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ABSTRACT An accurate electrical Short-term Load Forecasting (STLF) is an eminent factor in the power
generation, electrical load dispatching and energy planning for the power supply companies, specifically
in developing countries. This paper proposes a novel temporal feature selection-based Long Short-term
Memory (LSTM) model developed by the combination of standard Artificial Neural Network (ANN) layer
and LSTM for electrical short term load forecasting. The LSTMmodel has excellent capability of predicting
the stochastic nature of an hour ahead electrical loads. The standard ANN layer consisting 11 neurons is
used as an input to LSTM cells. Such a combination of ANN layer with LSTM was never proposed before.
The proposed model accommodates variations in weather as well as temporal inputs like humidity, holidays,
and date-time features in the hourly load data of the power supply company situated in Johor, Malaysia.
This paper gives the insights of hyper parameter tuning to capture the more generalized electrical load
patterns in the dataset without compromising the time complexity of the proposed model. The proposed
approach was compared with five existing approaches, namely: ANN, LSTM model 1, LSTM model 2,
LSTMmodel 3 and Convolutional Neural Network-LSTM (CNN-LSTM) using hourly load dataset of Johor.
The experimental results demonstrate that the proposed approach outperformed the existing approaches in
terms of root mean square error, mean absolute percentage error and Diebold-Mariano statistical inference
test within 95% confidence interval.

INDEX TERMS Artificial neural network, deep learning, load forecasting, long short-term memory.

I. INTRODUCTION
Short-term Electrical Load Forecasting (STLF) is used by
electric utilities to forecast a few minutes, hours or one week
ahead electrical load [1]–[3]. STLF also plays a protago-
nist role in the secure, economic, and reliable operation of
energy companies and is widely used in the power generation
scheduling, fuel purchase scheduling, security analysis, and
adjustment of tariff rates [4], [5]. An in-accurate electrical
STLF causes irregular power flows and system’s congestion
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which degrades the security and protection of electrical power
system giving rise to imbalanced generation planning. There-
fore, electricity generation, transmission and distribution net-
works governed by electric companies over the world need
an accurate estimate of STLF for reliable and economical
short-term operations of power systems [6]. STLF also helps
in economic dispatching of electrical load, voltage stability
of high voltage alternating current (HVAC) and high voltage
direct current(HVDC) lines, and for predicting highly disrup-
tive blackouts [7].

The U.S. Energy Information Administration (EIA) col-
lects, analyzes, and disseminates independent and impartial
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energy information to promote sound policymaking, efficient
markets, and public understanding of energy and its inter-
action with the economy and the environment.The annual
energy outlook report published in 2021 (AEO2021) presents
the long-term trends in electricity demand [8]. Electricity
demand grows modestly throughout the projection period.
This report further suggests that the U.S. electricity use per-
centage growth rate, with three-year rolling average, is less
than one percent from 2020 to 2050 in the reference case.
On the contrary, the developing countries require four times
higher electricity demand than that in developed countries.
The main reason of the increased electricity demand is the
abrupt change in meteorological factors of the developing
countries [9]. The need for robust and high performance fore-
casting methods is inevitable to predict a variational electric-
ity demand in such a scenario. The electricity market of some
developing countries still relies on the conventional statis-
tical methodologies like Regression analysis, autoregressive
integrated moving average (ARIMA) for STLF and Power
Market Survey (PMS) to carry out future power generation
planning [10]. For instance, the researcher has presented
conventional Bagged Regression Tree, artificial neural net-
work (ANN) and extreme gradient boosting (XGBoost) algo-
rithm to elucidate the problem of STLF in Pakistan [11], [12].
However, the conventional methodologies are not suitable
to handle the dynamics of power systems under nonlinear
behavior of the meteorological and temporal data such as
humidity, temperature, load during festivals and holidays for
the STLF problem [13]. Therefore, the planning authorities
of electric utilities in developing countries should be moti-
vated to take advantage of the artificial intelligence (AI) based
computational intelligence methods for high-performance
STLF.

There is a dire need for a rigorous work, yet to be done,
to motivate the electric utilities to deploy deep learning
methodologies for planning of power generation in devel-
oping countries like Pakistan, India and Malaysia. However,
in developed countries, several deep learning methods using
ANN, long short-term memory (LSTM) and convolutional
neural network-long short-term memory (CNN-LSTM) to
solve STLF problem are found in the literature. To overcome
the above-stated research gap, this study aims to exploit the
potential, strengths and weaknesses of different deep learning
models on a real-time data set for the motivation of electric
utilities in the developing countries. For this purpose, this
paper also presents a novel temporal feature selection-based
LSTM model for one-hour ahead load prediction.

The initial step in implementing the methodology of the
proposed framework is the accumulation of the raw data
related to STLF. The accuracy of STLF heavily rely on the
historic electrical load, meteorological and temporal factors.
Therefore, the input exogenous variables have been carefully
selected from the raw data in this study for highly accu-
rate deep learning forecasting models. The input datasets
are then pre-processed to convert into meaningful multi-
variate time-series electrical load data. The STLF data is

then segregated into training, validation, and test data. After
training and developing a proposed forecasting model based
on Adam optimizer and hyper-parameters tuning such as
low learning rate, high batch size and small number of neu-
rons or LSTM units in the hidden layer, the evaluation will
be performed to assess the accuracy of the DL forecast-
ing models using key error indices, such as mean absolute
percentage error (MAPE), root-mean square error (RMSE),
absolute percentage error (APE) and statistical analysis such
as Diebold-Mariano test. Finally, the results reveal that the
proposed feature selection-based LSTM model performs
comparatively better than the other DL methodologies such
as conventional ANN, LSTMmodel 1, 2, 3 and CNN-LSTM.

II. LITERATURE REVIEW
The stochastic nature of weather-sensitive electrical load
and multi-variate temporal data such as festivals, holidays
and week-days make the STLF task very challenging and
demanding [14]. A lot of research work has been consum-
mated to unravel the STLF difficulties in the presence of
non-linear electrical load data. Different researchers have
presented various regression models, such as ARIMA and
seasonal-ARIMA (SARIMA) in [15], [16]. ARIMA and
SARIMA use lagged average values of STLF time series
data to capture seasonal effects by using auto-correlation
function (ACF) and partial auto-correlation function (PACF)
analysis [17]. Moreover, a single linear regression and a
multiple linear regression models have also been discussed
in [18]. However, the statistical regression algorithms are not
capable of extracting the non-linear electrical load patterns
and temporal variations [19], [20].

To resolve the above stated issues for STLF, Principal
Component Analysis (PCA) based on dimensionality reduc-
tion algorithm can be applied to strengthen the performance
of statistical regression models [21]. However, the difficulty
in the appropriate selection of the coefficients of co-variance
matrix in PCA may lose key seasonal impact of temperature
influences on the electrical load data [22]. In contrast, Sin-
gular Value Decomposition (SVD) is efficient in extracting
both seasonal and random components and is more robust
than PCA [23]. However, SVD is computationally expensive
due to the calculation of its unitary matrix [24].

Machine Learning (ML) models have been implemented
later to get rid of the time complexity problem of SVD in
STLF problem. ML algorithms have delineated advancement
in the performance of STLF by improving accuracy in dealing
with non-linearity of the electrical load data, and accurate
forecasting of the peaks of electrical load than the dimen-
sionality reduction models and statistical regression models
[25]–[27]. ML methods mainly consist of the ANNs which
can handle the non-linear nature of the weather-sensitive
loads during the prediction of electrical load forecasting [28].
The conventional ANN algorithm experiences overfitting
problem when larger number of neurons and the hidden
layers are used to extract the highly variational temporal and
meteorological features in non-linear electrical load pattern.
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Some other major drawbacks, such as complex hyper-
parameters tuning problem due to highly diversified input
data and vanishing gradient problem limit the applications of
the ANN models [29].

The growth in Deep Learning (DL) has improved the
accuracy of STLF models using highly differentiated input
data in contrast to conventional ML algorithms. Recurrent
neural networks (RNNs) are the modified architectures of
feed-forward neural network (FF-NN), which apply their
internal state to proceed the variable-length sequences of
inputs. RNNs show better reliability and stability to build an
STLF model to extract non-linear inputs and output relation-
ship in an electrical load data. Similarly, RNN with selected
auto-regressive features was also presented to improve the
efficiency of STLF algorithm [30]. Unfortunately, the van-
ishing gradients issue persists in RNN. Moreover, RNNs
were inadequate in capturing long term dependencies. RNN
architectures are then modified later and a new variant of
RNN has been implemented which is named as LSTM to
overcome the vanishing gradient problem [31], [32].

LSTM also boosted the capability of learning long-term
dependencies between weather-sensitive and temporal fea-
tures present in electrical load curve patterns using the special
gated mechanism [33]. LSTM also achieves better accuracy
in the presence of a large amount of multi-dimensional input
data to map the input-output non-linear relationship dur-
ing training in each batch size, which effectively improves
the performance of STLF. The multi-task learning (MTL)
based LSTM model was also deployed to improve the gen-
eralization capability and load forecasting efficiency [34].
However, the implementation of large number of hidden lay-
ers, neurons and complex parameters sharing architecture to
develop the input output non-linear relationship during train-
ing instigate overfitting. Similar day characteristics based
hybrid Empirical Mode Decomposition (EMD)-LSTM was
also constructed to minimize the STLF errors [35]. However,
these LSTM based models overlooked the local trends in an
electrical load pattern during clustering and constituting of
Intrinsic Mode Functions (IMFs). Moreover, LSTM based
models fail to learn local trends in an electrical load pattern
due to uni-directional (forward) processing of the sequential
data. Hence, the LSTM does not lessen the forecasting error
to a desired extent [36].

The STLF forecasting accuracy has been further improved
by deploying the new Hybrid DL models which can extract
the local trends inmulti-variate time-series electrical load pat-
terns efficiently. Every constituent of the model adds advan-
tages in the STLF forecasting problem. CNN-LSTM has
already gained a well-desired reputation in under-considered
STLF problem, in which CNN captures the local trends in an
electrical load pattern influenced by the weather and tempo-
ral features in high-dimensional multi-variate electrical time
series data. Whereas the LSTM model predicts the electrical
load with better prediction accuracy [37]–[40]. However,
hybrid CNN-LSTM model still combat with the overfitting
issue due to the enormous number of hidden layers [41].

The STLF forecasting accuracy has been improved by
deploying the new model using a combination of Convo-
lutional Neural Network (CNN) with Fuzzy time series.
However, a large number of parameters and convolutional
layers in CNN also reduces the generalization capability [42].

A. ORIGINAL CONTRIBUTIONS
For our STLF problem, a proposed LSTM model has been
implemented on a Malaysian dataset as mentioned in [42].
It has been observed from the careful study of electrical
load data of Johor city of Malaysia that the holidays and
working days are unavoidable forecasting agents in the fore-
casting engineswhich affect the electrical demand load. Fig. 1
demonstrates the electrical load profile from 04 January to
10 January for the year of 2009. The electrical demand load
is higher on the working days, which are from 05 January
to 09 January for the year of 2009. The maximum electri-
cal demand load reaches to 65080 MW in these working
days. However, the maximum electrical demand load for the
Saturday is below 51000 MW. Because on Saturday, some
banks and business companies of Johor city remains closed.
Similarly, 04 January of the same year is Sunday, which is
weekly off-day [43]. From Fig. 1, it can be easily concluded
that the maximum demand load of Sunday for the Johor city
reduces to 47,000 MW which is comparatively lower than
that of the electrical demand load of other working days. The
temporal and meteorological features have been incorporated
in a dataset due to the above-discussed relationship between
the working days, holidays, and the electrical demand load.
Therefore, the new features added in the Malaysian dataset
are holidays, working days, weekdays, and on-off days. The
above stated temporal features have not been used in the
previous work which supports unique contribution during
pre-processing in this research study.

The other main contribution lies in the implementation of
a novel temporal feature selection-based LSTMmodel which
is a combination of ANN layer and cascaded LSTM cells.
The ANN layer extracts the important temporal features. The
captured features representing unique predictor matrix are
then transferred to the LSTM cell for prediction. This type
of combination of ANN layer with cascaded LSTM cells
are not presented before for one-hour ahead electrical load
forecasting. Furthermore, a new concept of hyper-parameters
tuning of proposed LSTM model on the multi-dimensional
exogenous variables is also presented, in which a higher
batch size and very small learning rate during training is
applied for better generalization capability. As the multivari-
ate time features are changing very abruptly with the time,
so it is necessary to develop a robust LSTM model based on
temporal feature-selection for one-hour ahead electrical load
forecasting. The Proposed LSTM model tends to overcome
the overfitting and underfitting problems by using appropriate
number of hidden layers and neurons in the novel temporal
feature-selection based LSTM model so that the non-linear
electrical load curve pattern can be easily captured during
training.
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FIGURE 1. One week daily electrical load demand from January 04,2009
to January 10, 2009.

The proposed temporal feature selection-based LSTM
model for one-hour ahead STLF proclaims the better fore-
casting accuracy than ANN at the cost of slightly increased
time complexity. LSTM uses input gate, forget gate and
output gate to capture, store and output the long-term infor-
mation, temporal associations and their long-term depen-
dencies in electrical load curve pattern which increases the
time complexity of the LSTM architecture. LSTM effec-
tively removes the vanishing gradient problem than ANN.
Fortunately, the advancement in high-performance comput-
ing (HPC) servers and machines disentangle the issue of
time complexity. Therefore, the modern research ruminates
attention towards the better performance of forecasting algo-
rithms, such as LSTM, for the reliability of real-time power
system operations. However, the computational complexity
and forecasting accuracy of the proposed LSTM model is
much better than the LSTM model 1, LSTM model 2, LSTM
model 3, and CNN-LSTM. At the end, the proposed LSTM
proves to be a promising STLF forecasting engine.

According to the above-stated facts, the main contributions
of this research paper can be recapitulated as follows:

1) A new combination of ANN and LSTM model is pro-
posed in which ANN layer is infused as a temporal
feature selection layer followed by the LSTM layer.
A unique predictor matrix is formulated in which the
significance of feature elements depends upon its cor-
responding weights generated by the ANN layer. This
type of DL composition is presented for the first time
for one-hour ahead electrical load forecasting.

2) The LSTM layer is used to capture the long-term and
short-term dependencies between the important feature
elements and input-output relationship of the electri-
cal load dataset. The proposed model uses appropriate
hyper-parameters for tuning, training, and improving

validation loss curve and deploying LSTM with suit-
able number of neurons in the hidden layer to avoid
overfitting.

3) The non-linear spatio-temporal forecasting variables,
which were not used before, are added in existing
Malaysian dataset to improve prediction accuracy.
Moreover, this study uses higher batch size during
training on these spatio-temporal forecasting variables.
To the best of the author’s knowledge, the higher batch
size was never used before for this type of STLF issue.

4) The proposed LSTMmodel can evenly be used on other
electrical load datasets with small tuning of hyperpa-
rameters due to less complex architecture and small
number of DL model parameters.

5) A comprehensive qualitative and quantitative analy-
sis have been accomplished between the proposed
temporal feature selection-based LSTM model, ANN,
LSTM model 1, LSTM model 2, LSTM model 3, and
CNN-LSTM. The evaluation metrics such as mean
absolute percentage error (MAPE), root mean square
error (RMSE), mean percentage error (MPE), time effi-
ciency and Absolute Percentage Errors (APEs) show
that the proposed LSTM model outperformed the six
aforementioned models.

6) The Diebold-Mariano test, which is a statistical anal-
ysis, also demonstrates the superiority of the pro-
posed LSTM model over the aforementioned DL
architectures.

The remaining sections are organized as follows.Section III
provides short-term load forecasting problem formula-
tion. Section IV presents the proposed system methodology.
Section V provides system configuration for DL simulations.
Section VI provides discussion on results and Section VII
concludes the paper.

III. SHORT-TERM LOAD FORECASTING
PROBLEM FORMULATION
A. PROBLEM STATEMENT
The one-hour ahead electrical load forecasting problem can
be developed as follows. For a given electrical STLF time-
series dataset Xt = {f1, f2, . . . . . . , fn, l}, which consists of
(n + 1) historical data series, where l = {l1, l2, . . . . . . , ln}
represents the electrical load historical data, i are the samples
taken at different time-stamp and fj = {f1i, f2i, . . . . . . , fni} is
the historical data of the total n temporal and weather features
that influences electrical load.

The ultimate target is to precisely forecast the electrical
load at a future time (t + T ) indicated by l̂(t + T ). The
forecasted value l̂(t + T ) is acquired by a neural-network
defined by the function F(.). The proposed LSTM model
determines the function F(.), which depicts the input-output
relationship between the features from the feature set fj and
the electrical load l in such a way that the difference between
the forecasted load l̂(t + T ) and the actual load l(t + T ) at
time instant t + T should be minimized. The whole one-hour
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ahead electrical load prediction problem can be expressed as
shown in Eq. (1) and Eq. (2):

l̂(t + T ) = l(t + T ) (1)

e = |l̂(t + T )− l(t + T )| (2)

B. PERFORMANCE OF NEURAL NETWORK
The above stated problem can be resolved by implementing
a high performance forecasting neural network. The perfor-
mance of neural network is usually demonstrated by the mean
square error (MSE) between the target l̂(t + T ) and actual
l(t + T ) load. The structure of a neural network includes
input layer, hidden layer, and the output layer. The training
of the neural network is governed by the weights of the neu-
rons within these layers. So, the intention of optimal neural
network during training is to find the set of neuron weights,
which not only reduce the MSE between target and actual
load but also eliminates the difference between training and
testing error. Therefore, the error function E(w) in terms of
MSE defines the performance of neural network and can be
mathematically expressed in Eq. (3):

minE(W ) =
1
N
6N
i=1(l̂(t + T ,W )− l(t + T ))2 (3)

where W is the set of neuron weights that minimize global
MSE. Different gradient-based optimization algorithms can
be used to tune the neuron weights such as Gradient Descent
(GD) [44], Stochastic Gradient Descent(SGD) and Gradient
Boosting Decision Tree(GBDT) [45]. The above methods
lack the tendency to tune neurons weights in local minima
and saddle points due to high dimensional temporal and
weather factors. Moreover, the gradient based optimization
algorithm cannot converge to the optimum point quickly.
Adam algorithm has the capability to overcome the above
mentioned problems by using two momentum concepts as
shown in Eq. (4) and Eq. (5), which controls the learning rate
during weights updating process [46], [47].

mt = β1mt−1 + (1− β1)gt (4)

vt = β2vt−1 + (1− β2)gt2 (5)

The algorithm updates exponential moving averages of the
gradient mt and the squared gradient vt where the hyper-
parameters β1, β2 ∈ [0, 1] control the exponential decay rates
of these moving averages.

C. HYPER-PARAMETERS OF NEURAL NETWORK
The two most prominent hyper-parameters in designing opti-
mal neural network are the number of neurons in the hid-
den layer and the number of hidden layers. A model with
insufficient number of neurons in hidden layers experiences
underfitting which propagates large training error. An ade-
quate number of neurons in the hidden layer consequences
in good generalization capability and the model combats
with overfitting. However, the large number of hidden layers
encounter overfitting problem. The proposed LSTM model
consists of only one hidden layer with only ten neurons in the
hidden layer to eradicate the overfitting problem.

IV. PROPOSED SYSTEM ARCHITECTURE
AND METHODOLOGY
The proposed system framework is shown in Fig. 4. Raw
data is collected and segregated which mainly consists of
historic electric load, weather data containing humidity and
temperature variation, and temporal data for days of the week
and on/off days. The data is then pre-processed, on/off days
and holidays are binary encoded, and then converted into a
useful multi-variate STLF time series data. The whole mul-
tivariate STLF dataset is partitioned into training, validation,
and the test datasets. The above three datasets are normalized
for the better convergence and performance of optimization
algorithm using Eq. (6).

Xsc =
X − Xmin

Xmax − Xmin
(6)

where Xsc is the scaled input data ranges from 0 to 1. Xmin and
Xmax are the minimum and maximum values respectively in
the input predictor matrix.

The training data is then transformed into a useful input
predictor matrix. The training input predictor matrix and val-
idation data are consigned to the LSTM training module. The
training data is used to train the neural network model while
the validation set helps in fine-tuning of the hyper-parameters
and to remove the underfitting and overfitting issue.

Fig. 5 represents the proposed LSTM based deep learning
architecture. The proposed LSTM model is based on feature
extraction block, LSTM forecasting block and output layer.
The input layer of proposed LSTM model behaves same
as the input layer of ANN in feature extraction block. The
neurons and weights of ANN layer facilitate to extract non-
linear relationship between exogenous variables and actual
load. Hence, the proposed LSTM model uses ANN input
layer in feature extraction block to capture seasonal and
temporal features with high degree of variability. Consider
the ANN input layer consists of n-neurons in the proposed
LSTM model.

Let Xj be the input of jth neuron in the input layer and Wj
be the weight associated with the jth neuron, then the output
of the jth neuron aj can be computed as aj = XjWj. Generally,
Xt represents the input vector of LSTM forecasting block and
can be represented by Eq. (7).

Xt =
[
X1W1 X2W2 . . . . . . . . . .XjWj . . . . XnWn

]
(7)

The hidden layer in proposed LSTM model constitutes of
LSTM forecasting block which implements LSTM cascaded
cells to capture long-term dependencies in electrical load pat-
tern. The operation of LSTM unit has already been discussed
in section IV. Hence, the new proposed LSTM model is a
combination of ANN input layer (containing 11 neurons) and
LSTM layer containing 8 cells. The last output layer consists
of only one neuron.

The proposed model is trained on the optimal set of hyper
parameters during tuning which provides the single-valued
electrical load output, and the pre-trained LSTM model has
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FIGURE 2. LSTM Cell.

been developed for the testing purposes using Adam opti-
mizer. The LSTM forecastingmodule loads the proposed pre-
trained LSTM model to forecast the electrical load of one
hour resolution after inverse normalization. Then, the error
metrics such as RMSE, MAPE and MPE are assessed. The
learning rate is a hyper parameter that controls the dynamics
of the model in response to the estimated error, each time the
model weights are updated. Choosing the optimal learning
rate is a challenging task as a too small value may result
in a longer training time whereas a value too large may
result in suboptimal set of weights. In this research study
and the proposed LSTM model, learning rate is adjusted to
0.003 to learn all the features accurately and precisely. The
superiority of the proposed LSTM model has been validated
by comparing with the baseline ANNmodel, LSTMmodel 1,
LSTM model 2, LSTM model 3 and CNN-LSTM using the
same STLF framework.

A. DATASET
The proposed method is implemented on the hourly electric
load data of the electric utilities of the city of Johor in
Malaysia extending from 01 January 2009 to 31 December
2010 [42]. The electrical load data has 17520 values based
on two years of hourly load data. The data has been seg-
mented into training, validation, and test set with the ratio
of 60%, 20% and 20% respectively as shown in Table 1.
The temporal and weather data has been accumulated from
www.worldweatheronline.com and www.timeanddate.com
for years 2009 and 2010. The input features comprise of
Temperature, Humidity,Weekdays, Holidays, Years, Months,
Week, Days, Hour, Minutes and Seconds.We had two options
i.e., either removing the minutes and seconds or simply mak-
ing them zero. Both these options generate same results.
We opted for the latter option as it increases the scalability
i.e., will work well for higher resolutions of future datasets.
Moreover, this study also focuses on the development of
reliable deep learning algorithm to predict the electrical load
pattern using hourly load data. Therefore, a sparse column
vectors have been added in the dataset by making variables
of minutes and seconds zero so that a robust deep learning
model can be built considering the sparsity of the data. It can
be observed that the feature extraction with sparse vectors

FIGURE 3. CNN-LSTM architecture [48].

generates a unique predictor matrix during training which
improves the robustness and reliability of the proposed LSTM
architecture. The proposed LSTM architecture can be used
on other electrical load dataset for the STLF application due
to the above discussed advantage. The complete historical
electrical load data is then organized for a one-hour ahead
prediction. A data vector load to the proposed LSTM model
consists of eleven dimensions. The characteristics of eleven-
dimensional input features can be described as follows:

1) Humidity: The humidity data is also gathered with a
resolution of three hours and the total 2920 humidity
readings can be found from the available dataset. The
missing entries are then again linearly interpolated to
make compatible with the electrical load data. Fig. 6
also represents the high randomness in the humidity.

2) Temperature: The temperature data is collected with a
resolution of three hours and the total 2920 temperature
readings can be found from the available dataset for two
years. The missing entries are then linearly interpolated
to make compatible with the electrical load data. Fig. 7
clearly depicts the highly variational and non-linear
nature of the temperature.

3) Electrical Load: The electrical load data in Mega Watt
is recorded with a resolution of one hour. Fig. 8 delin-
eates the highly diversified and stochastic nature of
electrical load data between the different months of two
years.

4) Holidays/Date-time Features: The holiday index is
encoded in a binary value 0 and 1. 0 represents the close
days (holidays) and 1 represents the on-days (working
days). The other date-time features such as minutes,
hours seconds and weeks are extracted from the time
stamp.
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FIGURE 4. System model for research methodology.

V. SYSTEM CONFIGURATION WITH SIMULATION SETUP
The proposed method has been authenticated in Anaconda
Navigator and Jupyter Notebook in which Python 3.7 is used.
Simulation was accelerated by Nvidia graphics processing
unit (GPU), GeForce Nvidia GTX1080Ti on a PC with an
Intel core i7, 2.3GHz CPU, 16GB RAM and 1 TB hard disk
running on a Windows operating system.

For the STLF problem, the proposed LSTM, ANN, LSTM
model 1, LSTM model 2, LSTM model 3 and CNN-LSTM
have been simulated in a popular open-source deep learning
platform named Tensorflow with a version of 2.2.0, which
supports Python APIs and CUDA extension [49] Keras has
also been integrated with Tensorflow [50] because it also
delivers additional high-level APIs, user friendly modular

interface, and important machine learning packages such as
scikit-learn for Python [51] The other relevant libraries such
as Dense, Activation, Optimizers and LSTM have also been
imported from Keras to implement hidden layers, activation
function such as Sigmoid, implement Adam optimizer and
LSTM layer module respectively. Early stopping technique
is used with a patience technique to stop the training when
the deep neural network (DNN) model suffers from serious
overfitting. The small patience value such as 30 can stop
the training process earlier [52]. However, the small patience
value may fail to clearly identify the impact of overfitting
in training and validation loss curve for the fair comparison
between different DL architectures. Therefore, the patience
is set to 50 to perceive the impact of overfitting in training
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FIGURE 5. Proposed LSTM-based deep learning architecture.

TABLE 1. Segregation of data into Training, Validation and Test set.

FIGURE 6. Percentage humidity for year 2009-2010.

FIGURE 7. Temperature (degree Celsius) for year 2009-2010.

and validation loss curve of ANN, the proposed LSTM
model, LSTM model 1, LSTM model 2, LSTM model 3 and
CNN-LSTM.

The hyper-parameters used for the fine tuning of STLF
algorithms are listed in Table 2. The number of training

FIGURE 8. Load (in MW) for year 2009-2010.

epochs and Batch size are also the key hyper-parameters
that have significant impact on the generalization ability and
forecasting accuracy of DNN. The higher batch size trains the
data based on large number of samples within the training
dataset for one epoch. Considering the higher number of
samples during training in a single epoch, the higher batch
size can be proved useful to extract the more generalized
pattern. For the STLF problem, Batch size is set to 500 due to
the above-mentioned reason. The number of training epochs
are adjusted to 1000 to capture the input-output relationship
between features and electrical load accurately.To ensure fair
comparison, we chose the same hyperparameters of LSTM.
However, in our proposed approach, sigmoid activation func-
tion is used but CNN-LSTM uses ReLU activation function.
Unlike others, the proposed approach is a hybrid model of
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TABLE 2. Hyperparameter settings of various Deep Learning
architectures.

ANN and LSTM. The first layer of proposed model is ANN
with simple neurons that are used as an input to LSTM layer
containing 8 cells. The usage of sigmoid function in the pro-
posed approach reduces the problem of vanishing gradient.
ReLU, used in CNN-LSTM, does have some limitations espe-
cially the case where large weight updates can result in the
negative value of the summed input to the activation function,
regardless of the input to the network. This implies that any
node with such a problem will always output 0 activation
value.

The learning rate is also a pre-eminent hyper-parameter
that controls the dynamics of the DNN model in response to
the estimated error, each time the DNN model weights are
updated. The error function based on highly diversified and
dimensional features accomplish the fine-tuning of optimal
learning rate very demanding. A low learning rate may result
in a longer training time due to slower convergence of optimal
set of neurons weights. Whereas a high learning rate fails to
converge to a minimum value of the error function and may
result in sub-optimal set of neurons weights. Contemplating
the above stated concepts, the learning rate was initially set to
0.9 for the STLF error function as described in Eq. (2) and the
response of training and validation loss curve was observed
using gradient-checkmethod. The learning rate was then fine-
tuned by decreasing previous learning rate values during dif-
ferent observations using gradient-check method. Finally, the
DNN model provided the best training-validation loss curve
and optimal set of neurons weights at a learning rate of 0.003.
Adam optimizer has been used to minimize the loss during
training. Adam is a replacement optimization algorithm for
stochastic gradient descent for training deep learning models
as already described in the performance of neural network
section. Adam combines the characteristics of the AdaGrad
and RMSProp algorithms to provide an optimization algo-
rithm that can handle sparse gradients on noisy problems.

The neural structures of ANN, LSTM model 1, LSTM
model 2, LSTM model 3, CNN-LSTM and the proposed
LSTM are described below:

A. ANN CONFIGURATION
The neurons always play a crucial role in the fine-tuning of
the neural network model. The input layer of fully connected
ANN model has 11 neurons because the input vector to the
ANN model is eleven-dimensional. The ANN model com-
prises of only 1 hidden layer to avoid overfitting. According
to the criteria of selecting hidden neurons in a hidden layer
as discussed in Section III the neurons are initially set to
10 to avoid underfitting. The ANN generates the high pre-
diction accuracy when the number of hidden layer neurons
are adjusted to 20. More than 12 neurons in the hidden layer
depicts serious overfitting in the experiments during hyper-
parameter tuning. Therefore, the neurons in fully connected
hidden layer of ANN are optimally set to 8 so that ANN can
be able to capture the electrical load pattern. The output layer
of ANN constitutes only 1 neuron to output a single valued
one-hour ahead electrical load forecasted value.

B. LSTM MODEL 1, Model 2 AND MODEL 3
CONFIGURATION
LSTM model 1, LSTM model 2 and LSTM model 3 have
11 neurons in the input layer. All variants have 8 LSTM cells
in the hidden layer and 1 neuron in the output layer. However,
LSTM model 1, LSTMmodel 2 and LSTMmodel 3 are built
on 24, 48 and 72 lagged values of electrical load respectively.

C. CNN-LSTM CONFIGURATION
The first 1-dimensional convolutional layer in CNN-LSTM
has 128 kernels. The large number of kernels are used in
the CNN-LSTMmodel to capture all patterns of an electrical
load which are governed by the meteorological and temporal
attributes present in the electrical load dataset. The kernel
size is also adjusted to 1 × 1 so that CNN-LSTM extracts
local trends of every individual electrical load sample. The
1 × 1 filter also uses the advantage of removing flatten-
ing layer in CNN-LSTM model which makes the architec-
ture simpler than any other CNN-LSTM model. The output
of 1-dimensional maxpooling layer with pooling size 1 is
applied after the 1-dimensional convolutional layer. After
that, the LSTM layer is employed as a fully connected layer
with 8 LSTM cells followed by the output layer of 1 neuron.
In this study, the CNN-LSTMmodel is intended to implement
with 1 convolutional layer and smaller number of LSTM cells
to remove overfitting and to make the CNN-LSTM model
uncomplicated.

D. THE PROPOSED LSTM CONFIGURATION
The input layer of fully connected LSTM model has also
11 neurons because the eleven- dimensional input vector
has been loaded to the proposed LSTM model. The hidden
layer of proposed LSTM model has been set to 1 to avoid
overfitting. The number of hidden layer neurons are fixed
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to 8 as shown in Fig. 5 to escape from overfitting and then
fine-tuned the other hyper-parameters such as learning rate
to validate the prediction accuracy of the proposed LSTM.
Similarly, the output layer of the presented LSTM model
consists of only 1 neuron to squash a single valued one-hour
ahead electrical load forecast value

E. EVALUATION METRICS AND ERROR FUNCTION
After getting our predicted load of LSTM and ANN APE,
MAPE and RMSE, introduced in Eq. (8) to Eq. (11) which
are the most important features to use when comparing the
outcomes of the two models. These error metrics are defined
as follows:

MPE =
1
N
6N
i=1(ŷi − yi) (8)

RMSE =

√
1
N
6N
i=1(ŷi − yi)

2 (9)

APE = |
(ŷi − yi)

yi
| × 100% (10)

MAPE =
1
N
6N
i=1(APEi) (11)

where N is the number of samples, ŷi is forecasting value, and
yi is actual load value. MPE, RMSE APE and MAPE provide
short-term performance of these models. Smaller +ve values
indicate the closeness of match between actual value yi and
estimated value ŷi.

VI. RESULTS AND DISCUSSION
The proposed LSTM model is compared with ANN, LSTM
model 1, LSTM model 2, LSTM model 3 and CNN-LSTM
to investigate the performance of the aforesaid models for
electrical STLF. Training and validation loss curves, time
complexity, evaluation indices such as MPE, RMSE, MAPE,
APEs and Diebold-Mariano test are used to prove the validity
of proposed LSTM model for this purpose as described in
next sections:

A. ERROR PERFORMANCE
To compare the performance of our proposed LSTM archi-
tecture with ANN, LSTM model 1, LSTM model 2, LSTM
model 3 and CNN-LSTM, the error metrics have been calcu-
lated as mentioned in Table 3. From these metrics, the mean
percentage error (MPE) of our proposed architecture is 0.05,
which is comparatively smaller than the MPE of an ANN
architecture which is 1.02. Hence, the proposed LSTMmodel
shows superiority over ANN in terms of STLF accuracy.
Similarly, the MPE of LSTM model 1, LSTM model 2 and
LSTM model 3 is −1.08, −0.60 and −0.30 respectively
as shown in Fig. 9. The negative values of MPE indicate
that the conventional three LSTM models forecast the higher
electrical load values than the actual electrical load values for
most of the test data. Similarly, the MPE of CNN-LSTM is
0.40, which is higher than the proposed LSTMmodel. Hence,
the proposed LSTM model shows improved MPE than the
other under-considered models for the given STLF study.

Similarly, the proposed LSTM model shows significant
improvement for other evaluation metrics such as RMSE
and MAPE over an ANN. The MAPE and RMSE of the
proposed LSTM model are 0.64 and 451.12 respectively as
shown in Fig. 9 and Fig. 10. While the MAPE and RMSE of
conventional ANN are 1.18 and 728.49 respectively, which
are worse than the proposed LSTM. Hence, the proposed
LSTM offers high STLF accuracy than ANN. It can be seen
from the Table 3 that the MAPE of LSTM model 1, LSTM
model 2, LSTM model 3 and CNN-LSTM are 1.56, 0.96,
0.86 and 2.78 respectively which are again worse than the
proposed LSTM. Since the proposed LSTM model captures
the diversified features more precisely than the ANN and
other models by eliminating vanishing gradient and overfit-
ting problem, the one-hour electrical forecasted load maps
the actual electrical load accurately. Therefore, the proposed
LSTM displays superior performance in terms of evaluation
indices in our defined STLF problem.

B. TRAINING LOSS AND VALIDATION LOSS
A complete forward and backward propagation of the entire
training dataset in a neural network once to learn the algo-
rithm is termed as an epoch. Fig. 11 illustrates the training
and validation loss curve of different neural network models.
All neural models have 8 neurons in the hidden layer. The
validation loss in proposed LSTM decreases rapidly as com-
pared to ANN during first 80 to 100 epochs. Hence, the
proposed LSTM model seeks to optimize the model param-
eters such as weights quickly than ANN as depicted in
Fig. 11 (a) and Fig. 11(b). The conventional ANN learns
slowly than the proposed LSTM as mentioned above due to
the complex hyper-parameter tuning process in ANN. It can
also be observed from the loss curve that the proposed LSTM
and ANN tries to converge after 400 epochs.

Furthermore, overfitting and underfitting phenomena can
be examined by observing the loss curve of error rate with
respect to number of epoch. Overfitting represents a phe-
nomenon in which distance between training and valida-
tion loss curve increases as the number of epochs increases.
The gap between training and validation loss curve remains
smaller and almost same during 1000 epochs which rep-
resents neither underfitting nor overfitting in the proposed
LSTMmodel. Conversely, the gap between training and vali-
dation loss curve becomes wider in ANN which represents
overfitting in the conventional ANN model. ANN experi-
ences consecutive overfitting in the presence of high dimen-
sional features due to sufficient neurons in the hidden layer
to capture all the input-output relationship between electrical
load and features which eventually decreases the general-
ization capability and hence produces overfitting. However,
the small number of neurons in ANN generates high fore-
casting errors due to under-fitting. It can be realized from
the extensive experiments that if the neurons of the hidden
layer are set to 8, then the conventional ANN encounters
from overfitting. Conversely, if the hidden layer neurons are
set to 7 in ANN, then the ANN fails to find the optimal set

VOLUME 10, 2022 82605



K. Ijaz et al.: Novel Temporal Feature Selection Based LSTM Model for Electrical STLF

FIGURE 9. (a) Comparison of Mean Percentage Error (MPE) of Deep Learning architectures and (b) Comparison of Root Mean Square
Error (RMSE) of Deep Learning architectures.

FIGURE 10. (a) MAPE for various Deep Learning models (b) MAPE variation with number of neurons.

of weights. Consequently, ANN generates higher forecasting
errors with 7 neurons in the hidden layer as demonstrated
in Fig. 10(b). The proposed LSTM removes all the above
limitations and provides higher forecasting accuracy with
8 neurons in the hidden layer as shown in Fig. 10.

Furthermore, ANN validation loss curve experiences
volatile behavior after 100 epochs which again represents
the failure of optimizing the model’s parameter accurately.
However, the proposed LSTM validation loss curve delin-
eates smooth learning. Hence, the performance of ANN
degrades consistently with the increase in number of epochs
in STLF scenario.

LSTM model 1, model 2 and model 3 get stuck in local
optima and encounter with saddle points as shown in the
loss curves of LSTM model 1, model 2 and model 3 in
Fig. 11 (c), Fig. 11 (d) and Fig. 11(e). The lagged values in the
above mentioned LSTM models restrict the smooth learning
of the algorithm. Therefore, the optimization phenomena
in the lagged LSTM models remains unsuccessful to con-
verge in the under-considered STLF problem. In Hybrid
CNN-LSTM, the convolutional layer is introduced before the
LSTM layer to capture the local trends between electrical
load and the features. The Hybrid CNN-LSTM model learns
the input-output relationship between various features and

electrical load impressively on the training dataset but lacks
the generalization capability on the test dataset due to the
addition of convolutional layer, use of enormous number of
filters, large number of neurons in LSTM layer and com-
plexity of the model as shown in loss curve of Hybrid CNN-
LSTM. Hence, it may be concluded that the proposed LSTM
model provides highly accurate forecasting algorithm by mit-
igating hyper-parameters tuning, overfitting and underfitting
issues.

C. TIMING COMPLEXITY OF STLF MODELS
The proposed LSTM requires 247.9 seconds to train with
1000 epochs which is worse than the ANN. The ANN con-
sumes 74.73 seconds to train the electrical load data as shown
in shown in Table 3. Similarly, the test time of the proposed
LSTM model is 0.81 seconds which is again slightly low-
grade than ANN, which requires 0.31 seconds to forecast the
one-hour ahead electrical load on the same dataset. The pro-
posed LSTM back propagation algorithm takes much more
complex computations to avoid vanishing and exploding gra-
dient descent problem due to three gated mechanisms such
as input gate, output gate and forget gate. Therefore, the
training and test time consumed by the LSTM is higher than
the ANN. Conversely, the ANN lacks the gated mechanisms
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FIGURE 11. Training and validation loss curves for (a) ANN (b) Proposed LSTM (c) LSTM Model 1 (d) LSTM Model 2 (e) LSTM
Model 3 (f) CNN-LSTM.

and therefore the training time of ANN is less than the
proposed LSTM model. However, ANN fails to extract
stochastic nature of electrical load in the presence of highly
variational temporal features due to the lack of gated mech-
anisms and the overfitting issue which consequences in the
higher MAPE value than the proposed LSTM as shown
in Fig. 10.

Moreover, the presence of high computing machines
makes the efficient algorithm such as the proposed LSTM
implementable and give the privilege to the researchers to
concentrate on the trade-off between highly accurate pre-
diction and the computational time. The proposed LSTM
achieves higher forecasting accuracy and thus decreases
MAPE to a satisfactory extent than the conventional
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FIGURE 12. (a) Training Time (sec) for Deep Learning architecture and (b) Testing Time (sec) for Deep Learning architectures.

FIGURE 13. Full load prediction for August 08, 2010 to December 31st, 2010 using various Deep Learning architectures.

TABLE 3. Overall performance results.
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FIGURE 14. Weekly load prediction using various Deep Learning architectures.

ANN at the cost of increased time complexity as shown
in Fig. 12.

LSTM model 1, LSTM model 2 and LSTM model 3 con-
sume 563.7 sec, 878.1 sec and 1255.23 sec respectively to
train with the same 1000 epochs. It is observed that the
lagged values diversified the dimensions of the input matrix
which enhance the training time of LSTM model 1, LSTM
model 2 and LSTM model 3 to a larger extent. Similarly,
the test time of LSTM model 1, LSTM model 2 and LSTM
model 3 is 0.99 sec, 1.23 sec and 1.37 sec respectively which
is worse than the proposed LSTM. Eventually, the LSTM
models based on fixed-time lagged values are impractical
to implement for one-hour ahead electrical STLF. Similarly,
CNN-LSTM model is fully trained on an under-considered
electrical load data after 547.42 sec. The computational time
complexity of CNN-LSTM is almost double than the pro-
posed LSTMmodel because each constituent in hybridmodel
requires sufficient time to accomplish the complete operation.
Moreover, the convolution process in a convolutional layer
expends enormous time which raises the time complexity of
the CNN-LSTM model.

From the above discussion, it may be concluded that the
proposed LSTM model captures the short and long-term
dependencies efficiently with an improved time complexity
as compared to LSTM model 1, LSTM model 2, LSTM

model 3 and CNN-LSTM. ANN also consumes less training
and test time than LSTM model 1, LSTM model 2, LSTM
model 3 and CNN-LSTM which depicts that ANN is better
than the above lagged load based LSTM models and CNN-
LSTM in terms of computational complexity. Furthermore,
it may be deduced that the proposed LSTM achieves signif-
icantly better STLF performance than ANN at the cost of
slight increase in the test time.

D. LOAD FORECASTING PERFORMANCE
The closest match between predicted and target load trends
are presented in Fig. 13 to show the STLF performance for
146 days from 08 August 2010 to 01 January 2011 between
proposed LSTM model and five state-of-art models such as
conventional ANN, LSTM model 1, 2, 3 and CNN-LSTM.
It can be realized from Fig. 13 (a-b) that the proposed LSTM
model yields the strongest match between the predicted and
target loads, especially during peak load and valley load
than conventional ANN. The other state-of-art models like
LSTM model 1, 2, 3 and CNN-LSTM observe difficulties in
capturing the trends of peak loads and hence are not suitable
for this electrical load dataset as shown in Fig. 13 (c)-(f).

The performance analysis has been extended further to
identify the suitable DL model, which will capture the abrupt
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FIGURE 15. Performance comparison of APEs for various architectures and models.

variations in electrical load pattern accurately. For this pur-
pose and better visualization, STLF performance of one week
from 09 August 2010 to 16 August 2010 has been consid-
ered. Fig. 14 (a)-(f) suggests that the proposed LSTM model
captures the sharp variations, randomness, and notches in
an electrical load trend comparatively better than the other
state-of-art deep learning models. The forecasting perfor-
mance based on average MAPE of above-defined one week
of the proposed LSTM and other state-of-art deep learn-
ing methodologies has also been considered. The proposed
LSTM attained average MAPE in the best case with the
mean value 0.64 and the variance value 0.02, better than the
1.23 ± 0.05 received by the conventional ANN. Similarly,
the average MAPEs received by LSTM model 1, 2, 3 and
CNN-LSTM are 5.7, 8.4, 8.08 and 1.82 respectively with the
corresponding variance values 1.86, 3.53, 1.97 and 0.83. The
above improved average MAPE of proposed LSTM implies
that forecasting curve can precisely repeat the actual load
curve as compared to ANN, LSTM model 1, 2, 3 and CNN-
LSTM due to accurate mapping of input-output relationship
between electrical load and highly variational temporal fea-
tures in proposed LSTM model.

Additionally, the absolute APEs are also considered as the
useful error metrics against actual electrical load samples

in the test data to select the best STLF forecasting engine.
Fig. 15 illustrates that the proposed LSTM model propagates
less APEs as compared to ANN, LSTM model 1, 2, 3 and
CNN-LSTM. As discussed earlier that the proposed LSTM
model finds the closest match between actual and forecasted
electrical load curve due to extraction of local trends convinc-
ingly in electrical load pattern therefore the proposed LSTM
model generates less APEs. As the APEs signify forecasting
errors against each actual load sample, therefore APEs also
provide the intuition about the stability of the STLF engine.
The proposed LSTM generates less forecasting errors for
all samples of the test dataset, which reveals the stability of
presented model than the other deep learning models.

E. STATISTICAL ANALYSIS
From the above discussion, it can be deduced that the
proposed feature selection-based LSTM model attains bet-
ter forecasting performance than the conventional ANN,
LSTM model 1, 2, 3 and CNN-LSTM. However, significant
improvement in the performance of electrical load forecast-
ing must be required by the proposed LSTM model for the
recommendation of a real-time STLF DL algorithm in the
power system operations of under-developed countries. For
this purpose, the Diebold-Mariano test has been performed
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TABLE 4. DM test results.

to determine the remarkable improvement by the proposed
LSTM model over the competing DL models.

Let, H0 represents the null hypothesis in Diebold-Mariano
test, which will be accepted only when all DL models includ-
ing the proposed LSTMmodel, have approximately the same
STLF performance. The other two alternative hypotheses are
H1 and H2. H1 will be accepted when the proposed LSTM
model delineates significant improvement in STLF accuracy
than the other DL models, and H2 will be accepted when
the other DL models show significant improvement than the
proposed LSTM model. Let, S1 be the statistic which is used
to test the above hypothesis such as H0, H1 and H2, and the
confidence level be 95% [53].H1 will be accepted andH0 will
be declined when S1 is greater than 1.96. H2 will be accepted
andH0 will be declined when S1 is smaller than−1.96.When
S1 is within−1.96 to 1.96,H0 will be accepted and there will
be no significant difference in forecasting accuracy between
the proposed LSTM and all other DL models. The proposed
LSTM model shows remarkable improvement in forecasting
accuracy than the conventional ANN, LSTM model 1, 2,
3 and CNN-LSTM, as shown from DM Test results given
in Table 4.

VII. CONCLUSION
A new temporal feature selection-based LSTM model was
presented for short-term load forecasting. The proposed
LSTM model was composed of ANN input layer and LSTM
hidden layer. ANN input layer operated as a feature extraction
module and LSTMhidden layer worked as a forecastingmod-
ule. The proposed LSTM model was also based on optimally
selecting the number of hidden layers, neurons, and the tuning
of the hyper-parameters to avoid overfitting. The proposed
framework achieved the better forecasting accuracy using the
following design concepts of neural network in the proposed
LSTM model:

1) The proposed approach used artificial neural network
layer that extracted the desired features while main-
taining the same computational complexity as convo-
lutional layer of CNN.

2) Many hidden layers can cause overfitting in deep learn-
ing models. So, only one LSTM hidden layer was used
in the proposed LSTM model to avoid overfitting.

3) An adequate number of neurons and LSTM cells in the
hidden layer may also cause overfitting. The proposed
LSTM model used only eight LSTM cascaded cells in
the hidden layer to avoid overfitting. Similarly, LSTM
cells less than six could cause underfitting because

model would fail to record the electrical load pattern
with respect to all eleven input features.

4) A large batch size was used to enhance the better gener-
alization capability with suitable number of epochs as
discussed above.

5) A learning rate is optimally selected to 0.003 with the
Adam optimizer to maintain optimal learning step size
to extract all the local trends in the electrical load data
in the presence of highly dimensional features.

The evaluation metrics of the proposed LSTMmodel were
comparedwith ANN, LSTMmodel 1, LSTMmodel 2, LSTM
model 3 and CNN-LSTM on a Malaysian dataset which
showed superiority over all the other deep learning models
in terms of root-mean square error, mean-percentage error
and mean-absolute percentage error. The experimental stud-
ies demonstrated that the proposed LSTM provided the best
forecasting performance by matching the forecast and actual
load especially during peak and valley load duration. The
Diebold-Mariano test also suggested that the proposed LSTM
model significantly improved the STLF accuracy. Based on
the above study, an implementation of the proposed LSTM
model was recommended in the power system operations
to the electric utilities of under-developed countries for the
STLF problem.

One of the main challenges faced in STLF is to predict the
electrical loads of special days such as special holidays due
to the following reasons:

(1) The electrical load pattern of special holidays and non-
working days is unique, the aggressive deep learning model
is required, which captures the variation of local trends in
electrical load pattern. Moreover, the designed deep learning
model should base on three levels of deep learning compe-
tence such as modeling, tuning and applications.

(2) Holidays occur infrequently, even irregularly, so the
historical data are insufficient. Therefore, the training sets are
also very low for these days. This problem can be removed
by using data augmentation and generative adversarial net-
works (GANs) to enhance the data and training sets.

(3) Since enormous factors effect the consumption of
electrical load of holidays in different ways, it is difficult
to determine the impact of individual factors. This issue
can be resolved by determining the most significant factors
present in the electrical load dataset, which make positive
impact on the electrical load forecasting. Algorithms based
on similar day characteristics and clustering can be the suit-
able candidates to resolve the above mentioned issue. These
issues will be addressed in our future work by designing and
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implementing the hybrid deep learning model based on three
levels of competence and GANs to forecast one-hour and
one-day ahead electrical load of special days.
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