
Received 30 May 2022, accepted 26 July 2022, date of publication 4 August 2022, date of current version 11 August 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3196362

Discovering Coordinated Groups of IP Addresses
Through Temporal Correlation of Alerts
MARTIN ZADNIK 1, JAN WRONA 1, KAREL HYNEK1,2, TOMAS CEJKA1,
AND MARTIN HUSÁK 3
1CESNET Association of Legal Entities, 160 00 Prague, Czech Republic
2Faculty of Information Technology, Czech Technical University in Prague, 160 00 Prague, Czech Republic
3Institute of Computer Science, Masaryk University, 602 00 Brno, Czech Republic

Corresponding author: Martin Husák (husakm@ics.muni.cz)

This work was supported in part by the Grant Agency of the Czech Technical University in Prague (CTU) through the MEYS of the Czech
Republic under Grant SGS20/210/OHK3/3T/18, in part by the MEYS of the Czech Republic through the e-INFRA CZ Project under Grant
LM2018140, and in part by ERDF ‘‘CyberSecurity, CyberCrime and Critical Information Infrastructures Center of Excellence’’ under
Grant CZ.02.1.01/0.0/0.0/16_019/0000822.

ABSTRACT Network-based monitoring and intrusion detection systems generate a high number of alerts
reporting the suspicious activity of IP addresses. Themajority of alerts are dropped due to their low relevance,
low priority, or due to high number of alerts themselves. We assume that these alerts still contain valuable
information, namely, about the coordination of IP addresses. Knowledge of the coordinated IP addresses
improves situational awareness and reflects the requirement of security analysts as well as automated
reasoning tools to have as much contextual information as possible to make an informed decision. To validate
our assumption, we introduce a novel method to discover the groups of coordinated IP addresses that exhibit
a temporal correlation of their alerts. We evaluate our method on data from a real sharing platform reporting
approximately 1.5 million alerts per day. The results show that our method can indeed discover groups of
truly coordinated IP addresses.

INDEX TERMS Alerts, clustering, correlation, IP address, situational awareness.

I. INTRODUCTION
Nowadays, organizations are aware or become aware very
fast that the Internet is not a safe place for their applications,
services, infrastructure, or users. To face this challenge, the
organizations deploy measures to reduce the threat landscape
and, subsequently, the measures to recognize that a network
threat materializes into an attack. The latter measures include
various detection systems such as intrusion detection sys-
tems, network behavioral analysis systems, or honeypots.
The survey of approaches to network-based intrusion and
anomaly detection was elaborated by Drašar et al. in [1].
These systems are capable of monitoring the network activity
and generating alerts reporting suspicious activity to Secu-
rity Operation Center (SOC), Computer Security Incident
Response Team (CSIRT), or Computer Emergency Response
Team (CERT). Unfortunately, the suspicious activities are
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constant in the network, which renders it difficult to assess the
high number of alerts generated by these detection systems
manually [2]. Another issue of these detection systems is the
high number of alerts that are not relevant to the particular
assets, networks, services, or users [1], [3].

These issues are approached from various perspectives,
which can be summarized into filtration [4], aggregation [5],
prioritization [6], and correlation [7]. Since the correlation
techniques are the most relevant for our research, we further
elaborate on them in our related work.

While the previous research is focused on finding so-called
meta-alerts, i.e., alerts composed of other alerts, for example,
to express amulti-step attack, our aim is different.We propose
to discover coordinated groups of IP addresses through the
temporal correlation of their respective alerts. In compari-
son to the previous correlation techniques, we can benefit
from the high number of alerts regardless of whether they
are relevant or not. Therefore, we consider our research
complementary to the previous research as it infers hidden
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information that would be lost by filtering, aggregating,
prioritizing, and correlating the alerts into the meta-alerts.
Inferred information does not contain any data about the
particular attack scenario but rather improves situational
awareness with knowledge of groups of coordinated IP
addresses.

We argue that the knowledge of the groups of coor-
dinated IP addresses (e.g., stored in a database) provides
extra contextual information from the perspective of network
digital forensics as well as from the perspective of auto-
mated reaction to the detected attacks. Prior to this work,
such knowledge was inferred based on the same victim’s
IP address and port numbers or based on a sequence of
alerts. We introduce an additional temporal perspective that
complements previous approaches.

During an investigation of a cybersecurity incident, the
analysts look for as much context as possible. Their goal is
to obtain a global view of the incident to be able to answer
questions such as what preceded the attack itself, are there
other IP addresses involved?By consulting the database of the
groups of IP addresses, the analyst finds out that the attacking
IP address belongs to a larger group of IP addresses that
regularly exhibit coordinated malicious behavior. Now the
analyst can broaden the search in monitoring data not only
to the reported IP address that overcame the defense of the
victim but also to other potentially related IP addresses and
looks for their prior activities and relationship. For example,
the analyst discovers that there is the same successful attack
performed by another IP address in the group to another
victim IP address and because the attack does not negatively
impact any provided service, the breach remains hidden and
would go unnoticed otherwise.

Critical requirements of automated attack mitigation are
the low number of false positives and timeliness. If an
IP address is detected as offending and, at the same time,
the IP address is also found to be a part of a group of
misbehaving IP addresses, then it is an indicator that the
detection is more likely to be a true positive. In some cases,
it is acceptable to block an IP address upon its detection as
suspicious automatically. In such cases, the predictive block-
ing of other IP addresses in its group improves timeliness
significantly.

The knowledge of the groups of IP addresses also improves
the capability of reputation databases, such as NERD [8],
to predict future events. If the prediction is known for a subset
of IP addresses in the group, then it can be extrapolated for
the whole group.

At a glance, the contributions of this paper are as follows:
• We introduce a novel concept of grouping coordinated
IP addresses based on their correlated temporal activity
rather than by their properties, such as same port num-
bers or a sequence of actions.

• We propose a method to identify groups of the coordi-
nated IP addresses.

• We evaluate our method utilizing raw network flow data
and discuss the observed groups.

The evaluation is based on millions of alerts from a real
alert-sharing system. The results show that the proposed
method discovers coordinated groups of IP addresses and
provides additional features to allow for group assessment
and selection.

The remainder of this article is structured as follows.
Section II provides an overview of state of the art in alert cor-
relation and discusses their differences. Section III presents
our method from a high-level view as well as elaborates on
the details of our method. In section IV, we describe our
dataset, the setup of parameters, the evaluation of clustering
algorithms, and an assessment of the discovered clusters.
Lastly, section V concludes this article and outlines our future
work plans.

II. RELATED WORK
Related work is grouped into two main themes of this paper.
First, we discuss foundations and approaches to alert cor-
relation. Second, we discuss the aspects of collaboration in
cybersecurity, including collaborated attacks and defenses.

A. ALERT CORRELATION
The topic of alert correlation has been investigated by cyber-
security researchers for almost two decades when the first
research works in the field emerged [9], quickly followed by
the correlation of alerts in a collaborative environment [10].
A comprehensive overview of alert correlation, including
the detailed description of particular tasks and procedures,
was proposed by Valeur et al. [11]. This work later inspired
numerous alert correlation systems. The input data need
to be normalized (usually using IDMEF format [12]), fil-
tered, organized into smaller time windows, and aggregated
into groups (sometimes called meta-alerts or correlated alert
sets [13]). The common motivation for alert correlation in
the related work is the reconstruction of an attack scenario,
i.e., creating a sequence of events describing an attack [14].
Moreover, it is possible to use the attack scenario to per-
form impact analysis, project the continuation of an ongoing
attack, estimate its focus, and prioritize the ongoing attacks
by their severity [11].

An older survey [15] assessed techniques of alert corre-
lation and stated that security systems (intrusion detection
system, firewall, antivirus) differ in types of detection and
that low-level alerts need to be analyzed with higher-level
management systems, which is a common design of alert
correlation tools up to now. However, the surveyed papers
focus only on the relation between alerts in the context of
attack scenarios andmulti-stage attacks. The temporal criteria
for alert correlation (mentioned in the survey) are rarely found
in the literature. A more recent survey or alert correlation
was proposed by Salah et al. [2] and focuses on model-based
approaches.

There are a plethora of papers discussing particular aspects
and approaches to alert correlation. Herein, we briefly intro-
duce the most closely relevant ones. The fundamental goal of
most of the related work is to identify related alerts in the
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context of multi-step attacks or attack scenarios, and they
use alert fusion for the identification or prediction of the
attack scenarios. The research revolves around correlation
and fusion of alerts (also called events) using the following
methods. Bayesian networks and Bayesian Attack Graphs
are used in [13]; Bayesian estimation in combination with
Kalman Filter are used in [16] to correlate events along
observation time; Bayesian networks are also used in [17]
to discover attack strategies; Naive Bayes Classification with
characteristic vector representing attack samples is used
in [18] (vectors consisted of seven attributes like protocol,
time, IP addresses in attack sample); Naive Bayesian net-
works are also used in [19] for event correlation, especially
to detect coordinated attacks, e.g., DDoS attacks; Scenarios
Graphs are used in [14] to identify related alerts that could
be part of a coordinated attack plan that could be missed
by a human analyst; Sequential pattern mining algorithm
was used in [20] to discover complicated multi-stage attack
behavior patterns; Data mining techniques for fusing alerts
into scenarios are used in [21] based on their similarities.
Hidden Colored Petri-Nets are used in [22] for alert correla-
tion and understanding, i.e., alerts are aggregated (fused) into
sequences of scenarios (the paper does not cover detection of
coordinated attacks which is left for future work). Machine
learning approach, specificallyMultilayer Perceptron (MLP)
and Support Vector Machine (SVM), in combination with
alert correlation matrix (representing estimated probability
of similarity between alert pairs) are used in [23] to determine
which alerts in the past correlate with the current alerts. The
goal of [23] is to group alerts and represent the correlated
alerts as attack scenarios.

A recent paper by Kim et al. [24] claims that most studies
were published a long time ago, i.e., before the concept of
APT was formulated. Therefore, it is difficult to apply the
methods to current multi-stage attacks. The authors intro-
duce a similarity-based approach with a continuous score.
Additionally, the proposed algorithm does not evaluate all
the alerts but considers only relevant alerts based on time,
so the algorithm is more efficient than previous existing
works. Indeed, the other works [14], [19], [24] do not discuss
different types of coordinated activities that repeat in time
and also, compared to our work, do not cover random sim-
ilarities in real traffic that necessarily lead to false-positive
alerts. Recent work on alert correlation was proposed by
Zhang et al. [25] and combines alert correlation with attack
prediction by extrapolating attack scenarios by temporal cor-
relation. In comparison to our work, the focus is aimed at the
attack scenario construction, while we are more interested in
the detection of coordinated malicious IP addresses. Still, it is
one of the most closely related works.

B. COLLABORATIVE ATTACKS AND DEFENSES
Collaboration is a prominent aspect of this field. As the
attackers started performing distributed or collaborative
attacks, the defenders started building distributed and collab-
orative intrusion detection systems to combat these threats

and improve intrusion detection capabilities. An older sur-
vey by Zhou et al. [26] covered both coordinated attack and
their detection, while Elshoush et al. [27] surveyed alert cor-
relation in collaborative intrusion detection systems. Earlier
works provide surveys and taxonomies of collaborative and
distributed intrusion detection [28], [29] or focus on par-
ticular issues of which formats and protocols to use for
information sharing [30], how to defend against DDoS
attacks collaboratively [31], or how to collaborate on a
national level [32]. Various tools, protocols, and platforms
are known to be used in practice for alert sharing and infor-
mation exchange [33] to substitute complex collaborative
intrusion detection systems that would often be difficult to
deploy across multiple organizations, networks, or states.
Recently, a collaborative intrusion detection system was pro-
posed by Azad et al. [34]; the system fulfills current require-
ments on such systems, such as performing in a decentralized
setting and preserving the privacy of the peers that share
alerts.

The main goal of this work is the detection of coordi-
nated IP addresses participating in an attack. Such attacks
are referred to as coordinated or orchestrated in the literature
and are typical for botnets. A command and control (C&C)
of a botnet typically orchestrates the attacks launched by
individual bots, e.g., to launch it simultaneously. To the best
of our knowledge, this issue was not discussed specifically
in terms of alert correlation in a collaborative environment
that processes intrusion detection alerts. An exception is the
older work by Benferhat et al. [19], who propose to detect
collaborated attack plans such as DDoS, but their method
does not identify the coordinated group itself.

Nevertheless, a different source of data (raw packet
capture) allowed for an investigation into this topic. Net-
work telescopes and darknets, i.e., unassigned blocks of IP
addresses and tools to collect the network traffic incoming
to them, are a valuable source of threat intelligence; they
provide traces of network scanning, DDoS backscatter traf-
fic, and other ‘‘background radiation’’ of the Internet [35].
A prominent source of such data is CAIDA network tele-
scope.1 Bou-Harb and Fachkha [36] discussed the inferring
of large-scale scanning and DDoS attacks, which results in
generating lists of IP addresses involved in the malicious
activities. Bou-Harb et al. [37] then proposed CSC-Detector,
a tool to infer large-scale orchestrated scanning campaigns
from the network telescope. The CSC-Detector fingerprints
scanning devices and correlates their behavioral profiles to
infer the orchestrated scanning. The tool was shown to detect
coordinated activities of major botnets at the time. Later,
Bou-Harb et al. [38] improved their approach and discussed
the issues related to processing big data coming from network
telescopes, such as their sanitization, dimensionality reduc-
tion, and noise reduction. Similar goals and approaches could
be found inworks by Torabi et al. [39], whowere able to infer
IoT-infecting botnets specifically, or Richter and Berger [40],

1https://www.caida.org/projects/network_telescope/
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FIGURE 1. The steps of the security event correlation method and its
input parameters.

who used packet capture from a large number of firewalls
instead of a network telescope to characterize scanning
activity.

III. OUR APPROACH: SECURITY EVENT
CORRELATION IN TIME
Our goal is to define a method for grouping IP addresses
that repetitively participate in coordinated security events
(e.g., scanning or brute-force campaign, DDoS). Therefore,
we propose the Security Event Correlation in Time (SECT)
method, which is based on the temporal correlation of secu-
rity alerts2 using clustering algorithms. The proposed method
is general enough to work with various identifiers such as
domain names and URLs, not just IP addresses. Therefore,
to describe the method itself, we use the general term entity
instead of a more specific IP address which we use later on
during evaluation.

A. METHOD OVERVIEW
This section provides a high-level overview that deliberately
simplifies the method and omits details that are discussed in
the respective sections. The SECTmethod can be divided into
four consecutive steps. The individual steps with their input
parameters are depicted in Fig. 1.

2In our case, the security alert is a report about the suspicious behavior of
one or more IP addresses.

In the first step, the method analyzes incoming alerts and
creates a binary vector of activity for each reported entity. The
vector represents the behavior of its entity during a certain
time window.

During the second step, the method filters out the entities
with very low or very high activity in the time window.
This filtration is necessary to remove the entities with a high
probability of being correlated by coincidence. The details
when two IP addresses are considered correlated are provided
in section III-C, and details on coincidental correlation are
discussed in section III-D.

Subsequently, cluster analysis is executed over the activity
vectors to group the entities having similar vectors. Discus-
sion about distance measures and clustering algorithms is
provided in section III-E, and III-F respectively.

The groups are then assessed based on the number of
members or a group survival index. We call this step cluster
feature extraction. The extracted features serve for further
analysis of the groups. Further details about these features
are provided in section III-G. The result of the whole method
is a list of groups of the entities which exhibit coordinated
behavior with other entities in the same group.

B. CREATION OF ACTIVITY VECTORS
An activity vector v is created for each reported entity E . The
definition of activity vector v is provided in section III-G.
Definition 1: Let v = (v1, v2, . . . , vn) be a vector

where each vi is an element of {0, 1}, n is the number
of equal-sized slots s1, . . . , sn of time window w, so that
∀i ∈ {1, . . . , n}:

vi =

{
1 iff E was reported in slot si,
0 otherwise.

(1)

The number n of equal-size slots is given by the duration ts
of each slot. Therefore, ts is an input parameter of the method
since it splits the time window w into n slots. A particular
setup of ts is discussed in section IV-B.

C. CORRELATION
The SECT method infers coordination from the correlation
of the activity vectors. The correlation between two activity
vectors is defined in definition 2.
Definition 2: Let a and b are the activity vectors, T ∈ R,

and d is a distance measure (metric). The vectors a and b are
correlated if and only if the d(a, b) ≤ T and we denote it
as a ' b

The distance measure d is the input parameter of our
method, but for our evaluation, we select one particular
distance measure which reflects our requirements, and we
discuss this distance measure in section III-E. Definition 2
itself leads to cluster analysis of the activity vectors.
In principle, our method works with any clustering algo-
rithm, but of course, the results of various algorithms may
differ. We discuss candidate algorithms in section III-F.
The threshold value T is generally the clustering algorithm
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parameter, therefore an input parameter of our method,
except for some clustering algorithms which calculate the
threshold value themselves from the density function of input
data.

Let A and B are distinct entities with their respective
activity vectors a and b. In general, it is surely true, that
C(A,B) ⇒ a ' b where C(A,B) means coordination
between the entities. Unfortunately, we cannot straightly
claim that the implication is true in the opposite direction as
well. A coincidental correlation, input data noise, and other
inaccuracies can produce illusory coordination. However,
SECT minimizes these factors by aggressive filtering that is
described in section III-D, and section III-G and therefore it
is possible to build on the following presumption.
Presumption 1: For SECT filtered data applies:

C(A,B) ⇐⇒ a ' b. (2)
Finally, we define a coordinated group in definition 3.
Definition 3: Let E be an entity, and G is a group of

entities:

E ∈ G ⇐⇒ ∃x, x ∈ G ∧ x ' E . (3)
Definition 3 is formulated deliberately broad and flexible

enough to ensure that almost any clustering algorithm can
meet this definition.

D. COINCIDENTAL CORRELATION
The combination of definition 1 and definition 2 allows a
certain possibility of correlation without coordination, i.e.,
two activity vectors being correlated purely coincidentally
rather than by the underlying entities being anyhow coor-
dinated. The probability of these coincidental correlations
depends on the number of slots k when the entity is active,
the total number of slots n in the time window, and the
threshold value T . For the sake of simplicity, let us restrict
ourselves to the threshold value T = 0. In this case, only
equivalent activity vectors correlate with each other. Let X
be a uniformly distributed discrete random variable repre-
senting the occurrence of the activity vector of length n
with k active slots. Then the probability of occurrence of
a particular vector x in X is an inverse of a combinatorial
number:

P(X = x) =
(
n
k

)−1
. (4)

We can create a set of independent and identically dis-
tributed (IID) random variables X . Each random variable X
in the set represents the observed entity’s occurred activity
vector.

The probability P(r), that in r ∈ N ∧ r ≥ 1 IID random
variables X are at least two occurrences of the same activity
vector follows the equation used in the classical Birthday
problem [41]. The classical birthday problem asks, what is the
probability of finding at least one similar pair having the same
birthday in a group of several individuals? When we map the
number of individuals to r and the probability of birthday to

P(X = x) we get:

P(r) =
r∏
i=1

(
1− (i− 1) · P(X = x)

)
(5)

P(r) = 1− P(r) (6)

To enumerate the probability P(r) we can follow the
approximation of birthday paradox using a Poisson distribu-
tion with parameter λ = 0.5 ·

(
r · (r − 1) · P(X = x)

)
[41]:

P(r) ∼ 1−
1
eλ
= 1−

1

e
0.5·

(
r ·(r−1)·P(X=x)

) (7)

In eq. (7), we can see that when the parameter λ is higher,
the probability of coincidental correlation increases. The λ
is defined by the number of random variables (in our case,
determined by the number of observed entities) and the
probability of a particular activity vector occurrence, which
needs to be maintained in balance to keep the parameter low.
However, these variables are gathered from input data, and
we cannot control them. Thus, the SECT method calculates
the probability of coincidental correlation for each activity
vector and removes activity vectors (entities) with the prob-
ability P(r) higher than a threshold pmin. The threshold is
another parameter of our method, and its value is discussed
in section IV-B.

E. DISTANCE MEASURE
In this section, we discuss the requirements imposed on
the distance measure. There are many distance measures
defined in the literature, but a majority of them does not
satisfy all three metric axioms (identity, symmetry, and tri-
angle inequality) necessary for the distance measure d(u, v).
The necessity of metric space for a clustering algorithm
is described in the study [42], where the medoid-based
algorithm used on non-metric space showed significant
deterioration.

Granger Causality Test (GCT), a time series analysis test,
was introduced in [43] for temporal comparison of related
security alerts in DEF CON 9 dataset. However, our selection
is limited to metric functions on the binary vectors. A typ-
ical example of these metrics is the family of Minkovski
distances, which on binary space, is reduced to Hamming
distance [44]. However, the Hamming distance values depend
on the length of the activity vector; therefore, it has to be
normalized, which is crucial for selecting threshold value
T (see definition 1) independently of the size of the vector.
Given binary vectors u and v, M00 is the total number of
attributes where u and v both have a value of 0, M01 is the
total number of attributes where u is 0 and v is 1, M10 is
the total number of attributes where u is 1 and v is 0, M11 is
the total number of attributes where u and v both have a value
of 1, andM00 +M01 +M10 +M11 = n. Then Hamming dis-
tance dH and normalized Hamming distance dHn are given as

dH (u, v) = M01 +M10

dHn(u, v) =
M01 +M10

n
.
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However, even after normalization, the Hamming distance
favors vectors with lower activity (in the following examples
we use a shortened notation for the binary vectors, e.g.,
(0, 0, 0, 0) = 0000, (0, 0, 1, 1) = 0011):

dHn(1111, 1100) =
0+ 2
4
= 0.5

dHn(1100, 1000) =
0+ 1
4
= 0.25

The vectors in the example above have different distances,
even though the percentage difference of active time slots
is the same (50%), which does not meet our require-
ments. Therefore, we propose to use the Jaccard distance for
binary attributes, which is in line with [44] and is defined
as:

dJ (u, v) =
M01 +M10

M01 +M10 +M11
. (8)

Note that the only difference between the normalizedHam-
ming distance and the Jaccard distance is M00 (the passive
slots) in the denominator of the latter. Consequently, the
Jaccard metric approach deals with the problem of prior-
itizing lower activity vectors by taking into account only
the active time slots. Calculating it for the vectors from the
example above, we get the right results:

dJ (1111, 1100) =
0+ 2

0+ 2+ 2
=

2
4
= 0.5

dJ (1100, 1000) =
0+ 1

0+ 1+ 1
=

1
2
= 0.5

This property is also useful to mitigate the impact of T
on the probability of coincidental correlation. The value of
T affects it by allowing grouping also non-equal activity
vectors. By using only active time slots, the Jaccard metric
partially mitigates this effect because it linearly adapts the
amount of allowed inequality to the number of activities and
thereby also to the coincidental correlation probability. When
we choose, e.g., T = 0.25, the vectors with activity lower
than fourmust be the same to be correlated. This phenomenon
can be clearly seen in this example:

dJ (1100, 1000) =
1
2
= 0.5

dJ (1110, 1100) =
1
3
= 0.3

dJ (1111, 1110) =
1
4
= 0.25

The coincidental probability mitigation effect of the
Jaccard metric applies to low-activity vectors while dimin-
ishing with the growing activity.

The coincidental probability increases with the amount of
allowed difference and might even overgrow the pmin, which
is calculated only for the exact vector match. This has to be
taken into account during the selection of the time window,
the time slot duration, and the filtering of high activity vec-
tors. The higher the T , the more aggressive filtering should
be applied to high-activity vectors.

F. CLUSTERING ALGORITHMS
This section serves as a brief introduction to clustering algo-
rithms and their applicability in the SECTmethod. The SECT
method works with any clustering algorithm, but each algo-
rithm family is suitable for a different use case and produces
considerably different clusters.

Clustering algorithms can be categorized based on their
cluster model into connectivity-based (hierarchical cluster-
ing), centroid-based, density-based, distribution-based, but
also other less known models exits.

Hierarchical clustering algorithms build a hierarchy of
clusters. It can be either agglomerative (objects initially form
individual clusters which are successivelymerged) or divisive
(objects are initially part of a single cluster that is successively
divided into partitions). The process can be represented using
a dendrogram (a diagram depicting a tree), which offers two
options for extracting clusters: cutting the tree at a given
height (inter-cluster distance criterion) or a place with a spec-
ified number of clusters (number criterion). Other important
parameters are the inter-cluster distance function (linkage)
and distance computational function (metric). There are sev-
eral types of linkage functions. However, the most applicable
for the SECT method is the complete-linkage distance cal-
culation because it makes the distance criterion parameter
closely related to the T from the definition of correlation
(see definition 2). The complete-linkage defines the distance
between clusters as:

D(X ,Y ) = max
∀x∈X ,∀y∈Y

d(x, y), (9)

where D is the inter-cluster distance, X ,Y are clusters, and
d is the metric. When two clusters are closer than the min-
imal inter-cluster distance parameter, the algorithm merges
them into one cluster. Thus, the parameter defines maximal
distance within the cluster and can be regarded as a threshold
value of T from definition 2.

A de facto synonym for centroid-based clustering is
k-means. K-means [45] and all its variation are forming
clusters based on the distance to the closest center point. The
algorithm starts with a group of randomly placed centroids,
which define the position of clusters and associate each object
to the nearest centroid. Then it calculates the next centroid
position by minimizing the distance to each cluster object.
These operations are performed iteratively to optimize the
placement of a cluster centroid.

Clusters in density-based algorithms are defined as areas
of higher density than the rest. Objects with lower neigh-
borhood density are considered to be noise or outliers. The
typical example of a modern density-based algorithm is
DBSCAN [46], HDBSCAN* [47], and OPTICS [48]. The
HDBSCAN* is stated to have similar qualities as OPTICS,
with a better algorithmic runtime complexity. The OPTICS
algorithm can be regarded as a generalization of DBSCAN
that addresses the problem of detecting clusters of vary-
ing density, and it also eliminates the need to set an exact
value for ε (a maximal distance of two objects within
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one cluster). This parameter is closely related to T from
definition 2.

There is no clustering algorithm universally recognized
as the best or state-of-the-art. Each algorithm family varies
significantly in its properties, and the appropriate clustering
algorithm and parameter settings depend on the data set and
the problem being solved. The most significant obstruction
in the usage of the centroid-based algorithms is the need
to set the number of clusters in advance. As a matter of
fact, the number of clusters in the dataset is one of the
desired outputs in our case. For this reason, centroid-based
algorithms have been ruled out. Density-based clustering
algorithms can form clusters of an arbitrary shape, in contrast
tomany othermethods, which assume that clusters are convex
shaped. This is generally considered an advantage, but it is
not the case for SECT. An arbitrarily-shaped cluster might
contain points fairly far apart from each other (low intra-
cluster similarity). Thus, the notion of a cluster, as found
by density-based algorithms, does not meet the intuitive
notion of a coordinated group of entities (clusters with high
intra-cluster similarity). Hierarchical clustering can form
only convex-shaped clusters, does not require the number of
expected clusters in advance, and can use an arbitrary distance
function. Using the complete-linkage criterion, the linkage
distance threshold parameter corresponds to threshold T from
definition 2. The only drawback is the lack of concept of
noise. For instance, DBSCAN has a minPts parameter deter-
mining the desired minimum cluster size; smaller clusters
are considered to be noise. This rule can also be applied
to hierarchical clustering. Through the process of elimina-
tion, agglomerative hierarchical clustering is the preferred
choice.

G. CLUSTER FEATURE EXTRACTION
The cluster feature extraction step is included in the SECT
method to describe each cluster with additional statistical,
quantitative, and qualitative information. Such features can
be further used to perform a ‘‘manual’’ evaluation by a human
expert based on certain criteria, create a custom cluster qual-
ity scoring system, and so on.

A basic feature is the cluster size. The idea is that the small
clusters with a low number of entities are often less relevant
from the monitoring perspective as the attack is not focused
on the monitored infrastructure; otherwise, more coordinated
entities would likely appear. We can consider small clusters
as background noise. For example, horizontal scanning of
the whole IP address space by two coordinated machines can
cause such noise. The larger the clusters, the more likely the
attacks are relevant to the monitored infrastructure as more
coordinated entities are involved.

Each cluster can be represented by an aggregate activity
vector:
Definition 4: Let va = Rn be an aggregate activity vector

of cluster G, such that ∀i ∈ {1, . . . , n}:

vai =

∑
v∈G vi
|G|

. (10)

FIGURE 2. An example of a sliding window, each containing only three
slots and a step of one slot.

In other words, the aggregate activity vector is of the same
length as the entity activity vector with values correspond-
ing to the mean activity of all members (a ratio of entities
active in that particular time slot to the total number of
member entities). The aggregate activity vector va is created
for each discovered cluster. The activity vector v is defined in
definition 1.

The aggregate activity vector is a time series of numbers
between zero and one and is suitable not only as a cluster
descriptor but also as an input to methods for analysing
time-series data. One of the methods we find most useful
is autocorrelation. Autocorrelation is a correlation of the
series with a delayed copy of itself. It is used as a tool for
the detection of repeating patterns, identifying the funda-
mental frequency, or lack of it. The evaluation section IV-C
provides examples of how this information can be utilized
in SECT.

As a next feature, we propose group3 survival duration. The
assumption is that the long-lasting groups are composed of
stable, coordinated entities over time, and it is worth moni-
toring them, unlike the one-shot groups. We define survival
duration as a time interval between the first and the last
activity of a group.

H. ITERATIVE APPROACH
The SECT method is computationally intensive and memory
demanding (O(N 2)), especially in cases when the number of
unique entities grows with the window size.

Therefore, we introduce an iterative approach with a slid-
ing window to deal with the analysis of longer observation
intervals. Rather than analyze the observation interval at once
in a single window, we split it into shorter consecutive and
partially-overlapping windows of the same number of slots.
An example of the sliding windows is depicted in Fig. 2. Each
row represents the activity of an entity (a dot when the entity
is active) while the window delimits its activity vector, which
is to be analyzed. The window slides by a step to delimit the
new interval.

3We use the term group to denote a group of entities (IPs) and cluster to
denote the set of objects (activity vectors) in the same cluster.
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The iterative approach fits well when the SECT method
must work online, i.e., as the data arrive. The arriving data
are accounted into the current window within the scope of
the first SECT step (Creation of Activity Vectors). When the
current window is at its end, the activity vectors of this win-
dow are processed by SECT. Within the scope of the Cluster
Feature Extraction, the groups are subsequently paired with
the groups of the previous window, and the survival duration
is updated for the groups that survived from the previous
window. We deliberately find pairs only with the groups
appearing in the previous window to reduce the complexity
of pairing. To find the most look-alike pairs (A, B) in two sets
of groups, we use the Jaccard index:

J (A,B) =
|A ∩ B|
|A ∪ B|

(11)

We discuss the setup of the index threshold in section IV-B.
Finally, as an aging strategy of the iterative approach, the
groups that are not active longer than the observation interval
are discarded.

IV. EVALUATION
In this section, we evaluate the SECT method by applying it
to real data of network alerts. Our goal is to assess our method
from various perspectives, such as how the method reacts to
the specific setup of parameters, what kind of clusters the
SECT method discovers and how the groups map on the raw
network flow data (IPFIX [49]).

A. DATASET
The dataset4 contains intrusion detection alerts obtained via
the alert sharing platform [50] for 7 consecutive days from
2021-01-11 till 2021-01-17. A plethora of heterogeneous
intrusion detection systems deployed across several organiza-
tions contributed to the sharing platform. The alerts are stored
in Intrusion Detection Extensible Alert (IDEA) format [51],
and the alerts are categorized using the taxonomy of security
events included in the IDEA definition.

The dataset consists of almost 8 million alerts. The alerts
are collected from nearly 30 detection systems, such as
network behavioral analysis systems, honeypots, intrusion
detection systems, and similar data sources deployed in
5 large distinct organizations: the national research and edu-
cation network (NREN), two universities with large campus
networks, a midsize cybersecurity vendor and an Internet
service provider. Most of the alerts are raised by honeypots,
such as LaBrea [52] or Cowrie [53], and network-based
intrusion detection systems based on NetFlow [54], such as
NEMEA [55]. The majority of alerts belongs to the cate-
gory of network reconnaissance and vulnerability scanning.
Another significant portion of alerts is composed of multi-
ple login attempts, guessing/cracking of passwords, or brute
force. The top three countries of the attack sources (according

4The anonymized dataset is available at https://doi.org/10.5281/
zenodo.4683701

FIGURE 3. Histogram of the number of IP addresses based on the
number of their respective alerts.

to IP addresses) are China, the US, and Russia, which alto-
gether generate 30% of all alerts.

The alerts report suspicious behavior of about 520 thousand
unique IP addresses. An IP address is an entity as considered
in the SECT method, and, further on, we use IPs to refer
to IP addresses. Fig. 3 displays a histogram of the number
of IPs based on their number of occurrences in the alerts.
The histogram shows that the vast majority of IPs cause
an alert only a few times. We noticed that 50% of IPs
were reported only once or twice while few IPs are reported
constantly.

B. PARAMETER SELECTION
Our dataset lasts for a week which renders it possible to find
long-lasting groups of IPs, but processing such an amount
of data in a single window would result in large memory
requirements due to the distance matrix for all 520 thousand
IPs. For this reason, we use the iterative approach intro-
duced in section III-H. In our experiments, we set a dura-
tion tw of a window to 24 hours. This value is inspired
by blocklists, where every-day updates are a common best
practice. Besides, 24 hours observation window leads to
feasible resource consumption (approximately 170 thousand
IPs). The longer the time window, the higher the probability
of a change of the IP address affiliated with the host machine
(e.g., an IP address may change due to the dynamic IP address
allocation).

Parameter ts directly affects the number of time slots n in a
time window. Too short slot duration (e.g., 1 second) leads
to an excessive resolution of activity vectors. The dataset,
however, contains artifacts that need to be smoothed.We have
inspected our dataset, and we have found out that there is a
large, in order of minutes, imprecision of timestamps. The
imprecision is caused by the way how the particular detectors
work. For example, honeypots in our dataset report an alert
either immediately upon every connection or periodically
(every 5 minutes). Network behavioral systems collect flow
data from probes that already introduce time differences [56];
then they analyze the collected data using either stream or
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FIGURE 4. A relationship between the step size and the number of
clusters/groups of different size and different duration. The colours
represent three ranges of cluster sizes (number of IPs) and group
duration.

batch processing which results in immediate reporting or
reporting at the end of the batch, respectively. On the other
hand, too long slot duration causes a loss of information, i.e.,
aggregates more alerts into the same slot as well as increases
the probability of coincidental correlation (section IIII-D) due
to a lower number of slots. As a trade-off, we set the value of
ts to 15 minutes. This gives us n = 96 time slots for tw of
24 hours.

We are aware of IPs that are reported during the entire
week, and we assume the groups span more than one day.
Therefore we employ the pairing of the surviving groups in
consecutive windows using the Jaccard index as discussed
in section III-H. We consider two groups to form a pair,
or rather to be the same group if the Jaccard index (a ratio
of intersection over union) between two groups from w1 and
w2 is greater than 0.5. In some cases, the groups evolve
rather quickly, and a step equal to tw is too large to pair
such groups reliably. Decreasing the step (i.e., making the
windows overlap) can be thought of as decreasing a sam-
pling period and also allows more precise pairing. Therefore,
we select to slide the window only by a duration of a single
slot ts to achieve the highest resolution for our evaluation,
i.e., SECT is run every 15 minutes. This assumption is
demonstrated by an experiment illustrated by Fig. 4 where
we can see that the number of discovered clusters decreases

TABLE 1. Probabilities of coincidental correlations for the first time
window.

FIGURE 5. Distribution of clusters according to their size.

significantly with a longer step. Nevertheless, for the practical
deployment, it is still safe to use the step of 6 hours as
we are interested in long-lasting groups of larger size. The
Fig. 4 shows that the six-hour step does not affect the number
of clusters with a duration longer than 24 hours and affects
the number of clusters with a size larger than four IPs only
slightly.

The pmin parameter is similar to the p-value of the statistical
hypothesis tests. It is a threshold of the probability that the
correlation between two IPs is purely coincidental, i.e., the
IPs are not coordinated. Our experiments (see table 1) based
on real data showed that a reasonable value of pmin represents
a trade-off between the probability of coincidental correla-
tion and preserving a sufficient portion of vectors in our
data. We consider the probability of coincidental correlations
pmin = 0.01 sufficiently low. In the first window of our
dataset, activity vectors with 1, 2, 3, 4, 5, 6, 93, 94, 95, and
96 active slots do not meet this threshold and are removed.
Using the selected pmin value, about 78% of activity vectors
are removed on average per window.

As mentioned in section III-F, hierarchical algorithms do
not have a notion of noise. Even points that are not merged
with any other point are considered to be clusters of size
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FIGURE 6. Relationship between the linkage distance threshold
parameter and the number of noise points, clusters, and cluster sizes.

one. To eliminate these clusters, we utilize the basic cluster
feature, the cluster size, to remove clusters containing less
than five IPs. A graph in Fig. 5 visualizes a distribution
of clusters according to their size (number of members) and
shows the influence this parameter has on the total number of
clusters considered large enough.

The relationship between the linkage distance threshold
and threshold T makes it one of the most crucial parameters.
Fig. 6 depicts how the number of clusters and the number
of clusters considered to be noise change with the growing
T (the higher the T , the more activity vectors are clustered
which are less similar). Note that the threshold value of zero
is a special case: the metric function is bypassed, and only
equivalent activity vectors are clustered. Up to a value of 0.05,
the clusters change only slightly, from 0.05 the total number
of clusters starts increasing linearly while the total num-
ber of noise points starts decreasing linearly. The box plot
shows that the clusters are getting bigger with the higher
threshold, but the median cluster size remains approximately
constant. For the rest of our experiments, we use the special
linkage distance threshold value of zero due to better inter-
pretability of the results (in such a case, each cluster can be
represented by a single activity vector). We can increase T up
to 0.05 and achieve very similar results as with T = 0. For
example, T = 0.05 allows a one-bit difference between IPs
that are active in twenty slots.

C. CLUSTER ANALYSIS OF A SINGLE TIME WINDOW
In this section, we discuss our findings regarding the
discovered clusters. We use calculated features and met-
rics to improve data clarity and interpretability. In addition,
we also inspect the raw data belonging to the discovered

clusters to validate if the raw data supports the clustering
results.

The cluster analysis of a single time window is a basic
building block of the entire method, and a comprehensive
analysis of the output is essential. For the demonstration,
we have chosen the first time window of the dataset, i.e., the
first 24 hours. On average, it takes less than five minutes to
process one time window completely.

Using the autocorrelation function of the aggregate activity
vector, we can classify the clusters into three categories:
(1) clusters with a periodic activity, (2) clusters with a burst
activity, and (3) clusters without any obvious behavioral pat-
tern. Fig 7 to 10 reveal how the category can be determined by
utilizing autocorrelation. The upper chart shows an aggregate
activity vector reshaped into amatrix (6 rows×16 columns =
96 slots) to fit the page (black square marks an active slot).
The lower graph is an autocorrelogram, a graphical represen-
tation of the autocorrelations versus the delay (also called a
lag, values close to one indicate nearly perfect autocorrela-
tion, and the respective delay is the period). Apart from the
visual representation, we also provide numerical features like
absolute and relative extrema of the autocorrelation function,
which are more suitable for automated evaluation and cluster
selection.

A demonstration of the first category is in Fig. 7. It shows
a periodic activity with a period of one hour (i.e., four
15-minute-long time slots), which is confirmed by a strong
positive autocorrelation for the delay/lag of four slots. This
is the most common period of activity in our dataset, but
other periods are not rare either. For example a six-hour-long
period (24 time slots) is shown in Fig. 8. A representative of
the second category is depicted in Fig. 9. The activity vec-
tor displays a sudden, intense, and continuous effort, which
is typical for DDoS attacks. Its autocorrelogram exhibits a
declining positive autocorrelation stabilizing around zero.
The most interesting category is the third one, the activity
vectors without any obvious pattern. The aggregate activity
vector of the cluster shown in Fig. 10 looks arbitrary, and
the autocorrelogram shows values no larger than 0.2, which
indicates that there are no signs of periodicity hidden to the
human eye.

To summarise the clustering results, the first time window
contained 74176 unique IP addresses, which were reduced to
37448 (21.5%) due to a high coincidental correlation proba-
bility. SECT discovered 34870 clusters (most of the clusters
contained only one IP address), out of which only 183 (0.5%)
fulfilled the minimal cluster size condition. The 183 groups
contained a total of 1630 IP addresses. The classification
uncovered 45 clusters with a periodic activity, 33 clusters
with a burst activity, and 105 clusters without any obvious
behavioral pattern.

To further validate our hypothesis that the IPs exhibiting a
temporal correlation of their alerts are coordinated, we also
analyze IP flow records of grouped IPs. The flow records
are, in comparison with security alerts, less aggregated. They
reveal the behavior of an IP address in detail, such as the
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FIGURE 7. A cluster with a periodic activity with a one-hour-long period.

FIGURE 8. A cluster with a periodic activity with a six-hour-long period.

FIGURE 9. A cluster with a burst activity.

start and the end timestamps of each flow, the communicating
parties, ports and protocol being used, and the number of
bytes and packets. Also, flow records are collected for the

FIGURE 10. A cluster without any activity pattern.

entire communication, i.e., not only for the malicious but also
for the benign traffic mix.

For this paper, we selected three representative clusters,
one per category, which we analyze and discuss in detail.
Fig. 11 to 13 display a visual comparison between the activity
of an IP address and the number of its flow records. The upper
chart shows an aggregate activity vector; the lower graph
shows the number of flows per slot. The horizontal axes are
aligned to make it easier to see the correlation. All the IPs
are anonymized using prefix-preserving anonymization for
the purpose of presentation in this paper.

The cluster in Fig. 11 is the same cluster as in Fig. 7.
All eight members of this group scan the same two ranges of
IP addresses, targeting port 445 (protocol SMB). The number
of connections initiated by the IPs in the group is rising at
the same pace until a certain time when all members cease
their communication. Based on this information, we conclude
that this cluster (and many other clusters belonging to the first
category) is comprised of slow coordinated network scanners.
All the IPs in the group add a new IP address to the pool of
IP addresses that they scan per some predefined period (one
hour in this particular case), which results in the periodicity
in the aggregated activity vector. Moreover, the observed
flow data provides further support for the coordination of
these IPs.

The cluster in Fig. 12 is the same cluster as in Fig. 9.
All 11 IPs belonging to this group send TCP SYN packets
towards more than 133 thousand destination IP addresses,
all targeting port 23 (the Telnet protocol). The activity takes
about four hours with a constant rate of about 50 flows
per second. All members belong to the same autonomous
system; each of them begins and ceases its activity at the same
time (± one minute). The respective alerts that reported the
11 source IPs are categorized by the detectors themselves as a
scanning activity. The clustering of these IPs draws a different
picture of the suspicious activity. This activity should have

VOLUME 10, 2022 82809



M. Zadnik et al.: Discovering Coordinated Groups of IP Addresses Through Temporal Correlation of Alerts

FIGURE 11. A cluster with periodic behavior.

FIGURE 12. A cluster with bursts of activity.

FIGURE 13. A cluster without any activity pattern.

been categorized as DDoS, in particular, the revival of TCP
reflection attacks as described, for example, in [57].

The cluster in Fig. 13 is the same cluster as in Fig. 10.
The six source IPs (all from a single /24 network) send ICMP
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FIGURE 14. Cluster survival duration histogram.

echo packets towards several ranges of target IP addresses –
a certain case of a distributed ICMP scan. It is remarkable
that although the activity is long-term and without any visible
pattern, it is almost the same for each member. This can
be seen on the flow activity graph, where the lines over-
lap almost perfectly and provide evidence of coordinated
activity.

D. CLUSTER ANALYSIS OF THE ENTIRE DATASET
In contrast to the relatively short-term perspective of the pre-
vious section, this section focuses on a long-term perspective
of the entire week-long dataset. In other words, we investigate
clusters with a lifetime exceeding one time window.

Employing the pairing technique from section III-H, SECT
discovered 206,741 clusters (including the noise points) in
the whole one-week dataset. However, only 6,160 clusters
fulfill the minimal cluster size condition. A mean cluster
survival duration is one day and 37 minutes, and the distri-
bution of this feature is depicted in Fig. 14. The histogram
shows the maximum number of clusters around the duration
of 24 hours. There are also four clusters surviving over the
entire week. One of them is the same cluster as we ana-
lyzed in the previous section (Fig. 13). Its members and
behavior remain unchanged during the entire observation
interval.

V. CONCLUSION
In this article, we introduced Security Event Correlation in
Time (SECT), a novel method for grouping IP addresses that
repetitively participate in coordinated security events. The
method works with the vast number of alerts generated by the
network monitoring systems. It does not reduce the number
of alerts as such, but it infers complementary information for
cybersecurity analysts to improve their situational awareness
about coordinated IP addresses. SECT is built on clustering
algorithms that correlate activity vectors of IP addresses.

Evaluation of SECT on a real dataset demonstrated how
SECT performs from the perspective of the number of
clusters and their size with respect to the evaluated SECT
parameters. The evaluation further explained what are the

typically discovered groups and categorized them based on
their characteristic. The comparison between the selected
groups of IPs and their network flow data supported our
hypothesis about the possibility of utilizing network alerts to
reveal such a relationship between IPs and demonstrated the
applicability of the SECT method to find these groups. Last
but not least, we observed the life of groups during the whole
week, which produced significant insight that only a few
groups survive. The surviving groups are not only interesting
from the quality perspective but also from the perspective of
situational awareness as the knowledge about these groups
is applicable not only once. The method is currently running
online and is integrated into the production reputation system
NERD [8], [58], [59], which is being used byCESNET-CERT
to model the reputation of suspicious network hosts.

Concerning our future work, we will further investigate
the coordinated groups of IP addresses from a longer-term
perspective, as well as how to automate the selection of the
most relevant coordinated groups based on their character-
istics. Moreover, we plan to explore if SECT is applicable
to other data domains (such as DNS monitoring data or a
selected subset of network flow monitoring data).
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