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ABSTRACT In three-dimensional (3D) airborne light detection and ranging (LiDAR) point-cloud data
acquisition, noise point clusters (such as cloud, birds and incomplete scanning ground points) and isolated
points are usually generated in the scanning process. Detection and elimination of these noise points directly
affect the subsequent processing efficiency of the LiDAR point clouds. In this paper, a noise detection
method from airborne LiDAR data based on spatial hierarchical directional relationship and region growing
algorithm is proposed. First, the original airborne LiDAR points are divided into regular 3D grids, and the
maximum point density unit is searched adaptively to select the initial surface seed points for region growing
algorithm. Then, the spherical neighborhood is constructed with the initial seed point as the center, and
fourteenmain growth directions are generated based on the 3D space topology. Second, candidate seed points
in each main direction are determined by the distance threshold. Finally, all LiDAR points are iteratively
executed using candidate seed points as new region growing seed points. This paper selects two mountain
terrain sceneswith different cloud contents as the study area, and the precision, recall rates and F1-score of the
proposed method reach 99.8%, 100% and 99.3%, respectively. This method can detect point-cloud clusters
and isolated points, thus simplifying the LiDAR point clouds, providing basic support for the subsequent
accurate data processing and analysis.

INDEX TERMS Airborne LiDAR, aerial laser scanning, point cloud noise, noise detection, hierarchical
direction, region growing, spherical neighborhood, outlier point removal.

I. INTRODUCTION
Three-dimensional (3D) light detection and ranging (LiDAR)
technology has gradually become one of the important
data sources for earth observation and target classifica-
tion and recognition because of its rapid, real-time access
to environmental information. LiDAR is a high-precision
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remote sensing method used for measuring the position and
shape of objects and forming high-quality 3D point cloud
images [1]. In recent years, airborne LiDAR has been widely
used in aerospace [2], marine exploration [3], 3D mod-
eling [4], [5], tree biomass estimation [6], [7] and other
fields. To enable good application prospects in various fields,
researchers have proposed a series of geographical object
recognition (including ground/terrain, roads, power lines [8],
[9], trees [10], [11], water bodies, buildings and so on),
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classification and extraction algorithms based on LiDAR
point clouds.

However, acquisition of LiDAR point-cloud data can be
affected by external environmental factors [12], such as
atmospheric particles, rain, snow and other adverse weather
conditions, and multipath echo caused by laser diffuse reflec-
tion during instrument scanning [13], [14], resulting in noise
point-cloud noise. Therefore, data preprocessing, such as
noise detection and filtering, are critical for ensuring accurate
classification and information extraction from point cloud
data.

At present, the noise points in LiDAR data mainly include
isolated points and noise clusters. Isolated points include iso-
lated outliers, noise points near the signal [14], and isolated
points in different directions away from the ground surface,
which can be divided into high anomalies and low anoma-
lies [15]. Noise clusters are aggregated noise points. These
noise points will affect the 3D solid model reconstruction and
target feature classification. It is therefore necessary to clean
the point-cloud data by removing noise. However, quickly
and effectively detecting point-cloud noise under complex
scene conditions remains challenging.

The remainder of this paper is organized as follows:
Section II take an overview of LiDAR point cloud method
for removing noise points, Section III illustrates the method-
ology, Sections IV reports the experimental area and results,
and Section V reports the discussion. Finally, Section VI
draws the conclusions of the work.

II. RELATED WORK
The current point cloud denoising methods can be roughly
divided into three categories: overall environment denois-
ing, eliminating special noise points and ground fil-tering.
The detailed explanation of these three denoising types is as
follows:

A. OVERALL ENVIRONMENT DENOISING METHOD
For the point cloud data processing containing multiple types
of surface objects, the noise point is defined as the discrete
point or noise cluster generated by floating objects in air and
diffuse reflections from instruments during data acquisition.
Since a complex scene of point cloud data could be composed
of diverse surface objects, and there is no obvious correla-
tion or similarity between different objects, research methods
havemainly been focused on the relation-ship between neigh-
boring points or sets of points belonging to two different kinds
of objects.

The commonly used methods for detecting noise points
are: traditional filtering methods, such as median filter-
ing [16] and mean filtering [17]. There are problems in
the universality of these methods for complex point cloud
data. The research idea based on point neighborhoods is
currently the main means of denoising. Rusu [18] proposed
the statistical outlier removal (SOR) filter, which distin-
guishes noise from signals by the average distance statis-
tics of point neighborhoods. Jia-Jia et al. [19] proposed the

spatial frequency outlier filter based on a spherical neigh-
borhood search. These two methods have problems detecting
noise point clusters. Another commonly used statistical fil-
tering of radius neighborhood points [12] could classify the
points far from LiDAR as noise point elimination, resulting
in the destruction of scene features. To improve the accu-
racy of the results, researchers proposed improvements on
the basis of the original filter, such as fast clustering SOR
filtering [20] and dynamic radius neighborhood point statis-
tical filtering [12]. However, these methods are limited to
detecting isolated points and do not confirm the detection
effect of noise clusters.

Feature clustering is often used to determine the relation-
ship between sets of points. Ester et al. realized the wide
application of density-based spatial clustering application
with noise method (DBSCAN) [21], and then a method dom-
inated by density features appeared. The DBSCAN method
has been improved by using an ellipsoid [22] unit to divide the
point cloud space and by using the accessibility distance [23]
as a threshold, but the improved method is complex and
high computational demand. The first two density clustering
methods have problems in terms of the universality of steep
terrain areas and are sensitive to the input parameters of the
method. Before the application of the clusteringmethod, prin-
cipal component analysis (PCA) is usually used to represent
the point set on the feature plane, and some noise points
are removed by using the discrete nature of noise points
[14], [24]–[26]. However, how to apply PCA in complex
scenes is a problem.

B. SPECIAL NOISE POINTS ELIMINATION METHOD
Point cloud data obtained by LiDAR are greatly affected
by adverse weather conditions and the geographical envi-
ronment. The noise types are mainly meteorological feature
elements (including clouds, snow and other solid liquid parti-
cles condensed in air). At present, there are some methods to
detect specific snow noise points by combining the intensity
information of snow in the point cloud with the application of
deep learning [27] or improving the existing filter [12], [28].

C. GROUND POINT FILTERING METHOD
The denoising method of terrain data is equivalent to ground
point filtering, and the denoised point set can be used to con-
struct a digital elevation model (DEM) or even digital surface
model (DSM).

Traditional ground point filtering methods can be divided
into three types: slope-based, surface-based and segmented
methods [29]. Slope-based methods assume that if the height
difference between two points is greater than the thresh-
old, then the points should be divided into different classes.
For example, gradient-based or slope-based filtering meth-
ods can quickly and efficiently separate flat terrain ground
points and non-ground points, but this method is not robust
in areas with large terrain fluctuations [30]. The method
based on surface and segmentation for surface fitting can
be further divided into two subcategories: the method based
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on morphology [31], [32] and the method based on inter-
polation [29], [33]. Depending on the performance of the
two methods in different environments, filters that work
well in forested environments may not work well in urban
environments [34].

The noise detection method combining histograms with
common filters [13], [35], [36] or using adaptive TIN (Tri-
angulated Irregular Network) denoising [37] after specifying
the elevation range is not highly automated and some steps
need visual rules. Zhang et al. proposed a window adaptive
ID threshold denoising method based on a quadtree [38]
for the discrete point denoising of satellite LiDAR data,
but the detection effect of noise clusters was not proved.
Zhang et al. proposed a cloth simulation filter to obtain
ground points [39], but it is not suitable for point cloud data
with negative outliers. Therefore, Yang et al. proposed estab-
lishing the transfer iterative trend surface to remove negative
anomalies and then applied the bidirectional cloth simulation
filtering correction model to extract the convex and concave
seabed terrain [40]. However, seabed terrain is a surface.
For other point cloud data with large terrain fluctuations, the
applicability of bidirectional cloth simulation filtering has
issues.

Simulation method is suitable for noise point detection of
surfaces or plane point clouds. The method based on region
growing is a popular choice for roof surface noise detec-
tion [41]. Besl and Jain [42] proposed two stages of the
method, including rough segmentation based on the aver-
age and Gaussian curvature of each point and its sym-
bol, and refinement of iterative region growing based on
variable-order binary surface fitting. This method was later
used for 3D point cloud segmentation by others. The tradi-
tional regional growing algorithm takes the normal vector
angle and curvature as the growth criteria, and is commonly
used in the extraction of roof surfaces in the field of LiDAR
[43]. Gorte et al. [44] selected a triangle from the input
irregular triangulated network as the seed and applied region
growing to add adjacent triangle iterations to the current line
segment. Cao et al. [45] first selected seed points in the
dimension-reduced parameter space, and then segmented pla-
nar patches in the space using region growth. Gilani et al. [46]
proposed an improved PCA method to generate a consistent
point normal. When the number of points is large, the method
based on region growth is easy to implement and faster than
the method based on model fitting [47], but the curvature and
normal vector angle are highly sensitive to noise points, and
it is difficult to detect an accurate boundary between smooth
regions.

For roof surfaces, especially in the roof border cross area,
the method of region growing will lead to poor segmen-
tation of complex structure buildings, so the detection of
noise points of other types of objects will judge the signal
as noise point removal, resulting in Type II error. The cur-
rent region growing algorithm considers the planarity and is
based on the point-to-point or point-to-fit plane angle. The
threshold setting standard is not uniform when the method is

applied to detect noise points with spatiality.When the thresh-
old setting is too large, all noise points cannot be detected,
and if the threshold is too small, then leakage points will
appear.

In general, the above methods for removing noise points
from airborne LiDAR point clouds have the following
shortcomings:
• Traditional denoising methods based on geomet-

ric features and statistical features are not suitable for
the simultaneous detection of noise clusters and isolated
points;
• The method of ground point filtering to detect noise

points is to detect ground points with curved surface char-
acteristics, but for complex terrain scenes, a large number of
environmental features will be lost;
• At present, the noise point detection method affected by

environmental factors is limited to the application of specified
noise points such as intensity information, while other types
of noise points do not have the same characteristics. There-
fore, the universality of the ROR (Radius Outlier Removal)
method dependent on the LiDAR point cloud density has
problems;
• At present, the region growing algorithm is less applied

to overall denoising, and similar to other ground point filter-
ing methods, the processing scene is mostly for surfaces or
planes. The appropriate parameter threshold cannot be deter-
mined when the parameter settings in the surface method are
used for global denoising.

Aiming at the problem that the existing denoising methods
cannot detect all noise-like points and are affected by the
scanning environment, based on airborne Li-DAR point cloud
data, this paper proposes a regional growth algorithm based
on spatial hierarchical directional relationships to detect noise
points. The directional connectivity of 3D points is defined by
the distance between points, and the distance is used as the
threshold of region growing to detect noise points in point
clouds in complex environments.

III. MATERIALS AND METHODS
A. TECHNICAL PROCESS
Based on airborne LiDAR point cloud data, this paper designs
a region growing algorithm based on spatial hierarchical
direction to detect cloud noise clusters and isolated points in
mountain range scenes. First, the original airborne LiDAR
point cloud data is applied to adaptively select the initial
seed points of regional growth by certain rules. Then, the
spatial connectivity of the 3D point cloud is determined,
the spherical neighborhood is constructed with the initial
seed point as the center, and 14 main growth directions are
generated. Second, the farthest interior point in each major
direction is searched in the spherical neighborhood point set
of seed points. Finally, all LiDAR point sets are iteratively
executed using candidate seed points as new region growing
seed points. The detailed technical process of this method is
shown in FIGURE 1.
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FIGURE 1. Flow chart of noise point detection by the region growing algorithm based on the spatial hierarchical directional
relationship.

B. ADAPTIVE SELECTION OF THE INITIAL SEED POINT
The selection of initial seed points is a key step of the region
growing algorithm, which will guide the overall direction
of growth and even determine the classification of noise
points. In existing region growing algorithms, the initial seed
points are obtained manually, but this method is not adap-
tive. To improve the automation performance of the whole
method, researchers have proposed algorithms to search for
the initial point with certain rules. The commonly used rule is
to calculate the average curvatures of all points in the LiDAR
point cloud data and take the minimum curvature point as the
initial seed. The curvature represents the bending degree of
the curve and is solved by the normal vector. The traditional
regional growing algorithm takes the normal vector angle
calculated by PCA as the threshold condition, so it is rela-
tively easy to obtain the minimum curvature. The minimum
curvature is represented as the point with the best planarity in
the point cloud data, so the initial seed point will be selected in
the point set with a strong plane and large point density such
as a road or roof surface, thereby reducing the probability of
the point in the noise point cluster as the initial seed point.
However, when this method is used for point cloud data with
large point density in the noise cluster, the robustness of the
initial point selection on the signal point is problematic.

In the airborne LiDAR data acquisition process, a large
number of cloud noise clusters may be scanned due to the
influence of environmental conditions. These cloud noise
point sets are independent of the field scene point sets with
mountains as the main body and might have a higher point
density. The curvature of cloud noise points obtained by cal-
culating the rules through neighborhood points is also small,
and the position of the current minimum curvature point can-
not be determined easily. If the minimum curvature point
is used as the initial seed point, then it is possible that the
minimum curvature point is in the cloud cluster andwill result

in incorrect noise point detection. Therefore, the method of
selecting initial points based on strong planarity is not suit-
able for the above types of data. In this study, we propose a
method to search for the center point of the maximum point
density cell from probable candidate space regions as the
initial seed point, which is applied to improve the robustness
of seed point selection.

The whole point cloud space is divided into a regular
3D cube grid. The cube length, width and height are set to
20 meters and the 3D unit grid is calculated according to the
minimum coordinate values of the X , Y , and Z axis in the raw
LiDAR point cloud data. Suppose the minimum coordinates
on the three axes are Xmin, Ymin, and Zmin, the length, width
and height of the cube grid are l, and the position of each point
in the cube grids may be determined by Equation (1).

Li =

⌊
Xi−Xmin

l

⌋
+ 1

Wi =

⌊
Yi−Ymin

l

⌋
+ 1

Hi =

⌊
Zi−Zmin

l

⌋
+ 1

(1)

where Li, Wi and Hi represent the levels of the current point
position on three coordinate axes of X , Y and Z , respectively;
b c is floor function; Xi, Yi and Zi represent the X , Y and Z
coordinate values of the current point, respectively; and l is
the edge length of a square.

Each point is marked in different grid cells after the calcu-
lation. These cube grids, which contain different numbers of
points can be hierarchically divided along the Z axis.
1) The probable candidate space regions can be determined

by histogram analysis of the height distribution. Specifically,
the signal points are mostly distributed near the middle-
level region, and the noise points are mostly distributed in
the upper- or lower- level region. Therefore, the probable
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candidate space regions consist of cube grids near the
middle-level region along the Z axis.

2) The 3D unit with the largest point density in probable
candidate space regions can be selected. The units are sorted
by the numbers of points in them. The unit with the largest
number of contained points, named D, is the grid cell with
the largest point density.

3) The center coordinate CD of unit D is calculated as the
initial seed point. However, the center point of the point set
does not necessarily correspond to the center coordinates of
the unit, so the k-nearest neighbor (KNN) algorithm is used
to search the point p0 closest to the center coordinate as the
center point, and the point is used as the initial seed point of
the region growing algorithm.

Point density is an important feature reflecting the differ-
ence between noise clusters and signal clusters. From the
scanning trajectory of the laser range finder, whether it is
vehicle or airborne point cloud data, the dense point cloud
is concentrated in the elevation range of the terrain. Even if
the point density of the cloud noise cluster of the above type
of data is less than that of the ground point, the initial seed
point is the ground point. Since the final result of point cloud
denoising is to detect noise points unrelated to the overall
scene and the signal point is the aggregation point set with
the ground point as the connection medium, the ground point
as the initial seed point is more conducive to growth.

C. DEFINITION OF SPATIAL DIRECTIONAL COONECTIVITY
Point cloud data are composed of a series of 3D point sets,
and the topological relationship between points in 3D space
is categorized as adjacent and overlapping. Adjacent and
overlapping relations can be expressed by the definition of a
neighborhood, but there are no high-level topological objects
such as lines, surfaces and volumes in point cloud data, so it is
impossible to construct high-level topological structure mod-
els. Moreover, the calculation process for further construct-
ing other objects by connecting points constituting lines or
rings on point cloud data with a large amount of data is very
complicated, which easily causes data redundancy in most
topological models and incomplete integration of topological
and geometric information.

Based on the idea of neighborhood and region growing, this
paper proposes a hypothesis that connectivity can be judged
by computing Euclidean distance between points in space.
The object is composed of point sets with a certain distance
in the space. LiDAR scans the point set data representing
different objects, and the point distance at the junction of
connected objects is smaller than that between non-connected
objects. The distance threshold between points is determined
by the distance between points in the dense point area of the
point cloud data. If the distance between points fluctuates in
a small range of the distance between points, then the direct
connectivity between these points is considered.

There is a direct or indirect connection between 3D points.
The signal point is the aggregation point set with the ground
point as the connection medium, and most of the noise points

are isolated point sets floating in space without connection
with the signal point; that is, the distance between the noise
point and the signal point is greater than the defined distance
threshold. However, the efficiency of searching the connected
boundary of the whole point set by the distance threshold of
the direct connection relationship is too low or even falls into
a dead cycle. Therefore, this paper uses indirect connectivity
to find the boundary, sets a distance threshold greater than a
certain multiple of the sampling spacing and stipulates the
main direction of boundary search to simplify the search
process.

D. MAIN GROWTH DIRECTION OF THE CANDIDATE
SEED POINT
After the region growing algorithm is applied to search the
inner point of the cur-rent seed point through a spherical
neighborhood, it takes the seed point as the center and the
sphere as the range boundary to find the inner point furthest
in this direction along the specified direction as the candi-
date seed point. After the candidate points in each direction
are determined, all the candidate points are marked as seed
points, and the spherical neighborhood search is performed at
the same time to determine the next batch of seed points. The
growth trend takes place in several specified main directions
and takes the farthest point as the candidate seed point to
reduce the point-by-point iterative growth process, which is
equivalent to the initial seed point-centered diffusion.

The main growth direction is determined by the 3D
anisotropy of all the ungrown points in the current spheri-
cal neighborhood, which represents the main representative
direction of the free growth of seed points in space and
reduces the redundancy calculation and judgment before the
next growth. The direction is set, as shown in Figure 2. The
spatial coordinate system is established with the point p0 as
the coordinate origin of the current seed point, and the spher-
ical neighborhood search range of a sphere representing the
current seed point is drawn with the point as the center d of
the sphere as the radius. If the coordinate axis is the main
growth direction, then the six coordinate directions can be
expressed in the form of vectors: (0, 0, d), (0, 0,−d), (0, d , 0),
(0, −d , 0), (d , 0, 0) and (−d , 0, 0) (represented by six red
vector lines in FIGURE 2), the farthest inner point in the main
direction is the candidate seed point. However, the six spheres
formed by the seed points in the six main directions cannot
cover all the point sets that can be grown and cannot reflect
the 3D heterogeneity of spatial directional relationship.

Based on the original spatial coordinate axis, an improve-
ment was made. Taking p0 as the eight intervals of the spa-
tial coordinate system of the coordinate origin as the object,
a vector was added to each interval, and the angle between the
vector and the coordinate axis was set to 45◦ as the auxiliary
coordinate axis. The original coordinate axis and the auxiliary
coordinate axis constitute the main direction of the growth
of 14 seed points p0. In addition to the previous six direc-
tion vectors, eight orientation vectors (represented by eight
green vector lines in FIGURE 2) were added, as shown in
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FIGURE 2. Determination of the main direction of growth.

Equation (2). Similarly, the sphere with the sphere range as
the boundary and the innermost point on the vector as the
central point is drawn with radius as the sphere, which can
cover all points.

maini =
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(2)

where maini represents the main growth in i direction, d rep-
resents the distance threshold of the spherical neighborhood,
and each row of the matrix represents the direction vector of
an auxiliary coordinate axis. There are eight direction vectors
in total.

In this paper, the distance from point to point represents
the indirect connectivity of points in the space, and the
spherical neighborhood centered on seed points is formed
to obtain the next batch of candidate seed points. Each can-
didate seed point forms its own connected domain (spher-
ical neighborhood), and the direct or indirect connectivity
of each connected domain reflects the characteristics of the
hierarchicaldirection.

E. REGION GROWING ALGORITHM BASED ON THE
SPATIAL HIERARCHICAL DIRECTIONAL RELATIONSHIP
The region growing algorithm first selects a point or region
as a seed and then ex-tends it iteratively to adjacent points

using appropriate rules. The growth criterion of the distance
from point to plane and the angle difference between normal
vectors are two widely used similarity measures [41]. This
method judges whether the interior point conforms to the
growth condition by calculating the similarity between the
point and the neighborhood interior point, which is equivalent
to each point having a judgment whether it grows and finally
retains each point as a seed point. However, the efficiency of
this method is too low.

Based on the assumption of spatial hierarchical directional
relations between the 3D points, this paper takes the dis-
tance from point to point as the similarity measure of growth
clustering and determines and marks interior points by spher-
ical neighborhood search, as shown in Equation (3). Several
points farthest from seed points (center points) in differ-
ent principal directions in spherical neighborhood units are
selected as candidate seed points, as shown in Equation (4).

Pi =

{
1, dis(Pi,p0) ≤ d
0, otherwise

(3)

where Pi represents the 3D point of the original point cloud
data (i = 1, 2, 3. . . ), dis(Pi,p0) represents the Euclidean dis-
tance from any original point to the seed point p0, d represents
the distance threshold of the spherical neighborhood, 1 rep-
resents the marked inner point, and 0 represents that the point
is not the inner point of the current seed point. When dis(Pi,p0)
is less than the distance threshold, the point is marked as 1;
otherwise, it is not marked.

pi = maini [nearest (S,Pi (1))] (0 ≤ j ≤ 14) (4)

where pi represents the candidate seed points of seed point
p0 in the i derection, maini represents the i growth direction,
nearest(S,Pi(1)) is used to calculate the nearest neighbor inte-
rior point of the sphere, S represents the surface of the cur-
rent spherical neighborhood, and Pi(1) represents the original
point marked as the interior point.

This method selects several points that meet the conditions
as candidate seed points and classifies different point sets
to avoid each point cycle judgment, which reduces the time
complexity of the algorithm. The purpose of the distance
radius setting is to find the segmentation area between the sig-
nal point and the noise point. The scanning area of the point
cloud data in the minimum segmentation area is determined,
and there is no clear range. Considering that there is a large
distance area between the signal point sets, the optimal radius
threshold is obtained by taking different distance thresholds
into the experimental test of the algorithm.

The method in this paper is shown in Figure 3. The black
point is the original point cloud of the current region. p0 is the
initial seed point obtained by the nearest neighbor search of
the center point of the current grid unit (p0 can also represent
the seed point in the growth process). A spherical neighbor-
hood is created with p0 as the center and d as the radius (such
as the neighborhoodwith a pale purple sphere as the boundary
in FIGURE 3), and the points in the sphere are marked as the
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TABLE 1. Statistical results of point cloud data information.

FIGURE 3. Region growth algorithm based on spatial hierarchical
direction.

inner points (pale blue points). In the inner points, the points
closest to the surface of the sphere in the main direction are
marked as candidate seed points (such as 10 points with red
‘∗’ symbols in FIGURE 3). Subsequently, these 14 candidate
seed points are the center points of the next batch of spherical
neighborhoods to continue to grow.

When the point set between the seed point and the candi-
date seed point is judged whether it is an inner point, the next
growth is carried out. During the growth process, all LiDAR
point sets are iteratively executed, and finally, the growth ends
when all points in all directions are marked.

IV. RESULTS
A. DATA SOURSES
The study site in this paper is a mountain area, located in Hon-
olulu, Hawaii, with a small number of trees and roof surfaces
of buildings. The floating clouds and some isolated points
in the air are the main components of the noise points. The
airborne LiDAR data were acquired in summer 2013 using
an Optech ALTM GEMINI laser system (scan rate: 37 Hz;
laser pulse rate: 70,000 Hz; multipulse in air mode
enabled with up to five echoes) mounted on a twin-engine
Piper PA-31 Navajo airplane (aboveground flight height:
∼800-1400m). To verify the denoising effect of our proposed
method in different terrain scenarios, we select two types of
terrain scenarios as experimental data: S1 and S2, one with
fewer holes in the signal area and more floating clouds or
mist (FIGURE 4(a)) and another with a large number of holes
in the terrain due to nearer cloud occlusion (FIGURE 4(b)).

The missing degree of signal areas and types of noise points
in these two study areas are comparatively different.

Since the airborne LiDAR system obtains point cloud data
from the top of the terrain, the rangefinder can only obtain
surface information when the laser is emitted from the top to
the bottom on the solid surface, while other structural lasers
blocked by the uppermost solid surface cannot penetrate,
resulting in holes. As shown in FIGURE 5(a), there are a large
number of trees and buildings in the study area S1, but only
the crowns and roofs of buildings are scanned (red ellipse
areas), so that a small number of voids can be seen in those
areas. As shown in FIGURE 5(b), the red ellipse areas exhibit
discrete points and the scanned cloud noise cluster is far away
from themountain. The cavities caused by buildings and trees
are small, and the continuity of the terrain is not destroyed.
The cloud in S2 is close to the mountain, and the airborne
LiDAR system flight path is above the cloud. If the clouds
are scanned first, causing the point clouds of other objects
under the cloud to be occluded (FIGURE 5(c)), then a wide
range of voids are present within the signal points (red ellipse
areas). The statistical information of the experimental area is
shown in TABLE 1.

B. EXPERIMENTAL RESULTS
Combined with the study areas S1 and S2, the method pro-
posed in this paper is used for experiments. Based on the
original airborne LiDAR data, the noise points separated by
artificial eyes are used as the real reference data. At the same
time, the accuracies Pre, Rec and F1 score are selected to
quantitatively evaluate the noise point detection results. The
calculation method is shown in Equations (5-7).

Pre =
TP

TP+ FP
(5)

Rec =
TP

TP+ FN
(6)

F1 =
2 ∗ Pre ∗ Rec
Pre+ Rec

(7)

where TP represents the number of points correctly detected
as noise points, FP represents the number of points incor-
rectly detected as noise points, and FN represents the number
of points missing as noise points.

To further verify the performance of the proposed method
for detecting noise points from the study area, we compare
the proposed method with the following: the commonly used
SOR filtering, filter based on the point-to-fit plane distance,
DBSCAN, Euclidean cluster extraction and region growing
algorithm based on normal vector. The quantitative evaluation
results are shown in TABLE 2, all the parameters of
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FIGURE 4. Experimental data (red points represent noise points and the colors of signal points are displayed with
high contrast intensity values): (a) study area of S1 and (b) study area of S2.

FIGURE 5. Characteristics of the study area: (a) The hollowness of trees and buildings in S1; (b) isolated points in S1; and (c) large voids caused by cloud
occlusion in S2.

TABLE 2. Accuracy evaluation of the experimental results.

comparison methods are the optimal setting results obtained
after repeated debugging. The results of noise points detected
by the proposed method are shown in FIGURE 6. The results
of noise points detected by the comparison methods in the
study area are shown in FIGURE 7.

From TABLE 2, the results indicate that the recall rates
of the SOR filtering and filter based on point-to-fitting plane
distance are very low, and the precision rates are clearly high.

Combined with the analysis of the denoising results, it can
be seen that the two methods remove isolated points and a
small number of cloud noise clusters, but the proportion of
scattered points in the noise points in the experimental area is
very small, resulting in a very low recall rate. Because the
denoising algorithm removes some signal points, very few
noise points are removed, resulting in a decrease in precision.
The method, filter based on point-to-fitting plane distance,
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FIGURE 6. Results of noise point detection by the region growing algorithm based on the spatial hierarchical directional relationship (red points
represent real noise points, blue ones represent detected noise points and green ones represent signal points that were incorrectly detected as noise
points): (a) The original noise point data of S1. (b) Detected noise points by our method from S1. (c) Local magnification of red rectangle area in (b).
(d) The original noise point data of S2. (e) Detected noise points by our method from S2. (f) Local magnification of red rectangle area in (e).

also removes a large number of signal points in the denois-
ing process, so the accuracy is lower than that of the SOR
filtering. The middle signal point and cloud noise point have
similar point density characteristics. Additionally, the cavity
in the signal region leads the algorithm to eliminate noise
points and filter the small and medium density point sets in
the signal region. This means that the number of signal points
are greater than the number of noise points being filtered,
so the precision rates are low.

In the application of DBSCAN, only the points on some
clouds can be removed and the isolated points cannot be
removed, so the precision is 100% and the recall is only
47.9%. The accuracy of the evaluation results of the entire
study area using the Euclidean cluster extraction method is
second only to our method. Euclidean clustering extraction
is widely used in point cloud clustering and segmentation,
but lacks of direct semantic information and automaticity for
noise points identification and extraction.

The region growing algorithm is generally higher than
other types of denoising algorithms. The processing precision
reaches 68.6%, and the recall reaches 100.0% in S1. This is
because the algorithm takes the signal region as the starting
point to grow until it grows to the boundary between the
signal region and the noise region. Therefore, all the noise
points are filtered, and the recall reaches 100%. However,
some signal points that do not meet the threshold conditions
are also filtered. The precision and recall of the study area
reached 98.8% and 94.1% in S2, respectively.

Compared with the region growing algorithm based on the
normal vector and curvature, our method based on distance

has better detection effect and higher overall precision.
Notably, the time used to detect noise points in the region
growing algorithm based on the spatial hierarchical direction
is half of the running time of the region growing algorithm
based on a normal vector, which has higher efficiency. The
distribution of noise points in S1 is relatively simple, but the
detection precision is less than that in S2 because the top of
the building and the tree point cloud lacking in another area
in S1 are detected as noise points, so some signal points in
the noise point class decrease the precision.

V. DISCUSSION
A. COMPARATIVE ANALYSIS
In the introduction section, current methods applied to elim-
inate noise points of point cloud data are presented. The
characteristics of various types of noise, methods involving
features, denoising methods and relevant literature indicators
are shown in TABLE 3. Several algorithms that have some
applicability to eliminate the experimental area in this paper
are used for comparative experiments.

Visual qualitative analysis of the experimental shows
that other noise detection algorithms used for compari-
son have certain issues when processing the experimental
data in this paper. In the study area S1, since the cloud
noise is far from the ground point, isolated points and
noise clusters can be detected. However, in S2, the dis-
tance between the cloud and the ground point is close, and
some cloud noise is mistakenly identified as signal points.
Moreover, the three methods applied to the study area S2
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FIGURE 7. Results of noise point detection by comparison methods in S2 (blue points represent detected noise points and
green ones represent signal points that were incorrectly detected as noise points, the red rectangle represent the 3D areas
needed to be enlarged for the processing results visualization): The figures on the left are the results of noise points
detection by each method, and the corresponding local magnification are on the right column.
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FIGURE 7. (Continued.) Results of noise point detection by comparison methods in S2 (blue points represent detected noise points and green
ones represent signal points that were incorrectly detected as noise points, the red rectangle represent the 3D areas needed to be enlarged for
the processing results visualization): The figures on the left are the results of noise points detection by each method, and the corresponding
local magnification are on the right column.

TABLE 3. Summary of point cloud denoising methods.

in a complex environment all have the problem of filter-
ing partial isolated signal points. The algorithm demon-
strates different effects in detecting isolated points and noise
clusters.

1) TWO METHODS, INCLUDING SOR FILTERING AND
FILTERING BASED ON THE POINT-TO-FITTING PLANE
DISTANCE, ARE MORE APPLICABLE FOR ISOLATED
DISCRETE POINT DETECTION
When the SOR filter method is applied to the points in the
discrete point set, the average distance of the nearest neighbor
is much larger than the average distance of the points under
the Gaussian distribution, so it is recognized as a noise point.
The cloud over the study area belongs to the noise cluster.
It can be seen from the graph that the point distribution of
the cloud center is dense and only the edge points are sparse,
so the average distance of most points in the cloud is not

detected in the Gaussian distribution confidence interval of
the dataset, which leads to the poor overall cloud points
removal effect of this algorithm. The point in the cloud has
a similar average distance range as the signal point. If the
cloud cluster is removed by debugging the parameters, then
a large range of signal points will be mistakenly identified
as noise points. In addition, some isolated signal points are
formed due to cloud occlusion in the study area S2. According
to the principle of the algorithm, the local average distance
of isolated signal points is larger than the threshold and is
eliminated.

The method of filtering based on distance from the point
to the fitting plane is similar to the SOR filter, which is
equivalent to a low-pass filter. The nearest neighbor search
method can also be used to search through the spherical
neighborhood, which is also applied to calculate the distance
of local neighborhood points. However, this method locally
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FIGURE 8. Parameter sensitivity analysis: (a) sensitivity analysis of the distance parameter in S1 and (b) sensitivity
analysis of the distance parameter in S2.

fits a plane through the target point and its neighborhood
points. If the distance between the target point and the plane
is too far, then it is removed. There are two kinds of distance
thresholds: relative distance and absolute distance. The rela-
tive distance is a 2D distance from the point projection to the
plane where the fitting plane is located, which is usually used
to mitigate noise on the same horizontal plane. Absolute dis-
tance is the Euclidean distance in space. The noise points in
this study area are concentrated in 3D space, and the absolute

distance threshold is mainly used. In the spherical search
centered on isolated points, the points in the signal point
region fit the plane, so the distance from the isolated discrete
point to the plane is greater than the threshold. However, the
noise cluster is similar to the reasons described in the above
SOR filter. The dense cloud midpoint leads to the close dis-
tance between the fitting plane and the cloud point, and most
points are retained, which cannot achieve good denoising
effect.
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2) DBSCAN AND EUCLIDEAN CLUSTER EXTRACTION ARE
MORE APPLICABLE FOR CLOUD NOISE CLUSTER DETECTION
In DBSCAN, the spherical neighborhood with radius thresh-
old is used to search the point density in the sphere, and
the minimum neighborhood point number threshold is set to
determine whether it is a noise point. In the study area S1,
some isolated points are not correctly classified because they
belong to the boundary points in the point set cluster with
signal points as the core, but some cloud noise belonging
to the number of low point sets is detected after setting the
point density threshold. The distance between the discrete
point and the signal area in the study area S2 is greater than
the direct distance of the density of the core point, so it will
not be classified as the boundary point. The point density
of the cloud noise cluster in S2 is similar, and it is divided
into different categories from the signal point area. Two types
of noise points can be detected by setting the point density
threshold.

Euclidean cluster extraction has a similar principle to
DBSCAN, which also classifies points with the same neigh-
borhood into one class through a spherical neighborhood
search, and divides point clouds into point sets of different
categories. However, the difference is that DBSCAN can
group isolated points into one class, while Euclidean cluster
extraction divides LiDAR points into different clusters.

First, the direct segmentation results of Euclidean clus-
tering extraction are several clusters, which lack of seman-
tic information. The prior knowledge or manual visual
interpretation is required to identify the meaning of each
segmented cluster block. The results in Table 2 were com-
puted after simple manual post-processing, such as grouping
some clusters together. Second, this method involves many
parameters, such as according to the setting threshold of
distance parameter, the minimum and maximum points in
each cluster. These parameters need to be determined by
professional experience, and also depends on the character-
istics of the point cloud data itself. The determination of
parameters is also a time-consuming and trial-and-error pro-
cess. The manual post-processing may introduce subjective
error. Finally, the Euclidean cluster extraction needs to iterate
over all the points, which can be a bit inefficient. Therefore,
the Euclidean cluster extraction performed slightly less effi-
ciency as lacking of semantic information and automaticity
for noise point detection in this study.

3) THE PROPOSED REGION GROWING ALGORITHM BASED
ON SPATIAL HIERARCHICAL DIRECTIONAL RELATIONSHIPS
IS MORE SUITABLE FOR BOTH TYPES OF NOISE POINT
DETECTION THAN OTHER METHODS
The region growing algorithm based on the normal vector
also has a good detection effect for two kinds of noise points,
but only in the study area S1 is this noise far from the signal
area above and below. In the study area S2, cloud noise sur-
rounded the mountains, and the curvature of the cloud point
at the junction of the signal area and cloud noise was less

than the threshold, which led to the seed point growing to
some clouds, so some noise points in the second area were
not detected.

There is also a case of dividing a small number of sig-
nal points into noise points in this method, that is, the error
detection of some building top surfaces and tree signal points.
These two types of point clouds have a certain distance from
the ground point cloud due to the scanning angle of the air-
borne LiDAR system and do not have spatial connectivity.
When the radius threshold of the algorithm is less than the
distance between the ground point and the building top sur-
face or the tree point cloud, the seed point cannot grow to
these two types, and the top surface of the building and the
tree are marked as noise points.

However, with the processing algorithm of point cloud data
with a large range and large amount of data in this paper,
the signal points detected by this method are far less than
the signal points removed by the region growing algorithm
based on the normal vector, which has the best processing
effect on S1 in the comparative experiment, and the reserved
signal point characteristics are also the most complete. In the
study area S2, there are two algorithms that have the similar
detection effect in this paper: the region growing algorithm
based on normal vector and the DBSCAN method, but the
computational time of our proposed method in dealing with
S1 and S2 is approximately 1/

3 and 1/
10 of these two algo-

rithms, respectively. Compared with the Euclidean clustering
extraction, our method just determined by 14 main direc-
tions within one point’s neighborhood sphere instead of the
whole neighbor points. Furthermore, our method can be fur-
ther expended to Hausdorff distance, direction, connectivity
threshold etc., as representation of 3D spatial heterogeneity
for special tasks. Therefore, the proposed method has the best
detection results for both isolated points and noise clusters,
making it applicable to noise point detection from airborne
LiDAR point clouds.

It is worth noting that both the method proposed in this
paper and the method proposed in comparative analysis have
error detection, because when noise points and signal points
are near each other, they cannot be distinguished by geometric
features.

B. PARAMETER SENSITIVITY ANALYSIS
In this paper, the spatial hierarchical directional relationship
is reflected by the distance threshold and growth direction
when using the regional growth algorithm based on the spa-
tial hierarchical directional relationship. The definition of
growth direction avoids finding candidate points irregularly
by seed points and grows with the spatial directional relation-
ship between seed points and candidate points. Each point
is assigned to different point sets by a distance threshold
(search radius of the spherical neighborhood). At the point
set level, each point set is transformed into a point unit,
and the unit that meets the threshold condition is connected
to the whole point set by the distance between the points.
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The setting of the distance threshold determines whether
there is a spatial connectivity relationship between the noise
point and the signal point. If the distance threshold is too
large, then the point set belonging to the noise point intersects
with the signal point set to generate directional connectivity,
which makes the method in this paper unable to detect the
noise point. If the distance threshold is too small, then some
signal point sets are not connected, resulting in incomplete
growth of seed points. Therefore, the setting of the distance
threshold needs to be discussed when the main growth direc-
tion is determined.

In this paper, the best distance threshold is set to 3 m.
To search for the most suitable distance threshold for the
study area to achieve the best detection effect, a sensitivity
analysis of the parameters in S1 and S2 is carried out. The
sensitivity trend diagram of the parameters in S1 and S2 is
shown in FGURE 8.

The precision rate and F1−score in the study areas S1 and
S2 increase with increasing radius threshold. When reaching
a certain threshold, the precision rate and F1− score tend to
100%, and the recall rate has been tending to 100%, indicat-
ing that this method can completely detect noise points. The
precision increases with the radius, indicating that the radius
parameter will affect the number of signal points misclassi-
fied into noise points. However, theoretically, when the radius
reaches a certain value, the seed point will grow on the noise
cluster, and then the noise point will not be detected.

It can be seen from FIGURE 8 that in S1, when the radius
reaches 2 m, the growth trend of the precision and F1−score
is close to flat, and when the radius is 3 m, the accuracy is
the highest. In S2, when the radius reaches 3 m, the growth
trend is gentle, and the precision reaches the highest when
the radius is 4 m. In the process of the algorithm experiment,
we found that with increasing radius, the running memory
required by this algorithm is larger, and the running time is
longer. Considering the efficiency of the algorithm, the opti-
mal radius threshold of the two research areas is 3 m. When
the radius is 3 m, the precision of S1 is the highest. Although
the precision of S2 is not the highest under this parameter, the
running time is low. Compared with other radius thresholds,
3 m is the most efficient distance threshold.

For the study areas in this study, it is still necessary to
discuss further the detection errors beside the almost perfect
accuracy results. The numbers of noise points and signal
points in the study areas are large, objective evaluation results
cannot be obtained only from the missed detection rates and
error rates.

Combined with the qualitative analysis, the main error in
S1 lies in detecting the points of canopy and building top
as noise points. Because the distances between these points
and other signal points are probably greater than 3 m, our
method marked them as noise points. This error is small and
can be reduced by increasing the distance threshold. It can be
seen from FIGURE 8(a) that even if the distance threshold
is increased, the accuracy is not significantly improved and
the processing time is longer. Therefore, we chose the more

balanced threshold of 3 m. Of course, it is also feasible to
preserve characteristic points such as tree canopy and build-
ing top by increasing the distance threshold in S1, in which
noise points and signal points are distinct. However, this
increase will cause obvious errors in S2, in which the noise
cluster is closer to the signal region, and the threshold should
be carefully considered. Because the seed points will grow
towards the cloud noise cluster and the reserved signal points
will also contain more cloud noise points with the increasing
of distance threshold. Therefore, the distance threshold of
3 m is also the optimal parameter in S2, while increasing the
threshold further may result in more missed noise points.
S1 and S2 results of the recall rate is near 100% because

the recall rate calculation principle is detected detected noise
point accounted for the proportion of real noise, our approach
to signal region growing, extracted when d threshold hours
points in the region of the signal, instead of, all the noise
points and part of the signal points are detected, Therefore,
the algorithm determines that all noise points have been
detected and the calculated recall rate is 100%. It can be seen
from FIGURE 8(a) that as threshold d increases, it gradually
grows to the area of noise points, and the recall rate decreases
accordingly.

VI. CONCLUSION
In this paper, we propose a method to automatically detect
noise points from airborne point cloud data in mountainous
landscapes. The region growing algorithm with distance as
the growth threshold is used to detect cloud noise clusters
and discrete point noise in mountain range point cloud data,
and the main direction of seed point growth is determined
to improve the efficiency of detecting noise points and avoid
growing into a dead cycle. The main contributions of this
method are as follows: The region growing algorithm based
on spatial hierarchical direction has high computational effi-
ciency and considerable quality, and the precision, recall rate
and F1 score of the proposed method for detecting noise
points (including cloud point clusters and isolated points)
reached 99.8%, 100% and 99.3%, respectively. The region
growing algorithm with distance as the growth threshold can
clearly separate the noise region and the signal region. How-
ever, the setting of the distance threshold may eliminate some
signal points, such as the top of the building and trees. To bal-
ance the accurate detection and calculation efficiency of noise
points caused by the distance threshold, the robustness and
efficiency of this method need further research.

During this study, we noticed that the method for detect-
ing noise points based on the distance feature is applicable
in mountain scenes because the noise points are distributed
far away from the scene. However, when the method in this
paper is applied to urban scenes, the noise inside the urban
scenes is detected by the distance feature, such as the noise
point near the signal (the noise point produced by snow or
fog), which often leads to an incorrect prediction. There-
fore, finding the deep-seated characteristics of noise points
will be our follow-up research direction. Considering that the
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characteristics of single point cloud data are not significant,
the fusion of multisource data is a valuable means of extract-
ing features in the future.
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