
Received 26 June 2022, accepted 1 August 2022, date of publication 5 August 2022, date of current version 10 August 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3196775

A Design of Parallel Content-Defined Chunking
System Using Non-Hashing Algorithms on FPGA
HUNG VUONG , HUNG NGUYEN , AND LINH TRAN
Department of Electronics, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City 700000, Vietnam
Vietnam National University Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam

Corresponding author: Linh Tran (linhtran@hcmut.edu.vn)

ABSTRACT Content-defined chunking is a commonmethod inmany applications such as data deduplication
and data synchronization. In recent years, new CDC algorithms using non-hashing methods have been
developed, and positive results have been obtained. However, most of the algorithms are developed for
single-thread computation on microprocessors. After analyzing some popular CDC algorithms, we observed
that the algorithms using the basic sliding window protocol are more feasible to process in parallel. In this
work, we proposed a new parallel chunking method that aims for hardware implementation. Additionally,
we used the PCI algorithm, which does not include hash functions, to implement a multi-thread chunking
system on FPGA devices. By exploiting the strength of the FPGAs, our proposed design achieves not only
high computational speed but also great scalability.

INDEX TERMS FPGA, content-defined chunking, non-hashing method, PCI algorithm, hardware design.

I. INTRODUCTION
Digital data is considered as a valuable resource in modern-
day. Data storage and deduplication prove themselves as
difficult challenges [1], [2]. Studies from Microsoft [3], [4]
shows that about 50% of data stored in primary memory and
80% of data stored in backup memory are duplicated. Data
deduplication techniques are currently deployed to save stor-
age space and improve memory performance in data centers
[3]–[6]. Moreover, the technique is also applied in
low-bandwidth network systems to reduce duplicated packets
transmitted over the network [7], [8].

A data deduplication system goes through two phases: data
chunking and searching for duplicate values. Firstly, the data
is broken into chunks of equal or non-equal lengths depending
on the chosen algorithm. These chunks are represented by the
fingerprints, which are the results of hash functions. The fin-
gerprints are used to compare and check if the data has been
stored before. As the first phase of computation, data chunk-
ing makes a huge impact on the performance of the whole
deduplication process. If the data is divided into equal chunks
by a fixed-size chunking (FSC) algorithm, the system can

The associate editor coordinating the review of this manuscript and

approving it for publication was Harikrishnan Ramiah .

process it quickly. However, fixed-size chunking encounters
the byte shifting problem. Aminor change in any chunk leads
to changes in the following chunks. It is for this reason that
variable size chunking algorithms are more popular despite
taking up a lot of resources and computation effort. Although
many effective content-defined chunking (CDC) algorithms
are researched, it is a huge challenge for existing algorithms
to catch up with the throughput of current storage devices.
Therefore, studies on data chunking play an important role in
improving the performance of the data deduplication system,
freeing CPU resources and optimizing the capacity of storage
devices.

Basic Sliding Window (BSW) is one of the most basic and
popular CDC algorithms [9]. Rabin roll hash [10] is com-
monly used in BSW to improve data chunking performance.
However, calculating the fingerprints takes a considerable
amount of time. Many studies have proposed new chunking
algorithms that not using hash functions to decrease computa-
tion time. Local Maximum Chunking (LMC) [11] is a typical
one when combining the sliding window and the contents
of the data bytes to find the cutoff points in a file. This
new approach uses comparison operations instead of mod-
ulo operations in the Rabin hash function. Two other algo-
rithms with similar approaches are Asymmetric Extremum

82036 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0002-9394-9893
https://orcid.org/0000-0003-3461-2681
https://orcid.org/0000-0001-6490-5413
https://orcid.org/0000-0003-3505-6525

H. Vuong et al.: Design of Parallel Content-Defined Chunking System Using Non-Hashing Algorithms on FPGA

(AE) [12] and Rapid AsymmetricMaximum (RAM) [13] that
both use two windows, one of fixed-size and one of variable
size, to determine the cutoff point. By eliminating the sliding
window, AE and RAM reduce the great number of compar-
isons. In contrast, the lately Parity Check of Interval (PCI)
algorithm [14], which examines the number of 1s in a sliding
window and compares that value with a preset threshold to
determine a cut point, gives very positive results.

In addition to researching new algorithms, improving
and applying existing algorithms to exploit CPU capabil-
ities is also a research direction that has huge attention
[15], [16]. Besides, there are researches on powerful hardware
such as GPU [17] and FPGA [18] in order to reduce CPU
resource consumption and enhance the computing perfor-
mance. However, these studies mainly overcome the Rabin
chunking algorithm’s weaknesses without taking advantage
of the new algorithms. Existing methods like P-Dedupe [15]
and MUCH [16] can replace Rabin Chunking with hashless
CDC algorithms to simplify the chunking process. However,
the parallel chunking method of P-Dedupe is not optimized
because it requires plenty of recomputation to achieve correct
results. Meanwhile, MUCH requires less recomputation but
heavily depends on the chunk size constraints, which are
not recommended in recent CDC algorithms. We proposed
a parallel chunking method without chunk size restriction
requirements to enhance the content dependence of hashless
CDC algorithms. Moreover, because the number of CPU
threads restricts software implementation, we proposed a
FPGA implementation to achieve more scalability and higher
throughput.

The contributions of this paper are:

• A new parallel chunking method which is independent
of the chunk size constraints.

• A high speed, scalable FPGA implementation applying
the proposed method.

The rest of the paper is organized as follows. Section II
presents the theoretical basis of popular data chunking algo-
rithms and motivations of our work with the PCI algorithm.
Section III describes our parallel chunking method and the
proposed FPGA implementation. Section IV provides the
experimental results and hardware evaluation. Section V con-
cludes the paper.

II. BACKGROUND AND MOTIVATION
This section provides the background of some popular CDC
algorithms including Rabin Chunking, LMC, AE, RAM and
PCI, and motivations of our research.

A. BACKGROUND
1) RABIN CHUNKING ALGORITHM
Data bytes are filled into a sliding window for Rabin finger-
print calculation. If the fingerprint matches the preset value,
the cutoff is determined as the position of the last byte of
the sliding window. Otherwise, change the sliding window
position to one byte forward, do the hashing calculation and

FIGURE 1. Operation of the Rabin Chunking algorithm.

fingerprint comparison repeatedly. The algorithm terminates
when all the cut points in the file have been found. The
algorithm’s operation is shown in Fig. 1.

The Rabin hash function is used to calculate the finger-
prints because it can reuse the previously calculated fin-
gerprint result, along with the newest and oldest byte in
the window, to compute a new result. Even though Rabin
rolling hash is suitable for the sliding window approach,
it is a time-consuming function and abates the ability to
resist low entropy strings. In addition, the chunk variance of
Rabin Chunking is large because of the high probability of
getting a long chunk [11], [12]. A maximum threshold could
be imposed on the size of data chunks to overcome these
defects, but this causes the degradation of boundaries-shifting
resistance as some chunks do not depend on data con-
tent anymore. Algorithm 1 presents the Rabin Chunking
algorithm.

Algorithm 1 Rabin Chunking Algorithm
Input:
• Data file: file
• Comparable value: preset_value
• Sliding window size: width

Output: Cut point: cut_point
function Rabin_chunking(file, preset_value,width)
cut_point = 1
index = 0
while (byte = Read_byte(file)) do
array[index%width+ 1] = byte
if (Size(array) >= width) then
if (Hash(array, index,width) == preset_value)
then

return cut_point
end if

else
continue

end if
cut_point = cut_point + 1

end while
end function

2) LOCAL MAXIMUM CHUNKING (LMC) ALGORITHM
The LMC algorithm uses a sliding window consisting of three
components: a left window, a local maximum byte and a right

VOLUME 10, 2022 82037

H. Vuong et al.: Design of Parallel Content-Defined Chunking System Using Non-Hashing Algorithms on FPGA

FIGURE 2. Operation of the Local Maximum Chunking algorithm.

window as illustrated in Fig. 2. The local maximum byte is
determined as a cut point if its value is greater than all the
other bytes in two fixed-size windows. Otherwise, the data
window shifts one byte forward and do the comparisons again
until a cutoff is found [11].

The advantage of the LMC algorithm is that it is less
affected by adding, removing or changing data bytes. If a
byte is changed but its value is still less than the maximum
local byte value, then only that chunk is affected. In case
that data byte creates a new cut point, one more following
chunk is changed as a result but the others are preserved.
The LMC algorithm has many downsides such as not being
able to remove low entropy strings and high variance in data
chunk size. In addition, LMC algorithm is practically slower
than Rabin Chunking algorithm because all the bytes in the
window must be re-checked whenever the sliding window
moves to a new position. Algorithm 2 presents the LMC
algorithm.

Algorithm 2 Local Maximum Chunking Algorithm
Input:
• Data file: file
• Left, right window size: width

Output: Cut point: cut_point
function LMC_chunking(file,width)
i = 1
max_value = 0
max_position = 1
start = 1
while (byte = Read_byte(file)) do
if (byte <= max_value) then

if (i == max_position+ width) then
if (max_position >= start + width) then
start = max_position+ 1
cut_point = max_position
return cut_point

end if
end if

else
max_value = byte
max_position = i

end if
i = i+ 1

end while
end function

3) ASYMMETRIC EXTREMUM (AE) ALGORITHM
The AE algorithm uses a variable size window and a fixed-
size window. Similar to the LMC algorithm, there is a byte
between two windows called ‘‘extreme-valued byte’’ which
could be either minimum or maximum value. In this paper,
we used the maximum value to discuss for convenience since
Y. Zhang et al. [12] prove that choosing the extreme-valued
byte as the largest or smallest byte does not make a signifi-
cant difference in performance. If the extreme-valued byte is
greater than all bytes in the left window and not less than the
bytes in the right window, the cut point is located at the end
of the fixed-size window [12] as shown in Fig. 3.

FIGURE 3. Operation of the Asymmetric Extremum algorithm.

The two windows and an extreme-valued byte cover the
whole chunk in the AE algorithm. The number of compar-
isons of the AE algorithm is significantly lower than the LMC
algorithm because each byte is used for comparison once.
However, the extreme-valued byte located in themiddle of the
data chunk makes this algorithm less efficient in byte shifting
resistance. When a byte larger than the extreme-value byte is
added to the fixed window of a data chunk, that chunk and the
next one are changed, and the subsequent data chunks might
be affected. In return, the fact that the extreme-valued byte is
located on the left side of the fixed window and accepts ties
in this window helps the AE algorithm detect low entropy
strings effectively. Algorithm 3 presents the AE algorithm.

4) RAPID ASYMMETRIC MAXIMUM (RAM) ALGORITHM
In contrast to the AE algorithm, RAM uses a fixed-size
window followed by a variable size window. The algorithm
starts by finding the maximum value in the left window. The
first byte position in the right window whose value is greater
than or equal to the maximum value of the left window will
be selected as the cut point [13]. The algorithm’s operation is
shown in Fig. 4.

Like the AE algorithm, the RAM method has limitations
for the byte shifting problem. If a byte is added or changed
to a value greater than the maximum byte in the chunk,
the cut point of that chunk will be changed, which might
affect subsequent chunks. Additionally, the RAM algorithm
has difficulty dealing with low entropy strings. For instance,
if a sequence of bytes with small values occurs in the right
window and the maximum value in the fixed-size window
is large enough, the cut point can only be found when this
sequence ends. This drawback causes an increase in chunk
size variance as a result. In the study [13], Widodo et al.
solve this problem by applying the maximum threshold to
control the chunk size variance. Algorithm 4 presents the
RAM algorithm.

82038 VOLUME 10, 2022

H. Vuong et al.: Design of Parallel Content-Defined Chunking System Using Non-Hashing Algorithms on FPGA

Algorithm 3 Asymmetric Extremum Algorithm
Input:
• Data file: file
• Right window size: width

Output: Cut point: cut_point
function AE_chunking(file,width)
i = 1
max_value = 0
max_position = 1
while (byte = Read_byte(file)) do
if (byte <= max_value) then

if (i == max_position+ width) then
cut_point = i
return cut_point

end if
else
max_value = byte
max_position = i

end if
i = i+ 1

end while
end function

FIGURE 4. Operation of the Rapid Asymmetric Maximum algorithm.

5) PARITY CHECK OF INTERVAL (PCI) ALGORITHM
Initially, the PCI algorithm establishes a sliding window and
a preset value as the comparison threshold. After filling the
window with data bytes, if the number of 1s in the window is
not less than the preset value, the cut point is determined as
the last position of that window. If the cutoff condition is not
satisfied, slide the window to the next byte and re-perform the
comparison of the sum of 1s with the threshold. This process
is repeated until all the cut points and chunks of a data stream
are found [14]. The algorithm’s operation is shown in Fig. 5.

Similar to Rabin Chunking, the PCI algorithm could reuse
the previous result for the following calculation. Neverthe-
less, it costs less computation time due to simple additions
and comparisons. The PCI algorithm is also great at byte
shifting resistance. If a byte is changed, there is a chance that
a new cutoff will occur and split that chunk in half, but the
other chunks will not be affected. In the worst case that a byte
is added, deleted, or changed near the chunk boundary, that
chunk and the subsequent one are affected. One of the PCI
drawbacks is the varying size of chunks due to the geometric
distribution [14]. Besides, the ability to eliminate low entropy
strings is another aspect to consider. Suppose a byte sequence
has approximately the same value that the sum of 1s of the
sliding window does not exceed the preset value. In that

Algorithm 4 Rapid Asymmetric Maximum Algorithm
Input:
• Data file: file
• Left window size: width

Output: Cut point: cut_point
function RAM_chunking(file,width)
i = 1
max_value = 0
max_position = 1
while (byte = Read_byte(file)) do
if (byte >= max_value) then

if (i > width) then
cut_point = i
return cut_point

end if
max_value = byte
max_position = i

else
continue

end if
i = i+ 1

end while
end function

FIGURE 5. Operation of the Parity Check of Interval algorithm.

case, the cutoff is nearly impossible to find unless changing
the algorithm configuration. Algorithm 5 presents the PCI
algorithm.

B. MOTIVATION
In the publication [12], Y. Zhang and colleagues gave some
important criteria used to evaluate the CDC algorithm and
were widely used in later studies [13], [14]. The evaluation
criteria include:

• Content-defined: In order to limit the effect of byte
shifting, chunking algorithms need to decide the cutoff
point based on the content of the data.

• Low chunk size variance: Data deduplication efficiency
is significantly influenced by the chunk size variance.

VOLUME 10, 2022 82039

H. Vuong et al.: Design of Parallel Content-Defined Chunking System Using Non-Hashing Algorithms on FPGA

TABLE 1. Content-defined chunking algorithm comparisons.

Algorithm 5 Parity Check of Interval Algorithm
Input:
• Data file: file
• window size: width
• Comparison threshold: thres_value

Output: Cut point: cut_point
function PCI_chunking(file,width, thres_value)
i = 1
index = 0
array[] = {−1}
while (byte = Read_byte(file)) do
array[index%width+ 1] = byte
if (Content(array) >= width) then

if (Parity(array, index,width) >= thres_value) then
cut_point = i
return cut_point

else
continue

end if
end if
i = i+ 1

end while
function Parity(array, index,w)
i = index
num = 0
parity_of _byte[] = 0, 1, 1, . . . , 8; //size: 256
while ((i! = index − 1)) do
num = num+ parity_of _byte[array[i]]
i = (i+ 1)%w

end while
return num
end function

The deduplication efficiency is high if the variance of
chunk size is low and vice versa [9].

• Capable of detecting and eliminating low-entropy
strings: In practice, files may contain repetitive bytes
with low variance. The CDC algorithm is expected to
have the ability to identify and eliminate these strings.

• High computation speed: The CDC algorithm is desired
to be simple and avoid time-consuming calculations in
order to achieve high throughput.

• Less restriction on chunk size: Minimum threshold and
maximum threshold are often used to reduce data chunks
that are too small or too large. Imposing such limitations

reduces the variance of chunk size [9] but it makes
chunks become less content dependent.

Based on the theoretical basis presented in the previ-
ous section and experimental results presented in studies
[12]–[14], Table 1 illustrates the comparisons of CDC algo-
rithms. Practical experiments show that RAM and AE algo-
rithms are always in the leading positions in computation
speed and are the top candidates for parallel processing
research. Usually, the algorithms process data sequentially.
If the data stream is divided into segments for parallel pro-
cessing, it is necessary to ensure chunk consistency, which
means the results are the same as chunks sequentially pro-
cessed. Another vital aspect to consider is the difficulty
in chunk post-processing when executing an algorithm in
parallel.

Current parallel studies are mainly done with the Rabin
Chunking algorithm [15], [16], [19]. These models all start
with splitting the data file into several equal segments. Then,
these segments of data will be processed by parallel threads
simultaneously. The difference between parallel studies is
how they deal with chunks acrossmultiple segments. Amulti-
thread design separates the chunking process into two stages.
The first stage is chunking the input segments in paral-
lel. After parallel threads chunk input segments, the adja-
cent chunks between segments need to be post-processed in
the second stage because their boundaries are not content
dependent. The post-process stage recomputes the boundaries
of adjacent chunks between segments to achieve the same
results as the sequential algorithm. However, after the actual
cut points of the adjacent chunks are found, byte shifting
problems might occur and affect the following chunks in
segments.

Rabin Chunking and LMC algorithms only affect a few
adjacent chunks when the byte shifting problem occurs, so it
is suitable for parallel applications. Due to the LMC’s low
entropy strings elimination ability and the low throughput,
Rabin Chunking is more prevalent in multi-threaded imple-
mentation studies. Research [18] proposed a hardware imple-
mentation for Rabin fingerprint calculations and achieved
very positive results as the design could operate at 300 MHz.

The AE algorithm has the advantages of low chunk
size variance and high throughput. When two adjacent
chunks between segments are post-processed, the follow-
ing chunks might be influenced. The unpredictable number
of affected chunks raises concerns about the capacity of
buffers storing chunks for recalculation and the impact of
this stage on chunking throughput. It is desirable for a simple

82040 VOLUME 10, 2022

H. Vuong et al.: Design of Parallel Content-Defined Chunking System Using Non-Hashing Algorithms on FPGA

post-processing method as the one proposed by Ni et al. [19]
that all the potential cut points are calculated and saved for
chunk boundary determination. However, this method is not
applicable to the AE algorithm because there is no sliding
window used in the algorithm, and chunks are partitioned
by different cutoff conditions due to unpredictable extreme-
value bytes.

The RAM algorithm starts by finding the maximum value
in a fixed-size window and then determines the cutoff to be
the position of the larger byte outside that window. With this
minor change compared to the AE algorithm, RAM improves
its throughput but lessens the byte shifting resistance. When
the chunk boundary moves, it might change the maximum
value in the next chunk’s fixed-size window, and the cut
points of the subsequent chunks might be redefined as a
result. Similar to AE, RAM algorithm does not have a fixed
comparing value, so it is hard to marshal chunks affected by
segment boundaries in the post-processing stage.

PCI is our next candidate for parallel chunking because
of the difficulty in marshalling adjacent chunks of AE and
RAM algorithms. PCI algorithm determines the cut points by
comparing the total of 1s in the sliding window with a preset
threshold. As a result, the PCI algorithm has better throughput
than Rabin Chunking and LMC. Because the sliding window
size limits the number of recalculations, it is more simple to
post-process chunks generated in parallel. For instance, the
first and last chunks of adjacent segments could be stored,
then combined and re-computed to achieve expected results.
Additionally, other proposed methods [16], [19] could be
referred to and applied to the PCI algorithm thanks to the
same sliding window protocol.

Ni et al. proposed an efficient approach called SS-
CDC [19] that executes the chunking process in two stages.
The first stage computes all potential cut points in parallel and
marks their positions in bit arrays. In the second stage, the
chunk boundaries are quickly selected from the candidates
based on the chunk size requirements. This stage, however,
can only perform sequentially because it needs to know the
previous valid cutoff position to determine the next chunk
boundary. Consequently, the post-processing stage requires
a sizeable cache for temporarily storing data from multiple
threads until bit arrays are fully filled.

Won et al. developed another method, MUCH, that parti-
tions a data stream in parallel but still preserves the chunk
consistency [16]. MUCH employs Dual Mode Chunking
method which uses the chunk size constraints of CDC algo-
rithms to separate a usual chunking process into slow mode
and accelerated mode. The chunking thread starts in slow
mode and ignores the lower and upper bounds of the chunk
size. If certain conditions are satisfied, the chunking thread
will switch to accelerated mode and apply the chunk size
restrictions. After segments are processed in parallel, chunks
generated in slow mode are used for marshalling by coalesc-
ing and splitting to achieve final results. In contrast, chunks
generated in accelerated mode do not need to be stored for
post-processing.

After analyzing some existing algorithms, we observed
that it is challenging to make multi-thread implementations
for AE and RAM algorithms due to the complicated post-
process. Because both AE and RAM do not have a fixed com-
paring value, the post-process of adjacent chunks between
segments might affect the subsequent chunks, which means
more recomputation. Assuming that multiple post-processing
threads operate in parallel. Each thread combines with the last
chunk of the preceding thread to recalculate. If the last chunk
is changed because of the post-process, the re-computational
results of the next post-processing threads are wrong. This
problem makes it difficult to implement parallel post-
processing threads.

Meanwhile, algorithms with a rolling window like PCI and
Rabin Chunking have many approaches to process in parallel
but still preserve the result consistency, such as SS-CDC or
MUCH. SS-CDC is storage resource consuming as chunk
boundary determination has to perform sequentially. MUCH
requires less storage capacity since only chunks generated in
slowmode are needed for post-processing. However, because
MUCH relies on the chunk size restrictions for chunking
and marshalling, the PCI algorithm cannot be applied with-
out adding these limitations. In this paper, we propose a
parallel CDC chunking method independent of the chunk
size constraints. Moreover, we take advantage of the low
computational overhead of the PCI algorithm to implement a
high speed, scalable chunking system on FPGA devices with
our proposed method.

III. PARALLEL CHUNKING METHOD
AND HARDWARE DESIGN
A. PROPOSED PARALLEL CHUNKING METHOD
Our parallel chunking method includes two stages: (i) deter-
mining the cut points of data segments and (ii) post-
processing the chunks affected by the segment boundaries.
Assuming that the CDC algorithm has the sliding window of
size W . Before starting phase one, a file is partitioned into
equal segments which overlapW−1 bytes with the preceding
adjacent segments for sliding window computation. The size
of each segment is flexibly set, but remember that the smaller
the size is, the more segments are created, and the more
post-processing operations are. After the segmentation, the
segments are simultaneously fed into computational threads
to find the cut points.

As our proposedmethod also aims for hardware implemen-
tation, all potential cut points are calculated in the first stage
to avoid additional computation in the post-processing stage.
However, it is desirable for anothermarshallingmethod rather
than SS-CDC because the sequential post-process requires
expensive memory resources. Therefore, we developed a
modified version of the Dual Mode Chunking method to
reduce the number of chunks for marshalling. We observed
that potential cut points could be used to create new switching
conditions independent of the chunk size restrictions.

VOLUME 10, 2022 82041

H. Vuong et al.: Design of Parallel Content-Defined Chunking System Using Non-Hashing Algorithms on FPGA

A chunking thread operates in two different modes called
slow mode and fast mode. Every segment is firstly processed
in slow mode, where all potential cut points are calculated
for the marshalling stage. The chunking process of a thread
executes in slow mode until a transition cut point is found.
When the thread switches to fast mode, it stops finding poten-
tial cut points and focuses on determining chunk boundaries.
Therefore, chunks calculated in fast mode do not need to be
post-processed unless they are ended by segment boundaries.
A cutoff will be defined as a transition cut point if it satisfies
all the following conditions:
• The cutoff is not at positions fromW to 2(W − 1).
• The distance between the last potential cutoff and the
current one is greater than or equals the sliding window
size W .

If the chunking thread wants to operate in fast mode,
it needs to know the preceding chunk boundary to achieve
accurate results. It means that determining a transition cut
point is actually finding a chunk boundary without knowing
the start of that chunk. Because data chunks cannot be smaller
than the sliding window size, the distance between potential
cutoffs might be used to determine the chunk boundaries.
Fig. 6 and Fig. 7 illustrates some examples. P1,P2,P3 and
P4 are potential cutoffs. The distance between two adjacent
potential cut points are labeled as D12,D23 and D34. Fig. 6
assumes that D12 < W , D23 < W , D34 > W and P1 is
a chunk boundary. Consequently, P3 and P4 are selected as
chunk boundaries sinceD12+D23 > W andD34 > W . Fig. 7
indicates another case that D12 > W , D23 < W , D34 > W
and both P1 and P2 are chunk boundaries. Because D23 does
not meet the minimum chunk sizeW , P4 is determined as the
next boundary. In both cases, P4 is chosen as a valid cut point
regardless of the state of P3 since D34 is always larger than
the minimum chunk size restriction.

FIGURE 6. Example of chunk boundary determination. D12 < W ,
D23 < W , D34 > W and P1 is a chunk boundary.

FIGURE 7. Cases of chunk boundary determination. D12 > W , D23 < W ,
D34 > W and both P1 and P2 are chunk boundaries.

We observed that a potential cutoff could be determined
as a transition cut point if the distance between it and the
last potential cutoff is not less than the sliding window size.
However, this is insufficient to determine a transition cut

point at some positions. The first W − 1 bytes of a segment
are overlapped with the last W − 1 bytes of the preced-
ing one so that any potential cutoff at positions from W to
2(W − 1) might belong to a chunk lying across multiple
segments. Because the processing thread is unaware of the
beginning of the chunk, it cannot determine any potential cut
point in these positions as a transition cut point. In contrast,
if the first potential cutoff is found after position 2(W − 1),
it is determined as a transition cut point without knowing
the preceding chunk boundary position. This is because the
distance between them is always larger than the window size,
even in the worst case that the preceding chunk boundary
is the segment boundary. Therefore, only potential cutoffs at
positions fromW to 2(W −1) are not considered as transition
cut point candidates.

The marshalling stage selects potential cut points to gen-
erate chunks larger than the sliding window. In each post-
processing thread, because the beginning position of the
uncompleted chunk is known, it could select proper chunk
boundaries from the set of potential cut points of the follow-
ing segment to complete that chunk. If the transition cut point
is notmet, the post-processing threadwill continue to produce
chunks from the slow mode data bytes.

B. HARDWARE DESIGN ON FPGA
Fig. 8 shows the general hardware diagram of the design. The
segments are fed into computational threads simultaneously.
In each thread, the ChunkingModule starts calculating poten-
tial cutoffs in slow mode until it meets certain conditions and
switches to fast mode. In fast mode, the Chunking Module
partitions the rest of the segment into chunks, which do
not require additional post-processing except the last one.
Because AE and RAM do not have a fixed comparing value,
they cannot be used to calculate potential cut points in slow
mode. Therefore, it is not suitable to apply AE and RAM in
our proposed method. In this paper, we chose the PCI algo-
rithm for our FPGA implementation because of its simplicity.

After the first chunking stage, data bytes and cut point
positions are saved in two separated buffers depending on the
operating mode. The buffers are called Slow Mode Buffer
and Fast Mode Buffer. The Marshalling Module first read
the Fast Mode Buffer data of the same thread. When the

FIGURE 8. Parallel chunking design.

82042 VOLUME 10, 2022

H. Vuong et al.: Design of Parallel Content-Defined Chunking System Using Non-Hashing Algorithms on FPGA

last chunk of a segment is read out, the Marshalling Module
requests data from the next thread’s Slow Mode Buffer and
coalesces them with the uncompleted chunk. It keeps reading
the Slow Mode Buffer and re-checking potential cut points
to form precise chunks until a transition cut point is aware.
Then, it switches back to the preceding thread’s Fast Mode
Buffer and repeats this process until the buffers are empty.
The Slow Mode Buffer might overflow if a transition cut
point is missed. In this case, the last byte stored in the buffer
serves as the transition cut point even though it is not content-
dependent. The buffer overflow probability could be reduced
by increasing the buffer depth or decreasing the average
chunk size. However, because the FPGA internal memory is
limited, we have to trade the chunk consistency for a scalable
design.

1) CHUNKING MODULE
The input segments are sent to the chunking module to find
the cut points, along with some associated signals such as
start and end to indicate the first and last byte of a data file.
In fast mode, the ChunkingModule uses the PCI algorithm

to chunk the segments. The cut points found in this mode are
valid and do not need to be post-processed.

In contrast, in slow mode, the PCI algorithm is used with
an adjustment to find all the potential cut points used in the
Marshalling Module. The differences with the original algo-
rithm lead to the need for a Chunking Controller to control
the chunking process, as shown in Fig. 9.

FIGURE 9. Hardware design of Chunking Module.

According to the state machine in Fig. 10, when the chunk-
ing module starts processing the input segments, by default,
it always operates in slow mode. However, because the first
segment of a file is not contiguous to any other segment,
Chunking Controller enters fast mode as soon as it receives
the start signal. For the remaining segments, Chunking Mod-
ule processes in slow mode until it finds a transition cut point
or the buffer overflows with a large data chunk.

When operating in fast mode, the Chunking Controller
continuously checks the signals indicating the end of a seg-
ment or a file and will switch back to slow mode if either
signal is active. The mode signal in Fig. 9 represents the
current state of the Chunking Controller. It decides which

FIGURE 10. Chunking Module operation.

buffer to write data. In addition, a switch signal is also added
to determine when to change the operating mode.

2) MARSHALLING MODULE
The hardware design of the Marshalling Module is presented
in Fig. 11. A Marshalling Module connects to a Slow Mode
Buffer and a Fast Mode Buffer of two different threads,
as shown in Fig. 8, but only reads data from either of them
in each clock cycle.

Fig. 12 details the operation of reading data from two
buffers. Initially, in the Idle state, the Marshalling Module
checks the status of the Fast mode Buffer and reads data
from this buffer as soon as it is informed that the buffer
is not empty. The data bytes and cut points read from the
Fast Mode Buffer will be sent straight to the output without
further processing. If a received signal switch is active high,
the Marshalling Module switches to reading data from the
Slow Mode Buffer. Data and the corresponding potential cut
points will be post-processed to achieve valid chunks.

FIGURE 11. Hardware design of Marshalling Module.

While reading data from the Slow Mode Buffer, the Mar-
shalling Module changes its request state when it receives
an active high switch signal. If the Fast Mode Buffer is not
empty, the Marshalling Module will switch to read data from
this buffer. Otherwise, it will return to the Idle state.

C. TESTING MODEL
In this section, we discuss the verification model illustrated
in Fig. 13, which is used for checking our parallel chunking
method. The research is novel when parallelizing the PCI
algorithm and adding a new solution to recover the chunks
affected by segment boundaries. Therefore, before imple-
menting the design on FPGA devices, it is necessary to check

VOLUME 10, 2022 82043

H. Vuong et al.: Design of Parallel Content-Defined Chunking System Using Non-Hashing Algorithms on FPGA

TABLE 2. List of datasets used in the study.

FIGURE 12. Marshalling Module requests for data from Slow Mode Buffer
and Fast Mode Buffer.

FIGURE 13. Testing model for the multi-thread chunking system.

the correctness of the parallel chunking method with software
languages. Thanks to the considerable cache memory of our
test system, we can temporarily ignore the overflow issue and
verify the multi-thread chunking results with single-thread
generated chunks. The single-thread PCI algorithm firstly
processes the testing datasets. The results are hashed and
updated into the Bloom Filter [20]. The same datasets are
divided into segments that are overlapped W-1 bytes with
each other. These segments are then processed by our parallel
chunkingmethod, and the generated chunks will be compared
with single-thread results through a sharing Bloom Filter.
Several hash functions calculate the input chunk fingerprints
of the Bloom Filter. Each function returns a different value
that points to the corresponding position of the filter array,
and its value will be changed from 0 to 1. The input chunk is
new if one of the pointed positions is not set to 1. Otherwise,
this chunk might already exist [20].

This testing model can be applied for verifying hardware
design. Firstly, we chunk the datasets sequentially and update

the Bloom Filter array. Then, the testbench reads the datasets,
prepares segments and passes them into the design under test.
The chunks calculated by hardware design will be hashed
and checked for their existence by the single-thread gener-
ated Bloom Filter. For behavioral verification, the size of
the buffers will be set large enough to ignore the overflow
problems. However, the buffer size must be set to an appro-
priate value to achieve high throughput and good scalability
in practice.

IV. IMPLEMENTATION AND EVALUATION
This section performs experiments to examine the influence
of the buffer size on the chunk inconsistency. Moreover,
we discuss and evaluate the proposed design implemented on
FPGA Cyclone V 5CSXFC6D6F31C6.

A. EXPERIMENTAL DATASETS
We choose three real-world datasets with various data types
for experiments. The first dataset includes Linux installa-
tion images from different vendors [21]–[23]. The second
one, the network traffic dataset, contains data capture files
from Mid-Atlantic Collegiate Cyber Defense Competition
in 2012 [24]. Because the total captured data is enormous,
we only used a subset of approximately 3.5 GB of data.
Finally, the third dataset consists of 25 random MP4 video
files. Table 2 lists explicitly the content of each dataset used
in the study.

B. THE IMPACT OF THE BUFFER DEPTH ON THE CHUNK
INCONSISTENCY
In our experiments, the PCI algorithm’s window size W and
preset threshold V are configured differently for each dataset
to achieve the average chunk size of about 1 kB.

Besides the parameters of the algorithm, the size of the
buffer also needs to be considered. In slow mode, the data
will be stored entirely in the buffer before being read out by
the Marshalling Module. If a chunk is larger than the buffer
depth, the buffer will overflow and undesired chunks will be
created. The chunks are defined as undesired chunks if they
are created or affected by the buffer overflow. In other words,
they are the chunks inconsistent with sequential chunking
results.

As the maximum chunk size of a file is unpredictable, it is
difficult to find an accurate buffer size that eliminates the
overflow problem. When parallel processing is performed,
we must accept that some undesired chunks will be created.

82044 VOLUME 10, 2022

H. Vuong et al.: Design of Parallel Content-Defined Chunking System Using Non-Hashing Algorithms on FPGA

TABLE 3. Comparisons between the PCI algorithm and the proposed method implemented on FPGA.

However, the buffer depth can affect the number of unwanted
chunks. With the average size of data chunks about 1 kB,
we examine the number of new chunks created when the
buffer depth is set at 1024. Then, we gradually increase the
buffer size. The test results are shown in Fig. 14.

FIGURE 14. The number of undesired chunks when performing parallel
chunking process with different buffer sizes.

The number of new chunks is quite high when the buffer
depth is close to the average chunk size and this number
decreases as the buffer size increases. When we set the buffer
depth roughly the same as the average chunk size, it means
about half of the chunks are larger than the buffer. Since
each long chunk is cut by half whenever the buffer overflows,
we could see that above 70% segment boundaries of dataset 1
and dataset 2 create undesired chunks in the case of the
buffer depth of 1024. The number of undesired chunks in
media file datasets is lower than in two other datasets but
the proportion of undesired chunks is still high, at nearly
40%. The quantity of undesired chunks drops significantly
with the buffer depth of 8192. However, such a buffer size is
quite large and will encounter hardware resource constraints
if the design scales up. The buffer depth of 4096 results
in slightly more unwanted chunks but this setting reduces
half of the internal memory consumption. In the case that
the parallel design supports up to 1 kB average chunk size,
the buffer depth of 4096 is a reasonable choice as it is
not only hard to overflow but also saves more hardware
resources.

C. THE IMPACT OF THE INPUT SEGMENT QUANTITY ON
THE CHUNK INCONSISTENCY
The undesired chunks are created when chunks processed in
slow mode are too long and make the Slow Mode Buffer
overflow. This means the number of input segments affects
the number of undesired chunks, not the number of threads.
We configure the buffer depth of 4096 and implement exper-
iments with various input segment quantities to observe the
influence on the number of undesired chunks. Because the
number of threads does not affect the number of unde-
sired chunks, the experiments are only executed with a
2-thread design. Each dataset is divided into two equal seg-
ments, which is the minimum quantity of input segments in
multi-thread implementation, to show the effect of the small
number of segments on undesired chunks. Then, we increase
the number of segments to 500 and 1000 segments to observe
the growth of the undesired chunk quantity.

As can be seen in Table 3, the undesired chunks rarely
appear when the number of input segments is minimum. Even
if the undesired chunks are created, the quantity is mini-
mal. When the number of segments increases, the undesired
chunk quantity also increases. Because at least two undesired
chunks are createdwhen the SlowModeBuffer overflows, the
total chunks rise as the number of undesired chunks increases.

Suppose a long duplicated chunk in the dataset causes
the Slow Mode Buffer overflow. In that case, that chunk is
divided into two undesired chunks, and our proposed design
finds fewer duplicated bytes. These cases happen in experi-
ments with dataset 1. With 500 and 1000 input segments, the
deduplication performance of the proposed implementation
reduces by 0.35% and 0.64%, respectively, compared to the
original algorithm. The loss of deduplication performance
rises when the number of segments increases. In experiments
with dataset 2 and dataset 3, the deduplication performance of
the proposed design is the same as that of the PCI algorithm
because long duplicated chunks do not create the undesired
chunks.

D. THE IMPACT OF THE BUFFER SIZE
ON THE CHUNKING THROUGHPUT
Because each Marshalling Module reads data from 2 buffers
of different threads, the number of data processed by each

VOLUME 10, 2022 82045

H. Vuong et al.: Design of Parallel Content-Defined Chunking System Using Non-Hashing Algorithms on FPGA

thread might not be the same. A Marshalling Module
bypasses data read from the Fast Mode Buffer of the same
thread and processes data from the Slow Mode Buffer of the
following thread. The total bytes processed by a Marshalling
Module might be higher than the total bytes of input segments
of that thread. The variance of processed data between Mar-
shalling Modules results in the throughput reduction. In this
section, we discuss the influence of the buffer size on the
design throughput. We run the proposed implementation with
the parallel thread quantity of 2, 4, 8, 16 and 32. The buffers
are configured with various sizes to observe the impact on the
chunking throughput.

Fig. 15, Fig. 16, Fig. 17, Fig. 18 and Fig. 19 illustrate
the experimental results of the proposed design with various
thread quantities. The chunking throughput decreases as the
buffer size increases. However, because the buffer size is
small compared with a segment size, the variance of pro-
cessed data between threads is also small. Consequently, the
chunking throughput decreases slightly when the buffer depth
changes from 1024 to 8192.

FIGURE 15. The throughput of 2-thread implementation with various
buffer depth configurations.

FIGURE 16. The throughput of 4-thread implementation with various
buffer depth configurations.

E. HARDWARE EVALUATION
We use Quartus software to synthesize the design with the
FPGA Cyclone V 5CSXFC6D6F31C6. After setting the
depth to 4096 for the buffers in the design, the synthesis
results of the parallel chunking design are shown in Table 4.

The results show that the proposed design can operate at
high frequencies, nearly 200 MHz. As the design scales up

FIGURE 17. The throughput of 8-thread implementation with various
buffer depth configurations.

FIGURE 18. The throughput of 16-thread implementation with various
buffer depth configurations.

FIGURE 19. The throughput of 32-thread implementation with various
buffer depth configurations.

to 8 threads, the hardware resource consumption increases
approximately linearly. However, the clock rates are not con-
siderably changed thanks to the low logic utilization of indi-
vidual threads. The designs withmore than 16 parallel threads
have more noticeable changes in operating clock frequency
due to the increase in overall resource consumption. While
our design costs a few logic resources and registers, it requires
manyBRAMs for building buffers. Consequently, the number
of BRAMs in the FPGA will be used up while leaving a lot
of logic cells and registers if the design continues to expand.
By trading off the BRAM resource costs against the number
of undesired chunks, the design can continue to scale up to

82046 VOLUME 10, 2022

H. Vuong et al.: Design of Parallel Content-Defined Chunking System Using Non-Hashing Algorithms on FPGA

TABLE 4. Hardware design synthesis results for Intel FPGA Cyclone V.

FIGURE 20. Chunking throughput comparisons.

achieve higher throughput.

Throughput = fmax × threads (1)

C. Zhang et al. performed experiments with datasets gen-
erated by the Mersenne Twister Pseudo-Random Number
Generator [25] to evaluate the chunking speed of the PCI
algorithm. The experimental results show that the through-
put of the PCI algorithm was about 90MBps with software
implementation [14]. In this paper, because each chunking
thread calculates a byte per cycle, the hardware implemen-
tation throughput is calculated by multiplying the maxi-
mum frequency, denoted as fmax , and the number of parallel
threads. The calculated results shown in Fig. 20 indicate
that our proposed design with only two parallel threads
could process roughly four times faster than the sequen-
tial software implementation. Moreover, as our chunking
design on FPGA devices is scalable, the chunking throughput
increases approximately linearly with the number of process-
ing threads.

V. CONCLUSION
In this study, we investigate several Content-defined Chunk-
ing algorithms, evaluate the advantages and disadvantages,
and explain why PCI is a suitable algorithm for our parallel
chunking system. A new marshalling method is proposed
to improve the multi-thread chunking system performance.
We also implement a FPGA-based design based on the PCI
algorithm and our marshalling method. The results show
that the parallel hardware design in this study significantly
improves the data chunking speed. The scalability of the
design is also a prominent advantage when implemented on

FPGA devices, nevertheless, it cannot maintain the chunk
consistency. Another drawback is that the generated chunks
are out of order at the system output. This disadvantagemakes
it difficult for the indexing and storage management process
in a data deduplication system and will need further research
in the future.

ACKNOWLEDGMENT
The authors acknowledge Ho Chi Minh City University
of Technology (HCMUT), VNU-HCM for supporting this
study.

REFERENCES
[1] W. Xia, H. Jiang, D. Feng, F. Douglis, P. Shilane, Y. Hua, M. Fu, Y. Zhang,

and Y. Zhou, ‘‘A comprehensive study of the past, present, and future
of data deduplication,’’ Proc. IEEE, vol. 104, no. 9, pp. 1681–1710,
Sep. 2016.

[2] S. Singhal, P. Sharma, R. K. Aggarwal, and V. Passricha, ‘‘A global survey
on data deduplication,’’ Int. J. Grid High Perform. Comput., vol. 10, no. 4,
pp. 43–66, Oct. 2018.

[3] A. El-Shimi, R. Kalach, A. Kumar, A. Ottean, J. Li, and S. Sengupta,
‘‘Primary data deduplication-large scale study and system design,’’ inProc.
USENIX Annu. Tech. Conf. (USENIX ATC), 2012, pp. 285–296.

[4] D. T. Meyer andW. J. Bolosky, ‘‘A study of practical deduplication,’’ ACM
Trans. Storage, vol. 7, no. 4, pp. 1–20, Jan. 2012.

[5] S. Quinlan and S. Dorward, ‘‘Venti: A new approach to archival data
storage,’’ in Proc. Conf. File Storage Technol. (FAST), 2002, pp. 1–13.

[6] B. Zhu, K. Li, and R. H. Patterson, ‘‘Avoiding the disk bottleneck in the
data domain deduplication file system,’’ in Proc. Fast, vol. 8, Feb. 2008,
pp. 269–282.

[7] A. Muthitacharoen, B. Chen, and D. Mazières, ‘‘A low-bandwidth network
file system,’’ in Proc. 18th ACM Symp. Operating Syst. Princ., Oct. 2001,
pp. 174–187.

[8] P. Shilane, M. Huang, G. Wallace, and W. Hsu, ‘‘WAN-optimized replica-
tion of backup datasets using stream-informed delta compression,’’ ACM
Trans. Storage, vol. 8, no. 4, pp. 1–26, Nov. 2012.

[9] K. Eshghi and H. K. Tang, ‘‘A framework for analyzing and improving
content-based chunking algorithms,’’ Hewlett-Packard Labs, Palo Alto,
CA, USA, Tech. Rep. TR, 2005, vol. 30.

[10] M. O. Rabin, Fingerprinting by Random Polynomials. Cambridge, MA,
USA: Center for Research in Computing Technology, Harvard Univ., 1981.

[11] N. Bjørner, A. Blass, and Y. Gurevich, ‘‘Content-dependent chunking for
differential compression, the local maximum approach,’’ J. Comput. Syst.
Sci., vol. 76, nos. 3–4, pp. 154–203, May 2010.

[12] Y. Zhang, H. Jiang, D. Feng, W. Xia, M. Fu, F. Huang, and Y. Zhou,
‘‘AE: An asymmetric extremum content defined chunking algorithm for
fast and bandwidth-efficient data deduplication,’’ in Proc. IEEE Conf.
Comput. Commun. (INFOCOM), Apr. 2015, pp. 1337–1345.

[13] R. N. S. Widodo, H. Lim, and M. Atiquzzaman, ‘‘A new content-defined
chunking algorithm for data deduplication in cloud storage,’’Future Gener.
Comput. Syst., vol. 71, pp. 145–156, Jun. 2017.

[14] C. Zhang, D. Qi, W. Li, and J. Guo, ‘‘Function of content defined chunk-
ing algorithms in incremental synchronization,’’ IEEE Access, vol. 8,
pp. 5316–5330, 2020.

VOLUME 10, 2022 82047

H. Vuong et al.: Design of Parallel Content-Defined Chunking System Using Non-Hashing Algorithms on FPGA

[15] W. Xia, H. Jiang, D. Feng, L. Tian, M. Fu, and Z. Wang, ‘‘P-dedupe:
Exploiting parallelism in data deduplication system,’’ in Proc. IEEE 7th
Int. Conf. Netw., Archit., Storage, Jun. 2012, pp. 338–347.

[16] Y. Won, K. Lim, and J. Min, ‘‘MUCH: Multithreaded content-based
file chunking,’’ IEEE Trans. Comput., vol. 64, no. 5, pp. 1375–1388,
May 2015.

[17] P. Bhatotia, R. Rodrigues, and A. Verma, ‘‘Shredder: GPU-accelerated
incremental storage and computation,’’ in Proc. 10th USENIX Conf. File
Storage Technol., 2012, p. 14.

[18] D. Li, Q. Yang, Q. Wang, C. Guyot, A. Narasimha, D. Vucinic, and
Z. Bandic, ‘‘A parallel and pipelined architecture for accelerating fin-
gerprint computation in high throughput data storages,’’ in Proc. IEEE
23rd Annu. Int. Symp. Field-Program. Custom Comput. Mach., May 2015,
pp. 203–206.

[19] F. Ni, X. Lin, and S. Jiang, ‘‘SS-CDC: A two-stage parallel content-defined
chunking for deduplicating backup storage,’’ in Proc. 12th ACM Int. Conf.
Syst. Storage, May 2019, pp. 86–96.

[20] B. H. Bloom, ‘‘Space/time trade-offs in hash coding with allowable
errors,’’ Commun. ACM, vol. 13, no. 7, pp. 422–426, Jul. 1970.

[21] Linux Mint 20.3 ‘una’ Linux Mint. Accessed: Jun. 26, 2022. [Online].
Available: https://linuxmint.com/edition.php?id=292

[22] Arch Linux Downloads. Accessed: Jun. 26, 2022. [Online]. Available:
https://archlinux.org/download/

[23] Installing Debian Via the Internet. Accessed: Jun. 26, 2022. [Online].
Available: https://www.debian.org/distrib/netinst.en.html

[24] Pcap Files From the US National Cyberwatch Mid-Atlantic Colle-
giate Cyber Defense Competition (MACCDC). Accessed: Jun. 26, 2022.
[Online]. Available: https://www.netresec.com/?page=MACCDC

[25] M. Matsumoto and T. Nishimura, ‘‘Mersenne twister:
A 623-dimensionally equidistributed uniform pseudo-random number
generator,’’ ACM Trans. Model. Comput. Simul., vol. 8, pp. 3–30,
Jan. 1998.

HUNG VUONG received the B.S. degree in elec-
tronics and telecommunications engineering from
the Ho Chi Minh City University of Technol-
ogy (HCMUT), Vietnam, in 2019. He is currently
pursuing the M.S. degree in electronics engineer-
ing with the Ho Chi Minh City University of
Technology–VNU HCM.

HUNG NGUYEN received the B.S. and M.S.
degrees in electronics and telecommunications
engineering from the Ho ChiMinh City University
of Technology (HCMUT), Vietnam, in 2019 and
2022, respectively. Currently, he is working with
the Faculty of Electrical-Electronics Engineering,
HoChiMinhCityUniversity of Technology–VNU
HCM.

LINH TRAN received the B.S. degree in electri-
cal and computer engineering from the University
of Illinois, Urbana-Champaign, in 2005, and the
M.S. and Ph.D. degrees in computer engineer-
ing from Portland State University, in 2006 and
2015, respectively. Currently, he is a Lecturer with
the Faculty of Electrical-Electronics Engineering,
HoChiMinhCityUniversity of Technology–VNU
HCM. His research interests include quantum/
reversible logic synthesis, computer architecture,

hardware-software co-design, efficient algorithms and hardware design tar-
geting FPGAs, and data analysis.

82048 VOLUME 10, 2022

