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ABSTRACT Counterfactual explanations are a prominent example of post-hoc interpretability methods in
the explainable Artificial Intelligence (AI) research domain. Differently from other explanation methods,
they offer the possibility to have recourse against unfavourable outcomes computed by machine learning
models. However, in this paper we show that retraining machine learning models over time may invalidate
the counterfactual explanations of their outcomes. We provide a formal definition of this phenomenon and
we introduce a method, namely counterfactual data augmentation, to help improving the robustness of
counterfactual explanations over time. We test our method in an empirical study where we simulate different
model retraining scenarios. Our results show that counterfactual data augmentation improves the robustness
of counterfactual explanations over time, therefore contributing to their use in real-world machine learning
applications.

INDEX TERMS Machine learning, explainable artificial intelligence, counterfactual explanations, robust-
ness, algorithmic recourse, counterfactual data augmentation.

I. INTRODUCTION
The provision of explanations of machine learning model
outcomes—also called post-hoc explanations—is key in the
domain of explainable Artificial Intelligence (xAI) [1]–[3].
Post-hoc explanations are interfaces between humans and the
machine learning model that are ‘‘both an accurate proxy
of the decision maker [i.e., the model] and comprehensible
to humans’’ [4]. They are invoked in relation to the need
to 1) audit and improve machine learning models by sup-
porting their interpretability, 2) enable learning from data by
discovering previously unknown patterns, and 3) establish
compliance with legislations and legal requirements [5]–[7].
Counterfactual explanations [8] are a class of post-hoc inter-
pretability explanations that provide the person subjected to
a machine learning model-generated decision with under-
standable information on the model outcome, and a strategy
to achieve an alternative (future) one. They are an example
of ‘‘contrastive explanations in xAI’’ [5], [9]: they explain
a given model outcome by sharing a ‘‘what-if’’ alternative
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scenario comprising of feature-perturbed versions of the same
individual [10]–[12]. Recent literature from the xAI domain
has discussed selected desiderata that may support the appli-
cability of counterfactual explanations in real-world machine
learning model pipelines [10], [12]–[17]. In particular, the
desiderata of feasibility, actionability and sparsity would
allow to generate and share cognitively accessible counterfac-
tual explanations that respect causal models between features,
and suggest actionable strategies whose alternative scenarios
comprise the change of a limited number of features.

In this paper, we investigate an additional desideratum
of counterfactual explanations: their robustness over time.
Our discussion is motivated by the common assumption in
the xAI literature that the machine learning model whose
outcomes have to be explained remains ‘‘stable’’ or does not
change, in a given time frame of interest [10], [18], [19]. This
assumption is violated in most real-world applications, where
machine learning models are retrained with frequencies that
depend on the application under consideration. Although
the literature on xAI has highlighted the possibility of this
conflict [10], [18], [19], a systematic analysis of the conse-
quences of the interactions between the change of machine
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learning models over time and the provision of counterfactual
explanations is still missing. This analysis would need to
formalize the emergence of undesirable interactions between
the evolution over time of machine learning models and the
counterfactual explanations of their outcomes, and propose
quantitative methods to mitigate the risk stemming from
these interactions. In particular, these methods should allow
researchers to simulate different scenarios characterizing the
machine learning model retraining routines in real-world
applications.

In this paper, we promote such a two-step analysis. In the
first step, we start by discussing the emergence of unfa-
vorable cases—called ‘‘unfortunate counterfactual events’’
(UCEs). UCEs are the result of undesirable interactions
between models changing over time and the counterfac-
tual explanations of their outcomes. They happen when the
retraining of machine learning models invalidates the invest-
ment of resources behind the successful implementation of
a scenario originally recommended by a feasible, actionable
and possibly sparse counterfactual explanation. For instance,
UCEs may emerge when individuals follow the scenario of a
counterfactual to try getting a loan, or getting accepted at a
university that performs automated screening of student can-
didates with machine learning (e.g., GPA scoring [20]). From
a normative perspective, UCEs are a violation of the princi-
ple of algorithmic recourse, i.e., ‘‘the systematic process of
reversing unfavorable decisions by algorithms and bureaucra-
cies across a range of counterfactual scenarios’’ [20]. Clearly,
algorithmic recourse allows individuals managing their pre-
carity in an algorithmically-assisted society [20]. Therefore,
researchers need to investigate UCEs as they may hinder the
efficacy of algorithmic recourse and develop strategies to
mitigate their impact on the institutions promoting the use of
the algorithms and those affected by their outcomes.

As a result, our goal is to improve the robustness of coun-
terfactual explanations over time, that is to reduce the number
of UCEs resulting from the retraining of machine learning
models, quantitatively. Therefore, in the second step of our
analysis, we propose to use counterfactual data augmentation
(CDA) [21]–[23]. CDA promotes the use of data points and
their counterfactuals while training machine learning mod-
els. Recently, researchers have successfully applied CDA
to mitigate gendered language, reduce spurious correlations
and improve machine learning model performance in natural
language processing use cases [21], [22], [24], [25]. Others
have used CDA in computer vision to improve performance
of deep learning models [23] or proposed CDA as an alterna-
tive to over-sampling algorithms, such as SMOTE (Synthetic
Minority Over-sampling Technique) [26], [27]. To the best of
our knowledge, no study has used CDA in the context of xAI,
yet alone to improve the robustness of counterfactual expla-
nations over time. Specifically, we suggest to use CDA by
adding to training data all those counterfactual explanations
c(x) that have been shared with the affected individuals, i.e.,
x, until the point of time of model retraining. The machine
learning model would then be trained also on the pairs

(x, c(x)). The idea is that, learning the pairs (x, c(x)) at model
retraining, the percentage of UCEs would be reduced com-
pared to model retraining without CDA, therefore improving
the robustness of the counterfactuals c(x)’s.

In an empirical study, we analyze the efficacy of CDA
against the emergence of UCEs. To do so, we consider
the logistic regression and random forest model classes,
and we use Diverse Counterfactual Explanations (DiCE)
algorithm [10] to generate their counterfactual explana-
tions on two widely-used datasets in the xAI domain:
the Adult-Income and German-Credit datasets [28].
We implement four different retraining scenarios to discuss
design factors that may affect the efficacy of using CDA to
mitigate the emergence of UCEs in real-world machine learn-
ing use cases. Our study results show that CDA allows reduc-
ing the number of UCEs that result from retraining, although
the robustness against their emergence depends, in particular,
on the model that is retrained, the number of added counter-
factuals and whether they are originally computed by a model
of the same class considered at retraining (or a different one),
and the amount of ‘‘new’’ data used at retraining. As a result,
our two-step analysis is a first attempt to ensure the consistent
use of counterfactual explanations in real-world applications
over time, fostering trust in institutions and their algorithm-
supported decision-making procedures. The contributions of
the paper are as follows:

1) we provide a formalization of the lack of robust-
ness of counterfactual explanations over time dis-
cussing the emergence of theUCEs inmachine learning
applications;

2) we discuss different strategies to manage UCEs and
we propose using CDA as a quantitative method to
mitigate the emergence of UCEs in machine learning
applications;

3) in an empirical study, we show that CDA allows reduc-
ing the number of UCEs across different scenarios of
machine learning model retraining.

The paper is structured as follows. In Section II we present
the state of the art in the field of counterfactual explanations,
we discuss the role of time in machine learning modeling and
the provision of model explanations and we introduce the
relevant literature on CDA. In Section III, we introduce a
formalization of UCEs and CDA. In Section IV we introduce
an empirical study where we apply CDA to mitigate the
emergence of UCEs. In Section V we discuss the results of
the empirical study and future avenues of research. We then
present our conclusions.

II. RELATED WORK
A. WHAT ARE COUNTERFACTUAL EXPLANATIONS?
Counterfactual explanations [8] are explanations of machine
learning model outcomes that provide people with a sce-
nario describing a state of the world—called ‘‘closest
world’’ [8]—in which an individual would have received
an alternative machine learning outcome. For example, they
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explain to an individual why he or she did not receive a bank
loan providing the ‘‘what-if’’ scenario: ‘‘you would have
received the loan if your incomewas higher by 10,000$’’ [10].
This ‘‘what-if’’ scenario shows that an alternative outcome
can be reached by altering the values of a subset of the
features describing the instance at hand (i.e., the data point
of the individual asking for an explanation of the denied
loan, in the above example) [5], [8]. For this reason, coun-
terfactual explanations are an example of model-agnostic
‘‘feature-highlighting explanations’’ [18]. The counterfac-
tual scenario provided by a counterfactual explanation is a
‘‘hypothetical point that is classified differently from the
point currently in question’’ [18]. We call it ‘‘counterfac-
tual’’ (data point) for simplicity. Not only counterfactuals
provide a human-interpretable [8] explanation of a machine
learning outcome, but in many applications, such as in finan-
cial services, public administration, the education system,
or healthcare1 they outline a strategy, or ‘‘recommendation’’,
to achieve an alternative, and possibly favorable, one, through
the provision of a ‘‘what-if’’ scenario. This aspect differ-
entiates counterfactual explanations from more descriptive
machine learning model outcome explanation methods, such
as Local Interpretable Model-agnostic Explanations [29] and
Shapley values [30]. In this regard, counterfactual expla-
nations are the most prominent example of xAI methods
supporting algorithmic recourse, i.e., ‘‘the systematic process
of reversing unfavorable decisions by algorithms and bureau-
cracies across a range of counterfactual scenarios’’ [20].
As Karimi et al. observe, underlying algorithmic recourse
‘‘is the desire to assist individuals that are negatively affected
by automated decision-making systems to improve their cir-
cumstance’’ [31]. Then counterfactuals provide assistance to
individuals by supporting their understanding of the reasons
behind an algorithmic—typically, unfavourable—outcome
and suggesting actions to perform to achieve an alternative—
typically, favourable—one [31].2

Let us introduce some notation before discussing a formal
definition of counterfactual explanations. Amachine learning
model3 is a map θ : Rd

→ {0, 1}, where x 7→ θ (x) = ŷ.
The model is trained on samples (x, y) from a distribution on
X × Y , where X = Rd and Y = {0, 1} without any loss of
generality.
Definition 1 (Counterfactual Explanation [8]): Let θ be

a machine learning model and x ∈ Rd with outcome

1Counterfactuals are similar to how physicians sometimes communicate
with patients: ‘‘If you have had a total cholesterol level below 200 (mg/dl),
then you would have not needed statins.’’

2For these reasons, researchers in xAI are typically interested in the
generation of counterfactual explanations for individuals (e.g., customers,
convicts, students, and patients in digital health interventions) [10], [20],
[32]–[34]. Therefore, we will typically refer to an ‘‘individual’’ as the data
point whose machine learning outcome is explained with a counterfactual.
In principle, counterfactuals may be generated for use cases where data
points are not individuals, such as in the natural language processing (e.g.,
hate speech detection) or computer vision (e.g., classification of fundus
images) domains. However, in these use cases, other types of explanations,
such as Shapley values [30], are usually preferred [35], [36].

3In this paper, we consider only the case of binary classification problems.

θ (x) = ŷ ∈ {0, 1}. A counterfactual explanation c(x) of x
(in short: ‘‘counterfactual’’) is an element of the set

argmin
x ′∈Rd

l(θ (x ′), f (ŷ))+ d(x, x ′), (1)

where l is a loss function, d is a distance on Rd , and f (ŷ) =
1− ŷ denotes the outcome alternative to ŷ in {0, 1}.
The first term in (1) encodes the counterfactual condition,

i.e., the search for the alternative outcome f (ŷ) for a candidate
x ′ ∈ Rd , while the second term keeps the counterfactual
‘‘close’’ to the original instance x. Therefore, counterfactuals
are algorithmically generated by ‘‘identifying the features
that, if minimally changed, would alter the output [i.e., the
current outcome] of the model’’ [18].

In the original formulation of (1), Wachter et al. choose
l(θ (x ′), f (ŷ)) := (θ (x ′) − f (ŷ))2 and d(x, x ′) is a normalized
l1-distance [8]. However, since Wachter et al.’s work, many
other algorithms to compute counterfactuals have been intro-
duced in the xAI literature. We refer to [11], [37]–[39] for
more details. By definition, counterfactual explanations are
model agnostic. In fact, to compute a counterfactual expla-
nation c(x) of an input x, the model θ is treated as a ‘‘black-
box’’, or an input-output system. The outcomes θ (x ′) of θ are
used in (1), instead. Moreover, as counterfactual explanations
identify those features that, if changed, would alter the model
output of x, they provide, at the same time, a degree of pro-
tection to companies’ intellectual property by the disclosure
of these features to third parties [18]. Moreover, they comply
with legal requirements on explanations in both Europe and
the United States [18]. For these reasons, they have begun
to attract the interest of different sectors of society, such as
businesses, regulators, and legal scholars [18].

B. SELECTED DESIDERATA OF COUNTERFACTUAL
EXPLANATIONS
Recently, the literature on counterfactual explanations has
focused on selected desiderata, i.e., properties that counter-
factual explanations should satisfy to appropriately support
individuals during algorithmic recourse [10], [13]–[16].
We discuss some prominent examples in what follows.

Counterfactual explanations are said to be feasible [8],
[16], if they propose a scenario that respects the causal
model [15], [40] of the variables of the dataset at hand. For
example, a feasible counterfactual explanation may suggest
that a loan would have been granted to an individual, if his
annual income had been+10,000$, other things equal (i.e., all
other variables unchanged). On the other hand, a counterfac-
tual scenario suggesting to decrease age, or increase the edu-
cational level from high school diploma to a master’s degree
without increasing age, violates causal constraints among
variables. In the first case, it simply suggests an impossible
recommendation. In the second case, the recommendation is
not compatible with the need to spend years to achieve a
master’s degree, starting from a high school diploma.We also
note that some features may simply be immutable, such as
an individual’s birthplace or the date of marriage. Therefore,
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they cannot be part of feasible counterfactual scenarios.
We note that the Wachter et al.’s original algorithm in (1)
to compute counterfactual explanations does not implement
feasibility constraints. Recent approaches aim at ensuring the
feasibility of counterfactual explanations by implementing
post-hoc constraints on a set of generated counterfactuals.
These constraints are originally introduced by domain experts
to encode known causal relations between features [10], [16].

Let us consider a feasible counterfactual explanation.
We say that it is actionable [10], [16], if the corre-
sponding scenario can be reasonably implemented by the
individual whose outcome is explained by the provision of the
counterfactual explanation. Clearly, actionability is context-
dependent: in particular, it depends on the capabilities of
the individual implementing the counterfactual scenario.
Considering Mothilal et al.’s example again [10], to increase
the annual income of 10,000$ may be a relatively easy task
for affluent individuals. However, it may represent a daunt-
ing challenge for low-income ones. Considering actionable
counterfactual explanations allows excluding explanations
that, although feasible, propose scenarios whose implemen-
tation is practically not realizable. This, in turn, represents an
impediment to the pursuit of algorithmic recourse [20].

Lastly, sparsity is the property of those counterfactual
explanations whose scenarios suggest to alter only the values
of a few variables [10], [13]. Mothilal et al. argue that ‘‘intu-
itively, a counterfactual example will be more feasible if it
makes changes to fewer number of features’’ [10]. In other
words, sparse counterfactuals ‘‘differ from the original dat-
apoint in a small number of factors, making the change
easier to comprehend’’ [41]. Therefore, they are deemed to
be cognitively accessible. Sparsity becomes an important
desideratum of counterfactual explanations, especially in big
data contexts. Wachter et al. aim at ensuring sparsity of
counterfactual explanations by using an l1-distance measure
d in (1) [8]. More recent studies have discussed sparsity by
means of a two steps approach making use of a ‘‘growing
spheres’’ algorithm [13] and the use of a ‘‘post-hoc operation
to restore the value of continuous features back to their values
in x [the input data point] greedily until the predicted class
[. . . ] changes’’ [10].

In summary, feasible, actionable, and sparse counterfactual
explanations recommend causality-consistent scenarios that
can be reasonably implemented by the individuals impacted
by algorithmically-generated outcomes, once they act on the
values of a limited number of features. Finally, we note
that authors have recently suggested additional desiderata of
counterfactual explanations, such as diversity and robust-
ness to local perturbations [10], [12], [17]. The former
refers to the possibility of generating diverse counterfactuals
for a given outcome to explain [10]. In fact, the goal of diver-
sity is to provide individuals with different counterfactual
scenarios to perform algorithmic recourse [10]. The latter
refers to the degree to which counterfactuals are sensitive
to (possibly adverse) perturbations of the data point whose

machine learning outcome has to be explained, instead [12],
[17]. We refer to [10], [12], [17] for all details.

C. TIME, MACHINE LEARNING MODELS, AND
COUNTERFACTUALS
Machine learning models [42] are inherently dynamic
objects. They are designed to perform a task, such as the
binary classification of a bank’s customer in ‘‘creditworthy’’
or ‘‘not creditworthy’’, by learning on data. This process
is referred to as ‘‘training’’, or ‘‘learning’’ [42]. After train-
ing, and depending on the application, (trained) machine
learning models are deployed in IT architectures where they
are fed upon batches of new data to generate predictions
(also referred to as outcomes) and support human decision-
making. Typically, the training of machine learning models
does not occur only once, i.e., just before their deployment.
In fact, the process can be periodically repeated, whenever
new batches of data are made available, and the performance
of the machine learning model degrades. This happens as the
model often generates predictions in changing environments,
whose evolution is not encoded in the dataset originally used
for its training. For example, in e-commerce new products
become available and can be recommended on an online mar-
ketplace platform. As a result, time affects machine learning
models, their predictions, and the explanations promoted by
research in xAI. In particular, as noted by Kroll et al., ‘‘there
is the added risk that the rule disclosed [by an explanation] is
obsolete by the time it can be analyzed’’ [19].

The effects of time dependency of counterfactual expla-
nations on their generation and provision has not yet been
structurally investigated. In fact, Barocas et al. [18] discuss
four key assumptions of feature highlighting explanations,
such as counterfactual explanations [18]. One assumption
is that ‘‘the model is stable over time, monotonic, and lim-
ited to binary outcomes’’ [18]. Stability over time is not
further specified, and may be interpreted as the absence of
retraining or change of selected model properties. Similarly,
Mothilal et al. [10] argue that counterfactual explanations
provide the information on ‘‘what to do to obtain a better
outcome in the future’’, [10], but only ‘‘assuming that the
algorithm remains relatively static’’ [10]. However, it is not
clear how the stability of a model over time relates to the
counterfactual explanations of model outcomes. Similarly,
Verma et al. mention the dynamics of machine learning sys-
tems as a challenge to be tackled by future research on coun-
terfactuals [43]. At the same time, Venkatasubramanian and
Alfano warn against the possibility that certain attributes of a
deployment model, such as a classifier that accepts students
based on a GPA score cutoff value, may change over time
and invalidate algorithmic recourse efforts [20]. In addition,
Rawal et al. investigate bounds on the costs of counterfactuals
when a model is retrained [44]. However, they consider only
the case where the same model and hyperparameter settings
are considered at retraining, focusing only on data distribu-
tion shifts over time [44].
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Finally, we note that Pawelczyk et al. [45] approached the
problem of generating counterfactuals under predictive mul-
tiplicity [46], or the phenomenon of having multiple machine
learning models with similar performance. They computed
the expected cost of counterfactuals under predictive mul-
tiplicity (i.e., the minimal perturbation that would alter the
label of a given data point), generalizing previous results
by Ustun et al. [47]. The case of predictive multiplicity can
be applied in the scenario where an existing model can be
replaced by a competing one [45]. However, no elabora-
tion on the possible problems stemming from the interaction
between time, machine learning models, and counterfactuals
and their solutions is provided.

In summary, although xAI scholars have recently started
promoting a discussion on time and explanations of machine
learning models, a structured approach to the desidera-
tum of time robustness of counterfactual explanations that
addresses the specificities of real-world model update sce-
narios is still missing.

D. COUNTERFACTUAL DATA AUGMENTATION
Recently, different authors proposed to use counterfactual
explanations to augment datasets used in machine learning
problems. In the context of natural language processing,
counterfactual data augmentation (CDA) has been applied
to mitigate gender bias and for machine translation. In the
first case, counterfactual instances are generated by swapping
gendered words [48] or applying more general interventions
on text instances [24]. Both methods generate matched pairs
of textual data that are used in the learning of algorithms
and allow retaining accuracy or improve debiasing bench-
marks [24], [48]. In the second case, the use of counterfac-
tuals leads to an improvement in performance with respect
to traditional methods, such as translation, backtranslation
and translation robustness [25]. Moreover, Kaushik et al.
proposed to tackle the problem of machine learning model
reliance on spurious correlations by letting human editors
edit sampled documents (e.g., movie reviews) ‘‘to ren-
der (designated) counterfactual labels applicable’’ [22]. For
example, in a sentiment analysis exercise, human editors
were directed to revise negative movie review to make
them positive, following editing guidelines [21]. Their results
showed that the models trained on the augmented datasets
that included counterfactuals are less sensitive to spurious
correlations and with a high out-of-sample performance on
different datasets [21], [22]. In computer vision, Teney et al.
tackled the problem of spurious correlations in machine
learning modeling using counterfactual instances to improve
the training objective of deep models [23]. In fact, the authors
noted that deep learning models for image recognition may
rely on examples of spurious correlation, such as object
co-occurrences, that may not hold on test data [23]. There-
fore, they generated counterfactual images from existing
annotated images by masking relevant regions and added
them to training data [23]. This procedure resulted in

improved model performance on out-of-sample data [23].
Finally, the use of CDAhas emerged also in the reinforcement
learning domain to improve the performance of reinforce-
ment learning models [49] or as an alternative to more tra-
ditional data augmentation algorithms, such as SMOTE [26],
[27]. To the best of our knowledge, however, no study has
yet investigated the use of CDA in the xAI research domain,
yet alone to improve the robustness of machine learning
model explanations over time. We explore this approach for
the case of counterfactual explanations in the forthcoming
sections.

III. TIME ROBUSTNESS OF COUNTERFACTUAL
EXPLANATIONS
A. ‘‘UNFORTUNATE COUNTERFACTUAL EVENTS’’
As previously commented, feasible and actionable coun-
terfactual explanations not only describe a scenario in
which an individual could achieve an alternative—typically,
favourable—outcome in understandable terms, but they high-
light an actionable strategy to achieve it. In the case of sparse
counterfactual explanations, in fact, this strategy focuses on
altering the values of a limited number of variables. Such
a counterfactual scenario may give the possibility to have
recourse against an unfavourable outcome, in a given time
window. However, the points of time at which 1) the explana-
tion is generated by a model in use at a given institution and it
shared with the impacted individual, and 2) its recommended
scenario is ‘‘successfully implemented’’,4 may differ. This
simple observation is at the basis of what we call an ‘‘unfortu-
nate counterfactual event’’ (UCE). To discuss the emergence
of UCEs we consider a setting with two agents, namely I
(‘‘institution’’) and A (‘‘agent’’). I may be any institution
that is using a machine learning model and its predictions
to provide a service, such as a bank. The model is deployed
in an IT infrastructure and counterfactual explanations of its
outcomes are computed by a fixed algorithm C .5 A is an
individual accessing the service provided by I and that is
affected by the outcomes generated by the model deployed
by I . For example, A may be a customer of a bank or a
candidate for an open job position. We arrive at the definition
of an UCE:
Definition 2 (Unfortunate Counterfactual Event): Let I

and A be as above. Let us consider the following scenario:
1) At time t0, I deploys a machine learning model θt0 and

an algorithm C to compute counterfactual explanations
of θt0 ’s outcomes;

2) At time t1 ≥ t0, A receives a counterfactual explanation
c(xt1 ) computed by (θt0 , C), where θt0 (xt1 ) = ŷ;

4That is, the individual follows the counterfactual scenario and this result
is reported to the institution.

5The algorithm C may implement the optimization problem in (1), or use
DiCE [10], for example. In what follows, we focus on the case where the
institution I deploys an algorithm C that is not updated over time.
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3) At time t2 > t1, I trains and deploys the machine
learning model θt2 such that θt2 6= θt0 .

6

Then, if there exists a time t∗ ≥ t2 such that

xt∗ = c(xt1 ), (2)

θt2 (xt∗ ) = θt0 (xt1 ) = ŷ, (3)

we say that an ‘‘unfortunate counterfactual event’’ relative to
agent A and the explanation c(xt1 ) has occurred.
Let us discuss the definition of an UCE in some detail.

Condition (2) states that at time t∗ the counterfactual scenario
encoded by c(xt1 ) is the data point representing the agent A.
This means that the counterfactual scenario c(xt1 ) has been
‘‘successfully implemented’’ by A, it overrides the original
data point xt1 in the database of the institution I and it is
accessed by θt2 to compute its outcome, that is ŷ. For a
‘‘successful implementation’’ of the counterfactual scenario
c(xt1 ) to happen, the features in the scenario c(xt1 ) have to
be communicated to I or being updated in some way. For
example, in the bank example by Mothilal et al. [10], if the
counterfactual scenario suggests that an increase of liquidity
per annum equal to +10,000$ would have granted the agent
A a loan, then A has to put the suggested amount of money in
an account at the bank I and this action has to be recorded in
the bank databases before θt2 computes the creditworthiness
of A. Moreover, condition (2) implies that all features that
are not changed in the scenario are constant in the time
interval

[
t1, t∗

]
. For instance, in the banking example by

Mothilal et al. [10], this means that
[
t1, t∗

]
cannot be longer

than one year, if the variable Age is used by the bank model
to score creditworthiness of its customers, but it is not part of
the counterfactual scenario c(xt1 ) suggested to A.

Condition (3) states that the retrained model θt2 does not
properly encode the counterfactual scenario c(xt1 ) originally
computed by the model θt0 (and the algorithm C), although
the scenario has been successfully implemented by A, by con-
dition (2). In fact, agent A would have expected the outcome
θt2 (c(xt1 )) = f (ŷ) as the result of the implementation of
the counterfactual scenario. In summary, if an UCE occurs,
all A’s efforts spent to implement the recommendations of
the counterfactual explanation c(xt1 ) are frustrated by the
implementation of a retrained machine learning model θt2
that did not properly learn the counterfactual c(xt1 ) and its
alternative (and expected) outcome f (ŷ).

B. ON THE DIFFERENT STRATEGIES TO ADDRESS UCEs
At the time of writing, the literature discusses no actionable
solution to the emergence of UCEs in machine learning
applications. However, institutions promoting the use of
counterfactual explanations need to design and implement
procedures to address the emergence of UCEs in their
machine learning-assisted services and products. A key
observation is that ethically and legally-informed strategies

6θt0 and θt2 may belong to the same class of machine learning models
(although with different sets of hyperparameters), or not.

that an institution may consider to address UCEs—and min-
imize the risks associated to their emergence7—inform the
procedures implemented for their resolution. In general, dif-
ferent strategies lead to different data and model-affecting
procedures against UCEs. One strategy may simply sug-
gest to refrain from using counterfactual explanations in
real-world applications due to the possibility of UCEs. How-
ever, in this case, individuals would be deprived of the main
tool that xAI offers to act systematically against unfavourable
outcomes and exercise algorithmic recourse [20]. Another
strategy may suggest to avoid any mitigation of UCEs,
promoting the idea that individuals should accept that
‘‘successfully implemented’’ counterfactual scenarios do not
guarantee their sought-after outcome due to machine learning
retraining routines. Therefore, this strategy states that coun-
terfactuals do not entail any form of commitment between
the institution generating them and the individuals affected
by the outcomes addressed by the explanations. However,
this point of view on counterfactuals is in contrast with the
one that is currently promoted in the xAI literature. In fact,
Barocas et al. [18], when discussing counterfactual explana-
tions of credit loans, highlight that Wachter et al. have argued
that the law should treat a counterfactual explanations as a
promise rather than just an explanation [8]. More precisely,
they argue that if a rejected applicant makes the recom-
mended changes, i.e., successfully implements the counter-
factual scenario, the promise should be honored and the credit
granted, irrespective of the changes to the model that have
occurred in the meantime [8].

Finally, an institution may try avoiding UCEs by imple-
menting the counterfactuals c(x)’s as constraints during the
retraining of its machine learning models. This procedure
stems from a strategy that aims to fulfill all counterfac-
tual scenarios generated for individuals, e.g., customers and
patients, until model retraining. However, this choice suf-
fers from some limitations. First, the strategy is committed
to preserve all counterfactuals, independently on additional
constraints, such as economic necessity, that may emerge as a
result of events such as a financial crisis or a global pandemic.
This approach may represent a risk for the survivability of the
institution. In fact, in case of an economic downturn scenario,
a credit lending institution fulfilling all extant counterfactu-
als would likely award loans that are too risky, implying a
reduction in overall profit. This, due to the economic down-
turn, may well cause the financial collapse of the institution.
Second, the implementation of counterfactual constraints at
model retraining is laborious. In fact, the use of constraints
would require the update of all the optimization routines
used for learning the models (e.g., a logistic regression,
a random forest or a neural network). In addition, to imple-
ment counterfactual constraints as regularization terms in the

7For example, UCEs are a source of reputational risk for the institution.
They may lead to customer churn, with an effect on the profitability of the
portfolio that depends, among others, on the number and the reserves of
the customers impacted by the violation of their implemented counterfactual
scenarios.
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FIGURE 1. CDA at the retraining of machine learning models. At t0 a
model θt0 is trained and then deployed. A sequence (c(x1), . . . , c(xn)) of
counterfactuals is computed using the model θt0 and the algorithm C on
n data points (x1, . . . , xn) at times t1 < · · · < tn, with t1 > t0. As in
Section II-A, we denote by ŷi = θt0

(xi ) the prediction computed by θt0 on
xi , for i = 1, . . . ,n. At time tn+1, where tn+1 > tn the elements of the set
{(xi , ŷi ), (c(xi ), f (ŷi ))}i=1,...,n are added to the data used to retrain the
model θt0 .

optimization algorithm of any given machine learning model
one may introduce hyperparameters, similarly Levanon and
Rosenfeld’s proposal for strategic classification examples
[50]. However, in that case, the strength of the regularization
may affect both the percentage of UCEs at retraining and the
performance of the model and would require tuning [50].

C. COUNTERFACTUAL DATA AUGMENTATION AND UCEs
We introduce a strategy to manage the emergence of UCEs
that is alternative to 1) avoiding the generation of counterfac-
tuals in real-world applications, 2) avoiding any mitigation
of UCEs, and 3) implementing counterfactual constraints.
In fact, our strategy aims to reduce the percentage of UCEs at
model retraining using CDA. This means to perform retrain-
ing of the machine learning model on data that include,
in particular, all the counterfactual scenarios that have been
generated and shared with third parties until that moment,
together with their alternative outcomes. We show this pro-
posal in Figure 1: at time tn+1, the set of data and their
counterfactuals

CDA := {(xi, ŷi), (c(xi), f (ŷi))}i=1,...,n (4)

is added to the data set used to retrain θt0 . The prediction
ŷi is computed using θt0 , i.e., θt0 (xi) = ŷi for all i = 1, . . . , n.
A fixed algorithm C computes all the counterfactuals c(xi),
instead.

As a result, the efficacy of CDA in improving the robust-
ness of counterfactuals over time is measured by comparing
the percentage of UCEs emerging after retraining with CDA
with the percentage of UCEs in the case of model retraining
without CDA.8 Therefore, if counterfactual explanations of
model outcomes are provided, then a ‘‘good’’ retrainedmodel

8The focus here is on the retraining methodology (with or without CDA)
as a mean to reduce the percentage of UCEs. In fact, the two retraining
procedures may result in different models.

would be characterized not only by a satisfactory level of
performance, but also by a low percentage of UCEs, consider-
ing all counterfactuals generated until the time of retraining.
Moreover, the percentage of UCEs can be used also as a
measure of robustness of the counterfactual explanations gen-
erated by the model over time. For example, if CDA is used
m consecutive times, denoting by pi the percentage of UCEs
emerging at the i-th retraining, then the average 1

m

∑m
i=1 pi

may be used as a metric to measure the average efficacy of
using CDA to mitigate the emergence of UCEs for a given
machine learning model application over time.

In summary, the use of CDA at model retraining to mitigate
the emergence of UCEs stems from a strategy that provides
an alternative to the options of refraining from the use of
counterfactuals, violating past counterfactuals by ignoring
the history of interactions with individuals asking them, and
being trustworthy but risking institutional collapse (e.g., bank
bankruptcy). Using CDA, institutions can try limiting the
damage to their trustworthiness and deontology by reducing
UCEs. Practically, the main benefit using CDA to manage
the emergence of UCEs lies in its applicability in real-world
machine learning use cases. In fact, as opposed to the use of
counterfactual constraints, CDA can be easily implemented
as part of a data pipeline: it simply requires the generation
and storage of counterfactual explanations without modify-
ing the definitions or implementations of machine learning
models. Finally, we note that the use of CDA contributes to
alter the distribution of data used by the machine learning
models. In fact, depending on the application, the class dis-
tribution of training data, e.g., the number of creditworthy
vs. not creditworthy customers in the credit lending case,
may be imbalanced. Usually, the creditworthy customers are
the vast majority in the portfolio. As an effect, considering
counterfactual scenarios and their outcomes in the training
data at time t1 may contribute to increase class imbalance
as, arguably, counterfactuals may be requested mostly by
those individuals who received an unfavourable outcome.
In that case, and depending on the degree of class imbalance,
machine learning techniques, such as class-weighted learn-
ing, sub-sampling or over-sampling [51], [52] may be taken
into account.

IV. EXPERIMENTS
In this section, we discuss an empirical study that aims to
evaluate the use of CDA at machine learning model retraining
to mitigate the emergence of UCEs.

A. DATA
In our study, we considered the 1) Adult-Income, and
2) German-Credit datasets. They are among the most
used datasets in the xAI research domain, in particu-
lar for the study of counterfactual explanations [37]. The
Adult-Income dataset is used to classify whether an indi-
vidual’s income is over 50,000$. We preprocessed the dataset
as in [10]. This means that we use the same set of samples
and features that Mothilal et al. consider by following the
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original preprocessing by Zhu in [53]. The resulting dataset
comprises 26,048 samples and nine features, that is hours
per week, education level, occupation, work class, race, age,
marital status, sex, and income. The dataset shows class
imbalance, as 24% of all samples shows income ‘‘>50,000$’’.
The German-Credit dataset [54] contains information
about customers of a bank accessing loan opportunities,
instead. It comprises 1000 samples and contains 20 features
(i.e., sociodemographic and credit-related information) and
it is used to classify creditworthiness of customers of the
bank. Following Mothilal et al., we consider the whole set of
20 features without further preprocessing [10]. The dataset
shows class imbalance, as 70% of all samples are classified
as creditworthy.9

B. MACHINE LEARNING MODELING AND
COUNTERFACTUALS
1) PARTITIONING DATA FOR CDA
In Figure 2, we show the strategy for the retraining ofmachine
learning models using CDA. The idea behind the proposed
strategy is to simulate the CDA setting shown in Figure 1 by
1) performing a stratified split of data into training and test
datasets, 2) training the ‘‘original’’ model θt0 on training data,
3) computing counterfactuals from the subset of data points in
the test dataset with unfavourable outcomes predicted by the
model θt0 , 4) adding different percentages of counterfactuals
at retraining, that is at tn+1, and 5) considering different
percentages of the remaining test data to simulate ‘‘new’’
data to be used to train model θtn+1 . As a result, the elements
of the CDA set defined in (4) are sampled and computed
from test data, only. This allows simulating the generation of
counterfactuals after the model training at t0, as in Figure 1.

We chose a 50:50 stratified split for both the German-
Credit and Adult-Income datasets. The split is chosen
to collect enough test data to compute counterfactual expla-
nations and implement different retraining scenarios while
retaining model performance.

2) MACHINE LEARNING MODELS
In the study, we considered two classes of machine learn-
ing models: 1) logistic regressions, and 2) random forests.
We used the logistic regression and random forest implemen-
tations in the Python library scikit-learn. We started by
training a model θt0 (see Figure 2) using both classes. To do
so, we performed a 5-fold cross-validation on training data
(see Section IV-B1) to select the combination of hyperpa-
rameters leading to best performance. In the case of logistic
regression models, we tuned the inverse of regularization
strength, while in the case of random forests we tuned the
number of trees in the ensemble and their depth. We denote
the best models from the logistic regression and random
forest class by LOG and RF. We report their hyperparam-
eters in Appendix VII-A and we report their performance

9We used the version of the German Credit dataset available at
https://online.stat.psu.edu/stat857/node/215/.

FIGURE 2. Strategy to implement CDA using the German-Credit and
Adult-Income datasets. Counterfactuals are computed using test data
that result in an unfavourable outcome as computed by θt0 . Test data are
added at retraining to simulate the use of ‘‘new’’ data at retraining.

on test data in Table 1, for both datasets. As the goal of the
study is not to optimize for model performance, we did not
implement any algorithm to address class imbalance in the
German-Credit and Adult-Income datasets.

3) GENERATING COUNTERFACTUALS
We computed different percentages of counterfactuals from
the test data with unfavourable outcome (cfr. Section IV-B1
and Figure 2) predicted by LOG and RF, for both datasets.
Namely, we generated a number of counterfactuals equal
to 5%, 10%, 15%, and 20% of all training data at t0.
Considering the Adult-Income dataset, the unfavourable
outcome is ‘‘≤50,000$’’. For the German-Credit
dataset, it corresponds to ‘‘not creditworthy’’. Therefore,
by construction, a counterfactual suggests a strategy to
achieve an annual income above the 50,000$ threshold for
the Adult-Income data, and the favourable outcome
‘‘creditworthy’’ for the German-Credit data.

To compute the counterfactuals we used the DiCE algo-
rithm [10]. DiCE improves the original Wachter et al.’s
algorithm to generate counterfactuals [8] by generating
diverse counterfactuals, i.e., explanations showing diverse
types of feature changes [10]. Diversity is deemed to be
beneficial, as different individuals may want (or need) to
take on different counterfactual scenarios [10]. It is imple-
mented as a constraint in the optimization problem to
generate counterfactuals, similarly to the sparsity desidera-
tum [10]. In this study, we used the default hyperparameters
of the DiCE algorithm and its Python implementation in the
library dice.10

In Table 2, we show some examples of counterfactuals
for the models LOG and RF on German-Credit data.
All counterfactuals are feasible and sparse. In fact, they
suggest to act upon pairs of features respecting the causality
model between features. The LOG counterfactual suggests
to change the value of Account balance from ‘‘no balance
or debit’’ to ‘‘>= 200 DM or checking account for at least

10https://github.com/interpretml/DiCE
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1 year’’11 and Purpose of the requested loan from ‘‘new car’’
to ‘‘repair’’. The RF counterfactual suggests to lower the
duration of the requested loan, instead. Finally, in Table 3,
we show some examples of counterfactuals for the models
LOG andRF on Adult-Income data. Also in this case, all
counterfactuals are feasible and sparse. The counterfactuals
of both models suggests to change the value of Age and
Education.

C. PROCEDURE
To study the efficacy of CDA to mitigate the emergence of
UCEs, we considered four model retraining scenarios. These
scenarios are defined in terms of the following design factors:

1) the choice of class of machine learning models at t0 and
tn+1, i.e., at retraining (see Figure 1);

2) whether the counterfactuals c(xi) used at retraining are
generated by a model θt0 in the same class of the one at
retraining, i.e., θtn+1 (or not);

3) the percentage of counterfactuals c(xi) added to the data
used at retraining;

4) the percentage of ‘‘new’’ data points added to the data
used at retraining.

We above design factors allowed us to introduce retraining
scenarios that simulate ‘‘real-world’’ applications. In fact,
depending on the machine learning application at hand, dif-
ferent choices of model classes at retraining, types of counter-
factuals, their percentages as well as those of ‘‘new data’’ may
occur. For each retraining scenario, to train the model θtn+1
we performed a 5-fold cross-validation on the logistic regres-
sion and random forest classes selecting the combination of
hyper-parameters that lead to the best model performance,
similarly to the procedure performed at t0 and described in
Section IV-B2. We then analyzed the UCEs considering the
best model θtn+1 , for both the logistic regression and random
forest classes. The proposed scenarios are:

• Scenario 1 (same-model class robustness without CDA):
we do not use CDA but we consider different percent-
ages of test data at retraining. We report the mean num-
ber of UCEs (using same-model class counterfactuals)
as a function of the percentage of test data.

• Scenario 2 (same-model class robustness with CDA):
we retrain a logistic regression, respectively a random
forest, with CDA considering different percentages of
LOG, respectively RF, counterfactuals and test data.
We report the mean number of UCEs (using same-model
class counterfactuals) as a function of the percentage of
counterfactuals added at retraining.

• Scenario 3 (different-model class robustness without
CDA): we do not use CDA but we consider different
percentages of test data at retraining. We report the
mean number of UCEs (using RF counterfactuals for
the logistic regression and the LOG counterfactuals for

11A full description of all variables of the is found at:
https://online.stat.psu.edu/stat857/node/222/.

the random forest) as a function of the percentage of test
data.

• Scenario 4 (different-model class robustness with CDA):
we retrain a logistic regression, respectively a random
forest, with CDA considering different percentages of
RF, respectively LOG, counterfactuals and test data.
We report the mean number of UCEs (usingRF counter-
factuals for the logistic regression and the LOG coun-
terfactuals for the random forest) as a function of the
percentage of counterfactuals added at retraining.

We summarize the four scenarios in Table 4 for the sake
of readability. In all scenarios, we retrained models adding
percentages of test data equal to 0%, 10%, 20%, and 30%
of all training data (including counterfactuals for scenario 2
and 4). In scenario 2 and 4, we retrained the machine learning
models adding a percentage of counterfactuals equal to 5%,
10%, and 20% of all training data. As a result, in scenario 1
and 3, the mean percentage of UCEs is computed over the
distribution of the different percentages of counterfactuals
that are computed by the corresponding model at t0, for each
percentage of test data added at retraining. In scenario 2 and 4,
the mean of UCEs is computed over the distribution of the
different percentages of test data added at retraining, for each
percentage of counterfactuals, instead. We collect the results
of different retraining scenarios for the German-Credit
data in Figure 3 and in Figure 4 for the Adult-Income
data.

D. RESULTS
1) SCENARIO 1
For both the German-Credit and Adult-Income
datasets, the retrained models show no UCE if no test data
is added at retraining. In fact, by definition of our retrain-
ing strategy in scenario 1 (see Figure 2), these models are
LOG and RF. Clearly, the models trained at t0 correctly
classify all their counterfactuals as expected, if no addi-
tional data is used at retraining. If test data are added, how-
ever, the retrained models show different mean percentages
of UCEs, with the logistic regression models being more
robust than the random forests. For example, considering the
German-Credit dataset, if a percentage of test data equal
to 10% of training data is used at retraining, the random
forest model model shows a mean percentage of UCEs equal
to 34.083% (SD=3.131%). The number of UCEs stabilizes
if additional test data are added at retraining. The logistic
regression models show a similar pattern. However, consid-
ering the Adult-Income dataset and the random forest
models, the percentage of UCEs increases monotonically as
the number of test data increases.

2) SCENARIO 2
Considering the German-Credit dataset, the use of CDA
does not reduce the number of UCEs for the logistic regres-
sion models, using different percentages of LOG counterfac-
tuals at retraining. In fact, on average, the percentage of UCEs
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TABLE 1. Performance on test data of the best models LOG and RF, for both German-Credit and Adult-Income datasets.

TABLE 2. Counterfactual explanations generated by DiCE for the LOG and RF models (German-Credit data). Both LOG and RF return the unfavourable
outcome ‘‘not creditworthy’’ for the original data point (‘‘Original’’). For all counterfactuals, we show only the features whose values differ from those of
the original data point.

is equal to 11.146% (SD=1.473%). This is no improvement
with respect to scenario 1. However, considering the random
forest models, the use of CDA at retraining supports a notable
decrease in UCEs with respect to scenario 1. In fact, on aver-
age, these models shows a mean percentage of UCEs equal
to 3.250% (SD=2.986%). We also note that, for both model
class, the addition of different percentages of test data at
retraining generally results in a high-volatility in the number
of UCEs, for a fixed percentage of counterfactuals added
at retraining. Considering Adult-Income data, the use of
CDA strongly reduces the percentages of UCEs with respect
to scenario 1 for both model classes. In fact, on average,
the retrained logistic regression models show a percentage
of UCEs equal to 2.024% (SD=0.269%) and the retrained
random forest show a percentage of UCEs equal to 0.197%
(SD=0.074%). As opposed to the German-Credit dataset
case, both model classes show stability with respect to the
addition of test data at retraining, for each percentage of
added counterfactuals, as shown by the standard deviations
of the respective distributions of UCEs.

3) SCENARIO 3
For both German-Credit and Adult-Income data,
logistic regression and random forest models show poor
robustness against different-model class UCEs, for all per-
centages of test data added at retraining. In particular, the
logistic regressions achieve a mean percentage of UCEs on

TABLE 3. Counterfactual explanations generated by DiCE for the LOG and
RF models (Adult-Income data). Both LOG and RF return the
unfavourable outcome ‘‘≤50,000$’’ for the original data point
(‘‘Original’’). For all counterfactuals, we show only the features whose
values differ from those of the original data point.

German-Credit data equal to 40.271% (SD=1.673%).
Random forests shows a mean percentage of UCEs on
Adult-Income data equal to 46.813% (SD=0.545%).
Overall, logistic regressions shows a higher percentage of
UCEs on German-Credit data, with comparable mean
percentages of UCEs for different percentages of test data
added at retraining. Random forests show a similar pattern
on the Adult-Income dataset, instead. For all models,
datasets and each fixed percentage of test data added at
retraining, the distribution of UCEs is characterized by
high-volatility.

4) SCENARIO 4
Considering German-Credit data, the use of CDA
at retraining leads to a mean percentage of UCEs
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TABLE 4. The different retraining scenarios considered in our study. The original models at t0 are either LOG or RF. The models to be retrained at tn+1
belong either to the logistic regression or random forest class. The different scenarios allows considering different design factors that may affect the
efficacy of CDA in mitigating the emergence of UCEs in real-world applications.

(considering different-model counterfactuals) equal to
35.063% (SD=1.420%) for logistic regressions and 1.458%
(SD=1.228%) for random forests. Therefore, the use of CDA
allows to reduce the number of UCEs for both models as
compared to the case where no different-model counterfac-
tuals are used at retraining, i.e., scenario 3. The improved
robustness is most notable in the case of random forest
models retrained onLOG counterfactuals. Moreover, logistic
regressions show a percentage of UCEs that is stable across
different percentages of RF counterfactuals added at retrain-
ing. Finally, the percentages of UCEs shown by both model
classes are stable with respect to the addition of test data
at retraining. Considering Adult-Income data, the use of
CDA supports a notable decrease in UCEs with respect to
scenario 3 for both model classes. On the one hand, in fact,
for logistic regressions the number of UCEs decreases mono-
tonically with the increase of different-model counterfactuals
at retraining, i.e., RF counterfactuals. The mean percentage
of UCEs is equal to 8.474% (SD=2.143%), as opposed to the
mean percentage equal to 44.740% (SD=1.939%) resulting
from the retraining of logistic regressions in scenario 3.
On the other hand, the mean percentage of UCEs for the
RF model is equal to 0.237% (SD=0.242%), as opposed to
the mean percentage equal to 46.813% (SD=0.545%) that is
achieved by random forests in scenario 3.

V. DISCUSSION AND NEXT STEPS
A. CDA AND MACHINE LEARNING MODELS
The scenarios proposed in the study show that, overall, ran-
dom forest models are more robust that logistic regressions
against the emergence of UCEs when CDA is used in the
retraining procedure. In particular, as shown by scenario 4,
random forests are robust also against the emergence of UCEs
from different-model counterfactuals, i.e., those generated by
the LOG model. However, although the use of CDA allows
reducing the percentage of UCEs also in the presence of logis-
tic regressions, its efficacy seems to be dataset-dependent.
In fact, the efficacy of CDA in the case of German-Credit
data is less than in the case of Adult-Income data. In gen-
eral, the robustness of logistic regressions against UCEs
emerging from different-model counterfactuals is less promi-
nent than the one shown by random forests. Overall, we argue
that the more extensive hyperparameter tuning performed in

the case of random forests may have supported the search for
a more robust model against UCEs.

B. CDA AND COUNTERFACTUAL TYPES
Interestingly, the reduction of UCEs due to the use of CDA
at retraining is stronger in the case of different-model class
counterfactuals. This becomes particularly evident consider-
ing random forests trained on Adult-Income data. In par-
ticular, in the case of same-model class counterfactuals,
although CDA contributes to reduce the number of UCEs
considering logistic regressions on Adult-Income data,
no reduction happens on German-Credit data overall.
In general, the percentage of same-model or different-model
class counterfactuals added at retraining does not seem to
affect the percentage of UCEs that are generated by both
model classes at retraining. However, logistic regressions on
Adult-Income data benefit from the increase of the per-
centage of counterfactuals at retraining, as this is associated
to a reduction of UCEs.

C. CDA AND ‘‘NEW DATA’’
Finally, the percentage of ‘‘new’’ data added at retrain-
ing affects the percentage of UCEs generated by different
models differently. On the one hand, on German-Credit
data the percentage of UCEs generated by logistic regres-
sion models does not vary significantly considering different
(non-zero) percentages of ‘‘new’’ data at retraining, as shown
by scenario 1 and 3. On the other hand, on Adult-Income
data the percentage of UCEs generated by logistic regression
models reaches its maximum when a percentage of ‘‘new’’
data corresponding to 20% of the training data (including
counterfactuals) is considered at retraining. Random forest
models generate percentages of UCEs that do not vary sig-
nificantly considering different (non-zero) percentages of
‘‘new’’ data if no counterfactual is added at retraining on
German-Credit data, or LOG counterfactuals are added
considering Adult-Income data. On the same dataset, the
percentage of UCEs increases monotonically as a function of
the percentage of test data.

In summary, our study shows that using CDA at the retrain-
ing of machine learning models allows reducing the number
of UCEs. Therefore, CDA improves the robustness of the
counterfactual explanations that are generated over time by
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FIGURE 3. German-Credit dataset: retraining scenarios.

machine learning models. However, the efficacy of CDA in
addressing the emergence of UCEs at retraining depends
on different design factors defining the retraining scenario,

FIGURE 4. Adult-Income dataset: retraining scenarios.

such as the percentage and type of counterfactual added at
retraining, as well as the percentage of ‘‘new’’ data. In par-
ticular, considering different percentages of counterfactuals
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used at retraining allows simulating real-world scenarios
where institutions show different levels of maturity in pro-
viding explanations of the machine learning outcomes.12

Therefore, in applications, different retraining procedures
could be pursued to identify empirically the most robust
one with respect to the preservation of counterfactual expla-
nations. In addition to the design factors proposed in the
study, institutions may consider also additional ones, such as
performance-complexity trade-offs, fairness considerations
or MLOps-specific requirements.13

Finally, research is needed to improve the formalization of
the concept of counterfactual ‘‘commitment’’ between insti-
tutions and individuals. An example is provided by a recent
perspective on trust in AI, called ‘‘contractual trust’’ [56].
Following this perspective, one could argue that the provision
of counterfactuals to support algorithmic recourse could be
considered as a contract of AI systems whose outcomes have
to be explained [56]. Contracts are explicit functionalities that
the AI is supposed to maintain, such as a given level of accu-
racy [56]. Holding the counterfactual contract contributes
to the trustworthiness of the algorithm-supported service
offered by the institution [56], [57]. Therefore, in the contrac-
tual trust account, the ‘‘commitment’’ between the institution
and the individuals is that the institution holds the counter-
factual contract, maintaining the trustworthiness of the AI,
according to the strategy in place against the emergence
of the UCEs. This strategy needs to publicly declare the
conditions under which counterfactual commitments will be
respected and the UCEs have to be considered as normatively
acceptable [58].

VI. LIMITATIONS
This study has several limitations. Although the use of two
datasets is in line with relevant literature on counterfactual
explanations [8], [16], [41], [45], and the German-Credit
and Adult-Income datasets are widely used in the xAI
literature, to support the generalizability of our results and
further test the efficacy of CDA, additional studies focus-
ing on real-world datasets and different machine learning
applications are needed. Moreover, we tested CDA on two
classes of machine learningmodel, only.We also note that the
proposed CDA method is applicable to those cases where the
set of features used to generate counterfactuals and to retrain
models is kept fixed. Therefore, our proposal is not appli-
cable to those use cases where the set of features changes,
for example, due to the addition of data sources over time.
Additionally, in our study we considered a fixed algorithm C
to compute counterfactuals. However, in real-world applica-
tions, the algorithm may change, for example, by choosing

12This level of maturity is represented, for example, by the infrastructure
deployed for the generation and distribution of counterfactuals.

13However, in real-world applications interpretability constraints may
pre-select the models to be retrained with CDA. For example, in clinical
applications, physicians may prefer to train logistic regressions as opposed
to, for example, gradient boosting machines as the former are commonly
used to predict clinically-relevant patient outcomes and they are easy to
interpret [55].

different sets of hyperparameters. The effect of changing an
algorithm to compute counterfactuals on the time robustness
of the explanations is left to future investigations. Finally, the
proposed CDA method is a peculiar example of performa-
tive prediction [59], i.e., a shift of data distribution induced
by the use of machine learning models and algorithms to
compute explanations.14 However, a rigorous formulation
of a counterfactual-induced performative prediction (and its
possible interaction with other types of distribution shifts) is
not yet available.

VII. CONCLUSION
Counterfactual explanations are a class of explanations
of machine learning outcomes with interesting properties.
In fact, the possibility of suggesting a strategy to have
recourse against a machine learning model outcome is a use-
ful tool available to those affected by AI-assisted decisions.
However, the change over time, due to retraining, of machine
learning models may give rise to the possibility of invali-
dating the efforts spent to implement the scenario suggested
by the counterfactual explanation. This possibility, that we
called ‘‘unfortunate counterfactual event’’, de facto impedes
the use of counterfactuals in real-world applications and rep-
resents a risk to the trustworthiness of the AIs that institutions
may use to deliver their services and products. Therefore,
our approach is to improve the robustness of counterfactuals
explanations over time by managing the emergence of UCEs.
To do so, we proposed to use counterfactual data augmenta-
tion every time machine learning models are retrained. This
approach—which is of easy implementation—is a first step
towards a systematic analysis of the methods to ensure the
consistent use of counterfactual explanations in real-world
applications, and support trust in institutions, and their AIs,
while striving for the interpretability of machine learning
models. However, as differentmodel retraining scenariosmay
lead to different degrees of protection against the emergence
of UCEs, further empirical investigations need to take into
account the different rationales and pragmatic choices char-
acterizing the deployment ofmachine learningmodels in real-
world applications.

APPENDIX
A. HYPERPARAMETER TUNING: RESULTS

TABLE 5. Hyperparameters of the best models, as resulting from 5-fold
cross-validation on train data. C=inverse of regularization strength,
n_estimators= number of trees in the ensemble, max_depth= maximal
tree depth.

14More precisely, performative prediction is an endogenous type of data
distribution shift. On the contrary, a global financial crisis or a pandemic
changing the populations of customers or patients represent exogenous types
of distribution shifts [59].
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