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ABSTRACT Real-time face recognition has been of great interest in the last decade due to its wide and varied
critical applications which include biometrics, security in public places, and identification in login systems.
This has encouraged researchers to design fast and accurate embedded and portable systems that are capable
of detecting and recognizing a large number of faces at almost a video frame rate. Due to the increasing
volume of reference faces, traditional general-purpose computing engines such as the ones based on Intel’s
Pentium processors have shown not to be adequate and various dedicated hardware accelerators based on
either Graphical Processing Units (GPU), Field Programmable Gate Arrays (FPGA), Application Specific
Integrated Circuits (ASIC), or even multi-core Central Processing Units (CPU) have emerged. Earlier
published review papers on face detection/recognition have discussed face detection and face recognition
algorithms enhancement that improve the detection accuracy. Nevertheless, none of them have reviewed the
hardware accelerators used for this application. Accordingly, this paper aims to provide a comprehensive
review of the most recent face recognition algorithms and associated embedded hardware systems targeting
real-time performance. A detailed comparison between neural network and non-neural network-based
algorithms in terms of accuracy and processing time is provided. Discussions on their suitability to be
implemented into parallel hardware architectures such as Single Instruction Multiple Thread (SIMT) or
Single Instruction Multiple Data (SIMD) is also discussed.

INDEX TERMS Face recognition, face detection, FPGA, GPU, multicore CPU, neural network algorithms,
non-neural network algorithms.

I. INTRODUCTION

The use of biometric features, such as the face, fingerprint,
voice, hand geometry, and retina eye, which are based on
human’s unique biological, physical and behavioral charac-
teristics has been widely used for identification and recog-
nition tasks [1]. These features have the advantage over
other computer security tools, such as passwords, confiden-
tial codes, or handheld tokens in being more secure [2].
Among all the aforementioned biometric features, human
faces remain one of the most effective features used for
human identification since the associated systems can be
contactless and can handle several humans simultaneously.
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This has led researchers to suggest various embedded face
recognition systems, which were driven by the great success
of low-power edge devices as well as memory devices in
terms of computation power and latency/bandwidth respec-
tively. These systems nowadays deployed, as indispensable
systems, at various premises, such as airports, healthcare
facilities, bus stations, social media websites, and so many
other places, for criminal identification, security reasons, and
user authentication [3]. Some of the most important features
of a face recognition system are the number of faces it can
recognize under different illumination and pose, the corre-
sponding accuracy, the ability to be scalable to handle more
reference images, the computation time, and power consump-
tion. Almost all existing systems perform well when test
images are captured under similar conditions as the training
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images. However, problems such as poses, facial expression,
illumination changes, hairstyle, and cosmetics changes are
still unsolved [4]. Therefore, with the rapid growth of tech-
nology and artificial intelligence, advanced hardware acceler-
ators based on either GPU, FPGA, ASIC, or multicore CPUs
are continuing to emerge to yield impressive performances at
low cost [5]. This has contributed to promote parallelizable
face recognition hardware algorithms which can be grouped
into neural network (e.g. DNN and CNN) or statistical-based
algorithms.

The main contributions of this paper are:

1. A comprehensive critical review of most recent face
recognition algorithms targeting real-time and portable appli-
cations (i.e. either Al-based or not), along with their
respective performance.

2. Present the commonly associated hardware accelerators
and compare their performance.

3. Suggest some solutions which may improve the perfor-
mance of the existing systems.

Several other review papers on face detection and recogni-
tion were recently published. For instance, in [6] the authors
described the development stages of face recognition along
with the related developed techniques in each stage. The
authors compared the accuracy performance of these tech-
niques in the Labeled Faces in the Wild (LFW) dataset
and summarized the performance of different datasets used
in face recognition systems. In [7], the authors categorized
the common face recognition algorithms into appearance-
based, feature-based and soft computing-based. In the paper,
existing studies previously done on the topic were used to
compare and discuss the performance of these approaches.
The paper concluded that feature-based face recognition
algorithms achieved the highest recognition accuracy com-
pared to appearance-based and soft computing-based algo-
rithms, with a normalized rate of 95%. In a very recent
review paper [8], a wide variety of face detection algorithms
are divided into feature-based and image-based approaches.
The authors provided a detailed description along with a
comparative evaluation of all the algorithms among the
two categories. The authors concluded that feature-based
approaches are highly preferred for real-time detection,
whereas image-based approaches achieve better performance
for gray-scale images. Additionally, among the sub-areas,
neural network algorithms were capable of achieving very
high performance. Similarly, in another recent survey [5],
authors compared local approaches; which describe the
image using some main features, holistic approaches; which
use the complete face features, and hybrid approaches that
combine both. The comparison between techniques that fall
under each category was in terms of accuracy, robustness,
complexity, and discrimination. It was concluded that local
approaches outperform the other two approaches in terms of
discrimination, accuracy, and complexity.

Hence, all of the above mentioned review papers mainly
presented the algorithms used for face detection and recog-
nition, along with their corresponding accuracy; but without
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FIGURE 1. A typical face recognition system.

tackling the dedicated hardware accelerators that achieve
real-time performance.

Il. FACE RECOGNITION SYSTEM

Face recognition systems typically consist of three main
stages; face detection, feature extraction, and face recognition
as shown in Fig.1. The detection stage verifies the presence of
a face in an image or a video. If the face is present, it locates
the face region and the extent of each face by generating
bounding rectangular or elliptical boxes around only the
faces in any image. After the face is detected, the image is
preprocessed to reduce the processing time and facilitate the
face recognition process. Despite causing some information
losses, the preprocessing step helps to speed up and enhance
the accuracy of the recognition phase by eliminating all kinds
of non-relevant details. The selection of the preprocessing
techniques depends on the type of application required. One
preprocessing technique is normalization, where face images
of different scales are transformed to the same scale [9].
Face alignment is another technique that aims to identify
the facial landmark of the face (nose, eyes, mouth, etc.)
and attempt to align the position of those facial landmarks
by rotation, transition, or cropping. Additionally, one of the
easiest preprocessing techniques is changing the brightness
of the image [10].

The next step is feature extraction, where the main features
of the face images detected in the first step are extracted.
In feature extraction, the face is represented with a set of
feature vectors that describe the features of the face image
(e.g. mouth, nose, and eyes) with their geometry distri-
bution [5]. The most common available feature extraction
are Local Binary Pattern (LBP) [11], Principle Component
Analysis (PCA) [12], [13] Independent Component Analysis
(ICA) [14], Linear Discriminant Analysis (LDA) [15], Eigen-
face [13] and Gabor filter.

In the last step of the process, the face recognition step,
the features extracted from the image during the previous
step are compared with known faces in a specific dataset.
Face recognition can operate in two different modes: face
verification and face identification. Face verification is when
the input face is compared with other face images to identify
whether or not the input face corresponds to the claimed
identity. Whereas, face identification compares a face image
with other face images to find the most likely person in the
database that corresponds to the input face. Machine learn-
ing algorithms like Convolution Neural Network (CNN) are
most preferred in recent time as they can efficiently address
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this task, following a consistent and comprehensive learning
procedure [9], [10].

In order to fairly assess the performance of different face
detection algorithms, databases comprising images collected
in a controlled environment are usually used by researchers.
This includes for instance LFW dataset which comprises
12,233 images of unique 5,749 persons of different images
and which was mostly used in the literature. It was also
useful for hardware researchers to fine-tune the algorithms
parameters such as the data types and number of bits to be
optimally assigned to the variables, without altering too much
the system accuracy.

ill. HARDWARE PLATFORMS FOR FACE DETECTION

AND RECOGNITION

Hardware devices targeting embedded applications (e.g. edge
and IoT devices) have improved over the years in both
their form factor and the number of operations per second
per Watt they can handle. This development gave the the
designers the opportunity to select from a wider spectrum of
processors the most suitable hardware accelerator for their
systems. The most commonly known hardware platforms are
CPU-based architectures (Multi-Core CPUs or GPUs), and
field-programmable gate arrays (FPGAs).

A. FIELD-PROGRAMMABLE GATE ARRAYS (FPGAs)

FPGA can be defined as a programmable semiconductor
device that comprises an array of typically tens of thou-
sands of Configurable Logic Blocks (CLB) and hundreds
of floating-point Digital Signal Processing (DSP) blocks
which are interconnected via a programmable interconnec-
tion network [16]. Unlike other devices like CPUs and GPUs,
FPGA does not embed a structured chip or a hardwired
CPU. This allows them to avoid the long latency process
caused by the repeated fetch and decode operations for every
single instruction, that can usually hold not more than two
operands. Indeed, a stream of multi-operations and multi-
operands functions can be executed at once in one or several
pipeline stages. This would provide high throughput and
low power consumption, but probably at a slower clock rate
than multi-core CPU and GPU devices. Yet, FPGAs long
development time and challenging programming codes are
their main drawbacks [17].

Two major companies, namely Altera and Xilinx, emerged
to successfully provide different FPGA chips and associ-
ated software development tools [17]. Nevertheless, FPGAs
are still not adequate to host DNN algorithms because of
their relatively low memory storage capacity to store all the
weights. This requires extensive external memory, which sig-
nificantly increases the algorithm latency. Altera was recently
acquired by Intel, which may indicate the future direction
of the next generation of multi-core CPU to incorporate
reprogrammable devices to accelerate machine vision and
image processing tasks. This is the case of the recent Xilinx
Zynq Ultrascale + MPSoC FPGA, which is one of the largest
ICs comprising millions of logic cells and which includes
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a quad-core 1.5 GHz 64-bits Cortex A-3 processor, and a
dual-core Arm Cortext RSF making it suitable to host Xilinx’s
deep learning processing unit (DPU), created for researchers
working on hardwired machine learning algorithms [18]. The
chip which supports several CNNs such as VGG, ResNet,
GoogleNet, YOLO, SSD, MobileNet, and FPN is supported
by an associated software development kit which allows
performing pruning and quantization to satisfy low latency
(DECENT), mapping the neural network to the DPU instruc-
tions (DNCC), and handling resource allocation and DPU
scheduling (N2Cube). Very recently, in the Arm TechCon
exhibition, the chip was demonstrated to successfully per-
form traffic light detection [19]. When running CNN tasks,
it achieves 14 images/second/watt, which outperforms the
Tesla K40 GPU (4 images/second/watt). Also, for object
tracking tasks, it reaches 60 Frames Per Second (fps) in a live
1080p video stream.

B. FIXED ARCHITECTURE DEVICES

1) MULTI-CORE CENTRAL PROCESSING UNIT (CPU)

The CPU is designed in such a way that it reduces the
program’s latency by including different levels of memory
caches within the same chip, while executing simultaneously
different tasks such as data transfer, branch predictions, and
arithmetic/floating-point operations [20]. The original design
of the CPU had only one single-core or a single central
processing unit. However, to increase the performance of the
CPU, manufacturers added additional cores to the CPU, and
this processor is referred to as a multi-core processor. These
latest CPUs are usually optimized for single/multi-threads
operations, and they typically include single instruction mul-
tiple data (SIMD) vector instructions, such as SSE, SSE, and
AVX vector extensions, which typically operate from 64 to
up to 1024 bit data elements. Several low power multi-core
CPUs were designed for real-time image processing appli-
cations targeting edge or IoT devices. This include low
latency multi-core RISC-V CPU (8 CPU), DNN hardware
accelerators, and the IoT-based GPA9 processor provided
by Greenwave-technologies Company. The GPA9 processor
features a low power for a high throughput (0.33 mW/GOP),
and it can yield up to 150.8 GOPS at a maximal frequency
of 400 MHz to manipulate 8 to 64-bit fixed and floating-point
operands. The processor also features an 8-bit CPI (Camera
Parallel Interface), and it also includes security modules such
as AES128/256 cryptography that allows the device to be
uniquely and securely identified. The processor is dedicated
for processing small-sized images (160 x 160 image), where
the MobileNet V1 network can run in just 12ms for a power
consumption of 806 mW/frame/s [17].

Using this processor, it was shown that the processor
can perform face recognition, with 1 second latency, using
only 1.5 Mb of weights with 16-bit fixed point integer
computation. Another multi-core 16 nm technology proces-
sor, namely the Myrad X VPU, from Intel Corporation,
was also recently released to target Al-based real-time
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image processing applications. The processor which operates
at 700 MHz, includes a powerful neural compute engine for
DNN acceleration. The processor also comprises 16 x 128-bit
VLIW vector processors to yield 1 TOPs at a maximal 2.5 W
power consumption [19].

2) GRAPHICS PROCESSING UNIT (GPU)

GPUs [21] have been widely used and specially designed
for different applications like games, video processing, and
image processing. They consist of many processing cores,
and they are used to perform fast matrix calculations in
parallel [17]. In their latest generations, GPUs have high
processing speed and they are cost-effective.

The basic design of a modern-day GPU consists of a set of
streaming multiprocessors (SMs). Each SM is composed of
several Streaming Processors (SP), which in turn comprise an
ALU that executes integer and floating-point arithmetic and
logic operations. Each SM contains a shared L1 cache and all
SMs can intercommunicate using a shared L2 cache and the
off-chip memory (GDDR). To enhance the GPU overall per-
formance, the shared L1 memory is composed of 32 banks
(one bank per SP), so that all threads in a warp can access
different memory banks in parallel. Thus, GPUs are based on
single instruction multiple thread (SIMT) architectures and
are designed to maximize the amount of parallel processing
in the graphics pipeline. Unlike SIMD architecture, where
the processing engines typically execute the same instruction,
SIMT architecture allows different threads to more readily
follow divergent execution paths through a given thread pro-
gram. NVIDIA’s Jetson AGX Xavier processor is one of the
most recent GPU processors targeting embedded machine
vision and Al applications. It comprises 64 Tensor cores,
in addition to an 8-core ARM v8.2 64-bit CPU. The processor
can be configured to consume 10W, 15W, or 30W based on
the target performance [22].

The Ampere 100 Tensor core is another very recent GPU
which was used for real-time embedded image processing
systems [23]. It can be dynamically partitioned into up
to 7 GPU instances to achieve up to 9.1 TFLOPS FP64 or
19.5 TFLOPS FP32, or up to 1248 TOPS INT9 Tensor core.
However, the processor consumes more than 100 W.

IV. FACE DETECTION/RECOGNITION ALGORITHMS
TARGETING REAL-TIME AND EMBEDDED

APPLICATIONS

A. NON-NEURAL NETWORK ALGORITHMS

1) PRINCIPLE COMPONENT ANALYSIS (PCA)

Principle Component Analysis (PCA) is the most widely used
statistical approach for data dimensionality reduction. It is
used for feature extraction, image recognition, classification,
and image compression [12]. This technique is also known as
Eigenspace Projection or Karhunen-Loeve Transformation.
In 1991, Turk and Pentland of MIT Media Laboratory intro-
duced PCA for face recognition [6]. PCA involves several
steps that transforms a set of correlated variables into a small
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FIGURE 2. PCA based face recognition [94].

number of uncorrelated variables called principal compo-
nents. These transformations are done to achieve the main
goal of PCA, which is transforming the two-dimensional
image into a one-dimensional feature vector in subspace [24].
Fig.2 shows the steps to find the principal components. These
steps can be summarized as follow [25]:

a. Collect x; of an n-dimensional data set x, where i =
1,2,3...m

b. Normalize face vectors by calculating the mean m, of
all images in the database & subtract it from each data point
Xi — My.

c. Covariance matrix computation: C = (x; — m,)(x; —
my)T.

d. Eigen Value and Eigen Vector Computation of matrix C.

e. Order the eigenvalues and corresponding eigenvectors in
descending order.

f. Select the first d < n eigenvectors that will generate a
dataset representing the whole training set.

g. By similarity measure, each projected test image is
compared to every projected training image to output the
closest training image to the test image.

The main advantages of the PCA algorithm are that it
is less sensitive to noise, has higher efficiency as it oper-
ates in a space of smaller dimensions, and it requires less
memory space and capacity than Al-based algorithms [26].
However, one of its drawbacks is that the training dataset has
to be large enough, around thousands, for the results to be
meaningful [6].

All the above steps, from a to f, are done offline, dur-
ing the training phase and hence do not require hard-
ware accelerators. On the other hand, Step g is required
to be performed online for each input image. It consists
of projecting the input image into the selected principal
components (PCs) after data normalization. This high com-
putation demand, which requires dense matrix multiplica-
tions, has led several researchers to suggest PCA-based
parallel implementations of face detection/recognition using
either FPGA or GPU processors [27], [28]. Overall, it was
demonstrated that FPGAs offer the best performance (in
terms of combined power consumption and throughput)
over GPUs, at the expense of higher design efforts and a
reduced image database. Some researchers have tackled some
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of these issues by using high level synthesis tools HLS)
to implement the Eigenvalue value decomposition (EVD)
of singular value decomposition (SVD) which remains an
important module of PCA algorithms [29]-[31]. Recently,
in [32], a complete PCA implementation on Xilinx’s
Virtex7 was done for a small matrix dimension. Hence,
two blocks of memory were considered to store the rows
and columns elements of the matrices respectively to per-
form one row-column multiplication, which required high
resources within the FPGA. Experimental results have shown
that for small-sized matrices FPGA-based implementation is
faster and yields lower power consumption than CPU and
GPU-based implementations.

For face recognition applications, an embedded face recog-
nition system terminal scheme based on PCA was proposed
in [33]. The system used Xilinx’s Zyng-7000 FPGA, which
has the advantage of co-hosting an ARM9 CPU core for
sequential processing and 7.7 million programmable logic
cells to implement datapaths and glue logic. A recognition
throughput of 9960 faces/second, with a high recognition
rate of 95.8%, was achieved using a system clock frequency
of 100 MHz. However, only eight people out of 40 subjects
from the ORL database were considered during testing, which
is relatively low. In [34] a face recognition system based on
PCA Eigenfaces for recognition, and the adaboost algorithm,
which is based on the Haar transform, for detection was
proposed. The two algorithms are implemented to process
the data in parallel on NVIDIA’s GeForce GTX 770 GPU
(1536-Core). Input images are down-sampled to a block size
of 24 x 24 pixels to yield a processing time of around 350 ms
and 312 ms for face detection and recognition, respectively,
for 700 x 580 images. The host mapped memory was used as
a shared memory to avoid transferring images from the host
to the GPU module whenever they were needed by a thread.
Each GPU block is allocated to one down-sampled image to
simultaneously search for faces within the associated image.
The detected face is then forwarded to the face recognition
module without waiting for all faces to be detected. The two
algorithms were also implemented into a 3.1 GHz Intel Xenon
CPU (4-Core) to evaluate the GPU hardware. The face detec-
tion was achieved within a throughput of 109 frames/s on the
GPU platform, while its execution on the CPU platform was
at least 5 times slower. In [35] an attendance management
system based on the eigenfaces algorithm that uses PCA
for both face detection and recognition was developed on
Raspberry PI 2 multicores CPU to achieve 88% accuracy.
However, it was not mentioned how many persons could be
accommodated in the system. Similarly, in [36] Eigenfaces
for feature extraction, PCA for decreasing the size of the
image and Euclidean distance classifier for recognition were
used to implement a face recognition system. The proposed
method achieved 82.5% as the best recognition rate when
tested on the ORL database, which consists of 40 distinct sub-
jects with 10 different images for each. The proposed system
was implemented on Raspberry Pi 3 Model B+ (Quad-Core)
where it achieved a processing time of 0.206 seconds which
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is much lower compared to other implementations that are
17 PC-based. Nevertheless, the system has several limitations
like the restricted pose of a person, restricted expressions,
and very bounded illumination conditions. Additionally, the
suggested Raspberry Pi board has a limited memory space to
host a reasonable amount of training data and to process good
resolution images.

In summary, the high computation requirements of the
PCA inferring phase, which consist mainly of deep matrix
multiplication and addition, make this algorithm not suitable
to handle large number of faces using multi-cores CPUs in
the lower range of the spectrum. Nevertheless, IoT based
face recognition systems using PCA algorithm are quite
feasible.

2) LOCAL BINARY PATTERN (LBP)

The Local Binary Pattern (LBP) is one of the powerful low
level image processing methods used to describe the tex-
ture and shape of a digital image and has been successfully
used for face detection and recognition applications [37].
It extracts the structure of each pixel by comparing its inten-
sity with the one corresponding to the surrounded pixels.
Its basic principle is to divide the input facial images into
blocks of n x n pixels (with usually n = 3) [24]. The center
pixel of each of these blocks is then used as a threshold or a
reference for thresholding when compared with the surround-
ing pixels to produce a binary code. For instance, if the neigh-
bor’s pixel value is greater than the center pixel value, the
neighbor’s value will be set as ‘1°, otherwise, it will be set as
‘0’ [5], [24]. Hence, for the case of n = 3, the LBP algorithm
would generate an 8-digit binary code, which is obtained
by multiplying the thresholded values by weights given by
powers of 2. The partial results are then aggregated with the
obtained results in a clockwise direction [38]. Mathemati-
cally, for n = 3, the LBP operator, LBPp p), can be defined as
follows:

8
> 2 % 5(pi — pe) (1)
i=0
where,
1, x=>=0.
= ’ - 2
$(x) 0, x<0. @

where p is the number of sampling pixels, R is the radius, p,.
is the center pixel, and p; is the neighbor’s pixel. Fig.3 below
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shows an example of the computation of the binary code
corresponding to a 3 x 3 block. In terms of computation
complexity, the multiplication operations can be substituted
with left-shift registers, requiring a total of 8 shift registers
of 2 to 8-bit width and an 8 operands adder to yield an
8-bits result. This can be easily implemented into FPGA to
yield one clock cycle latency. It can also be optimized to
run in few clock cycles by the exploring the instruction level
parallelism (ILP) which is available in multi-core CPUs and
GPUs as well. The next step of the LBP algorithm is to
build a histogram and compute the Chi-distance which can
be defined as follows:

len

2 _ (Si _Mi)2
x2S, M) = ;—st,» 3)

where len is the length of the feature vector, S; the sample
and M; the model image in the respective bin [37]. Hence,
the Chi-distance measures the similarity between two LBP
images, where the lower the value, the higher similarity
between these two images. However, the recurrent divi-
sion featured in Equation 2, can cause significant latency
using multi-cores CPU or GPU and is hardware costly on
FPGA. Hence, a hardware-friendly approximation such as
division by a constant factor, preferably which is a multiple
of 2 is worth investigating. It can also be noted that the
LBP algorithm consists of low-level image processing tasks
where neighboring operations are executed to compute the
binary code (i.e. equations 1 and 2) and an intermediate
level image processing to compute the histogram. Thus,
these tasks are highly parallelizable at a fine-grain level
and can be efficiently hosted into FPGA, multicore-CPUs,
or GPU processors. This has motivated researchers to
suggest some LBP-based hardware accelerators for face
detection/recognition. Specially, that this algorithm is
invariant to both luminosity and rotations and intrinsically
features local information such as curve edges, spots, and
corners.

For instance, in [39], a real-time low-memory multi-face
detection system using LBP was implemented on an Altera
Cyclone IV FPGA chip. A Naive Bayes classifier to recognize
candidate faces was used to, achieve 96.14% accuracy with
a throughput of 60 FPS. In [40], a face recognition system
based on LBP and its variants (i.e. Rotation LBP (RILBP)
and Pyramid of LBP (PLBP)) were also implemented. The
system was tested on three frontal face datasets; Database
of Faces (TDF) with 447 images of 27 subjects; Caltech
Faces 1999 (CF1999) with 40 subjects, a combination of
TDF and CF1999; and Labeled Faces in the Wild (LFW)
with 12233 images of 5749 people. The system, which con-
sidered 6 x 7 blocks, obtained a very low recognition rate
on the first two datasets and a high recognition rate of
90.95% for the LFW dataset. The low accuracy was mainly
caused by the skewness and blurriness, which have made
the matching between face images harder because of loss
of texture information. The algorithms were implemented
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on a general-purpose computer, and no execution time anal-
ysis was provided. Like other methods, most LBP-based
face recognition algorithms were tested within a controlled
environment. This includes the work done in [41], where
a face verification and identification method under various
illumination variation conditions using a combination of LBP,
VanderLugt correlator, and DoG filtering was introduced.
Accuracies of 98.4% and 94.6% could be achieved on YaleB
and YaleB extended datasets, respectively. The two sets con-
tain images of 10 and 38 individuals, respectively, under
different lighting conditions. However, the proposed algo-
rithm was tested with the pose invariance of each person
using a general-purpose computer, with again no indication
of the execution time. Similarly, in [42], LBP and K-NN
were used together for face detection and recognition and
achieved an accuracy of 99.26% on the CMU-PIE database
of 750000 images of 337 people, and a lower recognition rate
on the LFW dataset. In [43] a variant of the LBP technique
that is more discernment and less sensitive to noise, named
Local Ternary Patterns (LTP) was proposed. This technique
could yield a high recognition accuracy on three datasets;
CMU-PIE, Yale B, and O2FN datasets. The accuracy was
increased even further in [44], where the Relaxed LTP tech-
nique was introduced. This technique demonstrated higher
recognition results than the original LTP method on the same
three datasets. Similarly, in [45], an improvement in the
accuracy is achieved by introducing Enhanced Local Ternary
Pattern (ELTP), which has also surpassed the original LBP
and LTP techniques. Likewise, a fast parallelized face recog-
nition based on LBP that obtained an accuracy of approx-
imately 85% was suggested in [37]. In [46] a new method
using LBP combined with advanced image processing tech-
niques such as contrast adjustment and image blending to
improve the accuracy of face recognition and face detection
is presented. Without the use of these techniques, the system
obtained face recognition accuracy of 89.3% on a dataset of
400 faces. However, the use of advanced image processing
techniques improved the recognition accuracy to 99% on
a dataset of around 760 faces and improved the detection
accuracy to 95%.

With regard to LBP-based hardware accelerators,
a GPU-based parallelized approach of LBP for face recog-
nition using AMD’s Radeon HD 7650 GPU processor was
described in [45] using the OpenCL programming language.
The parallel implementation consists of allocating to each
GPU core of the processor a sub-block of the input image,
which is adequate since this avoids using inter-block com-
munications which is very time consuming. The system,
which was tested on large images (4096 x 4096 pixels),
could achieve a good performance of 74% to 79% on the
ORL dataset, while outperforming the CPU platform (i.e.
Intel core i3), in terms of execution time, by a factor of
251. In another work [47], Haar cascade and LBP algorithms
were used for face detection and face recognition respectively
using an edge server device, namely the Intel Xeon E5
(8-core CPU) processor operating at 2.4 GHz and a
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smartphone (Cortex-A7 Dual-Core CPU), operating at
1.7 GHz. The results showed that the computation time corre-
sponding to face detection depends on the number of faces in
the image and the image resolution, but not on the image size.
Similarly, the accuracy of face recognition is also affected
by the number of faces in the image. However, in both
cases, the Intel multi-core CPU process was faster than the
smartphone because of its enhanced hardware resources.
Indeed, the face detection on the CPU was achieved within
0.33 seconds for 1344 x 1521 images, which is quite fast
but does not satisfy real-time constraints. In [37], results
based on comparison between the Intel core i3 CPU at
2.67GHz clock and the AMD 6500 GPU showed that GPU
processor parallel implementation resulted in approximately
50 times faster processing than the CPU. Similarly, in [45]
experimental results performed using AMD Radeon HD 7650
GPU and Intel core i3 CPU for 4096 x 4096 image showed
that GPU achieved 374x speed up compared to the CPU.
In [48], AMD 6500 GPU was compared against Dual-core
CPU and achieved 30x speed up for 1024 x 1024 image
size.

In conclusion, similarly to PCA, LBP algorithm was used
for either face detection or recognition. It features low-level
computation tasks, making it suitable to be hosted in highly
parallel architectures. It is also suitable for applications that
do not require large databases, where IoT or edge processors
can be suffice.

3) SCALE-INVARIANT FEATURE TRANSFORM (SIFT)
Scale-Invariant Feature Transform (SIFT) has proven to be
a powerful technique for object detection and recognition,
and recently it has been used for face recognition [49]. SIFT
features are extracted from reference images and stored in
a database [50]. The SIFT algorithm consists of four main
stages: scale-space extrema detection, key-point localization,
orientation assignment, and key-point description [49]-[51].
The scale-space extrema detection consists of searching to
all the scale and image locations. This is done by implement-
ing the Difference-of-Gaussian (DoG) function, which iden-
tifies the potential interest points, which are called key-points
in the SIFT framework. The convolution of a variable-scale
Gaussian G(x,y, o), with the input image, I (x,y) produces the
scale space function which can be defined as follows:

L(x,y,0) = G(x,y,0)*1(x,y) 4
where,
_(x2+y2)
Gx,y,0)= e 272 ®)]
2102

In the key-point location phase, for each key-point candi-
date location, a model is fitted to compute information about
the location and scale. These key-points are chosen based on
the measures of their stability. In the orientation assignment
phase, each key-point is assigned to one or more orientations
according to local image gradient directions. Finally, the
key-point descriptors are computed by measuring the local
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FIGURE 4. Haar features in viola-Jones [38].

image gradients at the selected scale around each key-point.
The local gradients are transformed into a representation that
allows the change of local shape distortion and illumina-
tion significantly. Hence, all the above phases correspond to
low-level image processing tasks which are very well suitable
to be implemented into FPGA and GPU platforms to handle
fine grain-level parallelism.

In [52], the SIFT algorithm achieved an accuracy of 86%
for a data set containing 639 faces which was split into
312 training and 327 test tracks. Yet, the system did not per-
form well when there was illumination, rotation, or blurriness
in the image. In a similar work, [51] have also used the same
algorithm along with Speed Up Robust Features (SURF) [53].
Two novel detector-descriptor variants were proposed;
(1) SURF detector-SIFT descriptor and (2) SIFT detector-
SURF descriptor. Experiments on two LFW and Face94
benchmarks resulted in 78% to 90% recognition accuracy.
In [54] an extension to SIFT algorithm was suggested. The
authors introduced a combination of dense SIFT and Fisher
Vector to achieve a higher recognition accuracy. The system
used Viola-Jones for face detection and achieved an accuracy
of 93%, which is higher than other implementations using
SIFT algorithm alone.

With regard to SIFT-based hardware accelerators for
face detection/recognition not many implementations were
suggested in the literature, probably due to its relatively
higher complexity compared to PCA and LBP algorithms for
instance. One can list the work done recently in [55], where
each step of the SIFT algorithm was effectively parallelized
using NVIDIA’s GTX 480 GPU for feature extraction. Shared
and texture memories were explored for multithreading to
avoid pitfalls which can commonly occur in the GPU’s run-
time, such as frequent data transfers from the GPU memory to
CPU memory, which is very costly. Also, separate horizontal
and vertical convolution procedures were simultaneously run
to minimize the number of memory and arithmetic operations
and make them increase linearly with the kernel size. Com-
pared to Intel’s quad-core CPU implementation, the GPU
implementation was significantly better by at least 3 times
the speed-up to achieve real-time performance for HD video
frames (e.g. 1920 x 1080 image frames). With the emer-
gence of high-performance edge processors including GPU
and FPGAs, further works on parallel SIFT algorithms into
IoT or edge processors is worth to investigate. Furthermore,
overcoming the algorithm limitations to deal with illumi-
nation, rotation, and blurriness is quite possible such as
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applying Fisher vectors after SIFT feature extraction on the
detected faces, where 93.1% accuracy on LFW dataset could
be achieved in [56].

4) VIOLA-JONES

Viola-Jones algorithm [57], [58] was introduced in 2001 by
Paul Viola and Michael Jones [57]. It is one of the most
famous techniques for face detection as it can be used for
real-time applications and can yield a high training rate [59].
It consists of three major phases: First, instead of pixels,
the Viola-Jones algorithm uses rectangular features, which as
shown in Fig.4 can be of four different types [59], [60].

The Haar features in Viola-Jones are applied to images,
then the sum of pixel values under the bright region is
subtracted from the sum of all pixel values under the dark
region [59], [60]. However, summing entire image pixels and
then subtracting them to get a single value is not efficient,
especially for real-time applications. This Haar features cal-
culation has to be done all over the image, and this is approx-
imately around 160000+ features per image [61]. Therefore,
AdaBoost is used as the second step to reduce the redundant
features. AdaBoost is a machine learning algorithm, that
features accurate and fast detection [60]. It is used for feature
selection and training classifiers and to identify both relevant
and irrelevant features [59]. It assigns ‘1°, if a feature is likely
to be a nose or eyes, otherwise, it attributes the value of ‘0’.
It then merges a group of weak classification functions to
develop a stronger classifier [61]. Computations are further
reduced by cascading during the last and final stage of the
algorithm. The cascade classifier efficiently combines many
of the features together [61].

With regard to parallel hardware implementations, in [62]
a GPU-based face detection hardware accelerator, based on
NVIDIA’s K40 GPU, for the Viola-Jones algorithm was
implemented using the OpenCV library. 20 x 20 search
windows were used as detection parameters for live video
frames at 24 fps. The paper reveals the capability of the
GPU to improve the system performance, by speeding up
the execution time by up to x22 over the CPU, which was
based on an Inten Xeon core processor operating at 2.4 GHz
for 640 x 480 input images. Haar-based face detection using
a Raspberry PI hardware platform was recently suggested
in [63]. The results indicate a detection accuracy of up to 80%
for an image dataset of around 20 faces. It was noticed that
the detection accuracy decreases for cases such as wearing
glasses or masks, which is not the case with CNN-based algo-
rithms. No information was provided regarding the through-
put of the system. The Viola-Jones algorithm which uses
Haar features is the default algorithm in the OpenCV library
for face detection. In [64] a GPU implementation of this
algorithm was suggested using the Geforce920M hardware
platform to achieve a total execution time of less than 100 ms.
To reduce the access to the slow global memory, the authors
suggested using the cached texture memory, the content of
which does not change during the kernel execution and while
accessing the cached shared memory. It can be concluded
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that despite featuring high parallelism and a low-level image
processing computation model, not too many hardware
implementations were suggested for the the Viola-Jones algo-
rithm for IoT/edge processors, which can be indeed very
promising.

5) OTHER NON-AI TECHNIQUES FOR FACE DETECTION

AND RECOGNITION

In addition to the above algorithms, other techniques were
also successfully suggested for face detection and face recog-
nition. This includes the Gabor Filter [65], Gaussian Face,
Eigen Distance [66], Linear Discriminant Analysis (LDA),
and Kernel Fisher Analysis [67]. For instance, in [68] a face
recognition system using a subset of the orthogonal Gabor
filter for feature extraction was proposed. The output features
are then compressed using Linear Discriminant Analysis
(LDA). The system has been tested using 2D datasets; CASIA
dataset of 123 subjects, ORL, and Cropped Yale B of 39 sub-
jects, and achieved an average recognition rate of 98.9%
which is quite impressive. The low-level image processing
featured in Gabor filters has motivated researchers to build
dedicated embedded accelerators face detection/recognition.
For instance, in [16] an embedded door access control system
based on face recognition and using a Xilinx FPGA platform
was implemented. The system used a hybrid feature extrac-
tion technique which is based on extracting local features
from eyes, nose, and mouth using Gabor Filter. About 40 dif-
ferent scales and orientations were applied on the images
to determine the Gabor representations. Experiments were
done on three datasets; Face 94 of 153 persons, FEL of
100 persons, and ORL of 40 persons. The system achieved
high recognition accuracy around 100% on the three regions
of the face (eye,nose and mouth) using the Face 94 dataset.
Therefore, the results reveal that high recognition accuracy
can be obtained when facial images are taken with front pose
and minimally changed expressions. In another work, in [56],
a face verification system implementation was carried out
using Gaussian Face and it obtained a surpassed recognition
rate on the LFW dataset. In [69] authors used a combination
of Radon Transform to crop facial areas, Gabor filter, LDA
for dimensionality reduction, and AdaBoost for face recogni-
tion. The system achieved a high accuracy rate on three 3D
datasets.

B. NEURAL NETWORK ALGORITHMS FOR FACE
DETECTION AND RECOGNITION

An Artificial neural network (ANN) consists of neurons
“nodes” that are interconnected to each other according to
some pre-trained weights. It comprises an input, hidden, and
output layers to implement any kind of non-linear relation-
ship, the complexity of which depends on the number of sub-
layers in the hidden layer nodes as shown in Fig.5. Each node
sums the activation values it receives from the previous node
and adjusts them based on its transfer function [70]. ANN
was successfully used for face detection and recognition, but
not both together. Its performance is enhanced further using

VOLUME 10, 2022



A. Baobaid et al.: Hardware Accelerators for Real-Time Face Recognition: A Survey

IEEE Access

Output Node

Input Nodes

Hidden Nodes

FIGURE 5. Neural network structure.

Convolutional Neural Network (CNN) and Deep Neural Net-
work (DNN) models which simultaneously perform prepro-
cessing, face detection, feature extraction, and classification.
The CNN/DNN accuracy can be increased by increasing the
number of hidden layers [71].

1) CONVOLUTIONAL NEURAL NETWORK (CNN) FOR FACE
DETECTION AND RECOGNITION

A Convolutional Neural Networks (CNNs) [72], [73], is a
common form of DNN composed of several CONV layers
[73]. In[3], a parallelized CNN algorithm that simultaneously
detects and recognize faces in a classroom was demonstrated
to achieve higher recognition accuracy on the LFW dataset,
of 97.7%, compared to [74]. The proposed system was used
for a smart classroom students’ attendance using an edge
processor (i.e. Nvidia 1800 ti GPU) to detect simultaneously
up to 35 faces simultaneously and recognizes 33 out of them.
5 convolution blocks using masks from (11 x 11) to (3 x 3),
followed by a ReL.U rectification layer and Max pooling, and
3 fully connected layers were used. A similar implementation
was done in [75] and achieved recognition accuracy of 97%.
However, the system was tested on a small dataset of six per-
sons with 40 pictures per person. In [76] a new unsupervised
technique called Local Binary Pattern Network (LBPNet),
which is a deep network based on the LBP descriptor was
introduced. The idea is attractive as it suggests substitut-
ing the time-consuming convolution layers with off-the-shelf
computer vision descriptors. This technique has the same
topology as CNN and it extracts a hierarchical representation
of data. The network is divided into two parts; (i) a deep
network for feature extraction and (ii) a regular network for
classification. It is composed of two layers that are based on
LBP and PCA techniques, respectively. Experiments using
public benchmarks (i.e., FERET and LFW) showed that
the LBPNet approach achieved high recognition accuracy.
In [75], a face recognition system implementation using CNN
on Raspberry Pi Model B, could yield a latency of 529ms to
detect and recognize a face in an image with 97% accuracy.
The Viola-Jones algorithm from the Open CV library was
used for face detection on an 8-bit gray scale image, while
CNN, implemented in Python, was used for classification.
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The illumination dependency was reduced by using the LBP
algorithm, which generates a 46 x 46 pixels for the CNN
algorithm. Even though the database, which consisted of six
people for a total of 40 pictures, was relatively small, the
system potentially paves the way toward IoT devices for
CNN-based face detection. These works also highlight the
advantage of combining non-Al with Al algorithms to reduce
the computation complexity, while keeping the accuracy
high. Very recently, in [77], an FPGA-based implementation
for face detection using the MobileNet CNN algorithm was
suggested to target an IoT platform. The system, which is
based on Intel Arial0Gx 900 and Stratix 10 GX1100 FPGAs,
consists of processing high quality images, locally on the
edge device and and offloading to the cloud lower quality
images, such as images in a crowd to the cloud. A systolic
array architecture, which is the natural implementation of the
CNN algorithm on FPGA, using matrix tiling and fixed-point
precision was used. The advantage of using MobileNet is that
it has fewer computation requirements than other standard
CNN algorithms as it uses depth-wise separable convolution
(DSC). For local processing, the Mobilenet CNN models
are stored in off chip memory which are then transferred
to the on-chip memory during the runtime. Experimental
results show that an impressive throughput of 298 fps and
763.5 fps were achieved on Arria 10 and Stratix 10 FPGAs
ICs respectively, for face classification using 97% and 74% of
their DSP resources respectively. This high performance was
due to the usage of depthwise separable convolution (DSC)
and quantized weights with low precision, the fixed point
representation. However, the authors did not mention the
number of faces that can be processed by the system. In [78],
a Single Shot Detector (SSD) implementation which is one
type of CNN based face detection algorithms, achieved a
throughput of 40 fps and 110 fps on CPU and GPU proces-
sors, respectively, using the WIDER Face database [79]. The
model memory requirement was about 7.3 MB.

In summary, while CNNs were demonstrated to yield high
accuracy, their high computation and memory requirements
(e.g. over a billion operations and hundreds of megabytes
to store parameters are required for each input image) made
it difficult to run on hardware accelerators. While the ideas
of combining them with non Al-vision algorithms and to
use separable convolutions [80] (e.g. DCS network) were
demonstrated to be effective, the emergence of powerful edge
processors would make CNN-based IoT and edge devices for
face recognition quite possible.

2) MTCNN

The Multi-Task Cascaded Convolutional Neural Net-
work (MTCNN) is a convolution network developed by the
Chinese Academy of Sciences [81]. Its architecture consists
of three stages of convolutional networks that predict the
facial landmarks to detect the faces in an image [2]. The first
stage is a proposal network that will predict potential face
positions and bound rectangular or elliptical boxes around
the predicted locations. This may lead to a large number
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of false detections. Therefore, in the second stage, more
complex CNN is used, where it refines the predictions from
the first stage and eliminates most of the non-face boxes.
Similarly, in the last stage more powerful CNN is used and
further improvement to the detected faces is done. where five
facial landmarks are generated [82]. MTCNN which has been
successfully used for face detection in ( [2], [83], [84], [85]),
features an advantage over FaceNet is that it can simultane-
ously detect more than one face in an image and feed them
to a recognition system. On the other hand, FaceNet can
detect only one face at a time [2]. However, one of its major
disadvantages is that it cannot cope with face rotations [86].
Nevertheless, several researchers revealed its superior accu-
racy over Viola-Jones [87]. In [84] a face detection and
recognition system was implemented on various hardware
platforms that include multicore CPUs Raspberry PI-3+, and
NVIDIA’s Jetson nano GPU. Two face detection algorithms:
Haar feature based and MTCNN were tested and compared.
In over 30% of images, the Haar algorithm detected a face,
where in fact it is not a face. Whereas, it is only 4% when
MTCNN is used. This test concluded that MTCNN pro-
vided better results and confidence of detected faces with
an accuracy of over 97% with a processing time of 0.75 s
and 3.08 s on the Jeston nano and Raspberry PI-3 hardware
platforms, respectively. This is longer than FaceNet, where
0.16s and 0.88s were achieved on Jetson nano and Raspberry
3+ platforms respectively. Similarly, in [83], a joint face
detection and facial expression recognition system using
MTCNN was developed. However, the validation accuracy
of facial expression recognition is low, and therefore, further
improvement is required to improve the use of the MTCNN
algorithm for face recognition. In [86], it was revealed that
Viola-Jones is less accurate than MTCNN, MobileNet-SSD
and HOG (Histogram of Oriented Gradient) [88] algorithms,
where it achieved an accuracy of down to 18.05%. However,
it is attractive in the case of simple images since it can
achieve real-time performance on mobile devices without the
need for hardware accelerators. They also recommend using
MobileNet-SSD, since it yields higher accuracy, for real-time
face detection. Its implementation on the Jetson Tx1 platform
could yield an accuracy of up to 90% and a throughput of 10
FPS using the AFW dataset, which has 205 images with
468 faces in total [89].

Techniques that use sliding windows with handcrafted fea-
tures such as Haar and HOG methods require less hardware
than DNN and CNN algorithms but they are not scalable
to handle large number of faces and struggle to perform
well in complex scenes such as low/high illumination, face
occlusion, and poor image quality.

3) FaceNet

FaceNet is a face recognition system developed by
Google [84]. The system as described in detail in [90],
extracts high-quality features from the face and predicts a
128-element vector representation called a face embedding.
Face embeddings are then mapped to generate a compact
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Euclidean space, where L2 distances are calculated to mea-
sure face similarity [84], [90]. Face recognition becomes then
a K-NN classification problem, while face clustering is either
k-means or agglomerative clustering. The main advantage
of this algorithm is its low memory requirements where
only 128 bytes are needed per face. In addition, it requires
only a minimal alignment (i.e. a tight crop around the face
area. However, its disadvantage is that it can only recognize
one face at a time, which requires using a face detection
algorithm in case several faces are expected in an image.
In [90], a face recognition system based on FaceNet was
demonstrated to achieve an impressive accuracy of 99.63%
on the LFW dataset. However, the suitability of the algorithm
to run on IoT/edge devices was not investigated and was
recommended a major future goal by the authors. In [2] a face
recognition network cascaded to a face detection network
is presented to run on an edge device (x86 platform). The
detection is based on the MTCNN algorithm, and the FaceNet
algorithm is used to recognize the detected faces. The system
could yield a high accuracy on the LFW dataset of 99.03%,
slightly higher than the Facenet-only algorithm which yielded
an accuracy of 98.71%. The system latency was 57 ms,
which was much slower than the cloud Microsoft azure
which yielded 893 ms latency. Similarly, in [84] a cascaded
detection and recognition network was developed. For face
detection, two different algorithms; Haar feature-based and
MTCNN were tested, and FaceNet was used for recognition.
The proposed systems were implemented on the Rasberry
Pi 3B+ and Jetson Nano. The corresponding results showed
that the GPU surpass the raspberry pi in terms of process-
ing time at the expense of higher cost. Similarly, using
MTCNN for detection and FaceNet for recognition, a per-
formance comparison of the proposed face recognition inter-
face using cloud based (i.e. GTX 1080 (2560-cores), RTX
2080Ti (4352-cores), RTX 2070 (2304-cores) and RTX8000
(4608-cores)) and edge based parallel hardware architectures
Jetson Nano (128-cores), Jetson TX2 (256-cores), Jetson
Xavier NX (384-cores) and jetson Xavier AGX (512-cores)
was conducted in [85]. The corresponding results demon-
strated that cloud devices show a largely reduced execution
time (2x to 7.7x on average), but the latency time is much
higher than edge-based devices. The results also indicate
that TensorRT optimization yielded consistently the fastest
execution time over TFLite when it runs on edge or cloud
devices, but at the expense of 40% larger energy consump-
tion. It was also concluded that FaceNet-TFLite represents
the best tradeoff power consumption-memory usage.

V. DISCUSSIONS AND RECOMMENDATIONS
Table 1 and Table 2 summarizes all the aforementioned
implementations of face detection and face recognition sys-
tems. To the best of our knowledge these tables cover the most
recent notable works in this area.

Hence, many research works were successfully conducted
in the recent past and they can be categorized into; non-
neural network-based algorithms and neural network-based
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TABLE 1. Summary of face detection systems.

Algorithm Ref. Database Platform Accuracy Performance Comment
(Frames/ second)
FDDB Raspberry Pi 3B (cortex A53 CPU) + 93.25% 11.253 FPS Modified SSD with
[91] Intel’s Movidius NCS2 for neural MobileNet instead of
DNN/SSD netowrk VGG16
Own dataset 1. Raspberry Pi 3B+ Processing time (seconds): 3059 images for 12
84 2. Jetson Nano 1.3.08 (0.32FPS) different persons
[84] 3.PC+GTX1060 2.0.75(1.32 FPS)
3.0.13 (7.6 FPS)
1. Cloud-based GPU 1. Cloud-based GPU
11 GTX 1080 1.1 0.13 (7.62FPS)
1.2 RTX 2070 1.2 0.11 (9 FPS)
13 RTX 8000 13 0.26 (3.81 FPS)
14 RTX 2080 Ti (Ubuntu 18.04) 1.4 0.16=6.2 FPS
DNN/MTCNN 1.5 RTX 2080 Ti (Ubuntu 16.04) 15 0.11=9 FPS
[85]
2. Edge-Based Devices 2. Edge-Based Devices
2.1 Jetson Nano 2.1 0.17 (5.8 FPS)
2.2 Jetson TX2 2.2 0.68 (1.5 FPS)
23 Jetson Xavier NX 23 0.69 (1.5 FPS)
2.4 Jetson Xavier AGX 2.4 0.47 (2 FPS)
Frontal Face 1. Edge server: Intel Xeon Process (8- Detection time: For 1 to 8 faces
core) 1. Edge server: 0.01(99FPS) to 0.1(10
2.Smartphone: Cortex-A7 (Dual-core) FPS) seconds approx.
2. Smartphone: 1.7 (0.6) to 6.8 (0.1)
seconds approx.
[47 Detection time: For different image
Haar-Cascade resolution.
classifier 1. Edge: 0.323 (3FPS) seconds (1344 x
1521 Pixels) and 0.152 (6.5FPS)
seconds (896 x 592)
Own dataset 1. Raspberry Pi 3B+ Processing time (seconds): 3059 images for 12
[84] 2. Jetson Nano 1.0.92 (1 FPS) different persons
3.PC+GTX1060 2.0.31(3.2FPS)
3. 0.06 (16.5FPS)
[39] MUCT Altera Cyclone IV DE2-115 FPGA 96.14% 60 FPS 1502 face images
Local Binary Pattern Own dataset 1. Edge server: Intel Xeon Process 95% Dataset of 226 faces
(LBP) [46] 2.Smartphone: Cortex
. ) if they were not tested on the same dataset. Therefore, to make
Face Recognition Algorthims Performance . . . . .
ooy 97:90% 99.63% 98.52% this review as fair as possible, a comparison between some
00% 93.03% . .

00.00% 85.71% non-neural network algorithms (SIFT, LBP, Gaussian Face)
£ s000% and neural network algorithms (CNN, FaceNet) that were
£ 7000% tested on the LFW dataset is shown in Fig.6. The LFW
3 60.00% . . . . .

8 oo dataset contains 13233 images of 5749 subjects with a variety

§ a000% of poses, lighting, expressions, age, and other parameters.

& 3000% 1680 subjects of LFW have at least two images each and the

& 2000 rest have one image. Most of these images are colored, and

100 some are in grayscale. As shown, GaussianFace [56], a non-
0.00% . . . .-

NN [3] FaceNet[91]  SIFT[55] BP[43]  GaussianFace neural network algorithm, achieved a high recognition accu-

[57]
Face Recognition Algorthims

m Neural Network Non-Neural Network

FIGURE 6. Face recognition algorithms performance on LFW dataset.

algorithms. To achieve efficient and acceptable results, the
algorithms have to be tested on a good training dataset.
In section 3, different algorithms that were tested on different
datasets are discussed. However, it is not easy to conduct a fair
review comparing different algorithms and their performance
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racy result of 98.52%, and as claimed in [56] that for the first
time human-level performance in face verification on LFW
was surpassed. However, in [90] FaceNet a neural network
algorithm was able to achieve a higher recognition accuracy
0f 99.63% on LFW surpassing all others. The main difference
between non-neural network and neural network algorithms
is that non-neural network algorithms which are also referred
as shallow learning, are based on features decided by humans.
That is, after the results have been generated, the strength
of the features is decided [3]. Whereas, a neural network
which is based on deep learning, is an automated feature
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TABLE 2. Summary of face recognition systems.

Algorithm Ref. Database Platform Accuracy Performance Comment
LFW Nvidia 1080 ti GPU 97.9% - Parallel algorithm
3] - Challenges: increasing beard,
glasses, tiled face.
FDDB Raspberry Pi 3B (cortex A53 CPU) + Intel’s 93 % 7 FPS for detect & recognize
[91] Movidius NCS2 for neural network
[74] LFW GAP8 SoC (GAPuino board) 93%
Own dataset Raspberry Pi, model B 97% - 2FPS 6 persons with 40 pictures per person.
[75] - Detect+recognize= 529 +/-
64ms (2FPS)
DNN/CNN 1.2.60GHz GPU 95% 1. 16FPS
[81] 2. Nvidia Titan Black GPU 2. 99FPS
1 FERET 16 CPU cores 1. 97.8% - LBPNet
[76] 2 LFW 2. 94.04%
LFW X86 general purpose processor (C-RAN) 97% on LFW 57ms edge latency (17FPS)
(MTCNN for
2] detection+ Face
Net for
recognition)
CUFace NVDIA Jetson TX2 90.29% 5-10 FPS Recognize 8 faces in real-time.
Recognition with tracking: 0.14s Dataset generated by capturing
[92] people standing in front of the
camera.
Own dataset 1. Raspberry Pi 3B+ 97.7% Processing time (seconds): 3059 images for 12 different persons
2. Jetson Nano 1.0.88 (1FPS)
[84] 3.PC+GTX1060 2.0.16 (6FPS)
3.0.02 (S0FPS)
1. LFw 1. 99.63%
2. YouTube faces DB 2..95.12%
[90]
1. Cloud-based GPU 1. Cloud-based GPU cloud devices show a largely reduced
1.1  GTX 1080 1.1 0.09 (11FPS) execution time (2x to 7.7x on average)
1.2 RTX 2070 1.2 0.05 (20FPS)
1.3 RTX 8000 1.3 0.07 (14FPS)
DNN/FaceNet 1.4  RTX2080Ti(1) 1.4 0.08 (12FPS)
1.5 RTX2080Ti(2) 1.5  0.05 (20FPS)
[85] 2. Edge-Based Devices
2. Edge-Based Devices
21 0.86 (1FPS)
2.1 Jetson Nano 2.2 0.49 (2FPS)
2.2 Jetson TX2 23 0.47 (2FPS)
2.3 Jetson Xavier NX 2.4 0.27 (4FPS)
2.4 Jetson Xavier AGX
DNN/MTCNN [83] FER2013 60.7%
TV series Buffy the 86 % - Parallel algorithm
[52] vampire slayer - Do not perform well for rotation,
blurriness and change of illumination
in the image.
1. LFW (200 images of 78t0 90 % - SIFT + SURF
LFW + 40 from Face-94
(511 2. Face94(400 images + 40
SIFT algorithm for feature Unknown Images from
extraction LFW)
LFW 93.03% - Dense SIFT+ Fisher Vector Encoding
[54] - 12233 images for 5749 people
Frontal Face 1. Edge server: Intel Xeon Process (8-core) Total Processing time: For 1 to
2.Smartphone: Cortex-A7 (Dual-core) 8 faces
[47] 1. Edge server: 0.1 (10FPS) to
0.8 seconds (1FPS)
2. Smartphone: 2 (0.5 FPS) to 9
seconds (0.1FPS)
MUCT Raspberry Pi-3 board (Quad-Core) Detection + recognition: 6.8 - used Haar cascade for face detection
(1.5 FPS) to 7.8 seconds and LPPH for recognition
(0.1FPS) - 10 individuals with 15 images each
[93] - Haar is claimed to be fastest for
detection
1. CF1999 1. 13.03% 1. 447 imager of 27 unique people.
2. TDF 2. 5% 2. 40 subjects
3. CF:TDF + CF1999 3. 8.64% 4.13233 images
[40] 4. LFW 4. 90.95%
1. YaleB 1. 98.4% LBP+ VLC (Vinder Lugt Correlator) +
2. YaleB Extended 2. 94.6% DoG (difference of Gaussian)
41 - 10persons in YaleB and 38 persons
(41] in YaleB Extended with 64 different
illuminations for each.
1.CMU PIE Intel Core i5-2430M CPU 1. 99.26% 1. 40,000 images for around 68
2LFW 2. 85.71% different people
[42] 2. 13,233 web-collected images for
5749 different identities
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TABLE 2. (Continued.) Summary of face recognition systems.

1. CMU-PIE 1. 95.75% Relaxed LBP
Local Binary Pattern (LBP) for 2. Extended YaleB 2. 98.71% 1. 40000 facial images of 68 subjects
feature extraction[45] 3. 02FN 3. 98.4% 2. contains 38 subjects
[44] 3. contains 2000 face images for 50
subjects
ORL 1. AMD Radeon HD 7650 GPU 93% GPU (AMD Radeon HD 7650M) 400 images corresponding to 40
outperforms CPU based face individuals
recognition system using LBP in
[45] 2. Intel Core i3 CPU terms of speed and accuracy.
ORL 1. AMD 6500 GPU 1. GPU: 74%- GPU (512x512 image size) 400 images corresponding to 40
2. Core 2 Duo 79% feature Ext: 36.3ms (27FPS) individuals
[48] 2.CPU: 74%- CPU (512x512 image size)
79% feature Ext: 545.6 ms (1.8FPS)
ORL 1. Intel Core i3 CPU 1.CPU - GPU parallel implementation 400 images corresponding to 40
2. AMD 6500 GPU recognition is about 50 times faster than individuals
accuracy: 85.4% the counterpart on CPU
2.GPU
recognition -GPU is slightly lower accuracy
[37] accuracy: 85.3% than CPU implementation

because of lack of support of
double precision FP.

(KFA)

1. Dataset I: No image 1.90.49% Improved LBP
blending 2.99% 1. around 400 faces
(46] 2. Dataset Il 2. around 760 faces
[33] ORL Black Gold AX515 (Cyclone IV) FPGA 95.8% 9960 FPS Only 8 people were tested.
1. The Yale Face AMD Radeon Graphics Processor (GPU) 0.2683 seconds (4FPS)
Database
[94] 2. Self-created dataset of
PCA
40 images
Raspberry Pi-2 board 88% for Low computation demanding
[35] detection +
recognition
1. Yale 1. GeForce GTX 770 GPU Detection: 109 frames/s 1. 5760 images of 10 different
2. Biold Face 2. intel ® Xenon(R) CPU Recognition for (650x400): individuals
PCA/Eigen faces [34] GPU: 127ms (8FPS) 2.1521 images of 23 different person
CPU: 279 ms (4FPS)
ORL Raspberry Pi 3 Model B+ (Quad-Core) 82.5% 0.206 seconds (5FPS) 400 images corresponding to 40
[36]
individuals
1. CASIA 1. 99.5% - Gabor filters to extract features and
2. ORL 2. 97% LDA.
3. Cropped YaleB 3. 99.16% - using 25 orthogonal filters.
[68]
1. 123 persons, with 30 images each
2. 40 subjects, with 10 images each.
3. Total of 2535 images of 39 subjects.
1. Faces 94 FPGA (Xilinx system Generator) 1.70%-97% - Gabor filters + Three segment facial
2. FEL 2.97.77%-100% region
Gabor Filter 3. ORL 3.77%-87%
(parallelized) [16] (Based on the 1. total of 153 individuals
region} 2.100 persons
3. 400 images corresponds to 40
people
GaussianFace [56] LFW 98.52%
Radon Transform + Symbolic Bosphorus, CASIA, Texas 99.65 % 409.6 images corresponding to 123
LDA + AdaBoost Learning [69] subjects of the three datasets
Eigen Distance [66] Intel Pentium @2.4GHz 92%
1. YaleB 1. 99.1%
Gabor Kernel Fisher Analysis 1671 2. CMU-PIE 2. 99.6%

extraction, whereby it will automatically select the best fea-
tures to predict the output. This difference makes neural
network algorithms highly suited for accurate face recogni-
tion. Another strength is that neural network or CNN-based
algorithms rarely require the use of preprocessing techniques
and feature extraction. For example in [90], only a minimal
alignment which is a tight crop around the face was required
for the image before the recognition process. Unlike other
algorithms, CNN based algorithms are known to have high
scalability and they still achieve high recognition accuracy on
large-scale datasets. Parkhi et al. [95] achieved a recognition
accuracy of 97.3% using CNN on a dataset of 2.6M images
of 2.6K people. However, one drawback of a neural network
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is that it requires a large number of samples to train the
system [96].

To achieve a high-performing face detection and recog-
nition system, a suitable hardware accelerator has to be
selected for the system. Similarly, a fair review cannot be
conducted to conclude which hardware accelerator has the
best performance for face detection and recognition systems
as other factors can affect the hardware accelerator perfor-
mance like the used algorithm, dataset, number of faces,
and image resolution. For the detection task, three hard-
ware accelerators; namely the Raspberry Pi 3B+, Jetson
Nano GPU, and GTX1060 GPU were used to host two
different algorithms [84]. The Raspberry Pi in the system
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did not exceed 1 FPS and the other two processors have
outperformed both algorithms. However, in [91] the use of
hybrid accelerators has decreased the detection time and
improved the Raspberry Pi processing time performance.
In the recognition process, the raspberry pi has an aver-
age of 1.5 FPS processing rate when neural network algo-
rithms are used [75], [84]. However, the average value is
exceeded in [91] and [36]. In [91] the Raspberry Pi is used
along with Intel Movidius which improved the processing
time performance. Whereas, in [36] a 5 FPS processing rate
was achieved using the non-neural network PCA algorithm.
Accordingly, the Raspberry Pi accelerator could be more suit-
able for non-neural network algorithms than neural network
algorithms when it’s used alone.

In comparing the fixed hardware accelerators, GPU and
multi core-CPU, it is proved in [47] that there is a proportional
relationship between the number of cores and processing rate.
Therefore, GPU’s performance surpasses CPUs’ due to their
large number of cores and due to the fact that these algo-
rithms require fine-grain parallelism. Papers [34], [37], [45],
and [48] have compared the performance of both accelerators
and all concluded that a GPU outperformed multi-core CPUs
in terms of accuracy and processing time, since the GPU
provides fine-grain parallelism compared to multi-core CPUs
which features coarser grain parallelism. Papers [84] and [85]
have compared the processing time for cloud-based and edge-
based GPUs in detection and recognition systems. As known,
cloud-based GPUs provide a much higher processing rate
than edge-based GPUs. However, cloud computing is associ-
ated with problems such as high response latency, bandwidth
limitation, higher risk of information leakage, and privacy
exposure. This makes cloud-based GPUs unsuitable to be
used for time-sensitive applications.

It can also be concluded that FPGAs are very attrac-
tive in terms of power and execution time. However, they
cannot completely substitute GPUs and multi-core CPUs.
A heterogenous system-on-chip that includes these three
technologies seems to be a reasonable way forward. For
instance, GPUs are easier to program for complex tasks,
especially when the power consumption is not an issue and
an FPGA core can accelerate critical datapath intensive tasks.
This requires a user-friendly hardware-software co-design
framework to seamlessly develop hardware algorithms for
face detection and recognition.

VI. CONCLUSION

Face detection and face recognition systems are consid-
ered to be challenging and are among the most studied
problems in the computer vision field. These systems are
commonly used in many real-world applications, such as
security, surveillance, and user authentication. A lot of
research works on designing new associated algorithms were
successfully conducted in the recent past, and they can be
typically categorized into non-neural network algorithms
and neural network algorithms. This paper discusses the
recent implementations of face recognition systems and their
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performance. A comparative study between face recogni-
tion algorithms and platforms in terms of accuracy and pro-
cessing time was conducted. We can conclude that neural
network-based algorithms outperform non-neural network
algorithms in terms of accuracy, and GPUs outperform other
hardware accelerators in face detection and recognition sys-
tems. It can also be concluded that while GPU-based edge
or IoT platforms yield very high performance in terms of
processing throughput, FPGA-based platforms yield lower
power consumption and even higher throughput in the case
of arelatively small database of faces. This suggests probably
embedding both technologies in the same chip and working
on designing a suitable hardware-software development tools
that allow the user to partition the algorithm into either tech-
nology in a user-friendly manner.
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