lines are composed of cables and
joint boxes. A linear assets are defined by length with their
length directly impacting their maintenance such as high-
ways, pipelines. Because each basic element is connected, the
failure of each part may affect the connected parts as well.
It is necessary to propose a new basic asset unit to consider
the ripple effect of the faulty part on the connected parts.
In addition, various data collected in each legacy system must
be integrated according to the asset connection order and new
basic asset unit. Existing legacy systems have difficulties in
data integration, because even identifiers for each system are
not unified, and the collected data is often contaminated.

However, because incorrect legacy data can affect the
results of replacement priority evaluations, good quality
legacy data are necessary for accurate investment planning.
Therefore, it is generally agreed that data cleaning processes
are essential for asset management. It has also been reported
that data scientists spend 60 % of their time on cleaning and
organizing data [3]-[6]. Thus, data cleaning and integration
tools are required to increase the reliability of AMS. The pro-
cess of data cleaning can be divided into missing data and out-
lier detection, and data refining and imputation. Oftentimes,
the data acquired by sensors will have missing points, and
although it is not difficult to determine that parts of the data
are missing, it is difficult to accurately estimate the values
of the missing data. Data imputation refers to the process
of estimating missing data based on observed data, and is
actively being studied for its application in the medical field.
Missing data can be classified into three types, as follows:
(1) the missing data are completely random and indepen-
dent of other variables, referred to as missing completely
at random (MCAR); (2) the missing data are dependent on
observation data, referred to as missing at random (MAR);
and (3) the missing data are dependent on both observed
and non-observed variables, referred to as missing not at
random (MNAR). In this study, we develop a data imputation
method and verify its performance under the assumption of
MCAR [7].

The most traditional method of tackling missing data is to
simply delete the dataset that contains the missing data. With
regard to obtaining good-quality datasets, deleting a dataset
that contains dirty data is better than inaccurately estimating
the missing data; however, this method has the serious disad-
vantage of reducing the overall data size. This decrease in data
size leads to insufficiencies in the training data used to derive
information through a learning process. An alternative is to
replace missing data with derived plausible values through
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a process known as missing data imputation. A variety of
techniques for data imputation have been developed using
statistical and machine learning approaches. State-of-the-
art imputation methods include principal component analy-
sis (PCA) [8], [9] based on machine learning, expectation
maximization based on statistical methods, and autoencoders
and generative adversarial nets (GAN) based on deep learn-
ing [10]-[14]. Each method is more applicable than the
others in certain situations based on its advantages and dis-
advantages. For example, expectation maximization requires
assumptions about data distribution and cannot be applied
to a dataset with a mixture of continuous and categorical
variables [15], whereas an autoencoder can be used for esti-
mating missing data when part of the dataset is missing, but
requires a complete dataset for training [16]. On the other
hand, generative adversarial imputation nets (GAIN), the
latest technique for data imputation based on GAN, exhibit
excellent data imputation performance even when complete
data are unavailable [10]-[14].

The transmission line data used in this study involve the
following considerations. (1) Because failures of transmis-
sion lines have a huge economic ripple effect, few cases of
failure are available for analysis. Moreover, only a few lines
are installed in similar environments. In other words, it is
difficult to secure the massive data required by existing deep
learning methods for each group of cases because cases of
replacements after a failure are presently insufficient. (2) The
amount of real-time data acquired from transmission lines
installed across the country of South Korea is quite large,
and thus it is necessary to develop a lighter algorithm to
enable control within 1 s in case of failure based on the
data. On the other hand, various deep learning techniques,
including GAIN and GAN, are used to manage a variety of
devices, such as motors and robots, installed separately in
a factory. The biggest differences between the factory setup
and the transmission lines examined in this study is that the
lines operate in a connected way, and thus the complex-
ity of the algorithm can be lowered using domain knowl-
edge relevant to the power industry. The ultimate purpose
of the data management of transmission lines is to predict
the remaining lifespan of a transmission line in operation
based on the operation data of a faulty line, and to select
the optimal asset replacement timing based on economic
evaluation of assets in need of replacement. Based on the
results of this study as a cornerstone, a remaining-life pre-
diction and replacement-timing selection algorithm will be
developed based on GAN, long short-term memory (LSTM),
and optimization methods.

In this study, the asset data are categorized as numeric,
categoric, and string data based on analyses of actual power
asset data from across South Korea. Subsequently, algorithms
for detecting outliers and dirty data according to contam-
ination type are introduced. In the case of numeric data,
an algorithm for replacing missing data is developed using
machine learning. A system that repeats a series of processes
until the data quality reaches a set value is then proposed.
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FIGURE 1. Data management when unit of linear asset is a circuit.

In Section 2, we introduce an automatic cleaning sys-
tem that includes the data characteristics of linear assets,
three legacy systems, and six data cleaning functions. There
are three types of legacy systems related to transmission
systems, and thus the data acquired from each segment
constituting the transmission system should be classified and
the data integrated according to the segment connection order.
The transmission system installed in South Korea consists
of underground cables and overhead lines, of which the
cable types are oil-filled (OF) and cross-linked polyethy-
lene (XLPE) cables, which are representative of the cable
types in South Korea. The automatic data cleaning system is
equipped with six data cleaning functions, which are intro-
duced further in the paper, and among them, a calculation
function that processes data acquired from load information
legacy systems is described in detail. We then examine the
algorithm that handles missing data in the load information
legacy system.

In Section 3, a case involving missing data found in a target
linear asset is discussed. The utilization rate data of the load
information legacy system, which we mainly estimated, are of
a numeric data type, and in an analogy between power assets
and humans, these data are similar to human workout data.
We then propose an imputation algorithm that selects other
linear assets that are similar to the target asset considering
the asset connection order, and the missing data are replaced
based on PCA-IA using the similar asset data.

Finally, in Section 4, our newly developed automatic
legacy data cleaning and imputation system, constructed
based on these algorithms, is described and verified using
actual transmission cable data from South Korea.

Il. DATA CLEANING ALGORITHM FOR
TRANSMISSION SYSTEM
Linear assets are characterized as having a linear structure,
where they are arranged in a row, with the components
connected to each other serially. Because linear assets are
interconnected, a failure in one part also affects the connected
parts. To reflect these properties of a linear asset, we set the
basic linear asset unit as one cable section and a joint box on
both sides. This study explores the following power assets:
(1) cable type: underground cable, overhead line, (2) rated
voltage: 154 kV, 345 kV, (3) cable insulation type: XLPE,
OF, and (4) asset type: cable, joint box, termination box.
Legacy Data and Systems of Transmission System: Linear
assets are installed under different environmental conditions,
given the interconnectedness of these assets among each
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FIGURE 2. Data management when unit of linear asset is a segment.

other [17], [18]. In addition, the asset information character-
istics, such as age, cable type, and installation environment,
may be different among segments.

As shown in Fig. 1, setting the entire circuit as the basic
asset unit is disadvantageous in terms of capital expenditure,
because the entire circuit needs to be replaced even if only a
part of the unit fails. By contrast, this paper proposes a method
of inputting one record as a segment, as shown in Fig. 2. The
joint box or termination box on both sides and the connecting
cable are regarded as one basic asset unit. This basic unit
composed of three assets makes it easier to monitor the health
statuses of the connected parts in the event that one asset fails,
and can prevent economic waste that would otherwise require
replacing the entire circuit.

Legacy systems of transmission cable systems can be clas-
sified into legacy systems for asset specification, inspection
and diagnosis, and loading information. These legacy systems
are connected to each other using key ID data for interfacing.
Among these legacy systems, information systems for assets
are similarly classified into three types based on the type
of handled and collected information: (1) asset specification
legacy systems, (2) asset inspection and diagnosis legacy
systems, and (3) loading information legacy systems.

An information system for asset specification manages
the history of the overall transmission equipment, from data
creation to destruction, based on geographic information.
Representative data include cable type, circuit length, man-
ufacturer, and date of installation. Asset specification data,
which are akin to the year of birth, gender, etc., do not
change and are, in another analogy to human identification
data, similar to information on a registration card. Through
the use of this information, it is possible to identify the
unique characteristics of an asset that do not change over
time.

On the other hand, information systems for asset inspec-
tion and diagnosis results are used to record data from
annual inspections or special diagnoses. These systems are
interfaced with information systems for asset specification.
Representative data include diagnosis results on partial dis-
charge, dissolved gas analysis (DGA) of insulating oil, and
thermal hot spots. An inspection and diagnostic information
system involves three types of cable diagnostic data and three
types of joint box diagnostic data, depending on the subject.
Through the diagnostic information, the health status of the
power equipment can be monitored.
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With regard to information systems for loading informa-
tion, a variety of parameters, such as voltage, current, active
power, reactive power, and utilization rate of cables, are
recorded and managed. Through this loading information,
it is possible to infer the remaining useful life of the subject.

A. DATA CLEANING ALGORITHM

Because the data cleaning work encompasses more than 60 %
of the total process, it needs to be automated to improve data
quality. Because a power asset has a long lifespan of more
than 40 years, it is necessary to manage assets over a long
term. Because the legacy systems of a transmission system
were installed after most of the power assets were already in
operation, all of the data from before the legacy system instal-
lation are missing. Hence, there is a need to develop a data
cleaning system equipped with a data imputation algorithm.
Data cleaning work includes the collection of data, detection
of missing data, and classification of outlier data. Based on an
analysis of the types of dirty patterns, we introduce six types
of cleaning setting functions, which befit different cases:
1) transform, 2) pattern, 3) scanning, 4) historical, 5) criteria,
and 6) calculation functions [6]. In the following sections,
these cleaning functions are briefly introduced to explain the
algorithm, and among them, the calculation function, which
is important for estimating the states of assets, is described in
further detail.

1) TRANSFORM FUNCTIONS

The transform function is used to convert data after a check-
ing rule-based cleaning method is applied. It can be used for
unified circuit names or manufacturer names. Although the
circuit names should be unified according to the specified
internal guidelines, mistyped data could occur because of
human error. In the case of cable manufacturers, these data
are often hand-typed. As a result, the same name may have
different names according to individual style. In such cases,
varying names such as “LS Cable,” “LG Cable,” “LS Cable
System,” and “LG Cable System” are cleaned to a unique
name, “LS Cable.”

2) PATTERN FUNCTIONS

The pattern function detects outlier data based on the data
pattern. For example, an AC transmission system follows
the form of a three-phase system consisting of A, B, and C
phases. Although the numbers of A, B and C phases should
be the same, there are times when the numbers of phases may
not be identical because of human error. For example, ““A, B,
and B phase” or ““A, B, and missing”’ could be automatically
cleaned to “A, B, and C phase” using the pattern function
after the rest of the information is checked for consistency
with the information on the other phases.

3) SCANNING FUNCTIONS

The scanning function detects outlier data by checking the
uniqueness of the data. Although each equipment must have a
unique keycode, which is automatically created and assigned
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FIGURE 3. Flowchart of utilization rate data imputation.

to distinguish them, duplicate keycodes for the same asset can
be generated because of data redundancy. The best way to
detect this outlier problem is to check the number of keycodes
assigned to one circuit name. Through the confirmation of
legacy system operators, the duplicate keycodes can then be
revised into a unique keycode.

4) HISTORICAL FUNCTIONS

The historical function cleans missing or dirty data, which
are to be replaced based on historical information for the
base date. For example, since April 1, 2005, cable termina-
tion insulators have been changed from porcelain to polymer
material. To properly reflect history, historical data can be
automatically converted to refer to porcelain insulators if
the points are dated up to March 31, 2005, and to polymer
insulators if the points are dated from April 1, 2005 and
beyond.

5) CRITERIA FUNCTIONS

The criteria function processes numeric data by analyzing
its scatter data plot. Specifically, the data are displayed as
a scatter plot, from which abnormal data can be detected
based on the data distribution. In the following example,
thermal inspection of cables and joint boxes is used as a rep-
resentative case. The maximum temperature was measured
on site using a thermal imaging camera, and the measure-
ment data were uploaded. The measured temperature was
22 °C; however, it was incorrectly input to the legacy system
as 222 °C. In this case, based on the entire dataset, the
criteria function extracts the appropriate temperature range.
Appropriate boundaries can be set automatically based on
data distribution analysis, or can be set manually based
on user opinions. Hence, the outlier data are extracted and
cleaned.
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6) CALCULATION FUNCTIONS

The calculation function calculates the utilization rate using
the active/reactive power of the circuit. The utilization rate
information, which is stored in a load information legacy
system, is important for estimating the remaining lifetime,
which will be explored in future studies. However, one of the
problems involved herein is the occurrence of missing data
on the utilization rate. In this case, the utilization rate data
can be calculated using active/reactive power information,
as follows (1):

P2[W 2[VAR
Urate:\/ [ ]+Q[ ]v (1)

V3VIV]*I[A]

where U,q., which is a utilization rate, can be derived
using the calculation function based on active power, reac-
tive power, and rated voltage, which are stored in the load
information legacy system; and ampacity, which is stored in
the information system for asset specification. That is, when
the utilization rate data are missing, they can be calculated
based on a combination of information stored in other legacy
systems.

lll. AUTOMATIC DATA IMPUTATION ALGORITHM

The most important and difficult problem in the data clean-
ing process is the data imputation of missing data. In the
case of loading information that is measured once every
hour by a load information legacy system, missing data
cannot be calculated using the calculation function when
the input data of the calculation function, such as active
power and reactive power, are omitted. Because the load-
ing data, including the utilization rate, active power, and
reactive power, will be necessary for deriving the remaining
useful life of power assets in the future, it is important
to now develop an imputation method. Data handled by
the loading information platform include utilization rate
and reactive/active power, and the performance of the algo-
rithm is verified by estimating active power data. To handle
the missing data, we propose an imputation method based
on the principal component analysis—iterative algorithm
(PCA-IA) [19], [20].

A. DATA IMPUTATION RESULTS

Fig. 3 shows the entire proposed algorithm for data impu-
tation of missing values. First, we select the target linear
asset, and check whether there are missing data. If there are
missing data, we calculate the correlation matrix between the
target linear asset and the linear asset sharing the substation.
Based on the characteristics of the linear asset connecting
the starting and end points, then when there are missing
data, the opposite system data must be checked first. The
characteristics of linear assets that are connected to each other
result in utilization rate data that are similar between the data
of assets sharing the substation. The correlation matrix is
derived by the following equation, which is an indicator of
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FIGURE 5. Entire correlation matrix.

how well data are related to each other.
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where, sp = (/M) ;—,(xj — X)xix — Xx) is the

co-variance between the j-th and k-th variables, sj? =

(/M) Zfi (G — )Tj)z, is the variance of the j-th variable,
and x; = (1/M) Z?il x;j is the mean of the j-th variable.
In general, when the value exceeds 0.5, it can be determined
that there is a significant relationship. If, through correla-
tion analysis, it is determined that there are no similar data
among the assets sharing the substation, it will be necessary
to determine whether there is an asset with high correlation
among the total asset data. Based on this, we select the top
three linear assets that have the highest correlation value. The
missing data are first filled with the average value of the data
of the target asset as initial value, and then restored through
PCA-IA. With the entire dataset and the initial estimate value,
7 = M o X. Matrix M is an indicator matrix of missing data,
whereas matrix Z contains the original data without missing
values. We estimate the PCA model as X; = m, + TtPlT +E;,
where ¢ is the current time, and m; and E; are the aver-
age and the measurement error of observations, respectively.
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FIGURE 7. Scenario I. (a) comparative analysis of data imputation, and
(b) results of data imputation algorithm.

‘We consider the data matrix, X, M x K matrix, which denotes
K different time zones and M different objects. For example,
x; j represents the j;, data point acquired from the iy, object.
This signifies that the iy row of the matrix contains data
from the i;, object, and is denoted by xiT and the full matrix.
PCA is based on decomposition of the data matrix X into two
orthogonal matrices, V and U. Data matrix X is represented
by X = TPT  where T is an M x K matrix of scores, and P is
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a K x K matrix of loadings. The loadings are the weights for
the variables. Each observation in the new coordinate system
of principal components is called a score, which is calculated
as a linear combination of the original variables and load-
ings [18]. Without loss of generality, the missing data can be
positioned at the first element of the data vector, such that the
vector can be partitioned as follows: X = [X *X ®], where X*
and X ® are the missing and measured data, respectively; X * is
the submatrix containing the first R columns of data matrix X,
and X ® contains the remaining N — R columns. Likewise, the
loading matrix P can be partitioned as P = [P*P®], where
P* is the submatrix containing the first R rows of loading
matrix P, and P® contains the remaining N — R rows. Based
on the constructed PCA model, the entire dataset, including
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FIGURE 9. Comparison of data quality check before and after cleaning.

missing data, is estimated. Only the parts corresponding to
missing data from the entire estimated dataset are added with
the initially estimated data to update the data as X;4+; =
Z+M o)?,, where Z is equal to Xp, which is an initial estimate
value. Through replacement of the original missing data with
the values predicted from the PCA, the model is fitted. In this
study, PCA modeling is performed based on the three linear
asset data with the highest relationship, as obtained through
correlation analysis. Because PCA transform is a kind of lin-
ear transformation, the model error converges to the bounded
output and does not diverge. The PCA process is iterated until
convergence of the predicted values for the missing data. The
threshold, n, can be set by the user with consideration for the
required time and desired accuracy.

IV. DEVELOPMENT OF DATA CLEANING AND

INTEGRATION SYSTEM
An automatic data cleaning system for asset management was

developed based on both cleaning and imputation algorithms,
as described in Section III. After the development of this
system, it is demonstrated using loading information legacy
datasets utilized for the asset management of electric power
equipment in South Korea.

To handle the missing data for the loading information
legacy system, we propose an algorithm based on PCA-IA.
Because linear assets are connected to each other, they exhibit
high correlation values between assets sharing the same
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substation. Fig. 4 shows the correlation matrix for linear
assets sharing a common substation. Marked on the x-axis
and y-axis are the name of the linear asset, where the first
uppercase letter refers to the substation, and the second low-
ercase letter refers to the line name. It can be observed that
the linear assets share the same substation. The diagonal is
the waveform to be compared, and the remaining waveforms
are the correlation results. According to the characteristics of
linear assets, most loading data have high correlation values
with other assets that share the same substation; however,
the red boxed data show very low correlation values (0.4 or
less) with other connected assets. In this case, the correlation
value between the target asset and the entire asset with which
it does not share a substation should be analyzed, as shown
in Fig. 5. The bar displayed on the right side of Fig. 4 is a
color representation of the correlation value. Based on the
entire correlation matrix, we can select the top three linear
assets that have the highest correlation coefficient, as shown
in Fig. 6. The missing data of the target asset can be estimated
by using the three selected lines in Fig. 6. To verify the
performance of the proposed method, we established two
scenarios according to the length of the dropout time: (1) a
signal in which 20 % of the total signal length is omitted,
and (2) a signal in which less than 5 % of the total signal
length is missing multiple times (120 — 130, 500 — 600,
880 — 920 samples). We compared the reconstructed signal
with the original signal after deleting the data. As shown
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in Fig. 7(a), we intentionally deleted 20 % of the active power
data extracted from the loading information legacy. Fig. 7(b)
enlarges the missing section of Fig. 7(a), and compares the
signal reconstructed based on the proposed method with the
original signal before omission. Based on the comparative
analysis of the reconstructed signal against the original signal
before omission, it can be confirmed that the signal imputa-
tion performance is excellent. Fig. 8(a) shows the estimated
data for when data for a short period of time are simultane-
ously missing, whereas Fig. 8(b) shows an enlarged figure.
It can be observed that a time delay occurs in estimating the
part where the active power changes rapidly, although this
estimation can be achieved accurately within a certain amount
of time using data of other selected lines.

A. DEMONSTRATION EXPERIENCE

Through the proposed automatic cleaning process, the clean-
ing time can be drastically reduced to within approximately
one day, compared to the manual method, which requires
several months. According to the results of the data clean-
ing demonstration, the legacy data accuracy increased from
approximately 70 % to over 91 %, as shown in Fig. 9 Green,
yellow, and red bars on the UI/UX shown in Fig. 9 indicate
the normal, missing, and contaminated data, respectively.
In addition, the results of evaluating the data quality for
15 divisions in South Korea are shown in the bar graphs, and
it can be verified from Fig.9 that the performance improved
after the data cleaning process. Because cleaning a set of data
with average or regression values without the verification of
a manager may lead to different results, it is difficult to clean
the data using only an automatic cleaning algorithm. For this
reason, the legacy system manager has to manually check
the cleaned data values derived by the automatic cleaning
algorithm.

The data imputation method presented in this paper is
applicable to the data cleaning part of a platform for data
cleaning and integration. We have developed a platform
equipped with the proposed method, and it is now used for
the data management of transmission lines installed in all
regions of South Korea. Moreover, the proposed algorithm is
not limited to being used on transmission systems and can be
used practically anywhere. The target asset of this study is a
linear asset that is connected to other such assets. Because the
proposed system utilizes the characteristics of connectivity,
it works differently from managing the data of devices, such
as motors and robots, inside a factory. Rather, (1) there is
a connection between assets, and (2) where numerical data
obtained from various sensors can be utilized, the proposed
method can be used immediately. For example, the proposed
algorithm can be applied to data management for condition
monitoring using sensors attached to pipelines and highways.

V. CONCLUSION

Herein, a novel data management system for managing the
data of transmission systems is proposed. This data man-
agement system is divided into three parts: 1) data cleaning,
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2) data imputation, and 3) evaluation of data quality. This
paper mainly introduces an algorithm based on PCA-IA that
replaces missing data in load information legacy systems.
Its basic asset unit is composed of the cable section and
the joint box at both ends. The cleaning part consists of
six functions distinguished according to data characteristic,
and the set values are modified through the incorporation of
expert opinions. The imputation algorithm is designed for
the loading information, given that it is the most important
information for the prediction of remaining useful life, which
is to be studied further in future research endeavors. The
cleaned data are sent to each legacy system, which then
collects data for feedback. The performance of the automatic
cleaning algorithm gradually improves through this feedback.
A system for evaluating the data quality of each system at
each regional office was also constructed, to evaluate the
data quality before and after cleaning using actual power
equipment data from all over South Korea, and to verify the
performance of the proposed system through the feedback of
the managers of each system. The data management system
proposed in this paper is expected to become a touchstone for
the development of upcoming remaining-lifetime evaluation
systems for power assets.
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