
Received 8 July 2022, accepted 26 July 2022, date of publication 5 August 2022, date of current version 16 August 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3196664

Comments on ‘‘On Scale Parameter Monitoring of
the Rayleigh Distributed Data Using a New Design’’
PHILIPP WITTENBERG 1, MANUEL CABRAL MORAIS 2, AND WILLIAM H. WOODALL 3
1Department of Mathematics and Statistics, Helmut Schmidt University, 22043 Hamburg, Germany
2Department of Mathematics, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
3Department of Statistics, Virginia Tech, Blacksburg, VA 24061, USA

Corresponding author: Philipp Wittenberg (pwitten@hsu-hh.de)

ABSTRACT We provide comments on a research paper proposing a control chart to monitor the scale
parameter of a Rayleigh distribution. Our primary focus is on improving its average run length profile.
We determine limits such that, on average, one can detect any change in this scale parameter more quickly
than to trigger a false alarm.

INDEX TERMS Average run length (ARL), ARL-unbiased charts, statistical process monitoring, Weibull
distribution.

I. INTRODUCTION
The authors in [1] considered the monitoring of the scale
factor σ (σ > 0) of a quality characteristic T with a Rayleigh
distribution, i.e., with a cumulative distribution function equal
to

FT (t) = 1− e
−

[
t/(
√
2σ )

]2
, t > 0.

It was assumed that the output process observations are
independent between and within samples of size n. Moreover,
they suggested the maximum likelihood estimator (MLE) of

the scale factor σ , VSQR =
√∑n

i=1 T
2
i /(2n), as the control

statistic of a Phase II chart they proposed to detect sustained
shifts in σ from a known target value σ0 to θ σ0, where θ is
a known positive constant. The observed Rayleigh random
variables Ti are independent and identically distributed.

The control limits of this chart were given by

LCLSQR = σ0 ·
[
A(n)−l

√
1− A2(n)

]
(1)

UCLSQR = σ0 ·
[
A(n)+ l

√
1− A2(n)

]
, (2)

where: A(n) = Eσ0 (VSQR/σ0) = 0(n + 1/2)/(
√
n0(n));

l is chosen in such a way that the probability of a
false alarm is equal to a pre-specified value α and can
be found in [1, Table 1] for different values of the
sample size (n ∈ {2, 3, . . . , 10}) and false alarm rate
(α ∈ {0.002, 0.01, 0.025}).

The associate editor coordinating the review of this manuscript and
approving it for publication was Jenny Mahoney.

Since Z = 2nV 2
SQR/(θσ0)

2
∼ χ2

(2n) is a pivotal quantity
for σ , we can obtain the following probability that the chart
triggers a signal, given that σ = θ σ0:

ξSQR(θ ) = 1− Fχ2
(2n)

(
2nUCL2SQR
θ2σ 2

0

)

+Fχ2
(2n)

(
2n LCL2SQR
θ2σ 2

0

)
,

for θ > 0. The corresponding average run length (ARL), that
is, the expected number of samples we collect until a signal
is triggered by what we shall call the VSQR chart, is given by
ARLSQR(θ ) = 1/ξSQR(θ ).
Quality control practitioners favour charts with suitably

large ARL values when the process is in-control, thus leading
to infrequent false alarms, and small ARL values when the
process is out-of-control, yielding valid signals quickly.

II. ARL PERFORMANCE CONCERNS
Now, we offer some comments on [1, Fig. 2] with four plots
of the power function ξSQR(θ ), for α = 0.025, n ∈ {1, 2, 3, 4},
and θ ∈ [1, 6].

We believe that these power curves should have also been
plotted for θ < 1, in order to give the quality practitioner an
idea of the behaviour of the proposed chart in the presence of
decreases in σ .
Hence, in Figures 1 and 2, the reader can find plots

of ξSQR(θ ), for α = 0.025, n ∈ {1, 2, 3, 4}, and θ in
a wider range and also in a range around the in-control
situation, [0.75, 1.6].
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FIGURE 1. Power function of the VSQR chart, for α = 0.025 and
n ∈ {1,2,3,4}.

FIGURE 2. Power function of the VSQR chart in the vicinity of θ = 1, for
α = 0.025 and n ∈ {1,2,3,4}.

We can see that the probability that the chart proposed
by [1] detects a considerable range of increases in σ is smaller
than the probability that the chart triggers a false alarm.

Moreover, [1, Fig. 3] illustrated the ARL profiles of the
VSQR chart, for n ∈ {1, 2, 3, 4} and in-control ARL equal
to ARL0 = 1/α = 40. The curves were truncated at
ARL = 30 and values of θ in the interval (0, 1] were omitted.

For comparison, we plotted the ARL profiles for
θ ∈ [0.5, 6] in Figure 3. All the plots in Figure 3 show that the
out-of-control ARL is larger than the in-control ARL values
for some small increases in σ . For example, when n = 3,
the ARL associated with a 5.6% increase in σ is equal to
ARLSQR(1.056) ' 44.23 and 10.58% larger than the in-
control ARL. This behaviour of the ARL function of the VSQR
chart will be less severe if we consider larger sample sizes.
However, in practice, sample sizes are often between 1 and 5.
Sample sizes could be much higher, but we recommend
careful consideration if data are aggregated over time, as
discussed by [2].

FIGURE 3. ARL profiles of the VSQR chart, for ARL0 = 1/α = 40 and
n ∈ {1,2,3,4}.

III. SOME ARL PERFORMANCE COMPARISONS
The control chart we have discussed so far was suggested as
an alternative to the one proposed by [3], with the control
statistic VR = V 2

SQR, an unbiased estimator of σ 2, and control
limits

LCLR = σ 2
0−L · σ

2
0 /
√
n

UCLR = σ 2
0 + L · σ

2
0 /
√
n,

where L is also chosen so that the probability of a false alarm
equals α.

Provided that σ = θ σ0, theVR chart for σ 2 triggers a signal
with probability

ξR(θ ) = 1− Fχ2
(2n)

(
2nUCL2R
θ2σ 2

0

)

+Fχ2
(2n)

(
2n LCL2R
θ2σ 2

0

)
and ARLR(θ ) = 1/ξR(θ ), for θ > 0.
We now reassess the performance comparison between

the VSQR and VR charts in [1]. The authors’ Figure 7 pro-
vides plots of the power functions of these two charts, for
α = 0.025, n ∈ {2, 4, 8, 10}, and θ ∈ [1, 6]; decreases in σ
were not considered.

In our opinion, the power curves in [1, Fig. 7] should have
been complemented by the ARL profiles of the VSQR and VR
charts found in our Figure 4 with θ ∈ [0.5, 2].

This figure allows us to conclude that the Phase II chart
proposed by [3] offers less protection than the VSQR chart
against decreases in the scale factor and takes, on average,
longer to detect small decreases in σ than to emit a false
alarm. Furthermore, when it comes to detecting increases in
σ , the VR chart seems to provide more protection against
small increases in the process variance (2σ 2(1 − π/4)) than
the VSQR chart.

The monitoring of σ can also be done by adopting an
alternative chart with probability limits.
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FIGURE 4. ARL profiles of the VSQR and VR charts, for
ARL0 = 1/α = 40 and n ∈ {2,4,8,10}.

IV. AN ALTERNATIVE: THE ARL-UNBIASED CHART FOR σ
Ideally, the ARL function should achieve a maximum when
the process is in-control, leading to what [4] termed an
ARL-unbiased chart. An ARL-biased chart will have out-of-
control ARL values larger than the in-control ARL for some
range of small shifts in the parameter being monitored.

To achieve an ARL-unbiased chart for σ with in-control
ARL equal to ARL0 = 1/α, where ARL0 is a pre-specified
suitably large value of the in-control ARL, we can capitalize
on [5] or on two associated papers, [6] and [7]. These refer-
ences propose ARL-unbiased charts (with fixed and variable
sampling intervals) for the scale parameter of a process with
Weibull output. The Rayleigh distribution is a particular case
of the Weibull distribution with shape and scale parameters
equal to 2 and

√
2σ , respectively. Consequently, we can use

the same control statistic VSQR and adopt the control limits

LCL? = σ0 ·
√
a?/n (3)

UCL? = σ0 ·
√
b?/n, (4)

where the quantiles of the χ2
(2n) distribution, a

?
≡ a?(α, n)

and b? ≡ b?(α, n), satisfy, according to [5], [6], and [7], the
following system of equations:

Fχ2
(2n)

(b?)− Fχ2
(2n)

(a?) = 1− α; (5)

fχ2
(2(n+1))

(b?)− fχ2
(2(n+1))

(a?) = 0. (6)

The probability that this chart triggers a signal, given that
σ = θ σ0, is given by

ξ ?(θ ) = 1−
[
Fχ2

2n
(b?/θ2)− Fχ2

2n
(a?/θ2)

]
,

for θ > 0; the associated ARL function is equal to
ARL?(θ ) = 1/ξ ?(θ ).
The use of (5) and (6) guarantees that ARL?(1) = 1/α and

dARL?(θ )/dθ |θ=1 = 0, respectively. The resulting chart has
the desired in-control ARL, ARL0 = 1/α, and the ARL curve

FIGURE 5. ARL profiles of the VSQR and VR charts and the ARL-unbiased
chart for σ , with ARL0 = 1/α = 40 and n ∈ {2,4,8,10}.

FIGURE 6. ARL profiles of the VSQR and VR charts and the ARL-unbiased
chart for σ , with ARL0 = 1/α = 100 and n = 5.

attains a maximum in the in-control situation, as illustrated by
the plots in Figures 5 and 6.

When ARL0 = 1/α = 40 and n ∈ {2, 4, 8, 10},
we have a? = 0.422171, 1.954684, 6.355643, 8.889265 and
b? = 14.593993, 20.917543, 32.432957, 37.881789, respec-
tively. For the in-control ARL value ARL0 = 1/α = 100,
and the commonly used sample size n = 5, we have
a? = 2.34441 and b? = 26.65311.
Both figures also illustrate the fact that the VSQR chart is,

on average, quicker than its ARL-unbiased counterpart in
detecting decreases in σ 2, namely because these two charts
have the same in-control ARL and the derivative of the
ARLSQR(θ ) is positive at θ = 1, whereas the one of ARL?(θ )
is zero. Basically, for the same reason, the ARL-unbiased
chart performs better than the VSQR in the presence of any
increases in the scale factor.
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In addition, Figures 5 and 6 suggest that the VR chart takes
longer, on average, than the ARL-unbiased chart to detect any
decreases and most increases in σ .
We provide the source code in R language [8] used to

numerically obtain the quantiles a? and b? after the reference
list. Alternatively, we could have adapted the code found
in [9] and used the R function uniroot. Complete scripts
to reproduce all results presented in [1], and this article are
available at ‘‘Code Ocean’’. Alternatively, these programs
will be made available to those who are interested and request
them from the corresponding author.

V. CONCLUSION
Equations (1) and (2) are very similar in form to the control
limits of the traditional S-chart for the standard deviation of
a normally distributed quality characteristic,

σ0 · (c4 ± 3
√
1− c24);

instead of c4 =
√
2/(n− 1) · 0(n/2)/0[(n − 1)/2] we are

dealing with the constant A(n).
We should also mention that VSQR is a biased estimator

of σ while VR is an unbiased estimator of σ 2. In any case,
the control statistics are skewed distributions.Moreover, pairs
of control limits defining a symmetric interval around an
expected value were considered. Consequently, the ARL pro-
files of the VSQR and VR charts are not unbiased.

Furthermore, the (equal tails) probability limits in equa-
tion (21) for the VSQR chart proposed by [1] can be obtained
from the ones in formula (11) for the VR chart introduced
by [3] through square root transformations. Both charts are
ARL-biased.

Paraphrasing [10], the ARL-unbiased chart we discussed
‘‘balances’’ control limits so that increases in the scale factor
of the Rayleigh distribution are detected about as well as
decreases.

Cumulative sum (CUSUM) and exponentially weighted
moving average (EWMA) charts, see [11] and [12], would
be more efficient in detecting small process shifts.

SOURCE CODE FOR QUANTILES

Listing 1. R source code to determine the values a∗ and b∗.
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