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ABSTRACT Due to changing software requirements and increasing system complexity, which put forward
new challenges to the related testing processes to ensure software trustworthiness. Software testing is an
important means to improve software quality, and standardized software testing process has become an
effective measure to ensure software testing quality. In order to solve the problem of software quality
decline caused by non-standard behaviors in software testing processes, this paper proposes a standardization
workflow technology to construct the management system of software testing processes, and applies the
workflow management system to the software testing of RSA timing attack tasks. For the numerical
experimental setup, two software fault detection time-domain datasets are considered, i.e., datasets generated
from the RSA timing attack program in functional testing processes and workflow verification system used
to manage the RSA timing attack processes in non-functional testing processes. Then, software reliability
is evaluated by employing multiple heterogeneous software reliability growth models (SRGMs) with
corresponding assumed conditions, parameter information and reliability prediction methods. Furthermore,
we compare the fitting power and predictive performance of multiple SRGMs in terms of the model
evaluation criteria, which helps testers select a better SRGM from the model evaluation results for
reliability analysis. The experimental results show that the proposed standardization workflow technology
can reasonably regulate the software testing processes, making the fault data input into SRGMs more reliable
and reliability analysis results more credible.

INDEX TERMS Software testing, standardization workflow technology, workflow management system,
RSA timing attack tasks, software reliability growth model.

I. INTRODUCTION losses to users caused by internal faults of software, so it

With the increasing of software scale and complexity,
the demand for standardized software testing process is
becoming more and more urgent. It is necessary to improve
the software testing processes to adapt to the changes of
external environment and ensure the information security.
The main purpose of software testing is to prevent the
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is particularly important to study an effective method to
regulate the software testing processes. Software testing
is a key part of the software development process, which
can be used to identify whether the software meets the
correctness and completeness, such as providing correct
outputs for different inputs and completing a certain task
within a specified time [1]. The testers need to perform
corresponding functional operations under the specified test
environment to find potential faults in the software [2]. The
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testers tend to consider the abnormal situation incomplete in
the requirements analysis stage of software testing, resulting
in an imperfect design for testing standards and test cases,
thus, affecting the quality of software testing [3]. Moreover,
software reliability is closely related to the scale, type and
development environment of software, the number of poten-
tial faults and remaining faults in a software, the development
methods adopted and the technical level of developers,
etc. For these reasons, software needs to be fully tested
in accordance with credible testing processes before being
delivered to users [4]. The relevant standards in the field of
software testing define the general model for software testing
process, and the standardization as a technical means to
regulate the testing processes can effectively guide the testing
work. Therefore, this paper follows relevant international
standard documents to formulate the corresponding testing
processes for RSA timing attack tasks.

In 1977, RSA encryption algorithm was proposed by
Rivest, Shamir and Adleman. RSA is a public key cryp-
tosystem used to ensure the security of communications or
transactions. It can continuously perform a large number
of encryption and decryption operations on plaintext at a
fast speed [5]. Kocher [6] first proposed analyzing and
attacking the covert timing channel based on the RSA
modular exponentiation algorithm and effectively evaluat-
ing the information leakage problem of the RSA covert
timing channel. In our existing work [7], we capture the
random variable characteristics, such as the execution time
of different ciphertexts processed by the RSA decryption
algorithm, and adopt the multivariate statistical analysis
method to crack the private key to improve the accuracy
of RSA attacks on private keys. However, potential faults
in related software with RSA timing attack tasks may
affect the attack effect and thus reduce the reliability
level.

To solve the reliability problem of related software with
RSA timing attack tasks, this paper proposes a management
method of software testing standardization processes based
on workflow technology. In the debugging process, multiple
heterogeneous software reliability models are used to perform
reliability growth analysis to evaluate software quality.
Among them, two software fault detection time-domain
datasets are considered, i.e., datasets generated from the RSA
timing attack program in functional testing processes and
its workflow verification system in non-functional testing
processes. Based on the jBPM workflow engine, we design
and implement a standardization workflow management
system of software testing processes for RSA timing attack
tasks. By summarizing the commonalities of different testing
processes and constantly optimizing them, the process
compliance is improved, and the analysis of software fault
data is ensured. Furthermore, we can evaluate the software
reliability by predicting reliability measurement metrics, such
as the total number of faults, the number of remaining faults,
and the interval time to the next fault. The main work and
contributions of this research are as follows:
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1) Referring to the BPMN model of the software testing
process, the developed standardization workflow manage-
ment system is used to realize the standardized management
of the test platform, which facilitates collaboration between
the testers. Thus, the testing efficiency and testing quality are
improved.

2) In the reliability testing, the reliability of the RSA
timing attack program and workflow verification system
are analyzed and compared by using the hypergeometric
distribution model, the Jelinski-Moranda (J-M) model, a soft-
ware failure stochastic model based on a non-homogeneous
Poisson process (NHPP) and the Burr-type XII NHPP-based
model.

3) During the process of fault detection and fault repair,
we can evaluate the software reliability in terms of different
reliability measurement methods to provide guidance for
software release decisions. In addition, model evaluation
criteria are used to compare the SRGMs mentioned in this
paper, and a more suitable SRGM will be applied to a future
reliability analysis.

The remainder of this paper is organized as follows:
Section II outlines the existing related work. In Section III,
we propose a standardized testing process for RSA timing
attack tasks in combination with the international standards
and Chinese national standards in the field of software
testing, and perform the testing work on the designed system.
In Section IV, we input the fault sample data into multiple
selected SRGMs, and then estimate the relevant parameters
of the probability distribution model corresponding to SRGM
by employing statistical analysis method, so as to evaluate
the software reliability. In Section V, we compare the fitting
power and predictive performance of different SRGMs in
terms of the model evaluation criteria to help the testers select
a more suitable SRGM for a future reliability analysis. The
paper ends with an overview of some conclusions and future
research directions.

Il. RELATED WORK

A. SOFTWARE TESTING STANDARDIZATION

Software testing runs through the entire software life cycle
and is a reliable means to ensure software quality. Software
testing standardization regulates the technical methods,
tools, and the organizational management of software
testing through formulation, organization, implementation
and supervision, which can improve the software relia-
bility and ensure the software quality. Ding et al [8]
analyzed the development status and trend of software
testing standardization, summarized the existing problems
of the current software testing standardization and gave
suggestions. Masuda et al. [9] proposed a method for a
complex software testing analysis by using the definitions
of software architecture in international standards, and
applied the method to specific case studies. Shen ef al. [10]
explored ensuring software quality through software stan-
dards and technical management according to the process
of the software engineering international standard ISO/IEC
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25000 series in China. Shen also claimed that it was necessary
to excavate software testing methods and create automatic
software testing tools to continuously improve the testing
process management mechanism. In the field of system and
software engineering, Zhang et al. [11] studied the system
and framework of the system life cycle process standard and
analyzed the development process of system and software
engineering standardization combined with other standards,
which promoted the progress of standardization work in the
future.

At present, most studies on software testing standard-
ization focus on the discussion of test standards and the
guarantee of standards to software quality. However, the
studies on the application of standardization in business
process management (BPM) of software testing is relatively
few, and the management and control for software testing
processes are lacking. Aiming at the shortcomings of the stan-
dardization of software testing processes mentioned above,
this paper proposes a management method of software testing
standardization processes based on workflow technology to
realize the information management of testing workflow from
the perspective of BPM.

B. jBPM WORKFLOW ENGINE

jBPM, which is short for Java Business Process Management,
is an open-source workflow management framework based
on the Java language, with functions, such as process def-
inition, process deployment, process execution and process
management [12]. It provides a graphical tool based on
JBoss jJBPM Process Definition Language (jJPDL), a process
designer. The jPDL uses an intuitive process definition
language to describe operations, such as tasks in a business
process, wait states and timers, and then correlates these
operations through a process control mechanism. Software
developers can take the jBPM framework as the foundation
for BPM to develop business process management modules
and functions. The system architecture of the jJBPM workflow
engine is shown in Fig. 1 [13].
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FIGURE 1. The system architecture of the jBPM workflow engine.

82542

The process management of the jBPM is mainly divided
into three stages, including process definition and deploy-
ment, process analysis and user interaction.

1) Process definition and deployment: The jPDL file of the
process is defined through the process designer and deploys
the process definition to the database.

2) Process analysis: The jJBPM workflow engine reads and
parses the process definition file that needs to be deployed,
converts the jpdl.xml file into a process definition object, and
persists it to the database via the JBPM web console.

3) User interaction: The saved process definition is
instantiated by the jBPM workflow engine, and the client
user can manipulate the process instance by invoking the
interaction interface.

In this paper, we develop a standardization workflow
management system of software testing processes based
on jBPM engine, and the workflow verification system for
ensuring the rationality of RSA timing attack processes is
also developed on jJBPM engine. The software testing for the
workflow verification system includes functional testing and
non-functional testing. Among them, the jBPM subsystem
supporting the workflow verification system belongs to
the non-functional testing of RSA timing attack tasks,
which is composed of modeling subsystem, main control
subsystem and log subsystem. The modeling subsystem is
responsible for completing the process definition, the main
control subsystem is responsible for deploying and analyzing
the process definition objects, and the log subsystem is
responsible for storing users’ operation information on
process instances in the database.

Aiming at the complex characteristics of software types,
test roles, standard information and test implementation
processes involved in software testing, as well as the research
requirements of standardization workflow technology for
software testing, this paper explores a design and imple-
mentation method of testing processes based on jBPM
technology.

C. RSA TIMING ATTACK
The RSA algorithm obtains the public key and the private
key in terms of the value of the prime number. The
basic principle is that both the encryption and decryption
operations for data revolve around modular exponentiation
operations. During the process of RSA encryption and
decryption operations, when the key bit value is 1, the
modular multiplication operation needs to be implemented;
however, when the key bit value is 0, the assignment
operation needs to be completed [14]. There is an obvious
time difference between the modular multiplication operation
and assignment operation, resulting in different decryption
times for different keys. The attackers can use statistical
analysis and other methods to crack the key according to the
characteristics of the time difference [15], [16].

For the current key bit, we assume that the attacker guesses
that it is O or 1. When the guess result is correct, the variance
is reduced; when the guess result is wrong, the variance
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is increased. Therefore, when the key guess is correct, the
variance value is small. The attacker can use this method to
repeatedly execute to obtain the key value until the complete
key is obtained [17]. The variance-based RSA timing attack
tasks are shown in Algorithm 1 [18].

Algorithm 1 Variance-Based Attack Method

Description: 7} is the total running time of the j™ ciphertext
under the correct key, Tfk is the processing time of the first
(k 4+ 1) guess key bits of the j”* ciphertext, ¢ is the guessed
value of the k" key bitand ¢ € { 0,1} .

1. k =0, guess_key[0] = 1

2.FORk=1TOw —1DO

FOR;j=1TO N DO

AT =T; = Tj

ATS, = T; T,

END FOR

ATJ?,{Q’: 1,2,...,N) e Ak°

AT G=1,2,...,N) € Ak

9. IF Var (Ak°) > Var (Ak') THEN

10. guess_keylk] = 1

11. ELSE

12. guess_keylk] =0

13. ENDIF

14. ENDFOR

e O

So far, our software testing work on RSA private key
attack tasks is the variance-based side channel timing attack.
The authors of literature [19] proposed a new effective
data encryption algorithm, which is responsible for the
encryption and decryption processes. Literature [20], [21]
applied machine learning and deep learning to the field of side
channel attack. These will expand new ideas for our future
software testing direction.

D. SOFTWARE RELIABILITY ASSESSMENT METHOD
Software failures are caused by potential faults in the
software. For the purpose of avoiding losses to users due to
software faults, it is necessary to conduct software testing
before releasing to find more faults and predict its reliability
by using software reliability models [22]. Software reliability
refers to the probability that the software runs for a specific
period of time in a given environment without failures, which
is one of the key factors that must be considered in the
process of system design, research and operation [23], [24].
At present, there are many kinds of software reliability
models, and the predictive power of different models is also
different. Reliability modeling is the basis for reliability
analysis and an effective means to ensure software quality.
Furthermore, SRGM, as an important mathematical tool
of reliability modeling, plays significant role in evaluating
reliability, predicting reliability growth trend and determining
optimal software release decision.

The hypergeometric distribution model can be used to
predict the number of remaining faults in a software, and
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this model has strong scalability. Tohma et al. [25] proposed
a new model to predict the number of remaining faults
in a software based on hypergeometric distribution, and
displayed the application of the model in actual data by
fitting the growth trend of the cumulative number of faults.
Literature [26] studied six methods for estimating parameters
of the hypergeometric distribution model and compared their
accuracies. Among them, the least-squares sum method can
be well applied to estimate the number of residual faults
in a software and the estimation time is greatly shortened.
The J-M model [27] satisfies a continuous time independent
distribution and is the research basis of many other reliability
models, which have been widely applied. The earliest SRGM
assumed that software failures satisfy the Poisson process.
When the number of faults detected and successfully repaired
was greater, the failure rate is lower. Liu et al. [28] proposed
a new parameter estimation method for the J-M model,
which provided guiding significance for software reliability
theory and model research. NHPP belongs to an exponential
failure time model, which regards the number of failures
within unit interval time as an independent Poisson random
variable. Goel and Okumoto [29] proposed a software fault
stochastic model based on NHPP, which aimed to provide
quantitative indicators for software performance evaluation,
and compared with the predictive effect of the J-M model.
Okamura and Dohi [30] focused on the parameter estima-
tion problem for NHPP-based software reliability models,
proposed 12 EM (Expectation-Maximization) algorithms for
NHPP-based software reliability models applied to fault
count data, and demonstrated that the developed algorithms
are suitable for software reliability assessment through
numerical experiments. Li [31] adopts Burr-type distribution
to describe the distribution of software fault detection time,
which proves the usefulness of the Burr-type NHPP-based
software reliability models. However, these above studies
only focus on whether the SRGM has good predictive power
and lack of standardized constraints on software testing
process, which will lead to inaccurate parameter estimation of
SRGM and affect the prediction results of software reliability.

Furthermore, most software testing assessment tools focus
on fault data analysis, model parameter estimation and
reliability prediction. Among them, EM algorithm has been
widely used in parameter estimation of software reliability
models [32]. In Table 1, the analysis methods adopted by
several typical tools are presented, and the standardization
workflow management system proposed in this paper is
compared with these tools.

Ill. SOFTWARE TESTING STANDARDIZATION PROCESSES
AND SYSTEM IMPLEMENTATION

A. MULTI-LAYER TEST PROCESS MODEL

Statistics show that the workload of software testing usually
accounts for more than 40% of the total software develop-
ment, and the cost for software testing accounts for 30% to
50% of the total development cost [38]. Therefore, software
testing is a key approach for risk treatment in software

82543



IEEE Access

N. Li et al.: Standardization Workflow Technology of Software Testing Processes

TABLE 1. Comparative analysis of software testing assessment tools.

Proposed Tool

Adopted Approach

It provides 11 types of NHPP-based SRGM:s for fault detection data, which can be used for

Software reliability assessment tool on spreadsheet
(SRATS) [33]

software reliability assessment, and the maximum likelihood estimation is realized

based on EM algorithm.

It enhances the parameter estimation algorithms for phase-type software reliability model

Software reliability tool for PHSRM [34]

Software failure and reliability assessment tool
(SFRAT) [35]

Covariate software failure and reliability assessment
tool (C-SFRAT) [36]

based on EM algorithm and can handle grouped data, which is conducive to the
reliability assessment of actual software development projects.

It supports the analysis of failure data generated during testing and predicts the reliability

of software systems.

It implements the test activity allocation strategy for covariate software reliability and

security models, and supports the calculations of covariate models.

It adopts automated testing methods with different optimization techniques to improve test

Automated testing tool [37]

efficiency, as well as reduce testing cost and time consumption.

This workflow management system pays more attention to the standardization of software

Standardization workflow management system
in this paper

testing processes and adopts the maximum likelihood estimation method to realize

parameter estimation, which makes the fault data input to SRGMs more

reliable and software evaluation results more credible.

development. With the aim of ensuring the accuracy of the
RSA timing attack, the developers optimize the attack process
through a workflow verification system to achieve a better
attack effect. We take the related software with RSA timing
attack tasks as test objects to perform the corresponding
testing work. The international standard ISO/IEC/IEEE
29119-2 [39] and the Chinese national standard GB/T
38634.2-2020 [40] are taken as the implementation criteria
of our testing work, providing the personnel responsible for
software testing with testing guidance. Fig. 2 divides the
testing activities that may be performed in the software life
cycle into an organizational test process, test management
processes, and dynamic test processes, known as a multi-layer
test process model. Among them, the dynamic test processes
are used to conduct the dynamic test in the test stage and
coordinate the relationship between the testers of different
roles in test management.

The responsibilities of each layer in the multi-layer
dynamic test processes are as follows:

1) Organizational test process: It is used to establish and
manage organizational test specifications. This process for-
mulates detailed organizational test policy and organizational
test practices for a test organization, and receives feedback
from project management within the organization for update
and improvement. The implementation of software testing
standardization processes depends on the applicable policy
and procedures of organizational test process.

2) Test management processes: They cover the monitoring
and management of the entire test project or different test
phases or various test type, and needs to be consistent with
the organizational test process. According to the actual test
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situation, the problems encountered in the test management
processes will generate feedback to the organizational test
process, thus updating the organizational test specifications
to improve the organizational test process. These processes
ensure the normal execution of a project test plan.

3) Dynamic test processes: They are responsible for
carrying out the generic processes defined by dynamic test
within a particular test phase or test type, and coordinating the
relationship between different roles of testers in the execution
of test activities. The dynamic test processes include test
design and implementation, test environment construction
and maintenance, test execution and test incident reporting.
These processes provide detailed criteria for a series of test
activities in the software testing standardization processes.

B. DESIGN OF SOFTWARE TESTING PROCESSES

The requirements analysis is a necessary process of project
development. The requirements analysts should accurately
understand users’ specific requirements on the function,
performance and reliability of the project, as well as
convert the users’ informal requirements description into
the complete requirements definition in terms of the
international requirements engineering standard [41], and
formulate the software requirements specification. Then,
the developers need to develop the program or system
on the basis of fully completing the users’ requirements
analysis. In an attempt to find the indigenous faults in
the software more efficiently, the fault insertion personnel
reasonably insert faults in terms of specified functions in the
software requirements specification. Next, the testers perform
the testing work in strict accordance with the software
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FIGURE 2. The multi-layer model showing all test processes.

requirements specification. In the testing process, the relevant
testers in different roles should follow the standardized
testing process and immediately repair the detected faults,
thereby continuously improving the software reliability. The
reliability analysts adopt different SRGMs to evaluate the
current software quality based on the test results of each
test stage, providing guidance for establishing the optimal
software release decision.

The business process modeling notation (BPMN) is
derived from the field of process description that can be
executed by the process engine of the workflow and is used to
create business-level models and executable models. BPMN
is adopted to conduct the modeling of the software testing
process to ensure that the testing process is executed in
accordance with the specified process [42]. After completing
the collection and arrangement of relevant software testing
technologies and standards, we also analyze the situation
of software testing standardization. In the actual testing of
related software with RSA timing attack tasks, we focus
on using advanced information technology to combine the
standardized system in the field of software testing with
the actual testing processes, and make the actual testing
processes conform to the corresponding specifications. At the
same time, the software testing process framework of RSA
timing attack tasks is constructed according to the theoretical
guidance of standard documents, as shown in Fig. 3.

In Fig. 3, testers perform test activities according to
the test plan, which reflects the dynamic test processes
and provides guidelines for the implementation of software
testing. The standardization workflow management system
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of software testing processes designed in this paper is
based on the jBPM workflow engine, and the workflow
model is established in terms of BPMN specification. The
standardization workflow technology is adopted to manage
the software testing, so that the testing efficiency is improved
while the testing processes are standardized. In addition,
it also can prevent developers and testers from deviating from
requirements during the development and testing process,
respectively, which reduces the software reliability. The
method of standardization workflow technology is mainly
composed of six key components, i.e., requirements proposal,
project development, test execution, SRGM selection, data
statistics and results analysis. By standardizing each link and
activity content of software testing, we can construct the
software testing standard system of workflow management
system.

C. PROCESS OF DEPLOYMENT AND EXECUTION

For the purpose of testing the various functional modules of
the RSA timing attack program and workflow verification
system, we design the flow path for nodes in terms of the
execution sequence and logical relationship between all test
task nodes, forming a complete test execution process. The
process designer is used to instantiate the test execution
process conforming to the BPMN model into the workflow
engine. The process definition is accomplished by creating
XML files recognized by the jJBPM workflow engine, and the
process information is stored in the database. Table 2 shows
the log information recorded in the database with respect
to the testing process execution, which corresponds to the
testing process specified in the BPMN diagram. It lists the
test activity name, start time, end time and transition status
between activity nodes.

The test execution process in the jBPM workflow engine
mainly consists of a master process and a subprocess. When
the process flows to the fork node, the master process begins
to convert into multiple branch paths that are executed in
parallel, or subprocesses. After these subprocesses converge
at the join node, the process continues to flow in the path of
the master process. The fork node and the join node always
appear in pairs, which together constitute the subprocess set
of the test execution process. The function is that multiple
tasks must be completed before entering the next task of the
join node. However, if the master process or subprocess fails
to meet the requirements after completing a task node, the
master process or subprocess rejects it to the previous task
node. The test execution process of related software with RSA
timing attack tasks is shown in Fig. 4, where a master process
contains two subprocesses in the execution process. After
the deployment of the process definition is completed, the
workflow engine creates a process instance, and the deployed
log information can be viewed from the database.

The test execution process mentioned above includes two
types of rejection operations, as follows:

1) If the test data recorded by the subprocess are
not standardized (not in conformity with the contents
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TABLE 2. Log information of test process execution.

ACTIVITY_NAME START

END TRANSITION

Analyze the process of RSA timing attack 2022-05-25 08:55:21

2022-05-25 08:55:21 to Put forward software requirements

Put forward software requirements
Write software requirements specification

Are the requirements reasonable?

Modify requirements

Develop RSA timing attack program
and workflow verification system

Generate the software project to be tested
Start a stage of testing work
Give the test report

Inspect the test report

Repair the detected faults at this stage
Execute the next stage of testing work
Record the test data of all stages

Select a suitable software reliability model

2022-05-25 08:55:21
2022-05-25 11:44:31
2022-05-25 13:55:50

2022-05-25 13:55:51

2022-05-25 14:43:54

2022-05-25 18:25:10
2022-05-25 18:32:43
2022-05-25 20:35:47
2022-05-25 20:36:53

2022-05-25 22:00:46
2022-05-25 22:33:19
2022-05-26 09:05:56
2022-05-26 13:39:51
2022-05-26 13:47:32
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2022-05-25 13:55:51

2022-05-25 14:43:54
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2022-05-25 20:39:22

2022-05-25 22:33:19
2022-05-26 09:05:56
2022-05-26 13:39:51
2022-05-26 13:47:32
2022-05-26 14:55:37
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no
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to Generate the software project to be tested

to Start a stage of testing work
to Give the test report
to Inspect the test report

to Is the report correct?

to Execute the next stage of testing work
to Record the test data of all stages
to Select a suitable software reliability model

to Analyze the software reliability

Analyze the software reliability

Provide users with software quality information ~ 2022-05-26 14:55:37

to Provide users with software quality information

2022-05-26 15:15:59 to End

of the software requirements specification), then the
subprocess is rejected to the “Execute the functional/non-
functional tests” node. Until the recorded test data
meets the requirements, the process flows to the next
step.

2) When the master process counts test data, it finds
that the test data provided by the subprocess is incomplete
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(the test data recorded by a subprocess is missing),
and then the master process is rejected to the ‘“Exe-
cute the software testing in compliance with the BPMN
model” node, and thus, each subprocess executes the
functional/non-functional tests again. Until all subprocesses
provide complete test data, the process flows to the next
step.
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tests of Part | tests of Part Il

Record the test data of Part |

Record the test data of Part Il

Reject Reject

Count test data

Select software reliability model

Analyze test results

Reject

FIGURE 4. The standardized test execution process for RSA timing attack
tasks.

D. SYSTEM DESIGN AND IMPLEMENTATION

The standardization workflow management system of soft-
ware testing processes adopts the integrated framework
of ‘Spring + Struts + Hibernate””. The SSH framework
was developed based on Java and it is an open-source
framework for web applications. Web service technology
is coordinated by service-oriented workflow applications to
provide different functions [43]. The application of web
technology to support remote access functions facilitates
dynamic collaboration between the testers [44]. Under the
support of this system, testers with different roles can pass
or reject the relevant test task node. The functional modules
of the system mainly include requirements management,
developer management, tester management, project functions
management and reliability management. Among them,
the requirements management module is responsible for
controlling the master process of test execution, while the
project functions management module and the reliability
management module are responsible for controlling the
subprocesses of test execution, and the master process can
aggregate the test data generated by all subprocesses.

The system is mainly composed of nine objects, namely,
organizational test process, requirements, project, test man-
agement processes, test design technique, test, data, SRGM
and analysis. The detailed explanations for these objects are
as follows:

1) Organizational test process: The organizational test
specifications established and managed by this process is
responsible for standardizing the overall test process and
supporting the entry of test policy, test practices and test
strategy, thus providing guidance for relevant testing work.
During actual testing, this process can monitor the usage
of organizational test specifications for timely updates and
maintenance.
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2) Requirements: The software requirements specification
is the basic criterion that developers, testers and test
management personnel should follow together.

3) Project: Developers realize software project according
to software requirements. In this paper, the software projects
under the test are RSA timing attack program and workflow
verification system.

4) Test management processes: The test management
personnel control and monitor the testing processes according
to the project test plan, and employ Petri nets modeling
technology to analyze the test execution logs to determine
the rationality and correctness of the testing processes.
Furthermore, the test management processes feed back the
test progress to the organizational test process, which together
maintain the orderly implementation of the dynamic test
processes.

5) Test design technique: During the execution of dynamic
testing, appropriate test design technique should be selected
in terms of the test project, such as specification-based
testing (black box testing), structure-based testing (white box
testing) and experience-based testing.

6) Test: Software testing is performed under a standardized
testing process to find software faults and measure software
quality, which is a process for providing testing information.

7) Data: Test data are observed in actual software testing
processes, and two software fault detection time-domain
datasets are considered in this paper. In addition, the master
process can aggregate the test data generated by all the
subprocesses and persist the data into the database.

8) SRGM: Test data is input into multiple SRGMs to solve
the parameter values of the probability distribution model
corresponding to each SRGM. The selected SRGM includes
four models, which are hypergeometric distribution model,
J-M model, G-O NHPP model and Burr-type XII NHPP-
based model.

9) Analysis: Reliability analysts employ SRGM to evaluate
the software reliability and feed back the visual analysis
results to users, developers and testers, which is conducive
to establishing the optimal software release decision.

Fig. 5 is the class model of the system, reflecting various
relationships between class objects. Each class object has
corresponding attributes and methods, and the system can
invoke them during runtime. The relationships between class
objects in Fig. 5 mainly include dependency, association and
generalization. Specifically, requirements are monitored by
the organizational test process and need the participation of
the test management processes. Therefore, the requirements
class has dependency and association relationship with the
organizational test process class and the test management
processes class, respectively. The requirements class and
the project class are associated to each other. The updates
of requirements will promote the iterative development of
project, and the defects reflected in project development
will further improve the requirements. The project class
and the test class are also associated to each other, and
the project reliability can be improved by repairing the
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. Hypergeometric Distribution Model
Requirements

- AssumptionConditions: varchar
- Parameterinformation: varchar
- predictionMethods: varchar

+ AddData_HD ()
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- Project_id: int
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+ PredictReliability () + DelData_Burr Xl ()

+ ModelEvaluation () + EditData_Burr Xl ()

+ VisualAnalysis () + SaveData_Burr Xl ()
+ViewData_Burr XIl ()

FIGURE 5. Class diagram for the management system of the software testing standardization processes.

faults detected in the testing process. The test class depends
on the requirements class and the test design technique
class, because the test implementation needs to follow the
software requirements specification and test design content.
Also, the test class is monitored and controlled by the
test management processes class. The SRGM class has
generalization relationship with the four model classes, and
these model classes are indirectly related with the other
class objects through the SRGM class. The SRGM class
is associated with the test class and depends on the data
class. Moreover, the analysis class depends on the SRGM
class. For one thing, SRGM needs to be driven by data,
and the data depends on actual test execution; for another,
the analysis of test data depends on the applied SRGM.
In Fig. 5, the project class, test design technique class, test
class and data class constitute the dynamic test processes.
Together with the organizational test process class and test
management processes class, they construct a multi-layer test
process model, making the design and implementation of
the workflow management system conform to the standard
specifications of the software testing process.

By combining international standards and Chinese national
standards in the field of software testing, we execute the
tests according to a standardized testing process on the
system, which facilitates collaboration among the testers
and improves the testing quality. Compared with traditional
software testing, the system in this paper abstracts the
standardized testing process into independent test nodes,
constructs the testing workflow based on the logical
relationship between the testing nodes, and realizes the
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FIGURE 6. Interface of the master process execution.

standardized management and status monitoring for the
testing process.

The interface of the master process execution is shown
in Fig. 6. The master process can view the execution status
of all the current subprocesses and is also constrained by
the execution status of the subprocesses at the same time.
The interface of the two subprocess executions is shown in
Fig. 7 and Fig. 8. Whether the subprocess execution can pass
or not is also constrained by the compliance checking of
the master process. Thus, the mutual restriction relationship
between different processes is formed to achieve the effect of
standardized management for the testing process.

At present, we have conducted six rounds of software
testing work of RSA timing attack tasks on the system,
effectively improving the quality of the tested software.
We can evaluate the system according to the international
standard ISO/IEC 30130:2016 [45] and Chinese national
standard “‘Software and Systems engineering — Capabilities
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of software testing tools” (Plan No. 20190837-T-469) that
China plans to issue and implement. During the execution
of dynamic testing, the capabilities supported by the system
include test design, test execution control, monitoring,
data validation and verification, and runtime environment
management, etc. Furthermore, the system also has some
capabilities of test management, such as test management,
test asset configuration management, incident management,
defect management and defect tracking, and verification
and validation report. The above capabilities jointly cover
the eight quality characteristics of project, including func-
tional suitability, reliability, usability, performance efficiency,
maintainability, portability, compatibility and security, and
are applicable to the three levels of granularity — smallest
unit, intermediate units and largest unit. In summary, the
system basically implements the multi-layer test process
model defined in standards [39] and [40], and focuses on the
implementation of the dynamic test processes.

IV. RELIABILITY ANALYSIS

A. TEST DATA

The software fault data adopted in this section is derived
from the test data of the RSA timing attack program and
workflow verification system. For the implementation of
BPM, the business process management system (BPMS)
based on a workflow engine can provide support for BPM and
promote trustworthy process automation management [46].
Therefore, it is necessary to introduce the process manage-
ment mechanism of the workflow verification system (a kind
of BPMS) to make the attack processes execute normally
when performing RSA timing attacks, which is conducive to
ensuring the success rate of RSA attacks on private keys. The
RSA timing attack program is encoded by the C language,
while the workflow verification system is encoded by the
Java language based on the jJBPM. Among them, the test
link of the RSA timing attack program belongs to functional
tests. The testers only need to consider each function to
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be tested and do not need to consider the internal structure
and code of the whole software. However, the test link of
the jBPM subsystem supporting the workflow verification
system belongs to non-functional tests. The testers need to
test the system from the aspects of the modeling subsystem,
main control subsystem, log subsystem and web front-end
pages. To detect the potential indigenous faults Ny in the
software more accurately, the faults introduced randomly
into the software are called inserted faults Nj, and the test
ends after the testers detect all Ny as much as possible.
Its purpose is to make it easier to find Ny during the
process of excluding N and to repair the discovered Ny and
N1y, thereby improving the quality of the software product.
We conducted three rounds of tests on the RSA timing attack
program and workflow verification system respectively, and
the generated fault datasets are shown in Table 3. In the
numerical experiments, we record the fault datasets DS3 and
DS5, and the details are given in Table 4.

The experimental data in this paper adopts two sets of fault
datasets in Table 4. By following the instructions of the reli-
ability testing process in the Chinese national standard GB/T
29832.3-2013 ““Reliability of system and software — Part 3:
Testing method” [47], this section estimates the model
parameters of the SRGMs used based on the fault data,
and then predicts the software reliability and achieves the
reliability growth analysis.

B. AN ANALYSIS OF THE HYPERGEOMETRIC
DISTRIBUTION MODEL AND THE J-M MODEL
The hypergeometric distribution model finds potential
indigenous faults in the software by introducing faults
artificially, which reduces the difficulty of software testing.
This model adopts the maximum likelihood estimation
method to predict the estimated value No of indigenous faults
in the software, which is expressed as follows:

_— Ni(n —k)
NO B |: k :|integer (1)

where k represents the number of inserted faults detected, 7 is
the total number of faults detected, and (n — k) is the number
of indigenous faults detected. According to the test data in
Table 4, the number of indigenous faults in the testing work
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TABLE 4. Fault data information.

Tested No. of Fault Interval Cumulative
software faults type time/h time/h
1 Ny 9.0 9.0
2 No 22 11.2
3 No 12.5 23.7
4 Ny 5.4 29.1
RSA 5 No 5.0 34.1
timing attack 6 No 179 220
7 N1 18.7 70.7
program 8 Ny 12.6 83.3
(BS3 9 N1 10.5 93.8
10 No 294 123.2
11 No 32 126.4
12 No 15.3 141.7
13 Ny 28.8 170.5
1 Ny 1.0 1.0
2 No 13.1 14.1
3 No 0.6 14.7
4 Ny 43 19.0
5 Ny 1.2 20.2
Workflow 6 N, 5.1 25.3
verification 7 N1 36.3 61.6
system 8 N1 5.1 66.7
(DS5) 9 N1 12.7 79.4
10 N1 11.3 90.7
11 Ny 17.6 108.3
12 Ny 2.0 110.3
13 No 16.0 126.3
14 No 48.9 175.2

of the 3rd round and the 5th round are predicted to be 14 and 4,
respectively.

With the iteration and update of software version, the
number of indigenous faults in the software is increasing.
Meanwhile, the fault detection time plays an important role
in the analysis of most software reliability models. The
reliability assessment method of J-M model is to predict the
software quality by fitting the failure law based on historical
fault data. The J-M model regards all types of software faults
as the same type, that is, the total number of software faults in
this paper is equal to the aggregation of indigenous faults and
inserted faults. The failure rate expression of the model for
random variables is defined as follows:
ZOH=P[N-(G—-1)] @=1,2,---,N; N>0; $>0)

2

where ® represents the unreliability rate when there is one
remaining fault, N represents the estimated total number of
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potential faults in the software before the start of the testing
work, and i represents the number of faults.

The J-M model assumes that the interval time from
(i — 1) to i is a random variable and obeys the exponential
distribution with ®[N — (i — 1)] as the parameter. The
reliability function is as follows:

R(xi) = exp[—P(N —i + 1)x;] 3)

where x; represents the observed interval time between faults.
The maximum likelihood estimation method is adopted to
predict the total number of potential faults N in the software,
the estimated value of N can be solved by Formula (4)
(represented by N) as follows:

n
n ”in

1 i—
2%N4+D: n g w
i=1 NZx,-—Z(i—l)x,-
i=1 j

i=1

The estimated value of ® can be solved by Formula (5) as
follows (represented by ®):

o= & ©)

Nixi—i(i—l)xi

=1 i=1

Formulas (4) and (5) are solved in terms of the test data
of DS3, and the estimated values of N, ® are N = 19, o=
0.00653 respectively. When the software life cycle obeys an
exponential distribution, the reciprocal of failure rate is called
the mean time between failures (MTBF), MTBF = 1/Z(i).
Hence, it can be predicted that the fault detection time in
the 14th stage is approximately 21.9 hours. Similarly, the
estimated values of N, ® for DS5 are N = 17, d = 0.00973,
which can predict that the fault detection time in the 15th
stage is approximately 25.7 hours. The relationship between
the estimated number of initial faults N and MTBF for DS3
and DSS5 is shown in Fig. 9 (a) and (b), respectively.

The mean value function m(z) of the J-M model can be
expressed as follows:

m(t) = N(1 — e~ (6)

where ¢ is the cumulative fault detection time.

As seen from Table 4, 13 faults are eliminated for the RSA
timing attack program in DS3. Both ends of Equation (4)
are approximately equal when N = 19; the total number of
faults is predicted to be 19. Hence, it can be estimated that the
number of remaining faults in the software is 6. It is known
that 12 inserted faults are introduced into the program, and
thus, the number of indigenous faults is estimated to be 7.

A total of 14 faults are eliminated for the workflow
verification system in DS5, and the J-M model predicts that
there are 17 faults in the software; hence, the number of
remaining total of faults is 3. It is known that 9 inserted faults
are introduced into the system, so the number of indigenous
faults is estimated to be 8. However, due to many uncertain
factors in the debugging process, the test is usually imper-
fect, as an imperfect debugging process [48]. The overall
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FIGURE 9. Prediction for the total number of software faults (DS3 and
DS5).

performance of the imperfect debugging model is better than
that of the perfect debugging model, which is a complex
random process, considering that the actual debugging will be
affected by multiple subjective factors, including debugging
ability, skill and psychological change [49]. When repairing
the detected fault, we additionally introduce a new fault.
Therefore, a total of 10 inserted faults are introduced in
DSS5, and the number of indigenous faults is estimated to
be 7.

C. AN ANALYSIS OF THE G-O NHPP MODEL

The more complex the software, the harder it becomes to
test it. In the process of fault detection, the occurrence
of faults is random. The J-M model regards the initial
number of faults in a software as an unknown fixed constant
and does not consider the relationship between the two
adjacent interval time, which may reduce the accuracy
of reliability assessment. Therefore, considering the actual
software testing situation, we adopt the NHPP-based model
as the stochastic model of software failure behaviors,
and this model has certain flexibility and goodness-of-fit
performance [50]. In this paper, the NHPP models also regard
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all types of software faults as the same type. The G-O NHPP
model assumes that the interval time between faults (i — 1)
and i depends on the time to fault (i — 1).

The cumulative number of faults detected at time is an
independent incremental process, which obeys the NHPP
with mean function m(¢), and m(t) is proportional to the
cumulative distribution function (CDF) with fault detection
time [29,51]. Then, the basic relationship between the
probability of n faults detected at time ¢ and mi(¢) is as follows:

_ (m@)y”

Pr{N(t) = n} .

exp(—m(t)), n=0,1,2,...(7)

where m(t) represents the expected value of the total number
of software faults at time ¢, and the faults in a software are
limited. Thus, the expression of m(¢) is as follows:

m(r>=:°’ =0 ®)
a, t— o0

where a is the expected value of the total number of faults
that are finally detected. Assuming that the expected value of
the total number of faults in (¢, ¢+ At) is proportional to the
number of faults not detected at time #, then the expression is
as follows:

m(t + At) — m(t) = b(a — m(t))At + o(At) )

where b is the proportionality coefficient. Let At — 0 in
Formula (9), we can obtain the differential equation as
follows:

m'(t) = ab — bm(t) (10)

Solving Formula (10) in terms of the boundary conditions
in Formula (8), we can obtain the equation as follows:

m(t) = a(l — e

(11)

The fault detection rate function can be obtained from
Formula (10) or (11) as follows:

At) = m/(t) = abe™ (12)

We let X, represent the time interval between the (k — 1)”’
fault and the k™ fault, and we let Sk represent the cumulative
time taken to detect k faults. Then, we let S;_; = s, and the

reliability function of X is as follows:

_ e—b(s+x))]

Ry, (x|s) = exp[—a(e™"* (13)

Suppose that n software faults are detected, and the
time sequence is given by s = {s1, s2,...,s,}. Then, the
likelihood function is expressed as follows:

f(s1,82,...,8,) = exp(—m(sy)) l_[ abexp(—bsy) (14)
k=1

Therefore, the log likelihood function is written as follows:

n
L(a,bls) =nlna+nlnb—a(l —e ™) —bY "5 (15)
k=1
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By maximizing L(a, b|s) with respect to a and b, we can
seek the parameter estimates a and b of the maximum likeli-
hood function. Taking the partial derivative of Formula (15)
with respect to a and b and equating it to zero, we obtain the
likelihood equation as follows:

n/a = 1 — exp(—bsy)

n
n/b = Z sk + as, exp(—bsy)
k=1

We can obtain @ = 24.38 and b = 0.00447 by solving
Formula (16) in terms of DS3. Therefore, the expected value
of the total number of faults in [0, 7] is m(t) = 24.38 - (1 —
e~ 0004471y "Similarly, & = 17.55 and b = 0.00912 can be
solved in terms of DS35, and the mean value function is m(t) =
17.55 - (1 — ¢~0:009121) ‘The fitted curves of the estimated
mean value function and actual fault data of these two rounds
of tests are shown in Fig. 10 (a) and (b), respectively.

After obtaining the estimates of the unknown parameters,
we can then obtain the maximum likelihood estimate of
the mean value function m(¢). The confidence interval for
N(t) based on the Poisson distribution can be approximately
obtained, where the 90% upper and lower confidence bounds
for the N (¢) process are shown in Formula (17) as follows:

ﬁfl(t)upper = m(r) + Za/2V m(r)
M()iower = m(t) — Za 2/ m(t)

where () upper and 7(t)jower are the upper and lower
confidence bounds functions, respectively, and z4/2 is the
100(1 — «) percentile that follows the standard normal
distribution [52]. When o = 0.1, it represents the 90%
confidence interval, that is, the value of z is 1.64. Fig. 10 also
shows the 90% confidence interval for the N(#) process.

Substituting the estimated values of a and b into For-
mula (13), we can obtain the following software reliability
function as follows:

(16)

a7

Rx,,15,,(x[170.5)
= exp[—24.38 . (6—0.00447.170.5 _ 8—0.00447-(170.5+x))]

In the 3rd round of the test, the G-O NHPP model predicts
that 24 faults exist in the software. At present, 13 faults are
detected, and the remaining 11 faults remain to be discovered,
which achieves the purpose of evaluating software quality.
The reliability functions for the J-M model and the G-O
NHPP model, basedonn = 8,n = 13 andn = 8, n = 14,
are shown in Fig. 11 (a) and (b), respectively.

In Fig. 11, the greater the value of n in the early test stage,
the higher the software reliability predicted by the J-M model;
however, in the whole test stage, the greater the value of n,
the higher the software reliability predicted by G-O NHPP
model. This is because with the increase of the value of n, the
number of remaining faults is decreasing, and the reliability
will be improved accordingly. Fig. 11 also indicates that the
G-O NHPP model produces a more conservative predictive
effect than the J-M model.
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FIGURE 10. The actual and fitted values of the total number of faults and
the 90% confidence intervals for the counting process (DS3 and DS5).

D. AN ANALYSIS OF THE BURR-TYPE XIl NHPP-BASED
MODEL

The Burr distribution [53] contains 12 kinds of distribution
functions, which is a family of continuous probability
distributions proposed by Burr in the study of differential
equations. This distribution has been widely used in many
fields, such as applied statistics, quality control and relia-
bility. The Burr distribution presented some properties and
theories of continuous functions and considered the fitting
problems of functions. Burr [53] introduced a family of CDFs
and satisfied the following differential equations as follows:

dF (x)
dx

where g(x, F(x)) is positive for 0 < F(x) < 1. It can be seen
in Formula (18) that F'(x) has the nondecreasing property, and
dF(x)/dx is zero at F(x) = 0 or F(x) = 1. In the case of
g(x, F(x)) = g(x), solving Formula (18) can be obtained as
follows:

= Fx)(1 — F(x))g(x, F(x)) (18)

1

Fix) = —[e_fg(x)dx +1]

19)
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FIGURE 11. Predictive software reliability assessment with the J-M and
G-0O NHPP models (DS3 and DS5).

It should be noted that the selection of g(x) should make
F(x) monotonically increase from O to 1 within the specified
time x. The Burr-type XII distribution is one of 12 Burr-
type distributions derived by Burr and is widely used to
describe the distribution of software fault detection time [51].
The Burr-type XII distribution is a two-parameter family
of distributions on the positive real line, and its CDF is as
follows:

F)=1-(14x9tx>0,a>0b>0) (20

where a and b are the shape parameters. In this paper,
we apply the Burr-type XII distribution by introducing an
additional scale parameter d to represent the mean value

function m(¢) of an NHPP-based SRGM, as follows:
m(t) = kF (1) = k[1 — (1 + (t/d)H ™)k > 0)  (21)

From the property of the Poisson distribution, we obtain
the equation as follows:

t
m(t) = / A(x)dx (22)
0
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where A(x) is a continuous function called the intensity
function. We suppose that n faults are detected in the test
stage, and the time sequence of fault detection is T =
{t1, 12, ..., t,}. Therefore, the likelihood function and log
likelihood function with respect to 7" are expressed as follows:

Lk, d, a, b|T) = exp(—m(t,)) [ | At
i=1

(23)

n
InL(k,d,a,b|T) = Zlnk(ti) — m(ty)
i=1

(24)

By substituting m(¢) and A(¢) in line with Burr-type XII
distribution into Formula (24), it can be obtained:
InL(k,d,a,b|T)

= k[1 + (tn/d)"1 "=k

+y {ln(kab/d)+1n (t;/d) ™V —1n [1+(ti/d)“](b+1)}
i=1

(25)

Taking the partial derivatives of Formula (25) with respect
to k, d, a and b, and equating them to zero, respectively, and
we can obtain:

JL _n al-b 1 _

ﬁ_k+[1+(rn/d)] 1=0

o = bk 1+ )T T i)
|1 a4 D@/d T (—n/d?) a—1|

+l§[_2_ 1+ (ti/d)" - d }_O

oL _h
o = —bk[1 + (/)] "t/ d)* In(ty/d)

M1 b+ Dt/ In(t;/d)
+Z[E‘ 1+ (6/d)"

+ ln(ti/d)] =0
i=1
% = —k[1+ (ta/d)*] " 1n (1 + (ta/d)°)

+> B —In(1+ (t,-/d)“)} =0

i=1

(26)

When solving the problem for maximum likelihood
function, we can use the gradient rise method to solve it step
by step, so as to obtain the maximum likelihood function
value and model parameter values. The calculation process of
the gradient rise method is to iteratively solve the maximum
value along the gradient rise direction. The main solution
process is as follows:

OL (ki d, am, by)

km+1 = km + n 9k
L (ky, dys @, b

dm—H =du+n

oL (kp, dmr:lam, bn) 27)
am+1 = am + 1N 9a
m
oL (ky,, dy, am, b
st = bm + 1 (km 3;;1 ms bm)
m
82553
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FIGURE 12. The observed and estimated cumulative number of faults
(DS3 and DS5).

where m is the number of gradient iterations; k,;, dy, am
and b, are the updated values of the parameters at the
m' iteration; 9L (ks dim,y A, byy) /0kyy, is the gradient of
L with respect to k at the (m+ 1) iteration; n(n >
0) is the search step in the gradient direction, and the
selection of the step determines the convergence property
and convergence speed of the gradient method. In the
standardization workflow management system of software
testing processes, the optimization technique of gradient
method is adopted to complete the numerical searches by
controlling the number of iterations and setting the reasonable
start point and step. The purpose of combining the maximum
likelihood function with the gradient method is to find the
local maximum value of the likelihood function, and optimize
the search result as much as possible to make it closer to
the maximum value of the likelihood function. In addition,
when the difference value between the likelihood function
and the last iterative likelihood function tends to converge,
the search stops, so the model parameter values IQ, d ,a and
b corresponding to the maximum likelihood function can be
obtained. From the test data of DS3 and DSS5, k = 24.79,
d = 42.10257, & = 1.54886, b = 0.30515 and k = 23.76,
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FIGURE 13. Predictive software reliability assessment with multiple
SRGMs (DS3 and DS5).

d = 61.94323, 4 = 1.06100, b = 0.59823 can be solved,
respectively. Fig. 12 plots the fitted curves of the mean value
functions for the J-M model, the G-O NHPP model and the
Burr-type XII NHPP-based model.

Finally, we quantitatively evaluate the software reliability
with the Burr-type XII NHPP-based model and compare it
with other SRGMs. The conditional probability that the i
fault is not detected between (¢, +x] (x > 0) on the condition
that the (i — 1) has detected at testing time ¢ is given as
follows:

R(x|t) = Pr{N(t +x) — N(t) = O|N(t) = n}

exp {—[m(t + x) — m()]}

(28)

where N (¢) is a counting process and 7 is the cumulative num-
ber of faults detected at time ¢. m(¢) given in Formula (21) is
substituted by Formula (28) to obtain the software reliability
for the Burr-type XII NHPP-based model, as follows:

R(x|t) = explk[(1 + ((t +x)/d)) ™" — (1 + (t/d)) "1}
(29)

Fig. 13 (a) and (b) show the software reliability assessment
with the J-M model, G-O NHPP model and Burr-type XII
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TABLE 5. Assessment results of different SRGMs.

Criterion/Model Dataset Parameter setting MSE SAE MEOP Variation R?
J-M model DS3 N =19, & = 0.00653 0.27305 5.41747 0.27837 0.42776 0.98050
G-O NHPP model DS3 & = 24.38,b = 0.00447 0.51658 7.74876 0.40404 0.48669 0.96090
k= 24.79,d = 42.10257,

Burr-type XII NHPP-based model DS3 0.41194 7.21598 0.42428 0.58296 0.97058
4 = 1.54886, b = 0.30515

J-M model DS5 N =17, & = 0.00973 0.98303 10.05115  0.37502 0.85674 0.93951
G-O NHPP model DS5 & =17.55, b = 0.00912 1.05353 9.98699 0.34141 0.85598 0.93458
k = 23.76,d = 61.94323,

Burr-type XII NHPP-based model DS5 0.79929 1035710 0.60383 0.82868 0.95081
& = 1.06100, b = 0.59823

NHPP-based model on DS3 and DS5, respectively. It can be 03 ‘ ‘ ‘ ‘ : ‘ ‘ ‘
observed that the predictive reliability values of Burr-type ozl G0 NiibP model |
XII NHPP-based model is higher than that of the other two ‘yﬁ‘g”‘“’e XIENHPP-based model

models, but three models show similar reliability values on
DSS5.

V. MODEL EVALUATION CRITERIA E

A. MODEL COMPARISON CRITERIA lé

Different SRGMs have different fitting effect for the same E

fault dataset. Since DS3 and DSS5 are obtained as fault counts,

thus we employ the following goodness-of-fit criteria to

examine and compare the predictive power of all selected sl |

models. These criteria are described as follows: ‘
1) Mean Square Error (MSE) -0'60 2‘0 4‘() (»‘n x‘o 1<‘)0 1én 1‘40 1(‘)0 180
The MSE [54] is used to describe the average distance Testing time (hours)

between the cumulative number of faults actually observed 04 ‘ ‘ (a‘) Roa m‘mng m?k prograf]] ‘ ‘

and the predictive value of the faults, which is defined as iMmedd

follows: 0.2} yB:(r)r»typc XII NHPP-based model| -

n
3 Gty) = yi)®
MSE=25L (30)
n
2) Sum of Absolute Error (SAE)
The SAE [54] is used to describe the distance between the
predicted number of faults and the observed data, which is
defined as follows:

Relative error

n

SAE =) " |in(t;) — il 31) B
i=1 0 20 40 60 80 100 120 140 160 180
Testing tim.e (hoyrs)
3) Mean Error of Prediction (MEOP) (b) Workflow verification systern
The MEOP [55] is usually used to compare the predictive FIGURE 14. Relative error of fault detection based on different models
power, which is defined as follows: (DS3 and DS5).
‘m (1) — ’ The Variation [56] is the standard deviation of prediction
=i bias, which is defined as follows:
MEOP = —k 1 (32)
n . \2
v iy (m(tl Vi) — Blas) 33

4) Variation ariation = 1 33)
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FIGURE 15. A jBPM-based standardized test system for model assessment.

The expression of bias is as follows:

Bias = Z [@]

i=1

(34)

5) Correlation Index of Regression Curve (R?)

The R*> [57] can measure the percentage of variations
explained by the model and examine the fitting power of
SRGMs, which is expressed as follows:

> (i — e
RR=—1-=_ (35)

g@i —7)?

n

where y = % > vi

In the abolv_e1 formulas, n is the number of fault sample
data, k is the selected fault number, y; is the observed
cumulative number of faults at time #;, and m(;) is the
estimated cumulative number of faults by SRGM at time ;.
Furthermore, the assessment method of the hypergeometric
distribution model discussed in Section IV is different from
the other three models. The hypergeometric distribution
model employs cumulative number of faults and fault type
to predict the total number of software faults, while other
models mentioned in this paper employ the interval time and
cumulative number of faults to predict the total number of
software faults at a certain time in the future. In order to
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intuitively present the predictive power of different SRGMs
over time, Table 5 lists the assessment results of the J-M
model, G-O NHPP model and Burr-type XII NHPP-based
model on DS3 and DSS5.

For the MSE, SAE, MEOP and Variation mentioned above,
a smaller indicator value indicates a stronger fitting power.
However, a larger value of R? indicates that the fitting power
for the data is better. For a more accurate model comparison,
the fitting results of the two datasets by different SRGMs
are presented in Table 5, where the bold font marks the
optimal indicator value in each dataset. It can be observed
that the fitting effect of the J-M model on the test data of
DS3 is better than that of the G-O NHPP model and Burr-type
XII NHPP-based model. However, the Burr-type XII NHPP-
based model has a better fitting effect on the test data of DSS5.
By contrasting the model comparison criteria, the testers can
select a more suitable SRGM for the test data analysis in
terms of different datasets.

B. MODEL PREDICTIVE PERFORMANCE CRITERIA

The model predictive performance criteria is used to verify
the predictive performance of multiple SRGMs on different
fault datasets, which provides guidance for evaluating the
software reliability. Relative error (RE) is used to evaluate
the predictive performance of these models during fault
detection [58], as follows:

_ ’/h(ti-i-l) - My,

RE = (36)

Mty
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where my,,, represents the cumulative number of faults
detected at time f;11, and m(t;1) represents the fault data
detected up to time #; to estimate the parameter values of
the model and calculate the number of faults detected at
time #;+1. The RE is a one-step prediction, which is used
to measure the predictive performance of SRGMs. If RE is
closer to 0, the predictive performance of the model is better.
If RE is greater than 0, the number of fault detections in the
software is overestimated. However, if RE is less than 0, the
number of fault detections in the software is underestimated.
Fig. 14 plots the RE prediction curves of different models on
the 2 fault datasets.

It can be seen from Fig. 14 that the three models have
good fit and prediction performance in fault detection, which
demonstrates that the modeling and management of testing
processes are more accurate. On the whole, the models begin
to converge rapidly and gradually approach the curve y = Oin
the second half of the fault datasets, indicating that their
predictive performance is improving.

C. MODEL ASSESSMENT OF STANDARDIZATION
WORKFLOW MANAGEMENT SYSTEM

The reliability management module of the standardization
workflow management system of software testing processes
is developed to evaluate the fitting effect and predictive
performance of SRGMs. The models implemented in the
system are the hypergeometric distribution model, the J-M
model, the G-O NHPP model and the Burr-type XII NHPP-
based model, and the detailed analysis of these models is
given in sections IV and V. The input of the reliability
management module is fault datasets DS3 and DSS5, and
the output is the reliability analysis results of SRGMs. The
standardization workflow management system can not only
regulate the software testing processes, but also have great
significance in improving the fault detection rate and software
quality. Fig. 15 presents a screen shot of the system. After the
analysis of test data is completed, the system gives the model
assessment results of different SRGMs. In addition, it also can
draw visual graphs of the estimated mean value functions, the
software reliability functions and the RE prediction curves for
all the SRGMs on different fault datasets.

VI. CONCLUSION

This paper proposes a standardization workflow technology
to regulate the software testing processes, and constructs
a workflow management system to realize the efficient
management for software testing processes. Taking the RSA
timing attack program and workflow verification system as
the test objects, we focus on combining the standardized
system in the field of software testing with the actual
testing processes, as well as extracting and summarizing the
standards of the testing work to instruct the testing processes.
Throughout numerical experiments with two fault datasets
observed in actual software testing, we have employed multi-
ple SRGMs to evaluate the software reliability and compared
these SRGMs in fitting power and predictive performance.
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Specifically, the J-M model provides lower MSE, SAE,
MEOP, Variation and higher R?> on DS3. However, the
Burr-type XII NHPP-based model provides a better fitting
effect on DSS5. Therefore, testers can select a more appropri-
ate SRGM from the model evaluation results for reliability
analysis. In software testing, the idea of standardized process
and the construction of workflow management system are
interrelated and mutually reinforcing. The construction of
the system should consider the current testing technology
and testing standards comprehensively, and improve the
testing process combined with the actual situation of software
development. For one thing, the formulation of standardized
testing process can accurately and efficiently regulate the
design and implementation of workflow management sys-
tem’s functional modules; for another, the iterative upgrade of
workflow management system also promotes a higher degree
for process standardization. These two aspects make the
implementation of software testing projects more scientific
and standardized, and ensure the reasonable execution of the
testing processes. The proposed standardization workflow
technology can provide instructive significance for future
related test projects, increase the probability of finding
software defects, and thus improving the software quality.

In future research works, we plan to combine the
standardization workflow technology with the EM algorithm
in software reliability assessment to obtain more accurate
parameter estimation, thus making reliability analysis results
more reliable and software testing processes more stan-
dardized. Furthermore, the Activiti engine covers workflow,
service collaboration and other areas with better flexibility,
scalability and execution efficiency, and is widely used in
the field of BPM. We need to fully understand the software
architecture of jBPM, and hope to employ the Activiti engine
to implement the process management of software testing
in the future. In the process of test management, we will
pre-process the logs of software testing processes generated
by the standardization workflow management system, and
then use Petri nets to carry out process acquisition, process
decomposition, process combination and process verification
on the logs. Therefore, this will make the modeling of
standardization patterns for software testing processes more
trustworthy.
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