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ABSTRACT The problem of detecting defective turned-off elements in antenna arrays from near-field
measurements is addressed. In particular, the focus here is to reduce the number of measurements in order to
positively affect the acquisition time. Such an issue is achieved by adopting the recently developed warping
sampling method. Two commonly antenna diagnostics methods, i.e, the Back Transformation Method
(BTM) and the Matrix Method (MM), are considered in view of this new sampling strategy and compared to
the usual half-wavelength sampling. In particular, in order to identify the fault locations, outcomes returned
by BTM andMMundergo a detection step based on a cell-averaging CFAR (CA)-CFAR technique borrowed
from the radar literature. It is shown that the warping sampling method provides performance close to the
uniform half-wavelength one with a reduced number of data. Numerical simulations are carried out in order
to verify the results with different fault layouts and tapered currents.

INDEX TERMS Antenna measurements, sampling methods, array diagnostics, inverse imaging, non-
uniform sampling.

I. INTRODUCTION
Array antennas are widely used in many applications such as
radar, automotive, wireless communication etc. They consist
of a number of radiating elements which, depending on the
applications, can sometimes be very large.

An essential step in array development is the diagnostic
stage, which aims at checking if the array complies with
the design specifications. This entails, for example, looking
for defective (faulty) elements, which from a mathematical
point of view consists in solving an inverse source prob-
lem, i.e., estimating the excitation coefficients from field
measurements [1]–[7].

For planar arrays diagnostics, the most commonly used
method is by far the Back TransformationMethod (BTM) [8].
The Matrix Method (MM) [9] is also used often as it has
greater flexibility and allows to deal with generally shaped
array and measurement apertures.

The associate editor coordinating the review of this manuscript and

approving it for publication was Qi Luo .

Classically, measurements are collected over an aperture
larger than the array support (to control truncation error [10])
over a uniform λ/2 grid. This naturally matches the standard
FFT routines used to implement the BTM. However, this
can yield a lot of data resulting in prolonged measurement
collection time, which can be a serious inconvenience. Hence,
reducing the required data would speed up the diagnostics
stage.

To this end, approaches based on compressed sensing
(CS) [11]–[15] have been recently explored. Indeed, by for-
mulating the problem as the search for defective elements and
by furthermore assuming that their number is low, CS allows
to retrieve a sparse solution by using a number of data below
the Nyquist rate [16], [17] by running a l1 minimization.
In this framework, ensuring the RIP condition is crucial.
Sensingmatrices, which statistically verify the RIP condition,
can be built by using randommatrix theory. This can be done,
for example, by randomly selecting a subset of sampling
positions. This method is known as random sampling (RS).
However, the limitation of such an approach is that the RIP
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of the sensing matrix is assured in probability. Without a
proper rule to select the elements of the available ensemble,
there exists a probability, even if small, that the inversion
might be unstable, causing erroneous fault detection. In [15],
a method to pick up a specific instance from the ensemble
of possible sampling positions assuring the RIP property
is proposed. However, it allows to obtain a deterministic
sampling (DS) strategy for far-field measurement. Results
referring to near-field measurements are not available. Also,
to properly set the number of data, CS relies on the knowledge
of the unknown sparsity.

The number of degrees of freedom of the radiated field
(NDF) [18], [19], depending on the size of the source and the
measurement aperture, can be much lower than the number
of points returned by the λ/2 sampling [20]. This fact has
been indeed exploited in [21], where the so-called warping
methodwas introduced and used to derive a new deterministic
near-field sampling strategy. This allowed for a remarkable
reduction of data points by keeping accuracy close to the
λ/2 samplingwhile estimating the radiation pattern [22]. This
result can be in principle useful for CS as well, since the
points it returns actually represent the baseline from which
further data reduction can be achieved if unknown sparsity
information is available. On the other hand, it allows for
directly exploitingMM or BTM. Indeed, since the data points
result non-uniformly arranged, BTM requires a preliminary
interpolation stage. Accordingly, despite a great data reduc-
tion (as compared to the λ/2 sampling) standard inversion
methods can be employed to achieve diagnostics. This is
interesting since we do not need to care about RIP or to run
some optimization to achieve inversion. Also, noise propaga-
tion can be better controlled because of the involved standard
inversion procedures. Finally, no a priori information about
the unknown sparsity (equivalent to knowing the fault per-
centage) is required.

Accordingly, in this contribution, we employ BTM and
MM for achieving array diagnostics, by considering as faulty
elements the ones that are turned off. BTM andMM return the
elements that actually populate the array (i.e., the ones that are
working properly), hence the defective ones can be identified
as the nulls (actually minima) of the reconstructions. This can
be difficult to achieve because of the noise and the filtering
introduced by the inversion procedures. To cope with this
limitation, faulty elements are emphasized by subtracting
from the reconstructed coefficients the actual ones (assumed
known) projected on the same subspace the reconstructions
belong to. Also, a fault detection step follows. It consists
in introducing an adaptive detection threshold determined
according to the CFAR technique borrowed from radar
literature [23].

Summarizing, this contribution is based on twomain ingre-
dients: the warping sampling strategy developed in [22],
which allows to perform diagnostics by a significant reduc-
tion of data points as compared to the λ/2 sampling, and the
application of a detection strategy to highlight the turned-off
elements in the array.

FIGURE 1. Geometry of the problem.

An extensive numerical analysis is included in order to
assess the achievable performance.

II. ARRAY DIAGNOSTICS FORMULATION
Consider the antenna under test (AUT) sketched in Fig. 1.
A planar array of N = Nx × Ny elements is deployed over
the finite planar domain SD = [−Xs,Xs] × [−Ys,Ys] of the
x − y plane, according to a uniform rectangular grid. Denote
as rn = (xn, yn, 0) and cn the element positions and their
excitation coefficients respectively and as f the element factor.

The field radiated by such an antenna is collected over a
planar observation domain r0 ∈ OD = [−X0,X0]×[−Y0,Y0]
located at z = z0 > λ, with λ being the wavelength, so that
only propagating waves are relevant.

This radiation problem can be described by the following
semi-discrete radiation operator

G : c ∈ CN
→ E(r0) =

N∑
n=1

G(r0, rn) · cn ∈ L2(OD) (1)

with

G(r0, rn) =
e−jkR(r0,rn)

4πR(r0, rn)
f(θ (r0, rn), φ(r0, rn)) (2)

R(r0, rn) = |r0 − rn|, θ(r0, rn) and φ(r0, rn) the relative
polar angles between the measurement point r0 and the n-th
element position rn, and k is the wavenumber.
Measurements are collected by a probe antenna, whose

plane-wave spectrum is generally flat enough to be ignored.
Otherwise, a probe compensation procedure can be applied.
Here, we straightway assume the ideal probe with a Dirac
pulse response. Moreover, the probe is assumed linearly
polarized and collecting only tangent field components
Et(r0) = E(r0) · t̂ , with t̂ = x̂ or t̂ = ŷ.
The array diagnostics problem aims to reconstruct the

excitation coefficient vector c from field measurements. The
back transformation method and the matrix method are two
commonly used approaches to pursue such an objective and
are briefly described below.
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A. BACK TRANSFORMATION METHOD
The back transformation method is a diagnostic technique
based on field plane-wave spectrum (PSW) expansion.

Say Êt (kx , ky, z0) the field PSW at the measurement aper-
ture z = z0, with kx and ky being the spatial spectral variables.
Then,

Et (xo, yo, z0)

=
1

(2π)2

∫
∞

∞

∫
∞

∞

Êt (kx , ky, z0)e−j(kxx+kyy)dkxdky (3)

with kz =
√
k2 − k2x − k2y . Now, since

Êt (kx , ky, z0) = Êt (kx , ky, 0)e−jkzz0 (4)

after compensating the propagation term and the element
factor, an estimate of the excitation coefficients cn is obtained
as

ĉn =
∫
∞

−∞

∫
∞

−∞

kzejkzz0

ft (kx , ky)
Êt (kx , ky, zo)e−j(kxxn+kyyn)dkxdky

(5)

with ft = f · t̂ being the tangent component of the element
factor. It is seen that estimating the excitation coefficients via
BTM entails computing a couple of Fourier transformations,
one for field PWS evaluation and one for achieving back-
propagation. This can be achieved by employing an FFT
routine, which makes the method appealing because of its
quick implementation. Usually, the field is sampled at λ/2,
λ being the wavelength, which is equivalent to restricting the
band to the so-called visible domain, i.e., evanescent contri-
bution is filtered out. Note that restricting the spatial spectrum
implicitly regularizes the inverse problem of retrieving cn
from field measurements Et (kx , ky, z0), which is indeed ill-
posed. This is easily seen by looking at the exponential term
ejkzz0 , which diverges for k2x + k2y > k2. However, (5) does
not return the least square solution because of the finite size of
the measurement aperture. This of course negatively affects
the performance achievable in the reconstructions (truncation
error) [10].

B. MATRIX METHOD (MM)
Since field data are collected over a finite discrete set of points
belonging to OD, instead of the operator in (2), what one
should actually consider is the matrix operator

A : c ∈ CN
→ Et = A · c ∈ CM (6)

where Et is the numerical vector consisting of the samples of
Et collected over the M measurement points r0m and A is a
matrix whose entries are given by

Amn =
e−jkRmn

4πRmn
ftmn (7)

where Rmn = |r0m− rn| and ftmn is the tangent component of
the element factor linking the element at rn to the observation
point at r0m. TheMM, hence, entails recovering the excitation
vector c by solving the matrix equation (6), typically in the

least square sense since M > N and because of noise and
uncertainty. Clearly, MM is more computationally demand-
ing than BTM, with the actual computational cost being
related to the employed solution algorithm. Indeed, direct or
iterative inversion schemes can be exploited. However,MM is
more flexible since it allows to just as easily deal with mea-
surement aperture and array antenna of general shapes (i.e.,
not necessarily planar). Data collected over a non-uniform
grid can be addressed as well.

Regardless of the inversion method one may want to use,
said {σn, un, vn}

N
n=0 the singular system of A, the retrieved

excitation vector can be formally written as

ĉ =
N∑
n=0

Wn
< Et + N, vn >

σn
un (8)

where < ·, · > denotes the scalar product, N is the noise
vector that corrupts data and Wn is a filtering window that
depends on the adopted inversion scheme and regularizes
the problem. Regularization depends on the noise level and,
of course, impacts on the achievable performance. However,
in general, MM can allow a for better performance than BTM,
since the latter ‘‘imposes’’ regularization regardless of the
noise level.

Related to the previous question there is the strategy
adopted to design the measurement set-up in terms of the
number and the location of the measurement points. This
crucial aspect is where we mainly contribute in this paper as
detailed in the next section.

III. FIELD SAMPLING
As mentioned above, retrieving the excitation coefficients
entails solving a finite dimensional ill-posed linear inverse
problem, which basically inherits ill-posedness from the
related continuous inverse source problem of which it is
the discrete counterpart. More in detail, it has been shown
that the ‘‘continuous’’ radiation operator (i.e., operator in (1)
acting on L2(SD)) presents a distinctive singular value
behaviour. Indeed, the singular values are rather constant till
a critical index beyond which they experience an exponen-
tially fast decay. This critical number is the so-called number
of degrees of freedom (NDF) of the problem and basically
means that the dimension of the radiated field space (i.e., the
data space) is essentially of finite dimension. Accordingly, the
number of spatial measurements, and their positions, should
be dictated by the NDF (indeed slightly greater) so as to
approximate such a finite dimensional space.

By the usual uniform λ/2 sampling, M > N > NDF.
This is because in order to reduce truncation error the mea-
surement aperture is commonly set larger than the array size.
Also, note that typically NDF < N , that is lower than
the number of elemental radiators uniformly deployed at a
λ/2 step over the array planar aperture. It has been shown that
the NDF→ N only when themeasurement aperture becomes
unbounded, which is obviously unfeasible. More in detail, the
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NDF was analytically estimated in [20] as

NDF =
4
λ2

[√
(X0 + XS )2 + z20 −

√
(X0 − XS )2 + z20

]

×

[√
(Y0 + YS )2 + z20 −

√
(Y0 − YS )2 + z20

]
(9)

with [·] being the operator that retains the least greatest
integer. From (9) it is easily seen that when X0,Y0→∞ then
NDF → 16XSYS , which is exactly N , that is the number of
radiators populating the array. Therefore, when M > N >

NDF, the singular values of the discrete operator (6) run
beyond the NDF and hence very low singular values may lead
to instability in the reconstruction (ill-posedness) [24]. This is
circumvented in the BTM, since it implicitly regularizes the
problem, whereas in the MM one has to properly choose the
regularizing sequenceWn.

Since the radiated field space has essentially dimension
NDF, it is natural to try to exploit only a number of mea-
surements of the same order as the NDF. However, the mea-
surement points should be set so that the singular values of
the discrete operator A approximate the ones of G in the
region preceding the abrupt decay. If this is possible, a great
data reduction is achieved with consequent data collection
time saving, especially for large or very large (in terms of
wavelength) array antennas.

This crucial point has been recently successfully pursued
in [21], [22]. There, a field sampling strategy, that requires
a number of measurements M only slightly greater than the
NDF reported in (9), was derived. This approach is based on
a proper reformulation of the radiation operator that high-
lights the radiated field as a spatially varying bandlimited
function, that is, as a function whose bandwidth depends on
the observation point r0. More in detail, it is shown that upon
introducing suitable transformations that ‘‘warp’’ the original
observation variable r0, the radiated field can be expressed
as a classical band-limited function and thus the Shannon
sampling theorem can be employed. The transformations are
shown in eq. (10), whereas the theoretical details are reported
in [22].

ξx = αx(x0)
k
2
(
√
(x0 + XS )2 + z20 −

√
(x0 − XS )2 + z20)

ξy = αy(y0)
k
2
(
√
(y0 + YS )2 + z20 −

√
(y0 − YS )2 + z20) (10)

where αx and αy are given by

αx(x0) = 1− (1− ν) sin4(
π

2X0
x0)

αy(y0) = 1− (1− ν) sin4(
π

2Y0
y0) (11)

Indeed, ν is an oversampling factor so that M = ν2NDF and
the sin terms allow to achieve a spatially varying oversam-
pling so as to deploy more points where required (see [22]).
Accordingly, the following sampling series can be exploited

FIGURE 2. The ratio between M and Mλ/2 as function of X0 = Y0 for
different values of XS .

to represent the field

Et (ξx , ξy)

= ejγx (ξx )ejγy(ξy)
Nx∑
s=1

Ny∑
l=1

Et (ξxs, ξyl)

×e−jγx (ξxs)e−jγy(ξyl )sinc(ξx − ξxs)sinc(ξy − ξyl) (12)

with

γx(x0) =
k
2
[
√
(x0 + XS )2 + z20 +

√
(x0 − XS )2 + z20]

γy(y0) =
k
2
[
√
(y0 + YS )2 + z20 +

√
(y0 − YS )2 + z20] (13)

Finally, the sampling points are evaluated by solving

ξx(x0s) = ξxs = sπ

ξy(x0l) = ξyl = lπ (14)

with s, l being integer numbers. It is seen that, since (ξx , ξy)
are non-linearly linked to (x0, y0), uniform sampling in
(ξx , ξy) becomes non-uniform in r0. This could be expected
in view of the spatially varying behaviour of the radiation
operator in the near-field. Nonetheless, as remarked above,
a considerable reduction of data points is achieved.

Fig. 2 shows the ratio between the number of measure-
ments M = ν2NDF returned by non-uniform sampling and
Mλ/2, the number of measurements point corresponding to
the uniform λ/2 sampling, as function of the observation
domain size X0 = Y0 for different values of XS = YS and
by choosing ν = 1.2. As can be seen, such a ratio is always
lesser than 1. Hence, the proposed sampling strategy allows to
decrease the measurement number compared to the classical
λ/2 sampling. In particular, the data reduction (with respect to
Mλ/2) becomes dramatic as the array size (and consequently
the measurement aperture) increases.

Clearly reducing the number of measurement points is
positive since data acquisition time is reduced as well. Also,
MM enjoys a lighter computational burden since it is required
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to deal with a smaller matrix. BTM, instead cannot be
employed directly. However, the series in (12) allows to
interpolate the field over a λ/2 grid and then BTM can still
employed.

The crucial question is to see how data reduction, allowed
by the non-uniform sampling, affects performance in the
reconstructions, compared to the λ/2 sampling. To this end,
in the next section some examples of array diagnostics are
provided.

IV. NUMERICAL EXAMPLES
We consider an array of N = 2809 dipoles directed along
the x axis, uniformly spaced at λ/2 and arranged over the
array support Xs = Ys = 13λ. The x component of the
radiated field is collected over a planar observation domain
with X0 = Y0 = 25λ and z0 = 8λ. The field is generated by
the Phased-array toolbox of MATLAB. In particular, since
such a toolbox accepts voltage taper, the desired excitation
currents have been scaled by the antenna input impedance
provided by the MATLAB toolbox itself.

Two different excitation distributions are considered: uni-
form, with cn = 1 ∀n, and an n̄ = 4 Taylor distribution with
side-lobe level SLL = 20dB. For comparison purposes, data
are collected by exploiting both the usual λ/2 sampling and
the non-uniform one returned by eq. (14). The first sampling
scheme requires Mλ/2 = 10201, whereas the non-uniform
one M = 3600 (i.e., only 35% ofMλ/2).
We focus on detecting defective elements. To this end,

a fraction of the overall excitation coefficients is turned off
according to a uniform probabilistic law. Both the MM and
BTM are employed to reconstruct the excitation coefficients
and each of them is checked for both the sampling schemes
under comparison. Therefore, we have actually four recon-
struction schemes, with BTM proceeded by interpolation (as
mentioned above) when applied to the data obtained over
the non-uniform grid. Finally, data are corrupted by a zero
mean complex white Gaussian noise whose signal to noise
ratio (SNR) is

SNR =
||Et ||
||N||

(15)

Fig. (3) shows two random faulty deployments for the case
of uniform and Taylor excitation coefficients. In particular,
the number of faulty elements was set at 3%N (Nfault = 87)
and the field data corrupted by noise with SNR = 20dB.
The corresponding reconstructed excitation coefficients are
shown in Fig.4 and Fig. 5. In particular, the MM reconstruc-
tions have been obtained by employing a truncated singular
value decomposition (TSVD) inversion scheme and retaining
the singular values above −20dB the maximum one. In both
figures the top rows refer toMMand the bottom ones to BTM,
instead the first columns have been obtained by considering
the uniform λ/2 sampling whereas the right column using the
non-uniform sampling. It can be appreciated that, from the
considered singular value truncation threshold, the MM and
the BTM reconstructions look very similar. What is more,

this holds true for both the sampling schemes, in spite of the
reduction in the number of measurements of the non-uniform
sampling. This is sufficient to state that the non-uniform
sampling scheme actually captures the same information as
the λ/2 sampling. Also, it can be noted that most of the faulty
elements are already clearly detectable, especially for the uni-
form excitation. However, for the Taylor’s taper, discerning
from faults and excitation coefficients becomes increasingly
hard in the region where the latter are very low. This issue can
be remedied by employing a suitable detection strategy.

V. FAULT DETECTION
To begin with, first the difference excitation coefficients are
built. In particular, the difference coefficients are defined as
1c = Pc− ĉ, where ĉ are the reconstructed coefficients and
Pc are the actual excitation coefficients (assumed known)
that have undergone the same filtering (P represents the
corresponding projection operator) as due to the reconstruc-
tion procedure. For example, for the MM (similar arguments
apply for BTM), it yields

1c =
∑

m∈Ifault

NT∑
i=1

cmu∗i (m)ui +
NT∑
i=1

< N, vi >
σi

ui (16)

where NT is the TSVD truncation index and Ifault is the set of
positions where faults occur. It is noted that knowing Pc is
equivalent to knowing the field radiated by the array when all
elements work correctly, as commonly done in many papers
concerning array diagnostics [11]–[15]. Also, eq. (16) can be
expressed in terms of the point-spread function (psf) of the
adopted inversion scheme as

1c =
∑

m∈Ifault

cmpsf(n,m)+
NT∑
i=1

< N, vi >
σi

ui (17)

which is useful for later discussion.
Detection is then achieved by turning 1c into a binary

vector populated by 1 where |1c(n)|2 ≥ Ath, Ath being the
detection threshold, and 0 elsewhere.

The choice of the detection threshold is a crucial issue.
Indeed, it must be set in order to establish a proper balance
between the probability of false alarm (PFA) and the proba-
bility of detection (PD). In the case of a single fault, and under
the assumedworking condition, analytical results that linkAth
and PFA and PD can be established, as done in [25]. However,
when multiple faults occur, because of the linkage between
the reconstructions of the different faults, those results can be
expected to hold only when the faults are well separated. The
point is that one does know which is the arrangement of the
faults.

To cope with this issue, we propose to apply a constant
false-alarm rate (CFAR) method, borrowed from radar liter-
ature [23], which sets an adaptive threshold in order to keep
the false-alarm probability constant. In particular, we adopt
the cell-averaging CFAR (CA)-CFAR. By this method, the
detection threshold for a specific array element under test is
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FIGURE 3. Amplitude of the excitation coefficients with faults for a planar array SD = [−Xs,Xs]× [−Ys,Ys] and N = 2809 dipoles
arranged at λ/2. Panel (a) refers to a uniform distribution whereas panel (b) to an n̄ = 4 Taylor distribution with SLL = 20dB.
In both cases Nfaults = 3%N are denoted as blue squares.

FIGURE 4. Amplitude reconstruction results for the case of uniform distribution reported in Fig. 3 panel (a). The measurement
parameters are OD = [−X0,X0]× [−Y0,Y0] with X0 = Y0 = 25λ and z0 = 8λ. Panel (a), refers to MM and Mλ/2=10201, panel (b) to
MM and M=3600, panel (c) to BTM and Mλ/2=10201 and panel (d) to BTM and M=3600. In this last case, the data M are first
interpolated on a λ/2 grid and then the BTM is applied. Finally, SNR = 20dB.

determined by averaging over some neighbouring cells. More
in detail, consider the vector 1c arranged in matrix form
1C ∈ CNx×Ny , withNx andNy being the number of elemental

radiators along x and y, respectively, and N = NxNy. Then,
the element at (t, s) corresponds to the n array element with
n = (s−1)Nx + t , t ∈ (1, 2, · · · ,Nx) and s ∈ (1, 2, · · · ,Ny).

VOLUME 10, 2022 82341
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FIGURE 5. Amplitude reconstruction results for the case of Taylor distribution reported in Fig. 3 panel (b). The measurement
parameters are OD = [−X0,X0]× [−Y0,Y0] with X0 = Y0 = 25λ and z0 = 8λ. Panel (a), refers to MM and Mλ/2=10201, panel (b) to
MM and M=3600, panel (c) to BTM and Mλ/2=10201 and panel (d) to BTM and M=3600. In this last case, the data M are first
interpolated on a λ/2 grid and then the BTM is applied. Finally, SNR = 20dB.

The detection threshold for the pixel (t, s) of the reconstruc-
tion is evaluated by first averaging the reconstruction over
neighbour cells belonging to a rectangular window of K =
K1 × K2 elements, that is

Y (t, s) =
∑

(l,p)∈IT−Iguard

|1C(l, p)|2

LP
(18)

with IT being the rectangle window centered in (t, s) and sides
K1 +Nguard1 and K2 +Nguard2, and Iguard the rectangle win-
dow centered in (t, s) and sides Nguard1 and Nguard2. Y (t, s)
actually represents an estimate of the background noise (inter-
ference). Eventually, the detection threshold is obtained by
multiplying the estimated average by a scaling factor αT . The
latter allows to control the false alarm probability by

PFAd =

(
1+

αT

K

)−K
(19)

Hence, by setting PFAd , αT is evaluated from (19) and the
detection threshold is finally set equal to Ath = αTY .

Note that in (18), the element under test and its immediate
neighbours belonging to Iguard are excluded by the averaging
procedure. This is done in order to avoid biasing the estima-
tion of the threshold towards excessively high values. In this
regard, Nguard1 and Nguard2 must be properly chosen accord-
ing to the psf function which describes how the fault recon-
struct actually spreads over more than one pixel point. In [20],
an analytical estimation in terms of the configuration’s geo-
metrical parameters is derived. This result can then be used to
set the guard pixels as those for which themain-lobe of the psf
is excluded by the averaging procedure. More in detail, it is
shown that only when X0→∞ and Y0→∞, the main-lobe
half-width of the psf tends to λ/2, otherwise it is larger and
non-uniform across the array domain. In particular, for the
cases considered in this manuscript, the psf estimate reported
in [20] suggests to set Nguard1 = Nguard2 = 1.
The detection threshold resulting from (18) and (19) does

not properly take into account the contributions of the recon-
structions of the faults that can enter the averaging window.
The result is that noise estimation is distorted and generally
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FIGURE 6. Detection with the MM method. Panels (a) and (b) refer to the uniform distribution, panels (c) and (d) to the Taylor
one. In panels (a) and (c) uniform λ/2 sampling with Mλ/2 = 10201 is employed whereas in panels (b) and (d) the non-uniform
sampling one with M = 3600, respectively. The configuration parameters are the same as in Fig. 4, whereas PFAd = 10−3.
Detected faults are displayed as yellow squares whereas false positives as red squares.

increases the threshold. This leads to a deviation between
the set PFAd and the actual one. Accordingly, also K1 and
K2 must be judiciously chosen.
Indeed, K1 and K2 must be chosen so as to make the noise
power estimation reliable across all of the array element
positions. In principle, larger K1 and K2 imply better noise
power estimation. However, this is not necessarily true when
more than one fault is present. In fact, excessively large
K1 and K2 can decrease the detection threshold reliability
because other faults are included in the averaging due to the
strong interference of themain lobes. After some trials, we set
K1 = K2 = 10.
Now we are ready to assess the detection performance.

To this end, as a preliminary example, we just address
the case reported in Fig. 3. In particular, since BTM and
MM return similar results, we show only the detection con-
cerning the MM method. The outcome of the detection is
reported in Fig. 6, where SNR = 20dB and the detection
threshold Ath is set by fixing PFAd = 0.001. As can be
seen, in both the cases, the faults are clearly and correctly

detected and localized. Remarkably, this holds true also for
the non-uniform sampling strategy. The case of Taylor dis-
tribution also shows many false positives (for both sampling
methods).

These results show that the suggested data reduction strat-
egy actually works. However, it is not conclusive since it
refers to just one example. In order to estimate the probability
of detection and of false alarm we run a Monte Carlo analysis
by considering Ntrials = 1000 different realizations of noise
and fault layouts. In particular, PFA and PD are evaluated as

PFA =
1

Ntrials

Ntrials∑
n=1

FP(n)
N − Nfault

(20)

and

PD =
1

Ntrials

Ntrials∑
n=1

FD(n)
Nfault

(21)

where FP, FD and Nfault denote the number of false posi-
tives, the number of detected faults and the number of faults,
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TABLE 1. Detection results for the case of uniform excitation coefficients.
The geometrical parameters are the same as in Fig. 4.

TABLE 2. Detection results for the case of Taylor tapered excitation
coefficients with SLL = −20dB and n̄ = 4. The geometrical parameters are
the same as in Fig. 5.

respectively. Different values of SNR and Nfaults are also
considered for each sampling strategy, uniform and non uni-
form (nu). In particular, the results concerning the uniform
distribution are shown in the Table 1, whereas Table 2 refers to
the Taylor distribution. In both cases, the threshold is chosen
by fixing PFAd equal to 0.001.
As can be seen, uniform sampling generally returns results

which are only very slightly better than the non-uniform
sampling. Actually, they are really very close, and hence
demonstrate the effectiveness of the non-uniform sampling
strategy. Also, as expected, PD degrades when SNR reduces
and/or the number of faults increases. For the Taylor distri-
bution, as natural, this is a bit more evident. Nonetheless,
in all the cases, the results keep to satisfying values, also
considering that if antenna diagnostics is performed in con-
trolled environments like an anechoic chamber, the SNR can
be sufficiently high. Finally, it is noted that PFA decreases
when the number of faults increases. This, at first glance,
could appear contour-intuitive but it is actually a consequence
of the chosen detection strategy. Indeed, when many faults
are present (18) tends to return higher detection thresholds
and hence lower PFA. As anticipated above, this is how fault
reconstructions distort threshold setting.

VI. CONCLUSION
In this paper, the problem of planar array antenna diagnostics
from near-field measurements has been addressed. In particu-
lar, the standard Back transformation and the Matrix methods
have been considered in view of the new field sampling

strategy proposed in [22]. The latter provides a non-uniform
sampling grid that allows to reduce the number of measure-
ment points compared to the standard λ/2 strategy, resulting
in a decrease of the measurement acquisition time. In particu-
lar, for MM this positive impact becomes even more relevant
because the reduction in the number of points also decreases
the computational burden.

Since from the reconstructions it is quite difficult to iden-
tify the fault locations, a fault detection step has been added
to the array diagnostic problem. Such a step introduces an
adaptive threshold related to a reference current and relies to
a cell-averaging CFAR (CA)-CFAR technique [23]. It allows
to choose a detection threshold which keeps the false-alarm
probability constant despite changes in the background
noise.

Finally, numerical analysis has shown that the non-uniform
sampling strategy yields results, in terms of probability of
detection and of false alarm, which are comparable to the ones
returned by themore standard λ/2 sampling, withmuch fewer
data. Indeed, uniform sampling returns better results only for
low SNR. This could be expected and it is the trade-off for
reducing the number of data. This drawback can be partially
remedied by increasing the number of data through a higher
oversampling factor ν.
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