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ABSTRACT Morphological assessment of blastocyst quality is one of the most significant challenges in the
IVF process because the current assessment is based on evaluation by an embryologist; thus, it is still manual
and subjective and lacks precision. Artificial intelligence (AI) plays a role in overcoming the limitations of
the manual assessment system, and its use is expected to increase implantation rates in IVF. This study aims
to optimize the convolutional neural network (CNN) model using the grid search method and to evaluate the
effectiveness of different machine learning models in classifying the blastocyst quality in a small dataset.
The reliability of the proposed model will be compared with that of other machine learning methods, such as
logistic regression (LR), support vector machine (SVM), k-nearest neighbors (KNN), the boosting algorithm,
and with the addition of the Canny operator as a segmentation process and principal component analysis
(PCA) as a feature extraction approach. We evaluated the results using various performance measures, such
as the precision, recall, F1-measure, accuracy, and area under the curve of the receiver operating characteristic
curve (AUC-ROC). The final results showed that our proposed CNN model achieves a validation accuracy
of 84.00%, a test accuracy of 83.33%, and an AUC of 0.844. McNemar’s statistical test results support that
our CNN model outperforms the other classifiers.

INDEX TERMS IVF, human blastocyst, CNN, augmentation, hyperparameters.

I. INTRODUCTION
One procedure performed to overcome infertility problems
is called IVF. The process is reserved for cases in which
other methods, such as fertility drugs, surgery, and artificial
insemination, have not worked. Blastocysts have a higher
implantation potential than embryos at the cleavage stage
(embryonic day 3) [1]. Research has shown that continuing
embryo culture up to day 5 results in a higher chance of
successful delivery [2]. Therefore, grading the embryo on
day five is crucial. Grading of embryos on day 5 (blastocyst)
has been based on the Gardner system, in which the grade is
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determined by the quality of the inner cell mass (ICM) and the
trophectoderm (TE) [3]. Blastocysts with good grades will be
transferred to the uterus so that pregnancy can be expected,
thereby avoiding repeated IVF cycles that incur additional
costs. The IVF process may produce more than one embryo,
but not all embryos have implantation potential. Transferring
more than one embryo can increase the chance of pregnancy
but also increases the likelihood of pregnancy complications
for both the mother and baby. One solution to minimize
multiple pregnancies is to transfer only one embryo, although
this will reduce the probability of pregnancy [4]; thus, accu-
rate embryo grading is necessary. Morphological grading of
embryos is one of the challenges associated with IVF, which
is currently still determined based on the embryologist’s
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assessment with a microscope. It is still manual, subjective,
and lacks precision. Artificial intelligence (AI) plays a role in
helping overcome the limitations of the manual scoring sys-
tem, and its use is expected to increase the implantation rate
in IVF. The inaccuracy of manual assessment is caused by the
blastocyst texture image, in which it is difficult to distinguish
between the ICM and TE texture shapes, and by the blurring
of the image of the blastocyst edge due to high noise levels.
The blastocyst images used in this study were taken with
Hoffman modulation contrast (HMC) [5] imaging, which is
a light microscopy or optical microscopy technique. HMC
imaging is routinely used in IVF clinics to capture images
of developing embryos. In performing pattern recognition
based on blastocyst images, this work uses segmentation
and SVM [6], [7] as classifiers. However, determining the
optimal classifier engine is still a problem, especially in small
datasets, because this is a challenge in pattern recognition
studies. The use of a pattern learning feature is necessary
during the machine learning preprocessing stage. The correct
way to solve this problem is to implement a deep learning
technique using a CNN model.

Deep learning methods, especially CNNs, are currently
being used in the IVF field to evaluate embryo morphology,
embryo quality, implantation potential, and system quality
control. Dimitriadis et al. [8] proposed a CNN model that
was trained and tested with a dataset of 3,469 embryos
to classify between 2PN embryos and non-2PN embryos.
Their model classified embryos using a test dataset of
947 images with an accuracy of 91.86%. Using the Incep-
tion v3 architecture, Irene Dimitriadis et al. [9] classified
two types of embryos: blastocysts and nonblastocysts. After
training on a dataset of 1,100 embryos, the model could
classify 182 test embryos with an accuracy of 89.01%.
Hariton et al. [10] developed a CNN model by combining
genetic algorithms that can select the best quality blastocyst.
The CNNmodel was trained using a dataset of 3,469 images,
and the resulting test accuracy was 75.3%. Hariton et al.
and Khosravi et al. [11] proposed a framework based on a
deep neural network with a dataset of 50,000 time-lapse
embryos to select high-quality embryos. Based on the Incep-
tion model, the framework can predict blastocyst quality with
an AUC > 0.98. Thirumalaraju et al. [12] proposed an AI sys-
tem to evaluate fertilization and blastocyst development and
used it on 947 images of embryos. The resulting coefficient
of variation in measuring the best grade of blastocyst quality
was 10.9%. To predict the case of fetal heart pregnancy [13],
they proposed a deep learning model that can automatically
predict this without assessing the blastocyst morphology. The
resulting model can predict fetal heart pregnancy with an
AUC of 0.93. Thirumalaraju et al. [14] proposed a multi-
layered CNN model to differentiate embryos based on their
morphological qualities. Using data from 2,440 embryos,
the developed model distinguished between blastocyst and
nonblastocyst embryos with a validation accuracy of 49.17%.
Bormann et al. [15] proposed a CNN model trained with
742 embryos; an accuracy of 90% in selecting the best-quality

TABLE 1. Summary of related work on blastocyst classification.

embryos was achieved. To automatically predict the value of
ICM and TE in blastocysts [16], they proposed a deep learn-
ing model that can assess blastocyst quality. Chen et al. [17]
proposed an automatic scoring system for embryo assess-
ment using a dataset of 171,239 embryo images and train-
ing data using the ResNet50 model; the average predictive
accuracy was 75.36% for the three blastocyst assessment cat-
egories. Dirvanauskas et al. [18] used 7,002 embryo images
to develop a combined CNN with the discriminant classifier
model for evaluating and predicting embryo quality. The
proposed model can predict the embryo quality with 97.62%
accuracy. Bori et al. [19] developed an ANN-based AI model
to predict live births using the blastocyst morphology. Using
data from 186 embryo images, the total accuracy in predicting
live births was 72.7%.

However, they used large datasets from time-lapse
microscopy and provided limited information about the neu-
ral network itself, and the effect of hyperparameters on
assessing the embryo morphology with a small dataset is not
clear. Several researchers have also researched implementing
deep learning methods on small medical datasets, but this is
not the case for blastocyst image datasets. The authors [20]
used a transfer learning method based on a CNN to evalu-
ate a limited number of magnetic resonance imaging (MRI)
datasets. In the current work, the aim is to increase the effi-
ciency and effectiveness in image recognition. Our previous
paper [21] using the transfer learningmethod in the blastocyst
quality classification task resulted in a test accuracy of only
64.29%; thus, the accuracy of the method needs to be further
improved. In Table 1, detailed related work is presented along
with the methods, datasets used, and results.

The problem of applying deep learning or machine learn-
ing techniques with little training data is overfitting. Overfit-
ting occurs when the trained model fits the training data but
does not generalize well. Adding dropout and regularization
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FIGURE 1. Representative HMC human blastocyst quality images.

strategies [22], [23] [24] to a deep learning network can
reduce the occurrence of overfitting. This hyperparameter
evaluation study on a CNN network used images of blasto-
cysts because of their importance in the IVF process. Some
researchers have focused their work on embryonic devel-
opment [14], [15] [16], [17]. Therefore, the specific pur-
pose of this task was to evaluate the effects of the types of
hyperparameters on the CNN when using a small dataset of
blastocyst images in classifying two quality classes (good
and poor) based on their morphology and to decide which
hyperparameter is the best for our dataset.

II. MATERIALS AND METHODS
A. DATASET
We used a publicly available blastocyst dataset to evaluate
the performance of our proposed CNN model. The dataset
contains 249 images of blastocysts from HMC microscopy
and is accessible via ‘‘https://vault.sfu.ca/index.php/login’’
upon request [25]. The dataset includes two grades of images,
good-quality and poor-quality [11], and an expert embry-
ologist at the Pacific Centre for Reproductive Medicine
(PCRM) graded each blastocyst. The blastocyst images in
the dataset have various pixel sizes, and we resized them
to 224 × 224 pixels. The blastocyst images were obtained
using an Olympus IX71 inverted microscope with Nomarski
optics (DIC). As the embryo develops from day 1 to day 5,
it undergoes many cell divisions. The essential structure of
the blastocyst on day 5 is shown in Fig. 1, which also shows
the two quality levels of blastocyst images we used.

B. TRAINING, VALIDATION, AND TESTING
To train and evaluate the proposed CNN model, we used
249 blastocyst images. The dataset was divided into three
subsets for training (70%), validation (20%), and testing
(10%).We performed an augmentation process at the training
stage to avoid overfitting due to a lack of training data.
In the augmentation process, we sheared, zoomed and flipped

the training data. In all experiments on the proposed CNN
model, we used Python programming language with Jupyter
Notebook as an IDE (Integrated Development Environment).
We also used Keras [28] as a framework with the TensorFlow
backend.

The performance of our CNN model was compared with
that of conventional machine learning. In previous studies,
the classification task was generally applied using SVM [29],
KNN [30], LR [31], and gradient boosting [32].

The frameworks commonly used in machine learning
include image acquisition, preprocessing, feature extraction,
and classification. In this study, for the classification that used
conventional machine learning, we performed preprocessing
and feature extraction steps.

In a previous study [33], we used the Canny operator
and achieved the best detection for blastocyst images. As a
feature extractionmethod, we used principal component anal-
ysis (PCA) [34], a feature extraction method that uses an
appearance-based approach that attempts to identify blasto-
cyst components using global representations based on the
whole image instead of only on local features of the blas-
tocyst. Using the same input as for the CNN, all blastocyst
image datasets were also used in other classification engines.
Fig. 2 shows our proposed framework for human blastocyst
quality classification.

We classified blastocyst quality using conventional
machine learning methods on the same dataset as for the
proposed CNN model. We split the dataset into 80% for
training and 20% for testing. In the first step, we converted
the blastocyst image from RGB to grayscale and resized
the image from the average dimensions of 424 x 378 to
224 x 224 so that our machine learning model could be
trained faster on smaller images. The second step consisted
of processing the blastocyst image with Canny edge detec-
tion to quickly determine the boundaries of the objects in
the image. Canny operators have the advantage of better
detection, especially under noise conditions, compared to
other operators. In the third step, PCA was used to reduce
the dimensions of the feature vector and remove the less
essential features. We implemented the last feature vector at
the blastocyst quality classification step. Finally, we applied
four conventional classifiers to the classification task, SVM,
KNN, LR, and gradient boosting, using the Keras library
in Python. We optimized the parameters used in the con-
ventional classifier using the grid search method; the list
of optimized parameters is shown in Table 2. We evaluated
the classification results and compared them with the results
obtained using the proposed CNN model.

C. HYPERPARAMETER OPTIMIZATION
Hyperparameter optimization is the process of determining
the best hyperparameter combination to use. It is done to
find the hyperparameter values that can produce the best-
performing model. One way to determine the best combi-
nation of hyperparameters is to use a grid search method.
Grid search is the strategy most frequently used to optimize
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FIGURE 2. Proposed framework for human blastocyst quality classification. The proposed approach aims to optimize the
performance of the model on a small dataset.

TABLE 2. Hyperparameters of the conventional classifiers that are tuned.

hyperparameters [35] because it can be easily paral-
lelized [36], and hyperparameter model optimization can
improve themodel accuracy. Grid searchworks by combining
the hyperparameter values input into the model, searching for
all combinations and choosing the best combination based on
the highest score. This work used grid search on CNN, SVM,
KNN, LR, and gradient boosting models. Scikit-learn was
used to perform a grid search, where gridsearchcv performs
a search across all parameter sets in the grid. The tuned
hyperparameters of the conventional classification model are
given in Table 2.

D. BLASTOCYST QUALITY STATE CLASSIFICATION
The deep learning performance can be affected by CNN
models. In this work, we configure the CNN model to obtain
better performance. The CNN is built with multiple 2D (two-
dimensional) convolutions, maximum pooling, fully con-
nected neurons, and dropout [26]. In each convolution layer,
the output form can be calculated according to the following
equation (1) [27].

Convolution output =
(i− f + (2 ∗ p))

s
+ 1 (1)

Pooling output =
(i− f )
s
+ 1 (2)

where i is the input dimensions of the image, f indicates the
size of the filter or kernel in the 2D convolution layer, p is the
padding provided as additional data outside the input, and s is
the stride, which is a parameter that determines howmuch the

filter shifts. We use a stride value of 1; thus, filter convolution
will shift the filter 1 pixel horizontally and then vertically.

This optimization process uses the following network
structure hyperparameters: number of filters per layer, kernel
size in each layer, dropout rate and L2 regularization. We use
the most common technique, known as L2 regularization,
which aims to minimize the square of the weights. Because
our image data are too complex to be modeled accurately, L2
is a better choice because it can learn the patterns inherent in
the data. A weight regularizer is added to each layer in the
Keras model with a value of 0.01.

The details of the hyperparameters of our proposedmethod
are shown in Table 2. There is nothing to learn in the input
layer or layer 0; the input image is given and reshaped to
dimensions of 224×224. We perform the augmentation pro-
cess using ImageDataGenerator. The stride value defines the
number of kernels that convolve the blastocyst image. In this
model, we choose a stride value of 1, and the convolution
produces an output that is usually called an activation map.
The smaller the stride value is, the more detailed the infor-
mation we obtain from the input, but a small stride value
requires more computation than a large stride. However, the
use of a small stride will not always result in good perfor-
mance. The activation map process resembles an extraction
process, as in a handcrafted feature extraction process. The
kernel weights are randomly initialized, and the output of
the convolution operation has a separate activation map for
each filter. In the first layer, convolution is performed inside
the kernel and filters, leading to a new activation map. The
resulting activation map is wrapped with the kernel, and the
process is repeated. The second layer is the pooling layer used
to reduce the dimensions of the activationmap; the operations
can use maximum or average values. In this case, we use the
maximum value, in which the value for each activation map
patch is calculated. This reduces the number of parameters
to be studied and the amount of computation performed in
the network. The convolution process is continued for the
next-to-the-last layer in our CNN architecture. The activation
map generated from the feature extraction layer is still in the
form of a multidimensional array, so we have to flatten or
reshape the activation map into a vector to use it as input
from the fully connected layer. In the last layer, the number of
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TABLE 3. Network structure hyperparameters of our CNN model.

TABLE 4. Network training hyperparameters of our CNN model.

output values is one, where each image has one output value,
namely, its label is 0 or 1 with the previously added dropout.
Because we have a small dataset, to limit overfitting and
speed up the learning process, we use a dropout process by
assigning a value of 0.5. In the CNNmodel, we use a rectified
linear activation function or ReLUwith the sigmoid classifier
because binary image classification provides better accuracy
than the combination of activation and other classifiers [28].
We also optimize the network training hyperparameters, such
as the optimizer, learning rate, andmomentum. Table 3 shows
the training hyperparameters to be optimized; in each case,
the range of values is shown in square brackets.

E. DATA AUGMENTATION
To obtain optimal performance, deep learning requires more
data than other machine learning algorithms. We have only
249 blastocyst images; 164 of these are good-quality blasto-
cyst images, and 85 are poor-quality blastocyst images. This
amount of data is insufficient to obtain optimal performance.
Therefore, we need to perform a data augmentation process.

Data augmentation creates additional training data that
artificially expands the training set with a label preserving
transformation [37]. Data augmentation aims to generate vir-
tual data samples that can be used to improve the training
dataset and reduce overfitting. In this study, we add data
only to the training dataset and not to the validation or test
datasets; this is different from preparing data using image
resizing, which requires consistency across all datasets that
interact with the model. Using ImageDataGenerator, a func-
tion of Keras, we perform random transformations on the
training dataset using shear, zoom, rotation and flip aug-
mentation techniques and then change the parameters in the
function. The parameters we declare in the ImageDataGen-
erator function are shear_range=0.2, which shifts the image
by 20%, zoom_range=0.2, which zooms in and out by 20%,

rotation_range=45, and horizontal_flip=True. After declar-
ing the parameters of the ImageDataGenerator function,
we create an iterator that fetches the image and loops in
batches by streamlining the image into an ImageDataGenera-
tor object. To stream images, we use the flow_from_directory
method, which takes the directory path and generates an
additional dataset. When the iterator has been created, it can
be used to train our CNNmodel by calling the fit_generator()
function.

F. EVALUATION OF THE PROPOSED CNN MODEL
Evaluating the model created is essential in developing good
deep learning and machine learning models. In this section,
we will discuss evaluation of the model specifically with
respect to the classification of blastocyst quality. The model
evaluation process is conducted after the model training is
completed. The model evaluation uses evaluation data that
cannot be the same as the data used to train the model. Testing
with these evaluation data will provide the actual accuracy
of a model that has been trained. However, accuracy (3) is
not the only parameter considered in conducting evaluations
because high accuracy values can be deceptive due to dataset
imbalances [38]. Therefore, more comprehensive evaluation
metrics such as the confusion matrix, precision (4), recall (5),
and F1-score (6) are needed.

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(3)

Precision =
TP

TP+ FP
(4)

Recall =
TP

TP+ FN
(5)

F1− Score =
2 ∗ (Recall ∗ Precision)
Recall + Precision

(6)

In binary classification, four parameters can be considered
in evaluating the prediction results of a model. These four
parameters are true positive (TP), false positive (FP), true
negative (TN), and false negative (FN). Comparisons of the
accuracy results when using different parameters are applied
in this work, i.e., the difference in the accuracy between dif-
ferent filters, kernel sizes, optimizers, and kinds of machine
learning.

III. RESULTS
A. IMPACT OF FILTERS ON ACCURACY
The accuracy of the CNN model can depend on the number
of kernels in the convolution. A larger number of filters
in each convolution will cause overfitting when the dataset
is small. We conduct simulations to determine the impact
of the number of filters on the results obtained using our
proposed CNN model. To determine the optimum number of
filters, we explored and evaluated four sets of filters, viz., 32,
64, 128, and 256. After assessing the impact of the number
of filters on the accuracy in the classification of blastocyst
quality, it was found that the use of 32 filters yielded the
greatest impact on increasing the accuracy (0.759±0.128)
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FIGURE 3. Correlation of the number of filters in each layer with the
accuracy of blastocyst quality classification.

compared to the number of filters of 64 (0.669±0.043),
128 (0.678±0.075) and 256 (0.665±0.024). This experiment
shows that the use of 32 filters has a more favorable impact
on increasing the accuracy of the classification than the use
of 64, 128 or 256 filters. The use of 256 filters had the most
negligible impact on improving the accuracy of our model,
as shown in the boxplot diagram in Fig.3.

B. IMPACT OF KERNEL SIZE ON ACCURACY
The kernel size on the CNN determines the receptive field.
It provides information about the number of input image pix-
els that can be seen on activation in the network. Additionally,
the use of a small kernel rather than a fully connected network
benefits from weight sharing and reduced computational
costs. In the experiment with kernel sizes, we determined
whether the use of a small or a large kernel size affects
the accuracy of blastocyst image classification. Based on the
experimental results, we found that a kernel size of 3 gives the
highest accuracy (0.743±0.119), followed by a kernel size
of 5 (0.679±0.047), a kernel size of 7 (0.681±0.022), and
a kernel size of 9 (0.694±0.024). From these results, it can
be concluded that kernel size does not significantly affect
the accuracy. Nevertheless, the kernel size jeopardizes the
training and testing process time. More detailed information
about the distribution of accuracy values with respect to the
kernel size is presented in Fig.4.

C. EVALUATION OF THE CNN ARCHITECTURE
The best correlation can be achieved by using optimization
strategies or algorithms called optimizers. The optimization
algorithm is responsible for reducing losses and providing
the most accurate results possible. Our proposed CNNmodel
used several optimizers, such as adaptive moment estimation

FIGURE 4. Correlation of the kernel size in each layer with the accuracy
of blastocyst quality classification.

(Adam) [39], stochastic gradient descent (SGD) [40] and
RMSprop, and the results were evaluated. The following
Table 2 shows how the use of an optimizer increases the
accuracy of our CNN model. Table 2 shows that the best
validation accuracy of 86.00% is achieved using the Adam
optimizer with a learning rate of 0.001. We used the early
stopping function to obtain the number of epochs. The early
stopping function can halt the training of neural networks
at the optimal time. The early stopping callback function
can monitor the loss or accuracy value. When the loss value
is being monitored, the training will stop if the loss value
increases. If the accuracy is being monitored, then training is
stopped when there is a decrease in the accuracy.We obtained
the best number of epochs, which is 36. After obtaining the
best CNN model, we tested it on a dataset consisting of
24 blastocyst images. The test results on these testing data
yielded an accuracy of 83.33% with a loss of 0.6141.

We evaluated the accuracy of the blastocyst quality selec-
tion model and determined the area under the curve (AUC)
and receiver operating characteristic (ROC) values. The
resulting AUC in predicting the blastocyst quality in the test
dataset is 0.844. Fig.5 shows the confusion matrix visualiza-
tion of the test accuracy and the AUC of the ROC curves.

D. COMPARISON TO THE OTHER MACHINE
LEARNING METHODS
This paper evaluated binary classification of blastocyst qual-
ity using the proposed CNN, SVM, KNN, LR, and gradient
boosting on a dataset of 249 human blastocysts. We per-
formed analysis and evaluation of the best performance of
our CNNmodel. Fig. 6 shows the variation in the accuracy of
each method.
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FIGURE 5. Evaluation of the performance of the blastocyst classification
model based on the (a) confusion matrix, (b) ROC and AUC.

TABLE 5. Training and test result accuracies of the proposed CNN model.

The confusion matrix in binary classification represents
predictions with actual conditions from the data generated by
the trained model. The confusion matrix uses the parameters
TP, FP, TN, and FN in its representation.

For validation, we used 50 blastocyst images. Based on
the confusion matrix results, we can see that our CNN model
produces a maximum accuracy of 84.00%. The SVMmethod

FIGURE 6. Descriptive statistics of the accuracies obtained using all
methods (CNN, SVM, KNN, LR, gradient boosting) with segmented input
using Canny operators and PCA for feature extraction. A boxplot diagram
represents all features combined.

produces a maximum accuracy of 82.00%, the KNN method
produces a maximum accuracy of 74.00%, LR has a top
accuracy of 82.00%, and gradient boosting has a maximum
accuracy of 64.00%. The CNN model has the highest accu-
racy, and gradient boosting produces the lowest accuracy.

Testing of all methods on the blastocyst image testing
data based on the confusion matrix indicated that the model
performance was not good enough to classify blastocyst
images with ‘‘poor’’ quality. This problem is due to the
very low amount of input data and to the unbalanced dataset
regarding the number of blastocyst images, where the number
of ‘‘good’’ quality blastocyst images is far greater than the
number of ‘‘poor’’ quality blastocyst images.

E. MODEL PERFORMANCE MEASUREMENT
Based on the confusion matrix, we can calculate the recall,
precision, and F1-scores. CNN has the best recall value
for classifying good-quality and poor-quality blastocysts,
with average values of 0.89 for good-quality blastocysts and
0.76 for poor-quality blastocysts. In second place is SVM
with a recall value of 0.97 for good-quality blastocysts and
0.51 for poor-quality blastocysts. The recall scores and the
F1-score of LR outperform those of other techniques. The
KNN method has the lowest precision, with a value between
0.50 and 0.66. Based on the recall value, the gradient boosting
classifier obtains the lowest score, and KNN has the low-
est F1-score. In addition to evaluating the model through
the accuracy, the precision, recall, and F1-scores can show
the classification performance, as shown in Fig. 8, which
shows that all of the classifier machines offer different per-
formances.

F. STATISTICAL SIGNIFICANCE TEST
To measure the statistical significance of our results, we used
the McNemar test. The McNemar test is still widely used in
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FIGURE 7. Confusion matrix visualization of 50 validation images for (a) CNN, (b) SVM, (c) KNN, (d) LR and (e) gradient boosting.

machine learning studies. In machine learning, McNemar’s
test can be applied to compare model accuracy and select the
best classifier. We implemented the McNemar test in Python
using the Mcnemar () Statsmodels function. The function
takes a contingency table as an argument and returns a calcu-
lated test statistic and a p-value. The classification accuracy
of the CNN that has been optimized is 84.00%, with a p-value
of 0.034. Here, a statistical test is used to validate the accuracy

results. The accuracy results and statistical hypothesis testing
confirmed that the optimized CNN model was the best clas-
sifier for predicting blastocyst quality. The p-value obtained
in the hypothesis test can be interpreted as failing to reject
H0 if p>α, and if p<=α, H0 is rejected, where there is a
significant difference. The results of the McNemar statistical
test and the p-values shown in Table 6 include the p-value of
the CNN classification model, which rejected H0, where the
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FIGURE 8. Comparison of the performance of all methods (CNN, SVM,
KNN, LR, and gradient boosting) based on the two classes of good quality
and poor quality. The performance was measured based on the (a) recall,
(b) precision, and (c) F1-score.

model has a different error proportion. Other classification
models (SVM, KNN, LR, and gradient boosting) produce the
same proportion of errors or fail to reject H0. Table 6 presents
the p-values and T-statistics obtained usingMcNemar’s test to
test whether the performance of the CNNmodel significantly
differs from that of the other classification models.

IV. DISCUSSION
In this study, we optimized the CNN to assess the quality of
blastocysts produced during the IVF process. The optimiza-
tion procedure was conducted using a grid search due to its
good performance in general and its ease of implementation.
We also propose using weight decay and dropout regulariza-
tion techniques to reduce overfitting. The input data for this
research are raw images of human blastocysts from HMC

TABLE 6. McNemar’s test result.

microscopy. In this study, we used four conventional classi-
fiers to compare our CNN model and performance measures
such as the accuracy, precision, recall, and F1-score. The
essential part of deep learning is the convolution layer, which
uses some filters. In general, the use of a large number of
filters affects the accuracy. Our experimental results show a
significant difference in the results obtained using different
numbers of filters. The use of 32 filters has the greatest
influence on the accuracy compared to the use of 64, 128 or
256 filters. Although this research contributes to knowledge,
particularly for small blastocyst images, it has some limita-
tions. One limitation of the present study is that the blastocyst
images produced by the inverted microscope are affected
by artifacts and noise; another limitation is the imbalanced
number of blastocyst datasets in the ‘‘good’’ and ‘‘poor’’
quality classes. These limitations prevent the optimized CNN
from providing satisfactory results, and the imbalance in the
classes causes the model to not make sufficient observations
in the very few data class. The classification performance
can be further improved by building models based on larger
datasets and using techniques to address imbalanced classes
in medical images [41]. The latest study [42] enhances the
research on blastocysts through the use of a convolutional
neural network to image the blastocyst combined with an
elemental layer for maternal age. With an accuracy of 75%,
this study shows potential in determining the probability
of live birth. Vaidya et al. [43] used a combination of CNN
and LSTM models to automatically assess embryos in time-
lapse images. This study obtained a 100% accuracy validation
result without performing an accuracy test. Based on the latest
research, it has been shown that our proposed CNNmodel has
the potential to be improved for predicting the probability of
a live birth, whether time-lapse images are used or not.

V. CONCLUSION
Our study examined the performance of the CNN model
in assessing human blastocyst quality in the case of small
datasets. The optimization process yielded good results: the
highest validation accuracywas 84.00%, and the test accuracy
was 83.33%, with an AUC value of 0.844. Based on the
accuracy and the AUC results, the classification of blastocyst
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quality described in this paper has excellent potential to assist
embryologists in assessing and selecting the best-quality
blastocysts. McNemar’s statistical significance test proved
that the CNN model scores high in prediction compared to
the other classifiers. The confusion matrix study results show
that the accuracy of the proposed model enable classification
of blastocysts as ‘‘good’’ or ‘‘poor’’ quality.

In future work, we will explore grid search methods and
expand the boundaries of the CNN hyperparameter space
used for optimization [44]. Finally, we would also like to
extend our case study to time-lapse images of blastocysts.
More test subjects are needed to ensure that the results
obtained are statistically significant and that the proposed
approach can be applied as a general tool for assessing blas-
tocyst quality.
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