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ABSTRACT Recently, spam on online social networks has attracted attention in the research and business
world. Twitter has become the preferred medium to spread spam content. Many research efforts attempted to
encounter social networks spam. Twitter brought extra challenges represented by the feature space size, and
imbalanced data distributions. Usually, the related research works focus on part of these main challenges or
produce black-box models. In this paper, we propose a modified genetic algorithm for simultaneous dimen-
sionality reduction and hyper parameter optimization over imbalanced datasets. The algorithm initialized an
eXtreme Gradient Boosting classifier and reduced the features space of tweets dataset; to generate a spam
prediction model. The model is validated using a 50 times repeated 10-fold stratified cross-validation, and
analyzed using nonparametric statistical tests. The resulted prediction model attains on average 82.32% and
92.67% in terms of geometric mean and accuracy respectively, utilizing less than 10% of the total feature
space. The empirical results show that the modified genetic algorithm outperforms Chi2 and PCA feature
selection methods. In addition, eXtreme Gradient Boosting outperforms many machine learning algorithms,
including BERT-based deep learning model, in spam prediction. Furthermore, the proposed approach is
applied to SMS spam modeling and compared to related works.

INDEX TERMS Genetic algorithm, business analytics, extreme gradient boosting, feature selection, hyper
parameter optimization, spam prediction.

I. INTRODUCTION
Spam remains one of the long lasting security threats.
E-mail spams represent a true challenge against mail service
providers at the early stages of the Internet. Web spams
exploit social engineering to lure a privileged user to login
into a deceptive service. As Internet users developed aware-
ness skills and became more competent to distinguish fake
web content from truly legitimate one, attackers exploit
the pervasiveness of social networks and corresponding
media to launch the latest generation of spams, namely
social spam. In addition to the opportunity to target a larger
number of victims, social networks create an environment
for ever-evolving avenues for spammers. It goes beyond
traditional individual compromising activities such as
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monetary frauds towards large-scale campaigns. Quite
recently released Twitter dataset distinguished more than
five ways of twitter spams, including, but not limited to,
profanity, insulting, hate speech, malicious links, fraudulent
reviews [1]. Similarly, recent research efforts considered
similar spamming approaches against other online social
networks and short message service (SMS) [2], [3]. It is not
surprising that twitter reviews spam policy periodically [4].

As social spam campaigns emerged as a contemporary
challenge against users, companies and even more govern-
ments, countermeasures evolved in a hand raising contest
fashion. Earlier solutions were limited to the rule-based and
regular expression matching. However, as spammers devel-
oped good experience to evade such detectors, information
security practitioners considered content-based characteris-
tics restrictively. Contemporary mature solutions utilize both
content-based and account-based characteristics. In most
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cases, the ultimate goal is to find the shortest list of char-
acteristics or features that indicate spamming behavior [5],
[6]. Some studies step further to identify spammers them-
selves [7], [8]. Machine learning techniques are leveraged
in many ways to develop detection models. Earlier mod-
els utilized straightforward classification and categorization
algorithms such as Support Vector MAchine (SVM), Naïve
Bayes (NB), K-Nearest Neighbor (K-NN), and Decision
Trees (DT) [3], [5], [6]. More advanced solutions explore
opportunities of improvement as a result of utilizing deep
learning (DL) techniques [2], [9].

Deep learning based solutions approved to outperform con-
ventional machine learning based prediction models. Consid-
ering social spams, such behavior of deep learning models
is justifiable as it performs well in identifying local pat-
terns [9]. However, such performance comes at the expenses
of model complexity. Additionally, Artificial Neural Net-
works (ANNs) models of deep learning are hard to inter-
pret. Scalability and interpretability remain two contradictory
desired characteristics of any social spam detector. In order
to tackle this issue, we propose a novel dimension reduction
solution. As parameter tuning is an unavoidable task regard-
less of the nature of the underlying prediction model, the
proposed solution leverages a genetic algorithm to tune the
parameters of the prediction model and select best descriptive
features simultaneously. Such generated prediction models
are still interpretable utilizing the final set of retained fea-
tures. Further, proposed architecture allows developers to
choose among a wide range of granularity depending on their
targets and underlying computation capabilities.

A wide range of optimization techniques are proposed
in literature. Alatas and Bingol categorized intelligent opti-
mization techniques according to their scientific basis [10].
Further they compared their performance to the light-based
intelligent optimizers [11]. Genetic algorithms (GA), biology
based optimizer, is the most popular type of evolutionary
algorithms (EA) for parameter optimization. It demonstrates
noticeably outstanding performance for a wide range of
problems. Genetic algorithms retain merits of both meta-
heuristic search algorithms and stochastic optimization tech-
niques [12]. This combination enables genetic algorithms to
reach a global optima within a relatively fewer number of
generations compared to other evolutionary algorithms.

One of the major issues in spam text research is the limited
availability of labeled text datasets with high quality [13],
[14]. For example the well known benchmark datasets are
few, andmany researchers use tools to collect domain specific
datasets. As a result, many of the available text datasets
have limited number of attributes, unverified class labeling,
related to a specific language, imbalanced class distributions,
or biased data. Furthermore, currently social media facilitate
sharing multimedia content (e.g.,audio, video, text, images,
etc) but incorporating such mix of content in model building
seems to be one of the future challenges. Table 1 shows a
summary of the related research works in Tweets modeling
and points to some research gaps.

In order to evaluate the proposed solution, a real-world
Twitter dataset is utilized, a quite large number of experi-
ments incurred. Most experiments ended up with satisfactory
performance due to the incorporation of the feature selection
process. Some experiments provided outstanding results that
outperform base-line solutions, even deep learning solutions.
Incurred experiments reveal appropriateness of the proposed
approach to handle social spam detection problem, providing
a trade off between prediction performance and computa-
tion capabilities. Furthermore, the proposed approach is still
applicable to a wide range of data mining problems. Below
are the key contributions of this research:

1) Proposing a social spam content-based detection
approach that considers wide variety of contemporary
ways of spammers.

2) Developing a novel genetic algorithm to initialize a
powerful classifier and feature selection.

3) Validating the proposed approach against publicly
released twitter real-world dataset.

The rest of this paper is organized as follows, Section II
investigates literature and related works. The proposed social
spam detector and the corresponding genetic algorithm fea-
ture extraction approach are elaborated in Section III. Results
are presented and discussed in Sections IV and V, respec-
tively.Finally, Conclusion and future directions are drawn in
Section VI.

II. RELATED WORKS
Recently, there has been a significant interest in detecting
twitter spam. Compared to the traditional mail spam and web
spam, twitter went beyond phishing, fraudulent, and scam.
It creates new avenues for profanity, insulting, spreading
hate speech, and bullying [1]–[3], [13], [24]. Researchers
have investigated wide range of approaches to accommodate
such divergence. Two streams of countermeasures have been
proposed. First approach considers feature extraction. Sec-
ond approach considers graph-based solution. Feature based
solutions investigate content-based features, account-based
features, or both of them. Graph based solutions investigate
communication graphs of spam spreading focusing on iden-
tification of spammers.

In recent times, feature selection is one of the important
key of research in machine learning, image retrieval, text
mining, intrusion detection, etc. According to literature, dif-
ferent algorithms have been developed and employed for
feature selection. For example, a greedy search based sequen-
tial forward selection (SFS) [25] and sequential backward
selection (SBS) [26] have been applied for feature selection.
However, these approaches suffer from a range of problems,
such as stacking in local optima and high computational
cost. In order to address these problems, new algorithms
for feature selection have been proposed [27]–[29], such
as Particle Swarm Optimization (PSO) [30], Ant Colony
Optimization(ACO) [31], and Genetic Algorithm (GA) [32].
Furthermore, a novel filter feature selection method named
the Proportional Rough Feature Selector (PRFS) has been
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TABLE 1. Summary of related research works.

proposed in [33]. The method addresses a high dimensional
matrix in a short text classification problem. The method
makes a regional distinction using a set of terms in order
to differentiate documents that exactly belong to a class and
documents that possibly belong to a class. In the work of [34],
the authors have presented a comparative study of eight filter
methods by employing mutual information using 33 datasets.
Furthermore, in the work of [35], 12 feature selection meth-
ods are compared on text classification problem.

Genetic algorithm has been known to be a very effi-
cient and useful approach for feature selection, as described
in [36]–[40]. This is because of its ability of changing the
functional configuration in order to improve the performance
results. In [41], the authors have applied a Genetic Algo-
rithm in order to reduce the number of features extracted
from a Flavia image dataset. The authors of [42], [43] have
proposed a hybrid Genetic Algorithm for feature selection
based on machine learning techniques. They have inves-
tigated the performance of their algorithm using different
datasets, such asWine dataset and synthetic data sets. In [15],
an approach for enhancing a classification performance of
natural crisis-related Twitter messages has been proposed.

In this approach, a Genetic Algorithm has been utilized for
feature selection. Another study has been proposed in [44].
The study employs a Genetic Algorithm for feature selection
in order to increase a classification accuracy for breast cancer
diagnosis.

Different feature selection approaches have been applied
on many real-world applications, such as text categoriza-
tion [45], image retrieval [46], intrusion detection [47]. Sev-
eral feature selection approaches have also been applied on
tweets classification. For example, the work of [16] has
presented a method for sentiment analysis of airline tweets.
It employs a mutual information method for the process of
feature selection. Furthermore, the work of [15] has imple-
mented an improvedGenetic Algorithm for disaster prepared-
ness and response in the Philippines. The algorithm aims
to select the most important features from a large number
of features for the classification process of disaster-related
tweets. In [17], the authors have considered Chi-Squared,
Mutual Information, Kolmogorov-Smirnov statistic, area
under the Precision-Recall curve, and area under the Receiver
Operating Characteristic curve for feature selection on a large
high-dimensional dataset of collected tweets. Each tweet is
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labeled to a positive sentiment or negative sentiment. The
results demonstrated that employing these feature selection
techniques on a sentiment classification process can have a
great impact on the performance of a classifier. The [18]
has applied classification techniques on tweets belonging
to Renewable Energy. The Correlation based Feature Selec-
tion (CFS) Subset Evaluation and Information Gain feature
selection have been used to reduce the number of used
features.

The literature shows that the number of selected features
used for tweets classification greatly affects the performance
of the employed classifier. However, only a few works have
discussed how and what an appropriate number of features
should be selected to achieve the best classification perfor-
mance [13], [19]. The approach of [17] has shown that using
between 75 and 200 features enhances the tweets classifica-
tion results over using the full feature set. In [20], the authors
have investigated the using between 42 and 34,855 features
to represent 1000 instances from the Stanford Twitter Corpus.
They have found that using more than 500 features will not
significantly improve the performance of a classifier. The
work of [21] has studied the effect of the application of
two-stage feature selection on the twitter sentiment analysis
performance. A filter feature selection based on information
gain has been used and 3 feature sets of 500, 1000, and
1500 features have been produced.

III. THE PROPOSED APPROACH
Computer-based Genetic Algorithm (GA) [48] is a search
heuristic that was inspired from the natural evolution theory
of Darwin. Since decades, GA has been actively used by
researchers to address many challenges in different domains
such as malware detection [49], energy optimization [50],
cancer classification [51] and so on.

Recently, GA has been used as a search strategy for dimen-
sionality reduction of a relatively large feature space [52].
Such an approach evades the limitations of the exhaustive
search strategies. GA can be used to optimize the parameters
of machine learning algorithms and reduce the dimensional-
ity of the problem space. One approach in text modeling is to
convert the input text into a set of features; such as TF/iDF
modeling. Usually, the number of features is extremely
large and so an overfitting probability is high. On the other
hand, real-world classification datasets are usually an imbal-
anced distribution of class labels. Imbalanced datasets impose
an additional challenge in avoiding classification bias and
overfitting.

A. EXTREME GRADIENT BOOSTING
Chen and Guestrin in [53] introduced a powerful tree boost-
ing algorithm, which is named eXtreme Gradient Boosting
(XGBoost). The algorithm is claimed to be scalable; sparsity-
aware; takes into consideration data compression and shard-
ing; and cache-aware access. Figure 1 illustrates XGboost
algorithm architecture. Each tree is trained on the residual
error of the previous tree which improves the performance

FIGURE 1. eXtreme gradient boosting (XGBoost).

of the constructed tree. The sum of each tree’s predictions
constructs the final prediction.

The characteristics of XGBoost enable it to outperform
other machine learning algorithms and require less system
resources. Theoretical and empirical proofs support these
claims in [53]–[57]. XGboost in [54] produced the best
performing models over 11 machine learning algorithms in
text-based spam classification. However, tree-based algo-
rithms in general tend to perform well in relatively small
number of features compared to artificial neural networks.
Therefore, this research aims at leveraging the benefits of
XGBoost algorithm by reducing the number of text features
in the prediction model building process.

The major challenge in building XGBoost-based models
is proper parameter tuning [53]–[56]. This research aims at
proposing a novel GA variation that optimizes the parame-
ters of a classifier (i.e., eXtreme Gradient Boosting), and to
reduce the features space simultaneously.

B. DATASET DESCRIPTION
The main tweets dataset used in this research was introduced
in [22]. It has 5096 tweets. About 17% of tweets are labeled
as ‘‘Spam’’ and the rest as ‘‘Ham’’. Tweets are labeled in a
manual fashion by considering and examining each one sepa-
rately [22]. If a tweet content is considered as unacceptable by
the community or harmful,then the tweet is labeled as spam.
Otherwise, it is labeled as ham (i.e.,, normal tweet). Figure 2
summarizes the number of the text characters in all instances.
The length of the stored characters of each tweet may exceed
the number of original tweet length because some special
characters and emoticons are stored as a set of representative
Unicode characters.

It is apparent that the average character length, which rep-
resents each tweet, is about 100 characters in both classes, and
there is no significant variance difference in the distribution
of both classes as well. Therefore, length analysis adds to the
challenges in building a robust classification model.

C. THE MODIFIED GA
The modified GA aims at directing the stochastic selection
aspect towards a fine subset of features. At the same time,
to find the best possible classification algorithm parameters.
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FIGURE 2. The character length distribution of the text (emoticons are
stored as a series of Unicode characters).

Therefore, it is to find the best combination of features and
parameters simultaneously. Usually, GA is used to either
initialize the classification algorithm parameters or in feature
selection. The proposed modifications would leverage the
capabilities of GA in defining the optimal combination of
features subset and parameters. Moreover, particular modi-
fications of some methods limit the absolute randomness of
GA phases. For example, ensuring no duplicate genes in each
chromosome. The Modified GA and its phases are presented
in the following subsections:

1) GA MAIN CODE
Many recent research studies in different domains [58]–
[61] illustrated the power of GA in optimizing the param-
eters of XGBoost to achieve better prediction performance.
Algorithm 1 represents the initial configurations of the mod-
ified GA that is used to optimize the parameters of XGboost
and select the most appropriate features subset. Initially,
a number of GA parameters will set the maximum percentage
of features to be selected, the parents’ crossover ratio in each
population, the maximum number of generations, and the
number of classifier parameters to be optimized. The result
will be a chromosome having an optimized set of XGboost
parameters and the selected features subset. The chromosome
structure is illustrated in Figure 5. The input dataset is split
into 70% training and 30% testing partitions for theGA-based
XGBoost model building and validation. Table 4 describes
the GA parameters.

2) INITIAL POPULATION
Creating the initial population of the GA is challenging as it is
not an easy task to select a representative subset of the whole
population. Neither in selecting the initial set of classifier
parameters nor the subset of the feature set. Redundancy of
gene values is also one of the issues to consider at this phase.
To limit the absolute randomness of the GA, XGBoost boost-
ing parameters are generated using a uniform random number
generator within a recommended value range (Table 5 lists the
value ranges of XGBoost parameters).

Algorithm 1 Genetic Algorithm
1: Set percentage of features to be selected
2: Set crossover ratio
3: Set number of parents in initial population
4: Set number of generations
5: Number of parents to select = crossover ration * number

of parents
6: Define classifier parameters to be optimized
7: generateTrainTestData(Features Dataset) F 30:70% data

split
8: Generate initial population(Number of parents)
9: fitness function(initial generation)
10: for Number of generations do
11: train(current population)
12: Select parents (Number of parents to select) F return

those having highest fitness value
13: children = crossover(selected parents)
14: mutate (children)
15: end for
16: Best Chromosome = highest fitness chromosome
17: procedure train(current population)
18: for c = 1 to Number of chromosomes do
19: chromosome = population[c]
20: parameters← chromosome[1− 7]
21: features← chromosome[8− end]
22: predictions = classify(parameters,

traindata[features])
23: fitness function(actual labels, predictions)
24: end for
25: return fitness
26: end procedure

The features subset, which is part of the chromosome,
is created by a custom procedure that randomly selects a sub-
set of the whole feature set; i.e., subset of the whole TF-iDF
vector. The procedure ensures creating a chromosomewith no
duplicate features and selecting from the full features vector.
Actually, the list of selected features is the set of features
indices in the TF-iDF vector;

Initializing the initial population will result in forming the
parents chromosomes according to the preset parents size in
Algorithm 1.

3) FITNESS FUNCTION
The bias imposed by imbalanced class distributions gener-
ally favors the majority class; which in most cases does
not represent the class of interest. Therefore, positive class
based metrics will dramatically mislead the selection of the
best model relying on the objective function. The Geometric
Mean (GMean) on the contrary considers both the positive
and negative class as an objective function [62]–[64]. The GA
and the validation of the selected models in this research uti-
lize the GMean as an objective function. In addition, it is used
as the main metric in comparing the performance of different
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Algorithm 2 Initializing Initial Population
1: procedureGenerate initial population(numberofparents)
2: for p = 1 to number of parents do
3: learningRate[p] = rand.uniform(0.01, 1)
4: nEstimators[p] = randrange(10, 1500, step = 25)
5: maxDepth[p] = randrange(1, 10, step= 1)
6: minChildWeight[p] = rand.uniform(0.01, 10.0)
7: gammaValue[p] = rand.uniform(0.01, 10.0)
8: subSample[p] = rand.uniform(0.01, 1.0)
9: colSampleByTree[p] = rand.uniform(0.01, 1.0)

10: features[p] = select text features F select text
features ensures no duplicate genes are present in each
chromosome

11: end for
12: concatenate parameters and features into chromo-

somes
13: population = all generated chromosomes
14: return population
15: end procedure

Algorithm 3 Simplified Fitness Function
1: procedure fitness function(y_true, y_pred) F y_true is

actual class labels, y_pred predicted labels
2: TP = Count TP(y_true, y_pred)
3: TN = Count TN(y_true, y_pred)
4: FP = Count FP(y_true, y_pred)
5: FN = Count FN(y_true, y_pred)
6: TPR = TP

TP+FN

7: TNR = TN
FP+TN

8: fitness =
√
TPR× TNR

9: return fitness
10: end procedure

classification models. The Algorithm 3 and Equation 8 illus-
trate the GMean calculation. It is the square root of the True
Positive Rate (TPR or Recall) multiplied by the TrueNegative
Rate (TNR or Specificity). The TPR is a positive class based
metric and TNR is a negative class metric; deriving a TPR and
TNRbasedmetric equals ametric that represents the accuracy
of both classes (i.e., Spam and Ham).

4) SELECTION AND CROSSOVER
Crossover is an essential phase in GA to generate a new
number of children from the parents. A child’s genes will be a
combination of two parent chromosomes, so the children are
expected to have better genes than the parents do. To achieve
this, a uniform crossover is performed using almost half of
each parent genes. The crossover phase ensures generating
children where each has no duplicate genes. Each chromo-
some will undergo two crossovers; one for XGBoost param-
eters and the other for the selected features set. Algorithm 4
will select the best parents to crossover according to the

Algorithm 4 Crossover
1: procedure crossover(Selected parents) F Uniform

crossover
2: for number of children to generate do
3: uniform crossover of selected parents parameters
4: uniform crossover of selected parents features
5: new child = parents parameters and features after

crossover
6: end for
7: return newChildren

F ensures no duplicate genes are present in each
child chromosome

F ensures uniform crossover at almost half the size
of each parent
F first 7 genes are classifier parameters and the rest

are the text features
8: end procedure

Algorithm 5Mutation
1: procedure mutate(children)
2: for number of children do
3: randomly select parameter gene index
4: add random value to existing gene value
5: Ensure not exceeding parameter value range
6: randomly select feature gene index
7: mutate by replacing it with a value from the full

features set
8: ensure adding new feature to the current chromo-

some
9: end for
10: returnMutatedChildren
11: end procedure

GMean objective function and generate a number of new
children for the next generation.

5) MUTATION
Because of the stochastic nature of GA, some genes may be
overseen in the initial population or in the generated children.
To increase the chance of fair inclusion of missed geneses
the mutation tries to include new genes in the children. One
parameter gene and one feature gene are selected randomly
in each child chromosome and replaced with a new value.
Specifically for the selected features, the mutated gene value
will be selected from the full features vector set such that it
is not one of the parents’ genes. Mutation is illustrated by
Algorithm 5.

The modified GA will run for a preset number of gen-
erations aiming at the maximization of the GMean value
of the generated models. The spam and ham text features
are the TF-iDF vectors generated by the pre-processing step
presented in Section III-D1. The best chromosome that will
be selected in the last GA generation will contain the best
XGBoost parameters and the accompanying selected spam
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FIGURE 3. The proposed research methodology.

features subset. This chromosome will be used consequently
to initialize an XGBoost algorithm to generate a spam predic-
tion model in theModel Building phase illustrated in Figure 3
and Figure 4.

D. PROPOSED METHODOLOGY
The proposed methodology is divided into five main phases:
(1) Dataset pre-processing, (2) Hyper parameter optimiza-
tion and feature selection, (3) Sensitivity analysis, (4) Model
building and validation, and (5) Classification performance
analysis. Figure 3 is an abstract view of the proposed research
methodology. Figure 4 is a more detailed view of the method-
ology, and the parameter values of each step are listed in
Section IV.

1) DATASET PRE-PROCESSING
Each data instance contains raw tweet text and a label
(i.e., ‘‘Ham’’ or ‘‘Spam’’). Each tweet text and its label
is pre-processed to be cleaned and converted into features
through a number of steps: (1) Tokenize the tweet and remove
extra space and special characters, (2) Stem each tokenized
word using ‘‘Porter Stemmer’’ [65]. This will reduce the
tokenized word to its root, stem, or base. (3) Each stem
is given a weight using a vectorizer; depending on the
term frequency–inverse document frequency (TF-iDF) [66],
[67]. Therefore, each tweet is converted into a representative
TF-iDF vector (i.e., a set of features), and (4) The class
labels are encoded into 0’s, i.e.,, ‘‘Ham’’ class, and 1’s, i.e.,,
‘‘Spam’’ class, to satisfy the requirements of the classification
algorithm.

2) HYPER PARAMETER OPTIMIZATION AND FEATURE
SELECTION
In this step, a modified GA tunes the parameters of the classi-
fication algorithm such that it improves the prediction rates.
It is divided into two main parts: (a) GA feature selection and
(b) GA hyper parameter optimization. Each chromosome in
this step is designed to hold two types of genes such that

genes at the beginning are the parameters to be optimized
and the rest of genes are the selected features. Figure 5 shows
the detailed structure of the chromosomes, the chromosomes
after GA crossover, and an illustration of the genes after the
mutation process.

The initial population consists of parent chromosomes
holding randomly selected parameters within a recommended
and pre-defined range based on literature [53], [68], [69]),
and randomly selected unique features within each chromo-
some. It is the responsibility of the initialization algorithm
to ensure choosing features without having any duplicates in
each chromosome.

3) SENSITIVITY ANALYSIS
The main aim of the sensitivity analysis step is to find the
best possible combination of XGBoost parameters and subset
of feature space [70]. GA performs several hyper parameter
optimizations and feature selections in order to examine the
behavior of the classification algorithm. Consequently, the
results of different optimizations and feature selections under
different configurations lead to understanding the behavior of
the algorithm.

Several GA configurations are examined in this step by
mainly specifying: (1) the initial population size, crossover
percentage, and number of generations; and (2) the desired
percentage of features to retain (i.e., the number of feature
genes in the chromosomes). The effect of the configurations
on the objective function is examined to determine the candi-
date classifier parameters and the subset of feature space.

4) MODEL BUILDING AND VALIDATION
The optimized classifier parameters and selected features
subset, which maximized the objective function, are used to
build a robust classification model. 10-Fold stratified cross-
validation (10 CV) is used to avoid the bias in model building
process. This model building process is repeated 50 times
(50 × 10 CV) to assess the classifier stability.

IV. EXPERIMENTS SETUP
GoogleTM Colaboratory (a.k.a. Colab, https://colab.research.
google.com/) environment is one of GoogleTM Research
products. Colab offers a browser-based machine learning
projects’ development environment that supports PythonTM

https://www.python.org/ code run over different modern
processing architectures. The experiments of this research
are implemented as PythonTM projects and conducted over
CPU-based Colab environment.

The major configurations of the proposed approach steps,
which are described in Section III-D, are listed as follows:

A. DATASET PRE-PROCESSING
The used TF-iDF vectorizer parameters in Tweets text
pre-processing are listed in Table 2. The maximum number of
possible features is extracted according to the pre-processing
step.
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FIGURE 4. The detailed research methodology.

FIGURE 5. The chromosomes structure, crossover, and one gene mutation.

TABLE 2. TF-iDF vectorizer parameters.

B. GA CONFIGURATION
Tables 3 and 4 show the GA parameters setup. The letters F ,
P, C , and G are used to summarize the description of each
GA configuration (i.e., Metadata elements). F is the percent
of features subset to be selected from the complete features
set, P is the number of randomly selected parents in the first
GA generation, C is the number of parents to crossover, and
G is the number of GA generations. This standard file naming

TABLE 3. GA file-name/experiment code description.

TABLE 4. GA parameters description.

convention makes it easier to sort and interpret some effects
of parameter tuning.

The best results of GA feature selection and hyper param-
eter optimization are selected based on fitness function
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TABLE 5. XGBoost boosting parameters to be optimized by the modified GA.

TABLE 6. Confusion Matrix.

(i.e., GMean); which consist of the selected features and
optimized XGBoost parameters, which are listed in Table 5).

C. CLASSIFICATION PERFORMANCE ANALYSIS
Analyzing the performance of the classifier to demonstrate its
learning capability in model development is an essential part
of the modeling phase assessment. Therefore, several metrics
illustrate the performance of the developedmodel in detecting
a potential spam tweet (i.e., classifying the tweets into Spam
and Ham).

A visual summary of the classification results is repre-
sented by a confusion matrix [71]. Such that a two dimen-
sional table aggregates the counts of the labeled tweets by
the developed classification model into correct (True) and
incorrect (False) labels. The aggregated counts are denoted
specifically as True Positive (TP), False Positive (FP), True
Negative (TN ), and False Negative (FN ). In this work, the
positive class (i.e., class of interest) is the Spam tweet, and
the negative class is the Ham tweet. Consequently, the four
aggregated counts in the confusion matrix are interpreted as
follows: TP count represents the actual Spam tweets that are
classified correctly as Spam, TN count is the number of actual
Ham tweets that are classified correctly as Ham, FP count is
the number of the actual Ham tweets that are classified incor-
rectly as Spam, and the number of actual Spam tweets that
are classified incorrectly as Ham represents theFN count. TN
and TP represent the goodness of the classification model in
correctly predicting the class label, while FP and FN show
the level of the possible confusion a prediction model may
have. Table 6 represents the confusion matrix that is used to
derive a number of Spam classifier performance evaluation
metrics.

Part of the derived evaluation metrics are:
1) True Positive Rate (TPR): the ratio of the correctly

classified Spam tweets (i.e., tweets predicted as Spam
and they are actually a Spam) [71]. It is alternatively

named as recall or sensitivity.

TPR =
TP

TP+ FN
(1)

2) True Negative Rate (TNR): the ratio of the correctly
classified Ham tweets (i.e., tweets predicted as Ham
and they are actually Ham) [71]. It is alternatively
named as specificity.

TNR =
TN

FP+ TN
(2)

3) Positive Predictive Value (PPV ). It is alternatively
named as precision [71]:

PPV =
TP

TP+ FP
(3)

4) False Positive Rate (FPR): the probability of false
alarm, Fall-out.

FPR =
FP

FP+ TN
(4)

5) Negative Predictive Value (NPV ) [71]:

NPV =
TN

TN + FN
(5)

6) F-Score (F1) [71]:

F1 = 2×
TPR× PPV
TPR+ PPV

(6)

7) Total Accuracy (Accuracy): It is traditionally derived
from the confusion matrix and it represents the cor-
rectly classified instances count divided by the total
number of instances. Alternatively, accuracy is also
referred to as success rate (i.e.,, the ratio of correctly
classified instances). Equation 7 illustrates accuracy
metric.

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(7)

There are many concerns in using the total accuracy
as a performance metric, more particularly in imbalanced
datasets [72]–[74]. Usually the negative class is dominant and
more frequent in real life. Consequently, the model building
phase would have a higher tendency towards modeling better
the patterns of the negative class. Such tendency makes less
prediction power of the positive class; which is usually the
class of interest. Same issue arises when considering Spam
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tweets. While TNR tends to rise up, TPR tends to decline.
Therefore, further evaluation metrics are advised here.

The Geometric Mean (GMean) and Area Under the Curve
(AUC) are used commonly in evaluating the classifiers of
imbalanced class distribution. GMean and AUC take into
consideration theminority class and seek the balance between
the classes in illustrating the model accuracy (i.e., class
independent metrics). The GMean is calculated according to
Equation 8; i.e., the square root of the recall of the positive
class multiplied by recall of the negative class. The calcu-
lation of the GMean ensures unbiased behavior of the metric
either in objective function evaluation or in performance eval-
uation. A higher GMean value indicates better performance
of the classifier [62]–[64].

GMean =
√
TPR× TNR (8)

Receiver Operating Characteristic Curve (ROC) is a met-
ric that takes different threshold values and confront them
with the corresponding probabilities (i.e., TPR and FPR).
The AUC is generated by calculating the area under the
ROC . Therefore, there is a positive correlation between the
value of AUC and the diagnostic ability of the classification
model [75].

V. RESULTS AND DISCUSSION
It takes a considerable amount of computation time to have a
relatively robust tweets spam predictionmodel usingGA. The
proposed methodology is quite complex and strives to find
an optimal subset of tweet features and classifier parameters
simultaneously. In tweets pre-processing step, the TF-iDF
vectorizer generates the maximum number of possible fea-
tures per tweet along with their TF-iDF value (i.e., the total
of 14343 features extracted from all tweets).

Due to the time complexity of each GA search process,
an initial relatively small subset of features (i.e.,, 1%) is
examined in order to study the performance behavior of the
classifier and select the most appropriate algorithm configu-
rations (i.e., sensitivity analysis). The performance analysis
of the first 10 experiments relies on 1% of feature space,
10 initial population parents, and 100 generations. Next, the
generations are fixed at 50 and the crossover ratio at 60% of
parents. Finally, the effect of different feature subset size is
examined (i.e., F = 1, 5, 10, 20, 30, and 40).

A number of selected features and parameters are used to
10 × 50 cross-validate prediction models. The performance
metrics (GMean in particular) indicate promising capabilities
of the modified GA in finding a subset of the feature space
and optimizing the parameters of the classifier accordingly.
The outcomes of this research are compared to related work
in terms of dimensionality reduction.

It is worth noting that the performance metrics in
this research are presented such that further comparison
with existing or future research is possible. The follow-
ing subsections show and discuss the findings in more
detail.

FIGURE 6. Sensitivity analysis: Number of iterations and crossover ratio
by setting the parameters described in Table 3.

A. SENSITIVITY ANALYSIS
Sensitivity analysis results show the effect of GA crossover
ratio on classification performance and its convergence. This
is an important step to predict the behavior of the GA,
and define the crossover ratio and number of GA iterations.
Figure 6 represents the fitness curve of several crossover
ratios ranging from 2% to 10%; while the remaining three
parameters have been fixed at 1%of the total number of
features, 10 parents, and 100 generations. Almost similar con-
vergence pattern of the algorithm is present but a significant
difference in fitness value groups the results into three main
levels (i.e., Low, moderate, and high fitness value groups
that correspond to different crossover ratios). Extreme values
of crossover rate lead to very poor fitness values and lower
prediction rate. Low values of crossover rate lead to relatively
moderate fitness values. Moderate crossover values lead to
relatively high fitness values, such that leveraging the predic-
tion power of the spam classification models. It is apparent
that 60% crossover rate is the most appropriate diversity
factor to the next GA population. Experiments reveal that the
number of iterations (i.e., number of GA populations) reaches
a relatively local maximum early and slightly increases in
consequent generations. Consequently, the number of appro-
priate generations is lowered to be 50 keeping in mind the
effect on larger initial populations and number of features.

Several GA optimization and feature selection experiments
(Table 7) aim at maximizing the fitness value. Some of the
experiments cross over ratio (C) are fixed at 60%, 50 gener-
ations (G), and examine several percent of features to select
(F). Furthermore, Table 8 lists some of the most frequently
selected features in all the experiments and the presence of
these top features in the best performing models.

B. MODEL VALIDATION
The selected features and the optimized parameters
(i.e.,, the configurations that attained high fitness values) in
some experiments are used to model spam prediction using
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TABLE 7. Fitness value obtained by several GA feature selection and optimization experiments.

TABLE 8. Most frequent selected features and their presence in some experiments.

XGBoost. The model robustness is validated using 10-Fold
cross-validation repeated 50 times. Table 9 summarizes the
absolute difference between the GA fitness value and the
validated XGBoost model performance.

The best optimization and feature selection experiment
‘‘F10-P400-C240-G50’’ attained a fitness value that equals
84.85% (i.e., Geometric Mean). The outcomes presented
in Table 10 are used to build the spam prediction model
that is validated using 10-fold stratified cross-validation and
repeated 50 times.

XGBoost has been initialized with the optimized param-
eters in Table 10, and used the dataset with the selected
features to build the spam classificationmodel. The run is val-
idated using 10-fold stratified cross-validation and repeated
50 times. Figure 7 is a box plot that summarizes the perfor-
mance metrics, and Figure 8 depicts the performance met-
rics of each fold. The detailed performance metrics of the
10 × 50CV are presented in Table 11.

There are two main observations worth mentioning here
(a) the GA feature selection and parameter optimization
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TABLE 9. Comparison between selected best fitness obtained by GA
optimization and the results of 10-fold cross-validation repeated
50 times.

TABLE 10. Optimized XGBoost parameters and the number of selected
features obtained by the experiment ‘‘F10-P400-C240-G50’’.

FIGURE 7. Boxplot of the experiment ‘‘F10-P400-C240-G50’’ performance
metrics.

effectiveness are noticeably acceptable, and (b) XGBoost
classification model is barely affected by the algorithm
randomness. The absolute difference between the GA fit-
ness and the validated model is bound to an average of
approximately 2.8, and the standard deviation of all the evalu-
ation measures is less than 0.04 after 50 cross-validation runs.

C. STATISTICAL ANALYSIS
The effect of the stochastic nature of GA, and the imposed
randomness of the classification algorithms on the exper-
iments are described using the statistical tests. The whole
process of GA-based parameter optimization and feature
selection followed by a 10 × 50CV of XGBoost is repeated
seven times. Runs denoted by the sequence ‘‘R01’’ to ‘‘R07’’
follow exactly the same steps as the run ‘‘F10-P400-C240-
G50’’; and to ensure non restricted random number gener-
ation the seed is not fixed to a certain value in any step.

TABLE 11. Results of experiment ‘‘F10-P400-C240-G50’’ repeated
50 times with 10-Fold cross-validation per each run. (Best fitness
obtained by GA was GMean = 84.85%).

TABLE 12. Descriptive statistics of GMean values of different runs. (8 runs
of ‘‘F10-P400-C240-G50’’ experiment, each is validated 50 × 10CV).

TABLE 13. p-Value of Wilcoxon statistical test between run pairs.

The run ‘‘F10-P400-C240-G50’’ is the main baseline for
the comparison and denoted by ‘‘R00’’. Table 12 lists the
descriptive statistics of the GMean values of the runs. Only
one of the runs ‘‘R04’’ showed a slight drift in the GMean
value less than 2% below the average of all runs.

Further nonparametric statistical tests [25], [76]–[78] illus-
trate the level of similarity between the performance metrics
of the runs. The tests analyse the GMean values of each run
folds and the other runs. Namely, Wilcoxon Signed-Rank
Test [25], [76], [77] between the run pairs and Kruskal sta-
tistical test [25], [76], [78] of run combinations.

The p-value of Wilcoxon statistical test between run pairs
in Table 13 indicates a possible similarity between the runs
‘‘R00’’ and ‘‘R07’’; considering α = 0.05. The differences
against the rest of the runs are possibly because the run
‘‘R00’’ is controlled in terms of a random number generation
method. According to the Wilcoxon test, the runs ‘‘R01,
R02, R03, R05, and R06’’ possibly have similar distributions,
‘‘R04’’ distribution is different from the others. However,
the GMean value of the runs does not significantly differ as
illustrated in Table 12.
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FIGURE 8. Performance metrics at each fold of the experiment ‘‘F10-P400-C240-G50’’.

Kruskal statistical test applies to three or more run com-
binations. Therefore, all run combinations are tested and the
top p-values of the nonparametric Kruskal test are reported in
Table 14. Assuming an α = 0.05, the runs ‘‘R01, R02, and
R05’’ are expected to have the highest similarity of GMean
distributions, and ‘‘R01, R02, R03, R05, and R06’’ most
probably have similar distributions.

D. COMPARISON ANALYSIS
1) COMPARISON WITH RELATED WORK
The overall performance and robustness of the proposed
spam classification model outperforms the work in [22].
The authors in [22] claim a high performing LSTM (Long
Short Term Memory) model, however the robustness of their
approach is not well justified. The performance metrics are
based on the ‘‘Ham’’ class as the positive class which is the
majority class label. Swapping minority class with majority

TABLE 14. Kruskal statistical test of run combinations, showing only top
combinations.

class will lead to significantly higher performance metrics
values; which is misleading when interpreting some metrics
such as TPR. There is no evidence of using cross-validation
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TABLE 15. Metrics re-calculation equations based on the selection of the
positive class, for the sake of comparison. In our research P denotes
‘‘Spam’’, and N denotes ‘‘Ham’’.

TABLE 16. Comparison of the performance metrics in [22] with the best
results of our experiments after re-calculating the performance metrics
(i.e., considering ‘‘Ham’’ as the positive class).

in assessing the model robustness. Features are reduced by
the selection of most frequent words in the corpus, and the
configuration of the basic classifiers used in performance
comparison is not presented in the paper. For the sake of fair
comparison with the results of our research, the performance
metrics are re-calculated to consider ‘‘Ham’’ as the positive
class label. Table 15 shows the equivalence equations used to
re-calculate the results of our experiments to be comparable
with the results in [22]. Nonetheless, Table 16 compares the
performance metrics of [22] in spam classification (having
‘‘Ham’’ as positive class, and ‘‘Spam’’ as negative class) and
Table 17 confronts the effect of feature reduction.

The modified GA approach in this study outperforms the
approach used in [22] in terms of feature selection, The
number of features selected in the proposed approach (i.e.,
1355 features) is much lower than the number of features
selected in [22] (i.e.,, 5000 features). On the other hand, the
maximum accuracy obtained using GA in our approach was
95.88% compared to 95.09% in [22].

2) COMPARISON WITH CHI2 FEATURE SELECTION
Chi2 [79], [80] statistical test has been used in text fea-
ture selection based on statistical significance of features.
We selected the top ‘‘1355 features’’ using the Chi2 method
to compare the results with our best findings. Different

TABLE 17. Effect of feature reduction in [22] compared to some
experiments in our research.

TABLE 18. p-Value of Wilcoxon statistical comparing GMean of
‘‘F10-P400-C240-G50’’ with Chi2 feature selection method performance.

machine learning algorithms are validated by 10 × 50CV
in building spam prediction models using ‘‘1355’’ selected
features by Chi2. The algorithms used without parameter
tuning are XGBoost, Multinomial Naive Bayes (MNNB),
K-Nearest Neighbors (KNN), Logistic Regression (LR),
Adaptive Boosting (AdaBoost), and Decision Trees (DT).
The p-value of Wilcoxon statistical test between the run
‘‘F10-P400-C240-G50’’ and Chi2-based models are pre-
sented in Table 18, and the descriptive statistics of the per-
formance metrics are shown in Table 19.

The p-value of the Wilcoxon test indicates different dis-
tributions of GMean value compared to the run ‘‘F10-P400-
C240-G50’’. except for the DT model. The similar distribu-
tions are justified by the fact that XGBoost is an evolution of
the decision tree algorithm; they share similar characteristics
that could lead to similar behavior. However, ‘‘F10-P400-
C240-G50’’ model outperforms the DT model as indicated
by the majority of the performance metrics.

3) COMPARISON WITH PCA FEATURE SELECTION
Reducing the dimension of relatively large feature space
while preserving most of the information is possible using
Principal Component Analysis (PCA) [81]. The feature set
is transformed into a number of principal components based
on their covariance matrix, then a relatively small number
of the principal components will be selected to represent
the full feature set. We trained an XGBoost model using a
different number of principal components (i.e., from 1 to 20)
and validated the model using 50 × 10CV. An illustration
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TABLE 19. Comparison between the run ’F10-P400-C240-G50’ with Chi2 feature selection method performance. (each is validated by 50 × 10CV).

FIGURE 9. PCA feature selection and XGBoost. (Validated 50 × 10CV).

TABLE 20. Accuracy of PCA feature selection and XGBoost. (each is
validated by 50 × 10CV).

of the model accuracy in relation to the number of principal
components is shown in Figure 9. The accuracy metrics and
the standard deviation are presented in Table 20.

It is apparent that 20 principal components will enable
attaining 91.53% total accuracy in spam prediction; com-
pared to 92.67% using our modified GA.Moreover, PCAwill
reduce significantly the feature space but makes the model
interpretation much harder. It is apparent that the PCA based

TABLE 21. Accuracy of BERT model and DL. (20 epochs).

model will converge after 15 PCA components. According to
the illustration in Figure 9 and Table 20 the improvement in
accuracy was less than 0.5 percentage absolute point within
the last nine components (i.e., PCA components 12-20).

Therefore, PCA-based XGBoost models under-perform
the modified GA-based XGboost models.

4) COMPARISON WITH BERT AND DEEP LEARNING
Most recent advancements in natural language processing
research introduced pre-trained word embedding models that
are coupled with Deep Learning (DL) algorithms [14], [23],
[82]. BERT word embedding is used with DL to build spam
classification models. The major issue of interest in DL is
the computational complexity and extensive resource use.
Despite such limitations, we were able to build a spam pre-
diction model in this research and validated with the per-
centage split of the tweets dataset. BERT is used in text
pre-processing and encoding, ‘‘sigmoid’’ activation function,
Tensorflow [83], and Keras [84]. Table 21 summarizes the
major performance metrics of the generated model over
20 epochs. The TPR of the class of interest (‘‘Spam’’) is
relatively low (52%) which indicates a very low prediction
power of the generated model in spam prediction.

For the sake of comparison with recent advancement in text
classification we implemented the BERT-DL model to assess
its feasibility in spam prediction. In our case, the limited
computational resources were the main barrier in tuning and
seeking better prediction performance. However, the experi-
ment shows that our modified GA approach outperforms the
DL approach.Moreover, the resultingmodels are not intuitive
to be interpreted and starve for computational resources.

5) EXPERIMENTING WITH SMS DATASET
The modified GA is applied to a public imbalanced SMS
dataset [85]; about 13% of the messages are ‘‘Spam’’. Hyper
parameter optimization and feature selection results are listed
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TABLE 22. Optimized XGBoost parameters and the number of selected
features obtained by the ‘‘SMS Spam Dataset’’ experiment using modified
GA and XGBoost.

TABLE 23. Results of ‘‘SMS Spam Dataset’’ using modified GA and
XGBoost; repeated 50 times with 10-Fold cross-validation per each run.
(Best fitness obtained by GA was GMean = 97.29%).

in Table 22. The GA reduced the selected features to 9.52% of
total dataset features (i.e., 706 out of 7419 features) attained
a GMean value of 97.29%.

The outcomes in Table 22 initialized an XGBoost classifier
to model SMS spam. The model is validated using a 50 times
repeated run of 10-fold stratified cross-validation. Table 23
shows the performance metrics.

In comparison to the best results in [86]–[88] the modified
GA shows a competitive performance. The authors in [86],
[87], and [88] attained maximum of total accuracy equals
96%, 96.8% and 98.74% respectively. Its worth mention-
ing that Random Forest and SVM algorithms attained 99%
accuracy in [86] but with TF-iDF features and oversampling.
In essence, the maximum accuracy attained by the modified
GA was 99.1%; which makes it outperform the majority of
the related works utilizing the same SMS dataset.

Our proposed approach, modified GA, reduces all the
features of the tweets by 9.45% (i.e., from 14343 to 1355 fea-
tures) and maintains a competitive performance in compari-
son to the related studies. Therefore, the proposed approach
in this research is expected to reduce the dimensionality by
automating the process of feature selection and tuning the
prediction model parameters simultaneously. The results of
this work could be extended to list the features as words
(i.e., specific words in the tweets) for further feature analysis.
Furthermore, the XGBoost tree models have a higher level of
interpretability compared toANN-basedmodels; whichmake
it much easier to deeply analyse the models for the sake of
spam understanding and modeling.

E. IMPLICATIONS AND LIMITATIONS
The reported experiments and outcomes of this research
establish a basis for spam modeling. In essence, it outper-
formed many related works in SMS spam modeling. Future

researchmay build on the outcomes to enhance understanding
of spam behavior. Further, this research could be consid-
ered for generalization in other domains such as software
engineering, construction engineering, internet of things, and
smart cities. In contrast to black-box models, tree-based
classifiers enable straightforward implementation to detect
spam tweets. The tremendous growth of Online Social Net-
works (OSN) calls for efficient real-time spam detectors. The
state of the art solutions recommend Deep Learning based
solutions, however deep learning is resource consuming and
overlooks unseen spam behaviors. Our proposed approach
reduces learning time significantly compared to deep learning
based solutions.

Usually, GA finds outstanding solutions once its parame-
ters (i.e., Initial population, mutation and cross-over ratios,
number of generations, . . .) are well tuned. In this research
tuning the GA using Grid Search is time consuming. There-
fore, sensitivity analysis described in section III-D3 has been
used to find the best GA parameters. In the near future we
expect the reliability of the public twitter spam dataset to
raise concerns due to subjective interpretations by different
communities. Multi class labeling of spam text in sentiment
analysis is not considered in this research.

The large number of experiment runs and the comprehen-
sive set of performance metrics would direct further research
activities.

VI. CONCLUSION AND FUTURE DIRECTIONS
Spam modeling is a challenging task due to many issues
such as the high dimensionality of the features space, the
imbalanced class distributions, the bias of classification algo-
rithms towards the majority class, and natural language pro-
cessing issues. Many of the related research works lack solid
validation of the generated models and usually report posi-
tive class-based performance metrics. In this paper, a mod-
ified genetic algorithm is designed in order to perform
two main tasks; (1) an effective dimensionality reduction
of an imbalanced tweets dataset and (2) hyper parameter
optimization of XGBoost classification algorithm. Intensive
validation of the generated prediction model illustrates the
robustness of the modified algorithm and its competitive
performance compared to other approaches. This research
reports a comprehensive set of performance metrics and
nonparametric statistical significance tests; which makes it
easier to understand the outcomes and provide a basis for
comparisons with related works. In tweets spam modeling,
the proposed approach selected less than 10% of features to
attain on average 92.67% and 82.32% total accuracy and geo-
metric mean respectively. It outperformed the performance of
Chi2 and PCA based approaches in feature selection. In addi-
tion, it showed competitive performance compared to recent
machine learning algorithms; including word embedding and
deep learning based models.

The stochastic aspects of genetic algorithms, and parame-
ter optimization are among the research limitations. Genetic
algorithm based solutions usually require a large number of
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initial population space or large number of generations to find
an outperforming solution. The large number of experiment
runs and the comprehensive set of performancemetrics would
direct further research activities. There are many unexplored
issues by this research; issues include parallel processing to
reduce time complexity of the approach, the effect of natural
language processing on improving the accuracy, incorporat-
ing user account features in spam modeling, and experiment-
ing with multi-language spam modeling. Further research
that may build on the modified genetic algorithm to tackle
different problems or domains such as sentiment analysis and
multi-class modeling.
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