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ABSTRACT Brachial plexus block is a common regional anesthesia method widely used in upper limb
surgery. Nowadays, ultrasound-guided brachial plexus block has been extensively used in clinical anesthesia.
However, accurate brachial plexus block is highly dependent on the physician’s experience, and a physician
without extensive clinical experience may cause nerve injury when performing a nerve block. With the
development of artificial intelligence technology, the deep learning method can automatically identify the
brachial plexus in ultrasound images and assist doctors in completing the brachial plexus block accurately
and quickly. In this paper, we aim to evaluate the performance of different deep learning models in identifying
brachial plexus (i.e., segmentation of brachial plexus) from ultrasonic images to explore the best models and
training strategies for this task. To this end, we use a new dataset containing 340 brachial plexus ultrasound
images annotated by three experienced clinicians. Among the 12 deep learning models we evaluated, U-Net
achieves the best segmentation accuracy, with an intersection over union (IoU) of 68.50%. However, the
number of U-Net parameters is very large, and it can only process 15 images per second. Compared to
U-Net, LinkNet can process 142 images per second and achieve the second-best segmentation accuracy
with an IoU of 66.27%. It achieves the balance between segmentation accuracy and processing efficiency,
which has a good potential for the brachial plexus’s real-time segmentation task.

INDEX TERMS Deep learning, brachial plexus, nerve segmentation, nerve block.

I. INTRODUCTION

Brachial plexus block is a common regional nerve block
method, which has been widely used in upper limb surgery.
Compared with general anesthesia, brachial plexus block
anesthesia has minimum negative impact on the patient’s
physiology, fewer complications, and is more effective.
In clinical practice, medical staff has developed nerve block
guidance techniques such as paraesthesia, nerve stimula-
tion, and ultrasound guidance to enhance the success rate of
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regional anesthesia. Compared with other techniques, ultra-
sound guidance provides more intuitive and accurate nerve
localization. It provides real-time images when blocking the
target nerve, thus assisting the physician in achieving precise
anesthesia [1]. However, ultrasound-guided brachial plexus
blocks still face several challenges. Firstly, ultrasound images
have many artifacts and noise, low contrast between tissues,
and fuzzy boundaries [2], making it challenging to iden-
tify nerve block areas in clinical practice. Secondly, the use
of ultrasound-guided localization techniques requires anes-
thesiologists who not only have a deep understanding of
anatomical structures but also have extensive experience in
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the use of ultrasound imaging [3]. Anesthesiologists with
extensive clinical experience are in short supply, and doc-
tors with insufficient clinical experience may cause nerve
injury when performing nerve blocks. Thirdly, for certain
patients, such as those with obesity, edema, and muscle atro-
phy, the quality of ultrasound imaging is poorer, and the
area of nerve block can be difficult to identify [4]. Based
on the discussions above, it can be seen that accurately
locating nerves in ultrasound images has become an impor-
tant issue in the development of nerve blocks. To overcome
the above problems, an effective approach is to introduce a
computer-aided diagnosis (CAD) system, which can be used
to supplement doctors’ personal experience and knowledge
to improve the reliability and efficiency of the brachial plexus
block.

In recent years, the progress of CAD and its great potential
in medical diagnosis have received extensive attention [5].
Researchers used digital image processing combined with
traditional machine learning techniques to identify ultra-
sonic nerve block areas. Gonzalez et al. [6] first use the
graph cut method to pre-segment the ultrasound image to
obtain the region of interest. Features are then extracted from
the ultrasound image using a nonlinear wavelet transform.
Finally, the pixels are classified using a Gaussian process
classifier to obtain the neural region. Vashishtha and Aju [7]
combine the canny edge detection algorithm with the sup-
port vector machine (SVM) to achieve neural segmenta-
tion in the ultrasonic image. Jimenez et al. [8] use random
undersampling (RUS) and SVM for neural segmentation of
ultrasound images. Although traditional segmentation meth-
ods can accomplish segmentation of neural block regions
on smaller datasets, they all need to design feature extrac-
tion methods manually. The implementation can be com-
plex, and it is challenging to achieve accurate segmentation
results.

In contrast to machine learning, deep learning does not
need to design the feature extraction process manually, and
it can automatically learn from data during the training pro-
cess to obtain excellent feature representation. It has suc-
ceeded in computer vision, bioinformatics, and other fields.
Currently, deep learning methods have been applied to the
whole process of medical image processing and analysis.
They have achieved remarkable results in classification [9],
detection [10], segmentation [11], reconstruction [12], and
registration [13] tasks. In the research of brachial plexus
segmentation, the computer-aided diagnosis system based on
deep learning has achieved great results and has become the
mainstream direction of related research. Wei and Tong [14]
propose a dual-path U-shaped network with an attention
mechanism. In this network, two paths are used to replace the
ordinary convolution layer, and the attention mechanism is
used to improve the efficiency and accuracy of segmentation.
Van Boxtel et al. [15] propose a hybrid model consisting of
a classification and segmentation model to segment brachial
plexus regions in ultrasound images. The experimental results
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show that the segmentation performance of the hybrid model
is significantly improved compared to the single segmenta-
tion model. Zhao and Sun [16] propose an end-to-end method
based on U-Net for automatic segmentation of the brachial
plexus from ultrasound images, which achieves good seg-
mentation performance. In addition to brachial plexus seg-
mentation, deep learning is also used to identify nerve blocks
in other body parts. Huang et al. [17] use the U-Net network to
identify femoral nerve block regions from ultrasound images.
Smistad et al. [18] use a convolutional neural network to
segment axillary nerves. Horng et al. [19] combine U-Net and
recurrent neural network for localization and segmentation of
median nerve.

Although many studies use deep learning to identify nerves
in ultrasound images, the relative performance results are
not clear when using different deep learning models, train-
ing strategies, or loss functions. Researchers have made
many contributions to comparative research in the field
of medicine based on machine learning or deep learning
[20]-[24]. However, such investigations have been missing
in the research topic of identifying brachial plexus nerves in
ultrasound images using deep learning methods. We attempt
to contribute to this comparative study. Therefore, this
paper comprehensively evaluates the performance of different
deep learning models in brachial plexus ultrasound image
segmentation.

It is worth noting that all current studies in brachial plexus
identification are to segment a nerve block region rather than
individual nerve trunks. However, compared with segmenting
only a nerve block region, segmenting individual nerve trunks
can assist doctors in locating the position of each brachial
plexus trunk more accurately to improve the effectiveness
of the brachial plexus block [25]. Therefore, in this study,
we segment individual brachial plexus trunks. We use a new
dataset containing 340 ultrasound images of brachial plexus
and labeled by three clinicians [25]. Then we implement
12 deep learning models and comprehensively evaluate their
performance from the following aspects to find the model
and training strategy suitable for this nerve segmentation
task. (1) To evaluate the neural segmentation performance of
different models (including lightweight real-time segmenta-
tion networks), we compare the segmentation accuracy and
speed. (2) We explore the role of deep transfer learning in
network training. (3) We evaluate the impact of different loss
functions on the model segmentation accuracy. (4) We eval-
uate the model’s generalization performance in identifying
the brachial plexus nerve in images from a new ultrasound
machine.

The rest of this paper is organized as follows. Section II
details the dataset, the 12 deep learning models used, the
transfer learning process, and the loss function. Section III
presents the experimental results and analysis, including the
experimental setup and evaluation methods. In Section IV,
we discuss the results. Finally, Section V concludes the paper
with suggested future work.
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FIGURE 1. Example of brachial plexus ultrasound dataset. (a),

(c) represent the original brachial plexus ultrasound images from YGY
and BK3000 respectively. (b), (d) are doctor-annotated images of YGY and
BK3000.

Il. MATERIALS AND METHODS

A. DATASETS

1) DATA DESCRIPTION

To obtain brachial plexus ultrasound images, we cooperate
with the Affiliated Hospital of Medicine School of Ningbo
University and the Sixth Hospital of Ningbo to collect
340 brachial plexus ultrasound images [25]. To increase the
heterogeneity of the data, we collect data from as many
patients as possible rather than multiple images from the same
patient. In addition, data is collected from two different ultra-
sound machines (YGY, BK3000). Our images are labeled
by three professional anesthesiologists using Labelme [26].
They all have more than seven years of experience in
ultrasound-guided nerve block anesthesia. An example of the
brachial plexus ultrasound dataset is presented in Fig. 1. Fur-
thermore, we directly annotate the neural trunk of the brachial
plexus. To our knowledge, there is no publicly available
brachial plexus ultrasound image dataset as annotated as ours.
In addition, to validate the role of transfer learning in neural
network model training, we use a publicly available dataset
of femoral nerve ultrasound images. Huang ez al. [17] created
this publicly accessible dataset of femoral nerve ultrasound
images in the GitHub repository. There are a total of 562 ultra-
sound images in this dataset. Since the femoral nerve is
difficult to identify, they did not label it directly but annotated
the connective tissue surrounded by the iliofascial membrane
and the iliopsoas. This is a crucial area for identifying the
femoral nerve. An example of the femoral nerve dataset is
shown in Fig. 2.

2) DATA PREPROCESSING

Raw ultrasound data needs preprocessing before model train-
ing in order to obtain good neural segmentation performance
results. Firstly, the collected ultrasound images may contain
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(b)

FIGURE 2. Example of femoral nerve dataset. (a) Ultrasound image of the
femoral nerve. (b) The doctor annotates the image of the femoral nerve.

FIGURE 3. Example of an enhanced image using limiting contrast
adaptive histogram equalization. (a) Original brachial plexus ultrasound
image. (b) Enhanced ultrasound image of brachial plexus.

ultrasound equipment and patient information, and we crop
each image to ensure anonymity and remove redundant infor-
mation. Secondly, the pixel values of the brachial plexus
ultrasound images are mainly concentrated in low gray value
areas, and the images are dark and low in contrast. Therefore,
we perform enhancement processing on the brachial plexus
ultrasound images using the contrast limited adaptive his-
togram equalization (CLAHE) method to improve the image
quality, as illustrated in Fig. 3.

As we all know, training with large-scale labeled data is
one of the important reasons for the success of deep learn-
ing in various fields. However, obtaining sufficient amount
of labeled training data remains a significant challenge in
medical image analysis. In addition, deep learning models
are prone to overfitting problems when the amount of data
is insufficient, making it difficult for deep learning models to
obtain satisfactory performance results. Data augmentation
aims to make small changes to existing data to increase
the amount of training data. It is an important step in the
training process of deep learning models, which can allevi-
ate the problem of small data volume, thereby reducing the
overfitting phenomenon in deep learning model training and
improving the performance of neural networks.

In this study, we use the Albumentations library [27]
to perform data augmentation operations, which efficiently
implements various image transformation operations. More
specifically, we implement two data augmentation methods,
random cropping, and random flipping, using the Compose
method in the Albumentations library. In order to reduce the
chance of cropping out the image of the neural region due to
random cropping, we first scale the image to 300 x 380 to
make it similar to the size of the target image during random
cropping. Then we randomly crop the image to 256 x 320.
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TABLE 1. Overview of deep learning models.

Model Ref.  Params size Network Remarks
depth
a. The full connection layer is changed to the convolution layer.
FCN [30] 76.68 MB 94 b. Use jump connection to fuse information.
c. The first end-to-end structure.
SegNet (31] 11239MB 92 a. Use upsampling to restore image size.

b. Use deconvolution to enrich image information.

a. Propose a pyramid pooling module to aggregate contextual information in different regions.

b. Feature fusion is performed on the image channel.

. Dense jump connections and make full use of shallow and deep features.

PsPNet (321 25062MB 376 b. Introduce an auxiliary loss.
U-Net (33] 14254MB 89 a. Strictly symmetrical U-shaped structure.
U-Net++ [34] 286.63MB 168 E Deep s

. Deep supervision.

(o]

DeepLabv3+ [35] 20831 MB 301

. Apply Xception [28] structure to segmentation tasks.
. Use atrous spatial pyramid pooling (ASPP) module.

c. Introduce deep separable convolution.

a. Find a balance between classification and positioning.
b. Alleviate the problem of large convolution kernel parameters.

a. The encoder and the corresponding part of the encoder are directly connected.

b. Introduce feature fusion module and attention refinement module.

a. Propose an encoding module for semantic segmentation with a multi-connected structure.

GCN [36] 222.68 MB 399
LinkNet (371 44.00 MB 13 b. Fewer model parameters, fast processing.
a. Encoder and decoder asymmetry.
ENet [38] 1.33MB 350 b. Use PReLU as activation function.
c. Less calculation, fewer model parameters and fast speed.
BiseNet (39] 4537 MB 168 a. Bidirectional semantic segmentation network.
DFANet [40] 9.06 MB 771

b. Change the Xception network structure and increase the attention layer to ensure the receptive field.

a. A novel deep convolution-based lightweight network is designed on the semantic branch to enhance the

BiseNetV2 [41] 13.81 MB 218

receptive field and obtain rich intertextual information.

b. An augmentation training strategy is introduced to improve the segmentation performance further.

Finally, we flip the image horizontally around the X-axis
and horizontally around the Y-axis with a probability of 0.5.
In our experiment, images are randomly processed in data
augmentation and returned to the network during training.

B. DEEP LEARNING MODELS

The advancement of the deep learning technology has greatly
promoted the development of the field of image segmenta-
tion. This study explores and evaluates the effect of different
deep learning models in brachial plexus ultrasound image
segmentation. Ultrasound is widely used to guide nerve
blocks during surgery due to its flexibility, convenience, and
rapid real-time imaging. In fact, rapid real-time imaging is
an important reason for using ultrasound in clinical nerve
blocks [29]. Therefore, the deep learning model needs to be
accurate when identifying brachial plexus and, at the same
time, it needs to have good real-time performance. This is an
essential prerequisite for the clinical applications of related
technologies. In this paper, we evaluate 12 deep learning
models (FCN [30], SegNet [31], PsPNet [32], U-Net [33],
U-Net++ [34], DeepLabv3+ [35], GCN [36], LinkNet [37],
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ENet [38], BiseNet [39], DFANet [40], BiseNetV2 [41]),
in which several are considered are real-time segmentation
models (e.g., LinkNet, ENet, BiseNet, DFANet, BiseNetV2).
A real-time segmentation model has faster speed and low
requirements for hardware, which is convenient for deploy-
ment on mobile devices or embedded devices. Table 1 sum-
marizes some parameters of the deep learning models used in
our research, such as the number of parameters and the depth
of the network (including activation layer, batch normaliza-
tion and so on).

C. TRANSFER LEARNING

In recent years, the success of deep learning in many fields
can be attributed to three factors, powerful computers, excel-
lent algorithm models, and larger datasets [42]. However,
obtaining enough training data for deep learning tasks in
the medical field is still a significant challenge. Compared
with traditional machine learning methods, deep learning is
very much dependent on training data [43]. In medical image
analysis, it is difficult for deep learning models to effec-
tively extract image features by using only small samples for

VOLUME 10, 2022



D. Tian et al.: Brachial Plexus Nerve Trunk Recognition From Ultrasound Images

IEEE Access

l

.
L]
CNN Layer

Transfer I

CNN Layer

|

Brachial Plexus

Femoral Nerve

FIGURE 4. Workflow of brachial plexus identification using transfer
learning.

training. In addition, the small dataset may lead to overfitting
of the deep learning model, making it difficult for the model
to achieve satisfactory performance results and accomplish
the expected goal.

To solve the above problem, a common approach is trans-
fer learning. Studies have shown that transfer learning has
achieved many results in medical image analysis and has
been widely used for various research [44]. Transfer learn-
ing aims to extract knowledge from one or more tasks and
use it in an intended task. Therefore, we can adopt transfer
learning to deal with the problem of insufficient training
data in medical image analysis and alleviate the dependence
of deep learning models on training data [45]. Currently,
there are some classic models in PyTorch. These models
are trained on large-scale benchmark datasets such as Ima-
geNet, which can provide pre-training parameters for the
implementation of various deep learning tasks. Our study
uses these classic architectures when implementing segmen-
tation models, such as VGG [46], ResNet [47], and other
network structures as feature extractors. The parameters of
these classic models are trained on the ImageNet dataset.
In addition, we pre-train our networks using the femoral
neural dataset [17] and this dataset is similar to our data and
can provide better initialization parameters for our segmen-
tation task. Fig. 4 shows the transfer learning process in our
research.
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D. LOSS FUNCTION

The loss function aims to measure the difference between
labels and predicted results. It is an essential part of image
segmentation methods based on deep learning. Researchers
have designed many loss functions for different image seg-
mentation tasks. The loss function that fits the data char-
acteristics will positively impact the segmentation results.
However, choosing a loss function suitable for a task is chal-
lenging. Therefore, in this study, we evaluate the effect of
several commonly used image segmentation loss functions
in brachial plexus segmentation of ultrasonic images. The
purpose is to provide a reference or a basis for researchers to
select proper loss functions. The loss functions we evaluated
are cross entropy (CE) loss, dice loss [48], focal loss [49],
combo loss [50], cross entropy loss with focal loss, and cross
entropy loss with lovdsz-softmax loss [51].

Cross entropy is derived from the Kullback-Leibler (KL)
divergence and is an indicator to measure the difference
between two distributions [52]. Cross entropy loss is one of
the most commonly used loss functions. Its effect is stable
and can be used in most semantic segmentation scenarios.
Dice loss can directly optimize the dice similarity coefficient
(DSC), which is an indicator used to measure the similarity
of sets and is usually used to evaluate the segmentation per-
formance of the model. Dice loss is suitable for unbalanced
samples. Focal loss originates from the direction of target
detection and is an improvement of standard cross entropy
loss. It aims to solve the unbalanced number of complex and
easy samples and unbalanced foreground and background
categories. Combo loss is a combination of cross entropy loss
and dice loss. It attempts to use dice loss to solve the class
imbalance problem and uses cross entropy loss to smooth
the curve. Cross entry loss with focal loss is a combination
of cross entropy loss and focal loss. Cross entropy loss with
lovész-softmax loss is a combination of cross entropy loss and
lovész-softmax loss. Lovész-softmax loss is used to optimize
Jaccard directly. Since using the lovdsz-softmax loss alone
does not achieve the desired results, we combine the cross
entropy loss with the lovdsz-softmax loss.

IIl. EXPERIMENTS AND ANALYSIS

A. EXPERIMENTAL SETUP

We use PyTorch 1.10 deep learning framework to implement
all deep learning models in our study. We complete all
training and testing using two types of computers with Intel
i3-10100F central processing units (CPU), NVIDIA
GTX1050ti graphics processing units (GPU), and Intel
19-10900X CPU, NVIDIA RTX3090 GPU. For all segmen-
tation models, the input image size is (256 x 320 x 3).
We set the initial learning rate to 0.0001, the batch size to 8§,
the number of epochs to 200, and use the Adam algorithm
as the optimizer for model training. In addition, we use
Pytorch’s ReduceLROnPlateau method to adjust the learning
rate during the training process. The learning rate decreases to
the original by 50% when the results do not improve after ten
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TABLE 2. Comparison of loU results with different loss functions.

Model CEloss Diceloss Focalloss Comoboloss CE + Focalloss CE + Lovasz-softmax loss
FCN 0.5962 0.5690 0.5746 0.6020 0.6075 0.5904
SegNet 0.6230 0.6246 0.5676 0.5929 0.6198 0.6285
PsPNet 0.5147 0.5308 0.5463 0.5364 0.5066 0.5436
U-Net 0.6561 0.6609 0.6282 0.6540 0.6850 0.6738
U-Net++ 0.6381 0.6147 0.6171 0.6412 0.6434 0.6351
DeepLabv3+ 0.5734 0.5633 0.5366 0.5806 0.5935 0.6021
GCN 0.5875 0.5644 0.5162 0.5914 0.5684 0.5853
LinkNet 0.6533 0.6488 0.6233 0.6571 0.6465 0.6627
ENet 0.5918 0.5713 0.6014 0.5833 0.6084 0.6295
BiseNet 0.5937 0.5503 0.5412 0.5680 0.5514 0.5586
DFANet 0.6116 0.5953 0.5612 0.6092 0.6155 0.5913
BiseNetV2 0.6130 0.5990 0.5900 0.6153 0.6468 0.5881
DecpLabV3+ [ .
sexet | ——
LinkNet b
ooy HnbE—..
vret [t ———
= PsPNet b_
=]
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7 miseNetv2 [ ... -
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vret [l eeeeeeeeeeeennnn———
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ToU (%)

FIGURE 5. Performance comparison between transfer learning and non-transfer learning.

epochs. After completing training, we save the model weights
that perform best on the validation set for testing. The above
settings remain the same when running all models.

Our data contains 340 ultrasound images. In order to con-
struct a reasonable dataset, we randomly select 34 images
as the test dataset. To allow more data to be used for
training, we divide the remaining ultrasound images into a
training dataset and a validation dataset by 9:1. We do not
divide the test dataset for the femoral neural dataset since
our purpose is only to provide pre-training parameters for
the neural network model to examine the effect of transfer
learning.
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B. EXPERIMENTAL RESULTS AND ANALYSIS

1) PERFORMANCE RESULTS OF DIFFERENT

LOSS FUNCTIONS

The loss function is an important part of an image seg-
mentation method based on deep learning. To determine the
loss function suitable for the brachial plexus segmentation
task, we evaluate several common image segmentation loss
functions. The specific results are shown in Table 2. We use
intersection over union (IoU) as the evaluation metric for
segmentation accuracy. loU measures the similarity between
two sets. It is one of the most commonly used metrics
to measure the accuracy of image segmentation, which is
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Original

0.4969

0.5404

0.6578

0.7611

0.8211

Predicted

FIGURE 6. Representative results of U-Net with different loU levels in test data. The first column gives the loU value of the predicted
result of the image. The second column represents the original images. The third column represents images with labels annotated
by doctors, and the fourth column represents images with masks predicted by the deep learning model. Both masks annotated by
doctors and predicted by the deep learning model are highlighted with red on the original image. The CPU used is an Intel i3-10100F,

and the GPU is an NVIDIA GTX1050ti.

defined as

Intersection
JoU= ———— (D
Union

where the Intersection is the overlapping part of predicted
image and label, and the Union is the combination of the
predicted image and label. The results in Table 2 show that
no single loss function can achieve the best performance for
all 12 deep learning models. But the compound loss functions
(combo loss, cross entropy loss with focal loss, cross entropy
loss with lovasz-softmax loss) are the most robust loss, and
they achieve the best performance for ten deep learning

VOLUME 10, 2022

models. In addition, although the cross entropy loss function
achieves only one best performance result, it achieves rela-
tively good results across all models, with the most robust
performance results among the three single losses (CE loss,
dice loss, focal loss).

2) PERFORMANCE RESULTS FOR TRANSFER LEARNING

Transfer learning is a common method for training neural
networks. In our study, we pre-train the neural network using
the femoral nerve dataset to obtain initialization parameters
for brachial plexus segmentation. Fig. 5 shows the results
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TABLE 3. Segmentation performance of different models.

. Tntel i9-10900X, NVIDIA RTX3000 Intel 13-10100F, NVIDIA GTX1050t ToU (%)
Model MACs (G)  Params Size MB) —pr s s Time (ms) ps No-CLAHE CLAHE
FCN 25.20 76.68 5 200 28 35 58.07 60.75
SegNet 51.65 112.39 9 111 52 19 60.62 62.85
PsPNet 24.59 250.62 27 37 46 21 5371 54.63
U-Net 54.85 142.54 11 90 63 15 64.99 68.50
U-Net++ 261.58 286.63 35 28 280 3 60.99 64.34
DeepLabv3+  25.89 208.31 17 58 50 20 58.44 60.21
GCN 19.05 222.68 28 35 54 18 56.88 59.14
LinkNet 323 44.00 6 166 7 142 64.01 66.27
ENet 0.65 1.33 14 71 15 66 57.51 62.95
BiseNet 379 4537 6 166 9 111 55.03 59.37
DFANet 0.68 9.06 30 33 31 32 58.41 61.55
BiseNetV2 4.03 13.81 9 111 10 100 56.89 64.68

0.8 T T T T T
0.6 ‘ T } v | ;

204 r ]
02 ° ‘ )
0.0

- B

°

FCN SegNet  PsPNet U-Net

U-Net++ DeepLabv3+ GCN

LinkNet ENet BiseNet DFANet BiseNetV2

FIGURE 7. Comparison of loU results using different deep learning models. The CPU used is an Intel i3-10100F, and the GPU is an NVIDIA GTX1050ti.

TABLE 4. Performance results on different datasets.

Model Train:BK3000, Test:BK3000 Train:BK3000, Test:YGY  Train:YGY, Test:YGY  Train:YGY, Test:BK3000 Mixed
FCN 0.5681 0.3671 0.5956 0.2251 0.5704
SegNet 0.6005 0.4278 0.6087 0.2748 0.5725
PsPNet 0.4730 0.2866 0.4917 0.2447 0.5078
U-Net 0.6302 0.4935 0.6596 0.4528 0.6216
U-Net++ 0.5876 0.4921 0.6361 0.3822 0.6271
DeepLabv3+ 0.5578 0.2313 0.5709 0.2556 0.5300
GCN 0.5218 0.1982 0.5936 0.2421 0.5758
LinkNet 0.6263 0.5024 0.6603 0.4476 0.6096
ENet 0.5631 0.4881 0.5958 0.3649 0.5709
BiseNet 0.4659 0.4229 0.5807 0.2934 0.5134
DFANet 0.5407 0.4120 0.5992 0.3195 0.5758
BiseNetV2 0.5538 0.2353 0.5854 0.2421 0.6019

of using the transfer learning method and the results of not
using the transfer learning method. It can be seen from the
figure that the segmentation accuracy is improved when using
the transfer learning method to train the network. Especially
in the real-time or lightweight network, the performance
improvement is more prominent. Therefore, we suggest using
transfer learning methods in brachial plexus recognition when
the amount of data is insufficient, especially, when using
lightweight networks.

3) PERFORMANCE RESULTS OF REAL-TIME
SEGMENTATION NETWORKS

To analyze the performance results of each deep learning
model, we compare all deep learning models from three
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different evaluation metrics of segmentation accuracy, infer-
ence speed, and hardware requirements. Table 3 shows the
results of all comparisons.

U-Net achieves the best result among all deep learning
models with an IoU of 68.50%. To visually show the deep
learning results in identifying brachial plexus, we select rep-
resentative results of different IoU levels from the test results
of U-Net and highlight them on original ultrasound images,
as shown in Fig. 6. Among all the models, the segmentation
accuracy of PsPNet is the lowest, and the IoU is only 54.63%,
which has a large gap with the best results. The segmentation
performance of the real-time segmentation models (LinkNet,
ENet, BiseNet, DFANet, BiseNetV2) exceeds 59%, and the
IoU of LinkNet reaches 66.27%, which is the second-best
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deep learning model are trained on the YGY dataset, tested on the YGY and BK3000 datasets, respectively, and trained and tested on the mixed dataset.

result among all models. Fig. 7 shows the distribution of IoU
for different deep learning models on the test dataset.

The CLAHE algorithm optimizes the Adaptive Histogram
Equalization (AHE) algorithm [53]. It avoids excessive image
enhancement and overcomes the problem of excessive noise
amplification by the AHE algorithm [54]. It is widely used
in image enhancement processing. In our experiments, the
ultrasound images are CLAHE processed using the built-in
toolkit of the image processing tool OpenCV-Python, with
clipLimit set to 1 and tileGridSize set to (8, 8). By ana-
lyzing Table 3, we observe that all models’ segmentation
accuracy improved after processing the images with CLAHE.
Therefore, we believe that CLAHE has a significant role in
improving the performance of the models in identifying the
brachial plexus nerve in ultrasound images.

Model inference speed is a critical factor for applying the
brachial plexus recognition method based on deep learning
in the clinic. Therefore, we compare the inference speed of
different deep learning models, including the inference time
of a single image and the number of frames that can be
processed per second. We set the image size to 256 x 320 x
3 and perform inference speed tests on NVIDIA GTX1050ti
graphics processing units and NVIDIA RTX3090graphics
processing units. As shown in Table 3 U-Net++4 has the
slowest inference speed. It can process 28 images per second
when using NVIDIA RTX3090 graphics processing units and
only 3 images per second on NVIDIA GTX1050ti graphics
processing units, much lower than the other models. Sec-
ondly, U-Net, SegNet, and GCN models can process fewer
than 20 images per second on NVIDIA GTX1050ti graphics
processing units, and the model inference speed is slow. How-
ever, LinkNet can process 142 images per second in NVIDIA
GTX1050ti graphics processing units. The inference speed of
ENet, BiseNet, and BiseNetV2 are also significantly higher
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than other networks. Compared with models such as U-Net,
real-time networks such as LinkNet are faster and more suit-
able for real-time segmentation tasks such as brachial plexus
recognition.

To further compare the potential of these 12 deep learning
models in mobile or embedded deployment, we analyze their
requirements for hardware. The metrics used are the multi-
ply and accumulations (MACSs) operations and the storage
required to save model parameters. The results show that
some models, such as U-Net, are computationally intensive,
have many parameters, and require large storage space. The
large storage space and computational complexity make it
challenging to be applied to various hardware platforms
effectively. Real-time segmentation models such as LinkNet
are computationally simple. At the same time, its parameter
storage requires smaller space, which reduces the demand for
hardware storage for model deployment.

4) PERFORMANCE ANALYSIS OF THE MODEL ON
DIFFERENT DATASETS
When using deep learning models to identify brachial plexus
in actual clinical practice, their performance may be affected
by factors such as acquisition parameters, equipment, and
methods. To evaluate the generalization performance of deep
learning models in identifying brachial plexus nerves in new
ultrasound images, we test their performance on different
datasets based on two ultrasound machine data. Specifically,
we first train and test the model using ultrasound data from
one machine. We then test the model using data from another
ultrasound machine. Finally, we train and test it using mixed
data.

As shown in Table 4, the deep learning model works better
in identifying the brachial plexus nerve in images from the
same ultrasound machine as the training data. When the
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deep learning models.

model is trained using data from BK3000, its best IoU for
segmenting the brachial plexus nerve on BK3000 is 63.02%.
In comparison, its best IoU is only 50.24% when it is used
to identify data from the YGY. When the model is trained
using data from YGY, its best IoU for segmenting the brachial
plexus nerve on YGY is 66.03%, while its best IoU is only
45.28% when it is used to identify data from BK3000. In addi-
tion, there is no significant difference in segmentation accu-
racy for each model when training with mixed data versus
using one type of data alone. Fig. 8 shows the performance
differences of each model on different datasets. In conclusion,
it is difficult to obtain the same performance when applying a
trained deep learning model to identify brachial plexus nerves
in ultrasound images obtained by a new ultrasound machine.

IV. DISCUSSIONS

At present, deep learning has been applied to the whole
process of medical image processing and has made outstand-
ing achievements in various medical image analysis tasks.
Using deep learning technology to identify brachial plexus in
ultrasound images to assist doctors in nerve blocks is of great
significance for improving the safety and reliability of nerve
blocks. In our study, we implement 12 deep learning models
for automatic identification of brachial plexus and evaluate
their performance.

Among the 12 deep learning models we used, U-Net
achieves the best segmentation result with an IoU of 68.50%,
as shown in Fig. 9. Similar structures like U-Net, such as
U-Net++, FCN, and SegNet, have achieved good segmen-
tation results. However, the inference speed of these models
is low, and the number of parameters is large. It is challenging
to deploy them efficiently in mobile and embedded devices.
In contrast, real-time segmentation networks such as LinkNet
have fast inference speed, fewer model parameters, and lower
requirements for deployment platforms. At the same time,
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these models can also achieve good segmentation results.
Compared with models such as U-Net, LinkNet is faster and
more suitable for real-time imaging methods such as ultra-
sound. In addition, the deep learning model obtains better
segmentation results when using the same data (machine) for
training and testing or using mixed data for training and test-
ing. It is difficult to obtain good identification performance in
new ultrasound-acquired images without training the source
data.

Transfer learning is a common neural network training
strategy. Through comparative experiments, we find that
using transfer learning improved the segmentation accuracy
of all models. Especially in lightweight networks, perfor-
mance improvement is more prominent. Therefore, we sug-
gest employing transfer learning in identifying the brachial
plexus and using data from similar tasks to assist with the
intended task. In comparing loss functions, we find that no
loss can achieve the best performance in all 12 deep learning
models, but the compound loss function is the most robust
loss. In addition, the cross entropy loss is stable among the
three single losses, and it can achieve a decent result in all
models. Therefore, we suggest that the cross entropy loss
be selected first when conducting related research. Then the
compound loss function can be selected according to the
characteristics of the data set to optimize the results.

V. CONCLUSION

In this study, we implemented 12 deep learning models
for automatic segmentation of brachial plexus in ultra-
sound images and thoroughly evaluated their performance.
The results show that complex models (e.g., FCN, SegNet,
PsPNet, U-Net, U-Net+-+, DeepLabv3+, GCN) can often
obtain better segmentation results, but the large storage
space and computing resource consumption limit their
applications on various hardware platforms. The real-time

VOLUME 10, 2022



D. Tian et al.: Brachial Plexus Nerve Trunk Recognition From Ultrasound Images

IEEE Access

segmentation networks (e.g., LinkNet, ENet, BiseNet,
DFANet, BiseNetV2) can achieve good segmentation results
while improving the model’s speed, which is more suitable
for using real-time imaging equipment such as ultrasound.
In addition, we also discussed the strategy of model training,
the selection of loss functions, and the model’s generalization
performance on new data, which can be considered for future
research.

Our work has a number of limitations, which we hope
to address in the future. First, our dataset is small, with
only 340 images. Although data augmentation can partially
alleviate model overfitting and improve model performance,
we will be able to obtain better results if more data are
available. Therefore, we will continue to collect relevant data
to establish a larger dataset of brachial plexus ultrasound
images. Second, the highest IoU result of the 12 deep learning
models we evaluated was only 68.50%. We will investigate
new neural network models to improve the performance of
brachial plexus recognition.
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