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ABSTRACT Smart mobility is an imperative facet of smart cities, and the transition of conventional
automotive systems to connected and automated vehicles (CAVs) is envisioned as one of the emerging
technologies on urban roads. The existing AV mobility environment is perhaps centered around road users
and infrastructure, but it does not support future CAV implementation due to its proximity with distinct
modules nested in the cyber layer. Therefore, this paper conceptualizes a more sustainable CAV-enabled
mobility framework that accommodates all cyber-based entities. Further, the key to a thriving autonomous
system relies on accurate decisionmaking in real-time, but cyberattacks on these entities can disrupt decision-
making capabilities, leading to complicated CAV accidents. Due to the incompetence of the existing accident
investigation frameworks to comprehend and handle these accidents, this paper proposes a 5Ws and 1H-
based investigation approach to deal with cyberattack-related accidents. Further, this paper develops STRIDE
threat modeling to analyze potential threats endured by the cyber-physical system (CPS) of a CAV ecosystem.
Also, a stochastic anomaly detection system is proposed to identify the anomalies, abnormal activities, and
unusual operations of the automated driving system (ADS) functions during a crash analysis.

INDEX TERMS CAV-enabled transport mobility environment, cybersecurity, STRIDE threat modeling,
accident investigation.

I. INTRODUCTION
The world is witnessing the fourth industrial revolution,
which is largely driven by the convergence of increased con-
nectivity and smart automation [1]. There have been several
breakthrough innovations in the emerging disciplines, e.g.,
artificial intelligence (AI), internet of things (IoTs), fifth-
generation wireless technologies, and fully autonomous vehi-
cles (AVs). In order to automate processes, AI is replacing
human capabilities with technology (e.g., industrial robots)
to achieve significant performance improvements, reducing
safety hazards [2].

CAVs are perceived as a revolutionary advancement that
is associated with many potential benefits, e.g., reduced
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traffic congestion, improved road safety, and high degrees
of transportation efficiency [3]. Also, the auto industry has
now begun to transition away from conventional internal
combustion engine-based vehicles (ICEVs) to electric vehi-
cles (EVs) for better carbon emission benefits and to enable
green mobility [4]. Notably, the connected and automated
driving system (CADS) has been a focal point of exten-
sive analysis among evolving technologies [5]. Therefore,
in recent years, transportation engineers and researchers have
performed comprehensive research to facilitate the develop-
ment and integration of this transformative technology onto
roadways.

Many business verticals or original equipment manufactur-
ers (OEMs), e.g., General Motors (GM), Google’s Waymo,
Honda, Tesla, Toyota, and Uber, are spending billions on
research and development of CAVs, although suffering
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serious setbacks [6]. Waymo [7], which shares a parent com-
pany with Google, became the first service provider to offer
driverless taxi rides in the form of robo-taxi service to the
public in Phoenix, Arizona in 2020.

In general, CAV is a safety-critical system consisting of a
myriad of heterogeneous components, both cyber and phys-
ical, which pose serious security challenges [8]. It is very
important to understand different environment dynamics to
evaluate the CAV operating principle. Compared to the tradi-
tional automobile traffic system, which includes the physical
interactions between its three core elements (i.e., automobile,
driver, and road infrastructure), digital transformation enables
the CAV system to establish these interactions via data and
services. However, in the current era of autonomous driv-
ing, we are accelerating autonomous cooperative driving by
equipping the CAV ecosystem with communication concepts
(e.g., vehicle-to-everything (V2X)). AVs currently running on
the roads are at SAE L2, and some manufacturers are also
mass-producing L3 self-driving cars. For the current paper,
the vehicles under consideration are assumed to be SAE L4.
The Society of Automotive Engineers (SAE) J3016 clearly
defines the degree of L4 vehicle as high driving automation,
which does not require any human interaction in the vehicle’s
operation in the event of system failure when the automated
driving features are engaged. Moreover, the realistic target
for L4 CAV will most likely be on EVs, considering the
global acceptance of carbon neutrality and accelerated pace
of EV design and manufacturing amongst the OEMs. Hence,
bi-directional interactions between the utility distribution
grids, EVs, and charging infrastructure, e.g., EV chargers
(EVCs)and EV charging stations (EVCSs), are critical areas
to analyze [9]. It also includes crucial data exchange between
the cooperative intelligent transport system (C-ITS) center
and infrastructure behaviors that highly impact the perfor-
mance of a CAV [10].

Besides the advantageous aspects of the revolutionary tech-
nology, e.g., energy savings, overall traffic flow efficiency,
mobility for the disabled, and improvements in social cohe-
sion, CAV offers safety-critical issues at the same time. AVs
are becoming more pervasive with the continuous technology
refinement, but safety is a significant deterrent factor toward
their adoption. Contrary to the claims, CAVs currently have a
higher rate of accidents than human-driven cars. On average,
there are 9.1 AV car accidents per million miles driven, while
the same rate is 4.1 crashes per million miles for regular
motor vehicles [11]. Although the introduction of AVs has the
effect of reducing traffic accidents caused by human factors,
AVs are not safe from external threats [12]. The concept
of autonomous driving revolves around a CAV’s capabilities
to understand its environment and respond to the dynamic
events of the environment, which is designated as the vehi-
cle’s perception or situational awareness [13]. Since various
data andAI drive the decision-making processes of a CAV, the
system malfunctioning and cybersecurity have turned out to
be the most critical aspects to determine safety and security.
Cybersecurity variables and situations are alien to the CAV

machine learning (ML) algorithms, so relying on physical and
logical mechanisms may not suffice to achieve the goals of
CADS. As a result, system failures and CAV accidents caused
by a cyberattack could be deadly and may lead to casualties,
loss of property, or even deaths.

Also, it is ambiguous how a CAV can cope with different
situations and environments in the presence of several cyber-
security threats thatmight interrupt its functioning.Moreover,
cyber-induced CAV crash investigation in such a complex
urban environment becomes very tedious and challenging.

The key contributions of this paper are: (1) development of
a connected mobility environment (e.g., vehicle, transporta-
tion, and power grid) for a CAV, (2) STRIDE threat modeling
to analyze the cybersecurity events causing a CAV crash,
along with the mitigation measures, (3) development of a
post-accident investigation framework based on 5Ws and 1H
models, and (4) proposition of a probability-based anomaly
detection system during a CAV crash investigation. This
paper also offers some parametric variations to differentiate
the automated levels defined by the SAE, although it is not
currently within the scope of the SAE J3016. This can be
considered to be a pragmatic step forward in the AV industry.

The remaining parts of this paper are structured as follows:
Section II briefly summarizes some of the related works.

Section III discusses the automation levels defined by SAE
along with the distinguishing aspects of the automated levels.
Section IV outlines the CPS of the proposed traffic mobility
environment. Section V outlines the accident mechanisms
induced by cyber incidents on various environmental entities.
In addition, it presents existing threat modeling techniques
in the automotive sector, with an extensive application of
STRIDE to analyze different cybersecurity vulnerabilities as
well as mitigation actions. Further, a digital forensic investi-
gation framework based on 5Ws and 1H to find the causes
and effects of a crash is discussed in Section VI. Section VII
proposes an anomaly detection model to identify the abnor-
mal behavior of an ADS function responsible for causing the
crash. Section VIII analyzes the performance of the proposed
frameworks by engaging some case studies of cyberattacks on
EVCS and C-ITS technology. Finally, Section IX concludes
the paper along with the limitations and recommendations for
future work.

II. LITERATURE SURVEY
Although there has been some dedicated research done on
different automobile mobility environments in the literature,
there are huge gaps that have not been fully addressed
for an intelligent CAV environment. There have been sev-
eral digital architectures proposed in the past to model
the mobility environment of a CAV. To substantiate, [14]
introduces a typical dedicated short-range communication
(DSRC)-based architecture of a connected vehicle (CV),
which consists mainly of on-board units (OBUs), roadside
units (RSUs), and a DSRC communication protocol. Refer-
ence [15] supports the Third Generation Partnership Project
(3GPP) New Radio (NR) Release 16 sidelink as the building
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block of advanced V2X services, e.g., vehicles platooning,
extended sensors, advanced driving, and remote driving.
This infrastructure includes communication from vehicle-
to-vehicle (V2V), pedestrian (V2P), RSU, and application
server. However, in [13], a number of dynamics of the com-
plex urban environments are visualized by exploiting either
direct PC5 or indirect 5G/LTE-V/DSRC communication.
Further, it provides details of road infrastructure and com-
munication infrastructure for cooperative, connected, and
automated mobility (CCAM). A model based on connected
cars, automated driving, car sharing, and electrification as
the primary components of the mobility environment is spec-
ified in [16]. The work proposed in [17] develops a con-
ceptual framework that highlights the concept of shared and
electric mobility in which the infrastructure, services, and
data management centers are interconnected with the devel-
opment of digital technology. An IoT-based architecture is
explained in [18] that supports different wireless communica-
tionmodes such as V2V, vehicle-to-infrastructure (V2I), V2P,
and vehicle-to-sensor. Reference [19] proposes a cognitive
advanced driver assistance system (ADAS) architecture for
L4 autonomous-capable EVs that assimilates cloud, central
ADAS management system, electrified powertrain, V2I, and
V2V communication.

While all these architectures present a good high-level
representation of the traffic environments, cyber compo-
nents of the power grid and charging infrastructure are not
explained as a part of the systems. The conventional AV driv-
ing environment does not include the necessary ingredients
and asks for the upgrade of existing assets (e.g., network
infrastructure, cloud infrastructure, and vehicles) to achieve
the objectives of higher automation levels. Therefore, this
paper envisions a novel and comprehensive mobility environ-
ment for a hyper-connected CAV that encompasses important
primary entities. As a result, it correlates the security of a
specific CAV system with the security of all the subsystems.
For instance, any erroneous cyber interactions may lead to
an unexpected situation with a huge impact (accident/crash)
in a CAV environment. The intention of the proposal is not
only to support the existing vehicle automation levels but
also to gear the discussion toward the future L4 CAVs and
above.

AV cybersecurity comprises both functional security and
driving automation system (DAS) security. Although inter-
national standards ISO 26262, SAE J3061, and ISO 21434
provide guidelines for the functional safety and functional
security of conventional road vehicles (on-board electrical
and electronic systems), respectively [20], these standards are
not created for AV-specific functionalities. For DAS safety,
some recent standards, e.g., UL4600 [21] and SOTIF [22],
have been developed. Although there are no AV-specific
cybersecurity regulations yet, UNECE WP.29/vehicle cyber-
security regulation requires vehicle approval authority to
ensure a holistic analysis encompassing ISO 26262-2018
(functional safety), ISO/PAS 21448 (SOTIF), and ISO/SAE
21434 (cybersecurity of E/E systems).

Further, cyberattack patterns on critical infrastructures,
especially CAVs, are evolving and diversifying, indebted to
the IoT paradigm, which has infused innumerable vulner-
abilities. The perpetrators might use these existing vulner-
abilities of the CAV ecosystem to compromise the system
(jeopardizing its security). For instance, a CAV owner may
lose the availability of the EV charging process due to a denial
of service (DoS) attack. The severe implications incurred
by the adversarial attacks have triggered a broad interest
of white-hat hackers and researchers to address the cyber-
security aspects of the CAVs. Kaspersky Lab researchers
exposed the software vulnerabilities of EVCSs that make
them accessible to unauthorized hackers [23]. Furthermore,
well-trained attackers could initiate instability problems in
the power grid by compromising CAV security (e.g., shut off
multiple high-power EV chargers). So, this paper elaborates
the complex mechanism of a CAV accident that may be
caused due to multiple trigger conditions in its ecosystem
along with the application of threat modeling tools to identify
different cyber threats.

Post-accident analysis refers to the object of the investi-
gation team to identify the cyber factors responsible for the
disengagement or crash. There have been earlier investigation
tools, but they do not include the cybersecurity aspects. For
example, as of February 9, 2022, the California AV collision
report cites various causal factors for AV disengagement or
collision, e.g., incorrect perception of a traffic signal, degrad-
ing localization, map discrepancy, reduced visibility due to
occlusions, and other hardware health issues [24]. However,
it does not refer to the cyber-related anomalies. Further, with
an inclusion of cloud, grid, and charging infrastructure in
the CAV environment, the probability that a CAV crash can
be caused increases. There are multiple cybersecurity frame-
works being developed for power grids, but they do not sup-
port either EVCSs or CAVs. Also, we have the iISO 12353-1
standard for conventional road vehicles and traffic accident
analysis, but it does not cover CAVs [25]. So, post-collision
investigation of CAVs may not be done with the existing
frameworks or algorithms as they are unable to identify the
cyber factors liable for causing an accident. As a result,
there is a need to develop solutions that can be used by all
relevant actors in an interconnected CAV environment. So,
this paper lays out a digital forensic investigation model that
law enforcement may use to reconstruct the crash scenarios
in the highly complex CAV environment.

III. SAE VEHICLE AUTOMATION LEVELS
In 2014, SAE published the J3016 standard that classifies six
levels of ADS, which was updated significantly in collabora-
tion with the ISO in 2021 [26]. This standard is accepted by
regulatory bodies like UNECE WP.29/GRVA [27], NHTSA,
US DOT [28], and California DMV [24] as well as by the key
players of AV standardization like ISO/PAS 21448-SOTIF
[22], ISO 34501 [29], ISO 34502 [30], ISO 34503 [31],
UL4600 [21], IAMTS, and ASAM [32] to create other stan-
dards, laws and guidelines for AVs. It is stated that the driving
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system is described by the word ‘‘automation’’. However,
several complex terms such as ‘‘Automation System’’, ‘‘Auto-
mated Driving’’, and ‘‘Driving Automation’’ are used in SAE
J3016 and presented differently such as ‘‘Automated Driving
System’’ (NHTSA, 2016) and ‘‘Autonomous Driving Sys-
tem’’ [33]. Therefore, before developing the research process,
this study intends to define ‘‘autonomy’’ and ‘‘automation.’’
The dictionary definition of ‘‘automation’’ is ‘‘made to be
written by a machine or computer in order to reduce the work
done by humans’’ (Cambridge Dictionary). ‘‘Automated sys-
tems’’ in vehicles cannot yet drive reliably and safely in all
traffic scenarios and situations that occur on the road, and
the driver does not need to monitor the system and driving
environment but the driving ability of the automated systems.
It states that when this is limited or when the system fails, the
driver should take control of the vehicle [34], [35]. ‘‘Auton-
omy’’ is defined as ‘‘having the power to be independent
and make decisions for yourself’’ (Cambridge Dictionary).
In other words, an AI-based AV has the ability to recognize
the surrounding environment and drive itself without human
intervention [33], [36]. To simplify, an automated system
cannot drive safely and steadily in all traffic scenarios and
situations on the road. For example, when the road is blocked,
it is difficult for an automated car to return to the normal
driving state without driver intervention to search for another
route. However, an AV can drive itself using AI technology
without human input in all traffic scenarios and situations.

At a high level, the first three levels (L0, L1, and L2)
of J3016 are excerpted as ‘‘Driver Support Systems,’’ while
L3, L4, and L5 are exercised for actual ADS [37]. It is
important to note that these automation levels do not classify
the automation level of the whole vehicle but rather define
the level of automation of a feature when it is engaged [37].
For example, a vehicle capable of traffic jam chauffeur as
an L3 ADS feature will have a specific operational design
domain (ODD) and relevant dynamic driving task (DDT) to
perform the feature, whereas exiting from the highway can
still be manually operated by a human driver without involv-
ingDAS. In Table 1, we have summarized six levels of driving
automation along with the applicability and scope of the asso-
ciated key terminologies used in J3016 to define them, e.g.,
ODD, DDT, DDT fallback, minimal risk condition (MRC)
and a few more. As per our interpretation of J3016, ODD is
arguably the most critical parameter, as other parameters are
highly dependent on it. We also note that the definition of
ODD in J3016 is very high level and does not give enough
clarity on how ODD can be parameterized. To address this
limitation, European standards have created a taxonomy doc-
ument, PAS 1883 [38], which classifies ODD parameters
into three main categories, (1) scenery, (2) environmental
conditions, and (3) dynamic element, but this standard does
not provide boundary conditions for each automated level.
SAE has recently started an initiative to create J3259 for ODD
taxonomy and definition, but this standard is not available
for use yet. In our study, we have analyzed the ODD from
a perception and connectivity perspective. As we have shown

in Fig. 1, for perception coverage in L0, only frontal coverage
is required, but in L1 and L2, coverage in the rear and four
corners is required as well. Perception coverage for L3 should
be augmented with a surround-view in the nearby zone of
the vehicle, and for L4 and L5, the surround-view coverage
needs to be extended like a human driver. Connectivity is
recommended starting from L4 to communicate with V2X,
and for L5, the connectivity range needs to be extended to
communicate with V2X from remote areas. For DDT, in L3
and above, the expectation is to have complete and continuous
DDT by the system, whereas in L1 and L2, it is limited to
a sustained basis. DDT fallback and MRC are significant
distinguishing factors between L3 and the levels above L3,
as the driver is responsible for DDT fallback andMRC for L3
features, and MRC is not mandatory. In contrast, the system
must handle the DDT fallback for L4 and L5.

A. DISTINGUISHING ASPECTS OF SAE AUTOMATION
LEVELS
The primary objective of vehicle automation is to improve
safety by eliminating or at least significantly reducing the
accidents caused by human error. Hence, ADS must per-
form better than a human driver. J3016 divides the act of
driving into three main categories, (1) strategic (trip plan-
ning), (2) tactical (motion planning), and (3) operational,
which can be lateral (steering) and/or longitudinal (acceler-
ation/deceleration) control. Tactical and operational efforts
and object and event detection and response (OEDR) are
sub-tasks of DDT in DASs, determined by feature and asso-
ciated automation level. A typical automated architecture
includes five main building blocks: perception, localiza-
tion, sensor fusion, planning, and control subsystems. This
architecture is composed of various components such as
camera, radar, lidar, and ultrasonic sensors for perception;
IMU and GPS sensors for localization; high-bandwidth in-
vehicle communication, V2X connectivity, and a sophis-
ticated AI/ML algorithm for sensor processing; and sen-
sor fusion, scene creation, motion planning, a combination
of real-time and high-computing energy-efficient processor,
memory with more bandwidth and bus width and ample data
storage. Furthermore, depending on the scope of ODD and
DDT, these components may need to follow a higher category
of specific standards such as ISO 26262 (functional safety)
and ISO/PAS 21448 (safety of the intended functionality)
to ensure safety-driven design. This means that a highly
automated driving (L4) feature in which DAS is expected
to operate independently in complex driving scenarios will
require more capable and reliable hardware (sensors, proces-
sor, memory), V2X connectivity, faster as well as broader
communication bandwidth, and a significant increase in lines
of code and data storage as compared to conditional automa-
tion (L3) where the human driver can act as a complementary
driver in complex driving condition. A typical safety-critical
system like AV should also be capable of responding to
failures in fail-operational, fail-safe, and fail-secure ways,
which may need redundancy in some of the critical hardware
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TABLE 1. Parametric variations of SAE J3016 automation level.
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FIGURE 1. Comparison between SAE automation levels.

and software. In Table 1, a plausible comparison is captured
for some of the systems requirements based on our under-
standing of variations in driving automation tasks at each
level, technology trends, and observations from some of the
key players in the industry. For example, DDT sensors for
perception in L3 will be more numerous than in L1 and L2 to
cover the surrounding view in addition to frontal, rear, and
corner coverage. In L4 and L5, the surround-view sensors
need a more extended range to cover the area like a human
driver. Further, redundant perception and localization sensors
and computing devices will be required for DDT in L4 and L5
to replace the human driver as a complementary driver and
fallback element. The enormous amount of data generated
from the sensors augmented by connectivity increases the
demand for communication bandwidth and data storage in
L3 and above, at least five times more than in L1 and L2.
For computation needs, software lines of code and processor
throughput can increase at a very high rate from each level
to the next one, increasing the memory requirement 10 to
20 times more in L3 and above. Also, energy utilization
and heat management should be done efficiently to maintain
the optimal performance from this high-computing hardware.

Some of the data reported from L3 test vehicles showed that
13 to 20 percent of the total energy consumed during the drive
cycle was used by the computing devices in the car. If this
trend is observed more persistently, we expect this power
requirement to go beyond 40% or even 50% considering the
complete DDT fallback responsibility in L4 and L5, as it may
require double or triple redundancy in computing and control
devices.

IV. A NOVEL CAV TRAFFIC MOBILITY ENVIRONMENT
As we experience a higher penetration of intelligent trans-
portation systems (ITSs) [57], the demand to extend the
perceptual boundaries of sensor-equipped vehicles (beyond
the individual vehicle) is more pressing than ever. There
have been widespread research and standardization efforts
toward C-ITS communications to support applications rang-
ing from fully AV operation and essential road safety support
to traffic flow optimization and in-car delivery of infotain-
ment services. To realize these goals, the coordination of
several different entities and support for several modes of
communication are necessary. Fig. 2 describes commonly
identified forms of ITS communication, including V2V, V2I,
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FIGURE 2. Proposed CAV traffic mobility environment.

vehicle-to-grid (V2G), and vehicle-to-cloud (V2C) commu-
nications, collectively referred to as V2X technology [58].
Autonomous driving technology is progressing most vigor-
ously around the globe, and so is the mobility environment.
However, due to the reservations and withholdings offered by
multiple AV mobility environments in the literature, a novel
CAV mobility environment is developed in this section that
incorporates security at a holistic level. It implies that the
proposed structure consolidates all the subsystems, e.g., CAV,
EV, cloud server, C-ITS center, and the charging infrastruc-
ture as prominent facets of the traffic mobility environment
to broaden the definition of V2X communication. Moreover,
as shown in Fig. 2, the proposed environment overviews the
CAV and its highly networked environment, which integrates
leading-edge technologies, e.g., advanced wireless communi-
cations, intelligent traveler applications, on-board computer
processing, advanced vehicle sensors, GPS navigation, smart
infrastructure, C-ITS center, EV charging infrastructure, and
power grid to enhance the state-of-the-art capabilities of the
vehicles.

CVs and automated vehicles are two different technolo-
gies. A CV is equipped with several different communi-
cation technologies to communicate with the driver, other
vehicles on the road, roadside infrastructure, and the cloud
server [59]. However, in accordance with the U.S. Depart-
ment of Transportation’s National Highway Traffic Safety
Administration (NHTSA), automated vehicles are character-
ized by some aspects of a safety-critical control function

(e.g., steering, throttle, or braking) that operate without a
driver’s direct input [60]. In general, C-ITS is an advanced
transport system where two or more ITS subsystems (per-
sonal, vehicle, roadside, and central) cooperate and provide
an ITS application [10]. It uses mature ad-hoc short-range
(e.g., ETSI ITS G5) and complementary wide-area commu-
nication technologies that allow AVs to communicate with
other vehicles, traffic signals, internet gateways, roadside
infrastructure, charging infrastructure, and other road users.
DSRC, the longest-considered candidate for V2X, has been
proposed as a mandated standard by the U.S. Department of
Transportation (USDOT). Also, it is the subject of intensive
standardization efforts by the European Telecommunications
Standards Institute (ETSI), the EuropeanCommittee for Stan-
dardization (CEN), and the Association of Radio Industries
and Businesses (ARIB), among others. However, it is not
expected that a single technology can support such a variety
of typical V2X applications for a large number of CAVs in the
near future. Another candidate access technology for V2X is
the mobile cellular network, a proposition often referred to
as Cellular V2X (C-V2X) [61]. Beyond these two major can-
didates for V2X communications, several other technologies,
including Bluetooth, satellite radio, and visible light commu-
nications, have been considered for V2X applications. While
each of these technologies has features that make it poten-
tially promising, each also has some unavoidable limitations.
An additional option is a heterogeneous network solution,
combining the features of DSRC and LTE/5G to complement
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their respective benefits while ameliorating their drawbacks.
Many studies have shown a significant improvement in per-
formance when heterogeneous communication technology
is used, but its limitations include standardization and high
implementation costs. The wireless communication between
the different actors and ITS stations and related functions are
named cooperative V2X communication, which comprises
V2V, V2I, V2C, and V2G communications. In a cooperative
road traffic scenario, communication units such as ITS sta-
tions are implemented in vehicles and traffic infrastructure.
These units exchange information via the cooperative V2X
short-range ad-hoc network. The OBUs in the vehicles trans-
mit data such as their position, speed, and driving direction.
Additionally, they send out event-triggered messages about
particular incidents, such as emergency braking, a vehicle
defect, or a slippery road detected. The RSUs or equipment
in the C-ITS infrastructure (traffic signal controller (TSC))
send data about, for example, signal phases of traffic lights,
speed limits, or road work. Connected V2X analyzes the data
received and warns the CAVs against dangers. For instance,
when a sudden obstacle appears on the road, the roadside
infrastructure (e.g., sensor) identifies it and transmits the
information to its nearby CAV by infrastructure-to-vehicle
(I2V) communication. The CAV relays this information to
other CVs through V2V. Further, the C-ITS center provides
the information necessary for sudden braking to the host
vehicle, which alarms the emergency vehicle via V2V.

For a carbon-neutral future, the new era of travel is focused
on fusing the three technologies (connected, automated, and
electric) together, hence providing a higher quality of trans-
portation and environmental sustainability. Thus, a battery-
operated CAV is critical in successfully building an intelligent
module for ITS in a smart city IoT application. In this CAV,
the battery provides power to drive the vehicle’s powertrain.
Moreover, due to consideration of electrification of CAV, its
connections to the power grid through EVCS and an EV
charging adapter for charging its battery are also important.
Hence, this section identifies the significant factors that make
a new sustainable CAV mobility environment.

V. CYBER EVENT IDENTIFICATION FRAMEWORK
A. CYBERATTACK-INDUCED CAV ACCIDENT ANALYSIS
Due to a fundamental transition in the transport mobility
environment, the new paradigm recognizes multiple entities
as defined in Section III. This implies that there can be mul-
tiple risk factors responsible for targeting a CAV crash. Since
existing CAVs drive while exchanging information using big
data, cloud, V2X communication technology, and internal
communication, they are vulnerable to various attacks such as
physical attacks on hardware, e.g., electronic control devices,
sensors, or actuators from the outside while driving and
failures caused by firmware forgery or falsification, which
can cause traffic accidents. Although the currently deployed
safety standards do not explicitly address security, the secu-
rity issues that arise in AVs are strongly allied with safety.

In the aspect of automobiles, safety is one of the key issues
in vehicle development, and in the development of automo-
bile functions, functional safety aims to prevent risks due to
hazards caused by E/E system malfunction (ISO 26262-1).
Please note that this paper assumes that only cyberattacks are
accountable for causing a battery-operated CAV crash. Fig. 3
presents a high-level overview of a CAV accident mechanism,
which attempts to explain traffic accidents that may occur due
to specific causes by using the mechanical model concept
on the occurrence of vehicle accidents suggested by ISO
26262 and the failure chain presented in [62]. It shows the
correlations between different cyber, physical, and logical
elements and states how various key factors can aggravate
the impacts of cyberattacks, thus resulting in a fatal acci-
dent. In this paper, prominent standards such as ISO 26262,
ISO/PAS 21448, and ISO/SAE 21434 have been leveraged to
develop some key terminologies.

Several endogenous or exogenous trigger conditions
(intended or unintended) may cause safety and security
failures, leading to a hazardous condition in one or more
interconnected elements present in the CAV ecosystem.
Trigger conditions may include either environmental, traffic,
or geometric factors that impart a fault in an entity. Since
cyberattacks are being considered, disparate vulnerabilities
accompany each entity in themobility environment that could
be exploited by the attackers to compromise the safety and
security of the system. The existence of vulnerable points
facilitates a potential cyber threat or attack with an intent
to cause unauthorized access, disruption, or damage, hence
undermining the security aspects. Though integrating effec-
tive mitigation measures might reduce the damage from risks
or hazards, failure of these mitigations may lead to a system
fault. Fault refers to any physical defect or imperfection in
some hardware or software component [63] or is defined as
an abnormal condition that prompts the component failure.
Error that arises due to a fault in accuracy is a discrepancy or
deviation in the computation of measurements, perception,
cognition, or decision-making. Another term called failure is
a consequence of termination or malfunction of a component
due to fault (ADS function failure, C-ITS failure, or electri-
fication failure), which impacts the driving maneuver of the
CAV. The following scenario can show an example. Due to
a foggy environment (trigger condition), an incorrect percep-
tion of the lane markings is caused in the sensors (fault) in
a CAV. This will lead to a control discrepancy (error), so an
abnormal lane-departure function executes the lane change
at an improper speed (failure), resulting in a collision with a
vehicle in the target lane. Exposure is defined as an estimation
of the likelihood that the CAV is in a particular operating
situation when a hazard occurs. Also, it is considered a
factor that modifies the severity of the trigger condition.
In other words, it outlines the complex urban environment
with numerous intersections, cross streets, or unsignaled
crosswalks and vulnerable road users (VRUs). A hazard event
is explicated as the direct implication of an accident that can
occur when driving in a hazardous condition. However, there
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FIGURE 3. Proposed cyberattack induced CAV accident mechanism.

is a probability that the CAV returns to its normal driving
behavior, provided the human driver or the ADS applies some
control measures. Hence, controllability is an estimation of
how easily the controlling factors can avert the hazard. For
instance, the presence of a skilled and trained CAV operator
might mitigate the effects of potential system failures and
thus prevent an accident. Finally, harm is recognized as injury
to the passengers, fatality, or environmental damage. Using
this framework, cybersecurity events responsible for the CAV
crash can be tracked to identify the responsibility of a spe-
cific candidate for the accident. Further, the existing accident
analysis models are vehicle-centered, insufficient to validate
a CAV crash induced by a cyber event.

Furthermore, a CAV crash in a multi-model environment
can be mathematically formulated as,

n∑
i=1

n∑
j=1

(αi × δj) ≥ 1, (1)

where,

αi =

{
1 : entity(Eki ) undergoes a cyberattack
0 : no cyberattack

(2)

δj =

{
1 : no controllability by the controlling factors CFlj
0 : successful controllability

(3)

The symbols used in the above equations are defined as:
Ek
i : ith component of the k entity or subsystem in the

mobility environment, where k = {C, I, P, A, O}
C: C-ITS center
I: C-ITS infrastructure
P: power grid or charging infrastructure
A: CAV
O: cloud server
CFlj: jth component of the controlling factor responsible

for averting the accident, where l = {H, S}
H: human driver
S: ADS

B. STRIDE THREAT MODELING
With high penetration of computing hardware and software,
sophisticated in-vehicle networks and poorly configured
devices of an AV are at risk from physical attacks and vulner-
able to cyberattacks. Unfortunately, the value proposition of
multiple features (e.g., Wi-Fi hotspots, self-parking, commu-
nication with apps, over-the-air (OTA) software updates, and
more) overshadowed the crucial role of integrating security.
On account of this, a security breach could trigger malfunc-
tion or unexpected behavior of the vehicle, which may lead
to damages, from the reputational to serious safety accidents.
This problem becomes more challenging with CAVs due to
increased connectivity with the externally connectedmodules
(e.g., C-ITS infrastructure, cloud server, power grid, and

83184 VOLUME 10, 2022



M. Girdhar et al.: Post-Accident Cyberattack Event Analysis for Connected and Automated Vehicles

EVCS), which widens the attack-vector space. Therefore, it is
crucial to identify existing vulnerabilities and potential cyber-
security threats in a highly convoluted mobility environment
to design countermeasures to prevent malicious attacks. Sev-
eral paradigms for attack, threat, and defense analysis lay the
foundation for the work presented herein. A literature review
has identified numerous threat-modelingmethodologies, e.g.,
OCTAVE, EVITA, HEAVENS, PASTA, and LINDDUN.One
of the most important methods, STRIDE, has been widely
used to identify and analyze the threats in the IT industry [64].
Also, it is recommended for automotive information security
in SAE J3061 regulations. While multiple threat-modeling
frameworks exist, this paper elaborates on STRIDE’s com-
mon framework. It is an iterative threat modeling tool that
has been applied in many CPSs in the past. It is an efficient
approach focused on cybersecurity, while others are highly
complex with more focus on safety and risks [4].

A DFD is a graphical representation of the data flow
and is composed of various entities, as exhibited in Fig. 4.
It also incorporates a high-level overview of the connectivities
and potential vulnerabilities within a CAV and its mobility
environment. It is centered around identifying and mitigating
potential cyber threats against each system entity. Fig. 4 is a
STRIDE model that shows the existing threats to the CAV,
C-ITS center, DC charger, EV, and grid-connected EVCS.
Hence, the STRIDE model defines six different types of
security threats, as described below:

1) Spoofing: It is defined as masquerading as a legitimate
source, process, or system entity by falsifying data. For
example, a compromised C-ITS infrastructure (a road
sign) emits carefully crafted signals to the CAV sensors,
which could cause a ‘‘Stop’’ sign to be misread as a
‘‘Speed limit’’ sign. As a result, the sensors may inter-
pret the spoofing signals the same way as the authentic
signals and may accelerate the speed; this could cause
a crash.

2) Tampering: It refers to an unauthorized alteration of
legitimate information. It is also known as data cor-
ruption or false data injection (FDI). To exemplify,
the threat actor tampers with the code of the TSC
and changes the original instruction. As a result, the
TSC sends modified scheduling, signal phases, and
time-controlling signals to the traffic signal. When a
CAV receives a tampered traffic signal, unpredictable
consequences could occur.

3) Repudiation: It means denying or disowning a specific
action executed in the system. For instance, a compro-
mised EVCS may deny the charging commands to a
battery-operated CAV, and thus it will be unable to con-
tinue the charging process. Instead, the infected EVC
may transmit incorrect transmissions in the connected
CAV, enabling the failure of ADS functions. This could
cause undesirable CAV crashes.

4) Information disclosure: It is denoted as a data breach or
unauthorized access to security-sensitive information.
For instance, the communication between the ECUs

is highly vulnerable to interception by a threat agent.
Hence, the attacker can gain access to sensitive infor-
mation during the data exchange, mimic a valid ECU,
and use these details to compromise the processing and
impair message traffic.

5) Denial of Service: Also called a flooding attack,
it causes the disruption of timely access to network
services for intended users due to an attacker’s action
to jam and overload the bus network by sending a
continuous stream of malicious traffic. In the case of a
C-ITS center, worm-infected computers may generate
malicious traffic with a similar payload signature (i.e.,
same malicious program code to conduct infection)
and flood the communication network of a traffic sig-
nal management system with malicious packets. As a
result, there is a detrimental ripple effect caused by the
functioning of traffic signals. This can cause a collision
among CAVs at the intersection.

6) Elevation of Privilege: It occurs when an attacker gets
greater access to resources or data in the system than
the legitimate user. For instance, if a threat actor gets
crucial details of sensor data (firmware and user data),
they might compromise data and disrupt the functions,
change files or configurations, and other modifications
according to their needs. This adversarial attack on sen-
sors might manipulate the inputs to the ADS algorithms
and cause accidents.
The evolution of AVs from closed to open systems has
effectuated new attack surfaces an attacker can poten-
tially exploit due to possible external communication
with other entities present in the extended environment.
On that account, there is a need to examine all the
entities for the feasibility of such attacks, which can
cause a CAV crash.

C. POTENTIAL CYBERSECURITY MEASURES
Once vulnerabilities are identified in a CPS, cyber harden-
ing is a predominant practice to avert cyberattacks on the
system. Therefore, this section develops various mitigation
strategies to address the pre-attack phase of cyber intrusion.
During the pre-attack stage, risk assessment methodologies
can be applied to protect different system devices that could
be attacked by using potential avenues. For instance, in this
paper, STRIDE is used for threat and vulnerability analysis
in the early development cycle. Further, system hardening can
be done to reduce the vulnerabilities in all the entities. In addi-
tion, the communication infrastructure of multiple servers,
including cloud servers operating within a given environ-
ment, can be secured by establishing software-based intrusion
detection and prevention systems (ID&PSs). Similarly, com-
munication paths between different entities (e.g., between
EVs and EVCS) can be strongly encrypted and authenticated.
Moreover, proper configuration of a firewall, encryption of
network traffic, and other techniques can play an essential
role in securing the network. Further, to secure the contents
of the database (DB) management system, DB hardening can
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FIGURE 4. STRIDE model for threat analysis of a CAV and its environment.

be performed by regular patching and updating. In addition,
vulnerability scanning prior to and post system installation of
devices (e.g., EVC), multi-factor authentication, detection of
abnormal activities using signature-based cryptography, and
others can be used as mitigation techniques.

However, post-attack mitigation actions are performed to
achieve cyber restoration. In other words, these measures
are used to restore the attacked and damaged entity to its
healthy state. So, by implementing digital forensics, a sys-
tem engineer can identify the compromised equipment (e.g.,
EVC in case of a cyberattack on charging infrastructure),
derive the source, and recover the compromised data to
maintain a robust security system. Furthermore, the attacked
system can be made more reliable and robust by disconnect-
ing the compromised distribution feeder by tripping protec-
tion devices, e.g., circuit breakers (CBs), and/or disabling
the compromised communication ports and substituting the
compromised asset with a safer backup system that can be
used until the original system resumes to its normal opera-
tions. Other protective measures may include updating the
firmware/security updates or removing unauthorized soft-
ware, etc., to resolve the issue during maintenance.

It should be noted that the objective of this paper is the
development of a cybersecurity investigation framework for
CAV crashes, not proposing mitigation actions for cyber
intrusions.

VI. DIGITAL FORENSIC INVESTIGATION FRAMEWORK
Vehicle forensics has become an overriding attribute in a
vehicle’s design and operational life cycle [65]. Vehicles can

FIGURE 5. Proposed cyber event identification framework.

undergo road accidents or play an instrumental role in com-
mitting a cybercrime with repercussions on safety and secu-
rity (other than road traffic) and may subsequently be subject
to a forensic investigation. Development of the CAV ecosys-
tem due to digitization facilitates the potential stakeholders
(including insurance claim investigators, law enforcement,
criminalistic units, security-oriented institutions) for crash
investigation (to determine the course of events), insurance
claims (to decide the responsibility for an accident: human or
system) and crime investigation (to deal with criminal activi-
ties and ensuring security at various levels). Fig. 5 highlights
potential steps included in a forensic investigation of a CAV
accident.

The crash investigation starts on the scene with law
enforcement. Law enforcement is often the first respon-
ders called to formalize an evaluation of a crash scene
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and report their findings based on first impressions. This
includes accurately assessing crucial evidence and recreat-
ing complex accidents. Crash reconstruction is essentially
reverse-engineering the elements of a scene to determine the
factors contributing to a vehicle crash [66].

The contemporary technological advancement of the auto
sector is collateral with the emergence of e-mobility and
AVs. In an intelligent vehicle, ECUs that control the overall
vehicle operations can be used to process and preserve digital
data on the vehicle’s activity and its occupants. Multiple
electronic processes are being carried out in the vehicle,
which involves processing in-vehicle communication (CAN,
CAN FD, MOST, LIN, Ethernet, FlexRay) and communica-
tion with the external environment (traffic, road infrastruc-
ture). The integration of cloud computing further allows the
exchange of real-time data from the devices installed in the
vehicle (sensors, on-board computers, HD maps, etc.) and
devices that are connected to the vehicle (mobile phones,
tablets, computers of its occupants, etc.) with the cloud or
remote data centers. For instance, Tesla, which is now striving
toward making its own data center and AI training super-
computers, offers cloud computing services to its customers
through a public cloud platform called Amazon Web Ser-
vices (AWS). Consequently, a contemporary high-end CAV
may contain hundreds of ECUs to store more than 150 mil-
lion lines of source codes of programs and may generate
over 30 GB of data for every hour of vehicle operation.
Hence, every CAV produces an enormous volume of data or
information, which can serve as digital evidence in forensics
investigation and analysis. In addition, much greater vehicle
automation, coupled with robust information support and
telecommunications with all objects involved in driving and
road logistics, including AI elements, can be used for forensic
works in the future. Typical data sources of digital evidence
may include [67]:

• CCTVs
• Black box or event data recorder (EDR)
• Data storage system for automated driving (DSSAD)
• Telematics and infotainment system
• eCALL units
• Key fobs
• Dash cams
• Cloud server

Data can be extracted from some mandatory sources to
initiate the investigation; for instance, on-board EDRs can
automatically read and record the vehicle kinematics 5 sec-
onds before the accident and subsequently over the course
of the entire event. Hence, it can be used to analyze
(1) pre-crash vehicle dynamics and system status, (2) driver
inputs, (3) vehicle crash signature, (4) restraint usage or
deployment status, and (5) post-crash data. However, there
are some limitations of using EDR for CAV-involved colli-
sions, as highlighted by [68]. So, SAE J3197 recommends the
deployment of an ADS data logger or DSSAD in conjunction
with EDR for a more comprehensive crash reconstruction.

DSSAD, with a limited storage capability, provides for an
extended period of 6 months valuable data gathered by ADS
technologies, e.g., radar, camera, and ultrasonic. Parallel
to these developments, many manufacturers are recording
non-standardized accident data of vehicles. It is to be noted
that much of the data is usually very untransparent to the acci-
dent analysts in this context, i.e., the manufacturers decide
which data will be made available to the experts during
an investigation. In addition, accidents can be reconstructed
more accurately if the information is fed from other data
sources and anonymous accident databases, which would be
of enormous value to many stakeholders. Also, due to the
reliance of modern CAVs on the cloud infrastructure and the
diversity of configurations, accident investigation has become
grueling for the investigators as it also involves assembling
data from these resources. So, there is a need to design a
sophisticated forensic model with a powerful digital forensic
tool at the back end as an effective solution to overcome
IoT-based criminal activities on CAVs.

Crash investigation has evolved over time. It incorpo-
rates state-of-the-art devices in data accumulation and crash
reconstruction analysis to improve the reliability of field
investigations and ensure the accuracy of the findings [69].
To exemplify, it has advanced from measuring tapes to pho-
togrammetry, total station theodolite (TST), FARO Focus 3D
laser scanner, crush analysis and simulation (CA&S), and
vehicle mapping (VM).

With a conventional vehicle crash, after securing the crash
scene and checking for injured parties, the initial examination
of the scene encompasses gathering large amounts of pieces
of evidence or information, including vehicle locations, road-
way signage, signals, and roadway markings such as skids,
slides, yaws, and gouges. Next, the investigators document
the site conditions, examine vehicle damage characteristics,
inspect mechanical and electrical systems, and gather hard
evidence. Further, pertinent data, for instance, speed and
direction of the vehicles, skid-mark lengths, line-of-sight, and
road conditions, are analyzed to develop the facts of the case.

After the accident data extraction, also known as live data
extraction, specific devices are seized, followed by lab analy-
sis. Further, the investigation involves the proposed 5Ws and
1H model to identify the contributing factors (human errors,
equipment failures, etc.).

The inclusion of CAVs within the existing system has
precipitated new challenges for the investigation process as
accidents can be associated with poorly maintained road
markings or light reflections affecting the vehicle sensors and
in-vehicle or external communication faults or compromised
charging infrastructure. For instance, in California DMV
reports, Waymo and Mercedes specifically cited weather as
a disengagement cause, indicating the pivotal association
between weather and AV performance.

Hence, in a more complex environment, it becomes impor-
tant to analyze the crash sequence of events describing the
CAV’s interactions with other road users before, during,
and after a collision in a temporal (time-space) manner.
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TABLE 2. Proposed 5Ws and 1H-based digital forensic investigation of a CAV accident.

To elaborate, an investigator must understand whether the
human driver or the system initiated the disengagement,
AV maneuvers, errors, and faults responsible for failures
terminating in an accident. As a result, an AV maneuver can
be diagnosed by determining the maneuver at the time of the
accident (which considers data corresponding to crash site,
vehicle damage, or collision type), maneuver at 5 seconds
before the crash (which considers data fromCCTV,Dashcam,
EDR), andmaneuver at more than 5 seconds after the accident
(which considers data from CCTV, Dashcam, or DSSAD).
Also, other databases, e.g., cloud servers, and ecall units, can
provide essential data. Further, the object of failure, which
includes driving failure (flat tire), communication failure (for-
feited signals), ADS function failure (incorrect behavior of
ADS algorithms), and security failure (counterpoising fire-
walls), is also a subject of investigation. In the next step,
the intent is to discern errors that cause corresponding faults.
They can include driving errors, e.g., hardware irregularity
leading to visibility fault, C-ITS service discrepancy causing
data latency, etc.

This approach produces a holistic and extensive forensic
analysis of a cyber incident, which decomposes the incident
into its atomic stages and determines its causes and effects as
the investigator infers the missing events from the hypothesis
about the crash (due to cyberattack) and reconstructs the
accident scene.

To properly document and evaluate the accident scene, the
incident responder can apply the 5Ws and 1H to plan, report
and present his findings in an investigation that covers the
six primary questions as illustrated in Table 2. First, it shows
5Ws and 1H, defined as (i) Who, stating the type of attacker
and the CAV component under attack; (ii) What, stating
the attack target or system failure (hardware or software);
(iii) When, stating the accident date as well as a failure
occurrence time; (iv) Where, stating accident place or attack
path for each CAV function, communication; (v)Why, stating
the hazardous behavior or the trigger conditions responsible
for such behavior; and (vi) How, stating the attack method
used by the attacker to induce the CAV into a hazardous event
or crash situation.

Whenever there is a cyber incident, the attacker (hacker,
spy, terrorist, vandal, corporate raider, professional crimi-
nal) uses some tool (user command, script program, toolkit,
distributed tool, data tap, information exchange) to perform
an attack or malicious action by exploiting a vulnerability

(design, implementation, configuration) of a target com-
ponent (process, data, C-ITS network, charging infras-
tructure, communication), thereby causing an unauthorized
result (increased access, information disclosure or corruption,
denial of service, theft of resources) to meet their objectives
(political gain, financial gain, damage). Hence, the investiga-
tion is paramount to determine the causes and take corrective
steps to prevent future occurrences. So, the investigation
team can employ this technique for collision investigation to
identify the patterns of severe CAV crashes and deduce the
causes of these accidents.

Please note that we may have more sophisticated attack
tools, attacks, and attack methods in the system in the future.
So, more components can be added to Table 2 depend-
ing upon the diversity of cyberattacks and the mobility
environment.

Hence, the primary objective of the proposed work is how
investigators can use the digital forensic model based on 5Ws
and 1H to analyze the chronologically ordered events that
happened in a CAV crash. Further, it will facilitate a direction
for an investigation team, which can take necessary actions.

VII. ANOMALY DETECTION IN A CAV CRASH
CAVs rely on precise and accurate information exchange
among different elements to follow a set of waypoints along
a planned route in an urban traffic environment. However,
this information exchange involves high non-linearities and
is affected by many distortions and spurious propagation.
So, any malfunction in this transmission can cause an acci-
dent. Consequently, to promote functional safety, a stochastic
M-ary classification-based approach is presented to decipher
the problem of anomaly detection during crash analysis in
real-time road scenarios. This probabilistic model proposed
in the paper determines the probabilities of drivingmaneuvers
and identifies the abnormal behavior of the ADS function in
a CAV crash. Further, it estimates collision probability and
makes driving decisions based on spatially and temporally
probabilistic descriptions among different layer components.

The networked structure model, as illustrated in Fig. 6,
consists of five prime layers, which are elaborated below:

Urban roads are usually limited by specific features, e.g.,
curbs, road markings, vegetation areas, or other obstacles,
including vehicles, buildings, trees, traffic lights, or traf-
fic signs. These road attributes yield crucial information
concerning the scene. Sensing interprets the scene with
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FIGURE 6. Probability-based anomaly detection in a CAV accident.

awareness and produces an environmental model. The eco-
logical model includes the location of the moving obsta-
cles, road limits, curbs, and barriers. The sensing is based
on multiple sensors, active or passive. While active sensors
(lidar and radar) can detect obstacles at long distances and
under poor weather conditions, passive sensors (cameras and
ultrasonic sensors) have the main advantage of being eco-
nomical. Sensor fusion, which is a combined detection using
multiple sensors, is also used to detect the road in the most
challenging scenarios, thanks to the complementary features
of each sensor.

Furthermore, CAVs are considered to integrate dis-
crete ADS functions, e.g., continuous functions (road sign
detection, traffic sign recognition, pedestrian detection)
and event-driven functions (collision avoidance, automatic
parking), and the visual information from the sensors is
essential to run these applications. The last layer is driving
outcomes dependent on the motion planning executed by the
vehicular control modules, including the rules to merge into
the traffic and manage driving behaviors in the coordinated
driving environment. To exemplify, when the vehicle detects
an obstacle (pedestrian), a sensor (lidar) mounted on the top
of the CAV captures 3D images for the scene interpretation
and transmits the measurements (e.g., distance, speed) to
the pedestrian detection function, which is then required to
detect the drivable area andmake the corresponding decisions
(‘‘Stop’’ or ‘‘Turn’’) through the control modules. Since the
objects are controlled and connected through a network, any
cyber-induced transmission delay or packet loss may cause
an undesirable change of trajectory. Further, any deviation
from the planned route of actions is assumed to cause a
failure in the ADS function capability, leading to a fatal
accident. Hence, this model allows the dynamically moving
information to generate the mapping relationship between
input images and output driving decisions and maneuvers.

Please note that this model is flexible to adapt to more
components present in the urban environment at each layer.

Mathematically, this model can be formulated to differen-
tiate the normal and abnormal behaviors such that:

Probability of occurrence of any abnormal event (E) due to
incorrect transmissions of Aij is,

P(E) =
k∑
j=1

P(E ∩ Aij) =
k∑
j=1

P(E|Aij)P(Aij). (4)

In other words,

P(E|Aij) = P(E|A11)P(A11)+ P(E|A12)P(A12)

+ . . .+ P(E|Aij)P(Aij), (5)

where,

P(E|A11) = P(Bj2|A11)+ P(Bj3|A11)+ . . .+ P(Bjm|A11),

(6)

or

P(E|A11) =
k∑

m=2

P(Bjm|A11). (7)

We can summarize the above equation as,

P(E|Aij) =
k∑

m=1

k∑
j=1

P(Bjm|Aij), j 6= m. (8)

By the application of Bayes theorem,

P(Bj2|A11) =
P(A11|Bj2)P(Bj2)

P(A11)
. (9)

In general,

P(Bjm|Aij) =
P(Aij|Bjm)P(Bjm)

P(Aij)
, j 6= m. (10)

We have given some definitions to the symbols used in the
above equations as,

P(Aij) = Probability that the transmitted signal from the
ADS function is Aij
P(Bjm)= Probability that the received signal by the driving

action layer is Bjm
P(Bjm|Aij) = Probability that the received signal is Bjm,

when the transmitted signal is Ai
P(E|Aij) = Probability of an abnormal behavior when Aij

signal is transmitted from the ADS function
It is to be noted that all transmitted signals or messages

(Aij) are mutually exhaustive such that,

k∑
j=1

k∑
i=1

P(Aij) = 1. (11)

For the normal operation, j = m, and for error or abnormal
behavior (E), j 6= m.
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FIGURE 7. CAV crash: application of C-ITS infrastructure cyberattack.

VIII. CASE STUDIES
We have presented here two hypothetical cyberattack scenar-
ios causing a CAV road crash. 5Ws and 1H-based investi-
gation is done to identify the contributing factors associated
with the collision, and probability-based anomaly detection is
directed toward identifying the abnormal activity correspond-
ing to an ADS function.

A. ATTACK SCENARIO 1
An intended cyberattack event occurs in which an attacker
exploits the vulnerability of lack of security consciousness of
TSC and injects fake logic states and modified light timings
to influence signal control decisions. Hence, it manipulates
the traffic signal and renders it as ‘‘Green.’’ As a result, RSU
transmits the wrong signal state to CAV1. As a result, it dis-
rupts the C-ITS application (e.g., traffic signal violations) and
further impacts its vehicle detection algorithm. Due to this,
CAV1 goes through the intersection and collides into CAV2
approaching from the left, and a collision is caused. Although
the vehicle detection algorithm of CAV2 is running in good
condition, due to the appearance of the ‘‘Green’’ signal, its
speed is so high that it cannot avoid the situation, traverses
the minimal stopping distance, and reaches the time of the
collision. Therefore, it becomes too late in this situation to
escape the crash, even though CAV2 has detected CAV1.
Fig. 7 illustrates a CAV crash that is caused due to a cyberat-
tack on the C-ITS infrastructure.

1) CAV CRASH INVESTIGATION
At the site of the CAV crash, the investigation team arrives
and collects data from several sources, including cloud
servers, CAV1, CAV2, and others, and formulates the data
correlation. Then, based on conclusive evidence, reverse
engineering is done, and the following analysis may be pre-
sented as shown in Table 3.

TABLE 3. 5Ws and 1H-based investigation for attack scenario 1.

2) ANOMALY DETECTION
According to the proposed model, anomaly detection during
the crash analysis for the given scenario can be done as
illustrated in Fig. 8.

We have used synthetic signal transmission data between
components of layer 4 and layer 5 to obtain the probability
matrix given below,

The signal transmission probability matrix (T) is defined
as,

T =


0.90 0.02 0.05 0.03
0.05 0.90 0.01 0.04
0.05 0.02 0.90 0.02
0.04 0.02 0.04 0.90

 . (12)

In an ideal scenario (no cyberattack on the ADS functions),
when the CAV sensors confront a ‘‘Green’’ traffic signal and
a vehicle ahead at the intersection, the vehicle detection algo-
rithm expects the car to decelerate and stop to avoid hitting
the target vehicle. Therefore, based on probability, it sends the
‘‘Stop’’ control signal to the brake actuator to stop the car by
90%. However, the cyberattack perpetrates its vehicle detec-
tion algorithm, and it starts manifesting abnormal behav-
iors. As a result, even though the ‘‘Brake’’ control module
has received the ‘‘Stop’’ control signal from the application,
it denies it and transmits the unlikely signal, i.e., ‘‘Speed up,’’
with a probability of 0.20, causing the acceleration of the
CAV, which yields the host vehicle to an accident with the
target vehicle. Hence, there is a non-adherence to the ideal
path, which causes an accident.

B. ATTACK SCENARIO 2
An EVCS attacked by an adversary transmits wrong infor-
mation over G2V communication to CAV1 (host vehicle),
where the vehicle owner thinks that the battery is getting
charged but the infected charging infrastructure attacks the
ECUs of the vehicle. As a result, ECUs get corrupted during
the charging process. Since ECUs control the car’s sensors,
the compromised ECUs send falsifiedmessages to the sensors
and cause them tomisperceive their surroundings. Also, mali-
cious data are sent to the ADS, which causes ADS function
failure, such as non-detection of objects. There is a TSC
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FIGURE 8. Probability-based abnormal behavior analysis of attack
scenario 1.

FIGURE 9. CAV crash: application of charging infrastructure cyberattack.

that transmits information on the signal phase to the RSU.
The RSU broadcasts data to CAV1 via I2V communication.
However, due to the sensors malfunctioning, CAV1 cannot
detect the ‘‘Red’’ signal, and it does not stop. Further, ADS
function failure causes non-detection of a pedestrian at the
crosswalk, where it hits a pedestrian (VRU), and a collision
is caused. Fig. 9 illustrates a CAV crash that is caused due to
a cyberattack on the charging infrastructure.

1) CAV CRASH INVESTIGATION
Similar to case 1, the investigation is conducted at the crash
site, and the following inferences may be drawn after data
gathering as presented in Table 4.

2) ANOMALY DETECTION
According to this model, normal and abnormal behavior
of the CAV can be distinguished as illustrated by Fig. 10.

TABLE 4. 5Ws and 1H-based investigation for attack scenario 2.

FIGURE 10. Probability-based abnormal behavior analysis of attack
scenario 2.

We have assumed the same synthetic dataset as defined by
probability matrix (T).

In an ideal scenario (when there is no cyberattack), when
the CAV sensors see a ‘‘Red’’ traffic signal and a pedestrian,
the detection algorithms expect the vehicle to stop. Therefore,
it sends the controlling commands to the brake actuator,
which stops the car by 90%. However, due to the cyberat-
tack, the ADS algorithms, i.e., traffic signal detection and
pedestrian detection, get compromised and start exhibiting
abnormal behaviors. As a result, even though the ‘‘Brake’’
control module has received the ‘‘Stop’’ control signal from
the application, it transmits the falsified signal, e.g., ‘‘Speed
up,’’ with a probability of 0.20, causing the acceleration of
the CAV, which renders the vehicle to an accident with the
pedestrian. Therefore, the varying degree of conformity to
the anticipated path contradicts the adopted course of actions,
resulting in an anomaly.

IX. CONCLUSION
The modern mobility environment of a CAV, which is
assumed to be a future L4 CAV, integrates the vehicle and the
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road infrastructure and other facilities. These include cloud
servers, power grids, charging infrastructure, C-ITS center,
etc. Hence, there are a lot of interactions involved amongmul-
tiple entities, which drives the CAV ecosystem. However, the
contributions from different cyber layer components come at
the cost of cybersecurity issues. Due to complex CPSs asso-
ciated with each of the entities, there are potential vulnerabil-
ities that the threat agents can exploit to cause a CAV crash.
Further, this paper applies STRIDE-based threat modeling
to analyze and identify multiple potential threats endured
by the CPSs engaged in the CAV ecosystem. By exploring
the cyber processes behind the mobility environment and
high-level ADS, we put forward a coordinated and balanced
accident mechanism of a CAV and further review how a
CAV accident can be caused by the inclusion of hostile
communication from these entities. Moreover, analogous to
the conventional vehicle accident investigation, the juxtapo-
sition of multiple cyber elements enhances the complexity of
the CAV accident, which renders the AV investigation very
challenging. Therefore, a first-of-its-kind 5Ws and 1H-based
digital investigation framework is designed, which identifies
the cybersecurity events responsible for the functional failure
or crash. In addition, we aim to provide a novel research
concept and develop an effective probability-based anomaly
detection to recognize the ADS function failure during a crash
analysis. Further, case studies are presented to validate the
proposed models, which show the accuracy and reliability
of these frameworks. However, the investigation model has
some limitations and boundaries since we do not have the
real-time dataset to diagnose the attackers. For future work,
using these frameworks, we can fabricate distinguishable
cyberattack scenarios that can engender crashes in CAVs
and investigate these crashes. Also, we can model these
cyberattacks on CAVs by using any simulated platform for
AVs to analyze their behavior. Besides, in a future mobility
environment where L4 CAV driving relies completely on the
ADS, we need to have a systematic investigation process
for the diagnosis of the safety failures caused by external
cyberattacks, faults caused by hardware or software mal-
function, and unlearned edge case occurrences that lead to
accidents. These frameworks for identifying a cyber event
and investigating an accident can be used to diagnose the
root causes of unexpected maneuvers of CAVs as a result of a
cyber incident. Also, through this AV accident investigation
process, we can calculate the ratio of negligence in the AV
involved in an accident.
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