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ABSTRACT Weather prediction and meteorological analysis contribute significantly towards sustainable
development to reduce the damage from extreme events which could otherwise set-back the progress in
development by years. The change in surface temperature is one of the important indicators in detecting
climate change. In this research, we propose a novel deep learning model named Spatial Feature Attention
Long Short-Term Memory (SFA-LSTM) model to capture accurate spatial and temporal relations of multiple
meteorological features to forecast temperature. Significant spatial feature and temporal interpretations of
historical data aligned directly to output feature helps the model to forecast data accurately. The spatial
feature attention captures mutual influence of input features on the target feature. The model is built using
encoder-decoder architecture, where the temporal dependencies in data are learnt using LSTM layers in
the encoder phase and spatial feature relations in the decoder phase. SFA-LSTM forecasts temperature by
simultaneously learning most important time steps and weather variables. When compared with baseline
models, SFA-LSTM maintains the state-of the-art prediction accuracy while offering the benefit of appropri-
ate spatial feature interpretability. The learned spatial feature attention weights are validated from magnitude
of correlation with target feature obtained from the dataset.

INDEX TERMS Sustainable environmental development, weather forecasting, recurrent neural network
(RNN), long short-term memory (LSTM), spatial feature.

I. INTRODUCTION development to reduce the damage from extreme weather

Artificial Intelligence plays an important role in not only
achieving sustainable development goals with respect to
economy and society but also in achieving sustainable envi-
ronmental goals by protecting and preserving biodiversity,
in climate change, predicting extreme climatic conditions [1],
evaluating ocean health [2], weather forecasting [3], [4], [5]
and preventing spread of diseases [6], [7]. Now more than
ever, environmental sustainability is becoming extremely
crucial. The provisional World Meteorological Organiza-
tion (WMO) State of the Global Climate 2021 report draws
from the recent evidences to show how our earth is chang-
ing before our eyes. Weather prediction and meteorolog-
ical analysis contribute significantly towards sustainable
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events, to decrease weather-related losses including protec-
tion of habitat, livelihood, economy which could otherwise
set-back the progress in development by years.

Weather forecasting is the prediction of weather conditions
for a given location and time through application of science,
technology and principles of physics. The meteorological
features such as atmospheric pressure, temperature, humidity,
wind speed, precipitation of a given location collected over a
time frame provides quantitative data describing the state of
atmosphere at that particular point of time which is used for
understanding the science of atmospheric processes to fore-
cast future atmospheric state. Weather forecasting helps to
plan the outcomes and influence of future weather conditions
in our day-to-day activities. The ability to detect impend-
ing snow, rain, heat waves and floods help the public and
government to plan and prevent its dreadful consequences.
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The information about future weather conditions helps to
maintain commercial, economic, environmental and social
interests. For example, weather forecasts in agriculture helps
the farmers to plan their harvests and work load, utility com-
panies to purchase sufficient supplies of power and natural
gas, inventories and stores to match the demand and supply of
resources, public to plan their outdoor activities and govern-
ment to communicate the weather warnings to general public
to protect their life and property within sufficient time.

In the recent years, the number of climate monitoring sys-
tems has increased providing large amounts of hourly, daily,
weekly, monthly and yearly weather-related information, and
data remains transparent. This data is stored and provided so
that other departments can utilize it by efficiently analyzing
weather forecasts. The research is aimed at developing a
machine learning platform for predictive modeling in the case
of sustainable environmental management.

The proposed work targets to accelerate the discovery of
new knowledge and optimize decision-making in sustain-
able environmental management. For that purpose, it is pro-
posed to design and implement a machine learning (ML)
pipeline that incorporates the necessary modules for a data-
driven, accurate and effective weather forecasting. For effec-
tive forecasting, it is necessary to identify the interactions
between meteorological features that indirectly contribute to
climate change. An emphasis is made on temperature fore-
casting and building a deep neural network model to forecast
weather while simultaneously learning interactions of differ-
ent predictor variables. Therefore, in this paper, we propose
a model for successful weather forecasting by considering
the mutual influence of various meteorological features with
target weather feature to be forecasted.

The major research contributions of our work are as
follows:

e The proposed SFA-LSTM model is novel for multiple-
input-single-output predictions in context of spatial
feature interpretability in time series prediction. To the
best of our knowledge, this is the first work on spa-
tial feature time series prediction model where the
spatial feature attention weight is aligned directly to the
output feature.

e The model s trained to capture temporal patterns across
multiple time steps and spatial feature interactions
across multiple predictors to forecast the target vari-
able. The target feature learns from both temporal and
spatial feature contributions.

e Spatial feature attention mechanism is considered to
grasp the quantitative mutual influence of input fea-
tures on target feature.

e The proposed model will provide meaningful spatial
feature interpretations which will be verified using
domain knowledge

Il. RELATED WORK
The weather is a dynamic, continuous, multi-dimensional and
chaotic process [8]. Numerous methods have been developed
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to predict the weather. This section focuses on the work
that has been done in the field of weather forecasting using
machine learning and deep learning techniques and a special
interest is taken on temperature forecast. Many researchers
have tried to solve weather forecasting problem using dif-
ferent machine learning techniques [4], [5], [9], [10], [11]
with successful results. Holmstrom et al. [9] proposed linear
regression and functional regression which forecasts weather
by searching historical weather patterns which are most simi-
lar to current weather pattern and Rasel ef al. [5] performed a
comparative study between Support Vector Regression [12]
and Artificial Neural Networks [13] for temperature and
rainfall prediction. The studies on deep learning neural net-
works [14], [15], deep belief networks [16], [17], [18] provide
promising results with its “deep” architecture and higher
learning ability in comparison to ““shallow” machine learning
models [14].

In the last decade, Recurrent Neural Networks (RNNs)
have gained widespread attention and developed rapidly due
to their powerful and effective modeling capabilities [19].
However, traditional RNN suffers from short term memory
and vanishing gradient problems [20], [21], [22] which makes
it difficult to capture long term dependencies, an impor-
tant factor to capture historical relevant data over long
time series to accurately predict the future weather. In the
world of RNN, the Long-Short Term Memory (LSTM) based
RNN overcomes the drawbacks of traditional RNN and
formulates long-term dependencies between training sam-
ples [2], [23], [24], [25]. Shi et al. [26] proposed convLSTM
network for precipitation nowcasting which consist convo-
lutional structures in both input-to-state and state-to-state
transitions which captures spatiotemporal relationships better
than a fully connected LSTM network. A lightweight tem-
poral convolutional neural network (TCN) has been devel-
oped [27] for short-to-medium range weather forecasting
which is limited to regional forecasting and two weather
parameters.

Karevan [24] proposed transductive LSTM (T-LSTM),
alocalized version of LSTM where the samples in the vicinity
of test point have a higher impact on model fitting which
is computationally expensive and not suitable for multivari-
ate time series prediction. The drawback of transductive
learning is the number of models that needs to be trained
since the parameters of the model depend on individual
test points. Kreuzer [28] proposed a new convLSTM model
for local temperature forecasting where it uses six convo-
lutional layers connected to an LSTM layer and a dense
layer. Multi-stacked sequence to sequence LSTM model [29]
to forecast temperature, wind speed and relative humid-
ity and the proposed model could forecast weather with
high accuracy. A similar approach was taken by Park [30]
to restore the missed temperature data using four layered
LSTM model which outperformed the deep neural net-
work (DNN). Three DNNs, (Multi-Layer Perceptron) MLP,
LSTM and CNN+LSTM were used by Roy [31] to forecast
air temperature of weather station and the result indicated
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that prediction accuracy increases with increase in model
complexity.

Several other models have been proposed based on
LSTM-RNN but are ineffective to forecast weather accurately
when there is a change in weather pattern. The shift in weather
often depends on changes observed in subsequent mutually
related weather variables. Using multivariate weather vari-
ables to forecast a single target weather feature can be used
to determine the mutual influence and attention weight (spa-
tial influence) of multiple weather variables with respect to
target variable. The attention mechanism [32] can be used
to assign different weights to input variables by determining
which part of the input data needs to be focused on in the
model. An attention aware LSTM model was proposed [33] to
forecast soil moisture and soil temperature to perform multi-
feature attention and temporal attention. The model produces
an average R2 of 0.908 and 0.715 and RMSE of 1.665 and
2.756 for soil temperature and soil moisture respectively.
Shi et al. [34] demonstrated a Self-attention joint spatiotem-
poral convLSTM model for temperature prediction which
introduces a unified memory to define spatial and temporal
models. However, the complexity and variance explained by
these models are comparatively lesser.

Table 1 summarize the existing LSTM based temperature
forecasting models with their limitations.

A. RESEARCH GAP

The identified research gap is to accurately forecast weather
when there is a sudden change in weather patterns. The major
limitations described in table 1 is that the proposed baseline
and derived models forecast temperature inaccurately when
there is a change observed in weather over the learned time
sequence. Progressively, meteorological studies suggest that
the shift in weather often depends on changes observed in
subsequent mutually related weather variables. This interac-
tion of mutually correlated weather features can be learned
during weather forecasting to accurately predict a weather
feature when there is a sudden change observed in weather.
Thus, we aim to develop a spatial feature attention mechanism
to simultaneously learn input feature interactions in long
sequences to predict the target feature accurately.

IIl. LONG SHORT-TERM MEMORY

Traditional RNN is general form of feed forward neural
network with an internal memory. The decision of the output
is made by current input which is learned from the previous
input and thus the output is connected to previous inputs
of the sequence. It is recurrent in nature because it computes
the output using the same function for every input while
the output is dependent on previous calculations. They use
internal state memory to process sequences of input.

Fig. 1 depicts a simple RNN where X to X, are the inputs
at every sequence, Hyp to Hy, are the corresponding outputs
produced for every sequence. Here, we can clearly see that all
the inputs are related to each other where A denotes a single
RNN cell. The formula for current state, activation function
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FIGURE 1. An unrolled recurrent neural network.

and output state are described in (1), (2) and (3) respectively,
where H is the single hidden vector, W is weight, Wy, is the
weight of previous hidden state, Wy, is the weight of current
input state, Wy is the weight at output state, Y is the output
state and tanh is the activation function which regulates the
values to range [—1,1].

Hy = £ (Hi—1, X0) (D
H; = tanh (Wp—1Hi—1 + WhXy) 2)
Y, = WyH; 3)

LSTM [38], an artificial RNN architecture was proposed
by S. Hochreiter and J. Schmidhuber in 1997. It uses a
gated mechanism (input gate, output gate and forget gate)
to control the flow, storage and dependency of information
over time [39] thus making it well suitable for training long
sequential data. LSTM was a solution to handle long term
dependency, vanishing gradient and exploding problem of
traditional RNNs. Fig. 2 depicts a gated LSTM network.
Here, X; and H; denotes input and output of particular cell
respectively. In the input gate, the sigmoid function regu-
lates the information (4) and decides on the values to be
remembered using H;_1 and X;. The tanh function (5) assigns
weights to the values passed and produces a vector V; con-
taining values ranging from —1 to 1.

it = o (Wi. [Hi—1, X¢l) 4)
Vi = tanh (We. [H—1, X¢]) Q)
fe = o (Wr. [Hi—1, Xi]) ©)
Ot = 0 (Wo. [Hi—1, Xi]) (7
H; = O; ® tanh (C,) ®)

The output produced at input gate input gate is the element-
wise product of V and regulated values (i) to produce useful
information. The forget gate is responsible for discarding
the information that is no longer useful. The inputs of this
gate Hi_jand X; are multiplied with weight matrix W¢ and
are passed through the activation function which assigns a
binary value O or 1 to either discard or retain the informa-
tion accordingly (6). C; and memory of the block is used
for extracting the useful information from output gate. Tanh
function provides weights to the values which is multiplied
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TABLE 1. Summary of existing LSTM based temperatue forecasting models.

Problems Covered Models Dataset Results Limitation
Used
Period features

[24] | Forecast maximum and | Transducti | Daily. 2007 to Minimum Temperature, Least mean average In transductive learning,
minimum temperature ve-LSTM mid-2014 for 5 maximum temperature, error (MAE) 1.5 and | separate model needs to be
by exploiting local cities dew point and wind speed 1.3 is obtained in trained for each test-point
information in time- predicting minimum | making it unsuitable for large
series to obtain good and maximum data. It is computationally
performance. It temperature expensive and the model
considers samples in respectively for one | parameters depend on the test
the test point vicinity to day ahead data point feature vector.
have higher impact in based on past 10
forecasting. days for nov/dec test

set.

[33] | Forecast soil ILSTM_S Daily data Month of the year, day of Average R2, MAE Model performance decreases
temperature and soil oil collected for 10 the year, soil moisture, and RMSE values with increase in lead time
moisture by taking flux tower sites longwave radiation, obtained for
predictor attention, with longest shortwave radiation, air predicting soil
temporal attention and duration temperature, atmosphere temperature are
multi-feature attention between 1996- pressure, wind speed, 0.947, 0.988 and
into account. 2014 precipitation and soil 1.274

temperature

[35] | Forecast hourly soil BiLSTM Hourly data air temperature, air Minimum MAE and | Results are not consistent with
temperature based on collected from temperature maximum, air | RMSE for all the sites tested. No major
daily average soil 2010 -2014 temperature minimum, predicting hourly ST | architectural changes observed
temperature (ST) and wind speed average, solar obtained is 1.53 and | in the model.

ST amplitude which is radiation average, dew 0.22 respectively.
the difference between point temperature, relative | R2 0of 0.923 is
hourly ST and daily humidity minimum, obtained
average ST relative humidity

maximum, vapour

pressure and soil

temperature

[36] | Test the performance of | ConvLST Hourly data Air temperature, wind The average RMSE Not able to predict well with
DNN in temperature M & collected speed, relative humidity, and MASE obtained | change in weather patterns.
forecasting for upto 24h | multivariat | between 2009 — | relative air pressure, cloud | by convLSTM is convLSTM performs best after
in comparison to e LSTM, 2013 and 2014- coverage, wind direction, 2.10 and 0.93 and 6h.

SARIMA and if the LSTM, 2018 hourly precipitation. multivariate LSTM
model is able to predict | SARIMA, is 2.37 and 0.99
immediate weather Naive

changes forest

[37] | Addition of spatial Spatio- Daily data from 18 weather variables Least MAE of 1.43 Does not provide spatial
information in LSTM temporal 2007 to mid- which includes and 1.22 is obtained | weights obtained from
model to improve stacked 2014 for 5 cities | temperature and humidity in predicting prediction analysis since the
prediction performance | LSTM minimum and spatial attention module is

maximum stacked above temporal
temperature attention module. Only captures
respectively for one local spatial correlations and
day ahead data not global correlations

based on past 10

days for nov/dec test

set.

with the regulated values O obtained from sigmoid func-
tion (7), and the resultant vector H; (8) is the output of the cell
which acts as input to the next cell. Since the proposition of
original LSTM architecture, several different variations and
approaches have been proposed to enhance the performance
of the model such as bidirectional LSTM [40], encoder-
decoder based LSTM [41] and many more [12], [42].

IV. PROPOSED WORK
We propose a novel deep learning Spatial Feature attention-
based LSTM (SFA-LSTM) model to capture accurate spatial
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and temporal relations of multiple weather variables to fore-
cast a weather feature. Significant spatial feature interpre-
tations of historical data aligned directly to output feature
helps the model to forecast data accurately. The model is
built using encoder-decoder architecture, where the temporal
dependencies in data are learnt using LSTM layers in the
encoder phase and spatial feature relations in the decoder
phase.
The proposed model:

e provides meaningful spatial feature interpretations
which are verified using domain knowledge
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FIGURE 2. LSTM gated architecture.

e has spatial attention module built in the decoder phase
to explicitly capture spatial features correlation which
aligns directly with the output

e is computationally inexpensive, scalable and is depen-
dent only on past historical data

e consists spatial feature attention and long-term tempo-
ral dependency mechanisms coordinated in a unified
architecture to forecast accurately while offering pre-
cise spatial feature interpretability

e can be extended to different domain specific use cases
for multivariate time series forecasting

A. SPATIAL FEATURE ATTENTION BASED LSTM

(SFA-LSTM) MODEL

In this section, we propose SFA-LSTM model and inves-
tigate its computational complexity. Contrary to previous
works [47], [48], [49], in SFA-LSTM, the spatial attention is
designed in the decoder layer to simultaneously learn through
relevant time steps and significant variables.

Our model constitutes of two major divisions which are
encoder and decoder. Given a multivariate time series with
N features denoted by X = [xl, x2,x3 .. xNT ¢ RNXTin
where Tj, is the total length of input sequence and x' = [x{,
xé, xé, ...,xiTin]T e RT" j ¢ [1, N] indicates time series
associated with each input feature. To represent all input
features at time step ¢ € [I, Tin] such that X = [x1, x, ...,
xrin]T is the compact form of all input time series then we
denote it as x; = [x,l, xtz, x,?’, va ]T € RV, Analogously,
the output univariate time series for Toytime steps is denoted
by y € R™, where y; € R is the output at time step j.

In our model, for every time step ¢, temporal dependencies
and spatial feature attention are calculated. The input to the
encoder at a time step 7 is x; = [x}, x>, x>, ..., xN]T e RV.
The encoder consists of an LSTM layer which calculates
temporal hidden states and dependencies for input time series
X = [x1, x2, ..., x7in]". The LSTM layer reads the input
sequences from x fo x7i, and generates a sequence of hidden
states at the encoder, represented as H = [hy, ho, ..., hnn]T,
where /i, € RC. The hidden states produced at the encoder for
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every time step ¢ acts as temporal embeddings for the decoder
temporal LSTM layer (LSTM,). i, and ¢, are hidden state and
cell state of LSTM,.

The spatial feature attention module is built in the decoder
parallel to temporal layer to capture spatial feature correla-
tions while attending most relevant time steps as it directly
aligns with the output feature as shown in fig. 3. Spatial
feature embeddings are generated independently using feed
forward neural network which are input to the spatial fea-
ture attention module. The feedforward neural network used
to compute spatial feature embeddings include a series of
computations where the data from previous hidden state of
decoder is concatenated with input features acted upon by
soft-max activation function to assign weights in the decoder
LSTM. The spatial feature embeddings do not have any feed-
back connections i.e., for each feature x = [xi, xé, xé,
x%in]T e RIm { ¢ [I,N ], the spatial embeddings for all
features are computed from X = [xl, X2 x3, . ,xN]T and
denoted as § = [s!, sz, s3, oo sV1T. The spatial attention
weights are calculated in a feed forward aligned manner in the

decoder layer where h} and c} are hidden state and cell state
of spatial feature attention. ﬂ; is the spatial attention weight of
i feature calculated at output time step j using h} i which
is previous hidden state of spatial feature attention at the
decoder and s; is the spatial feature embedding of i feature.
W, € RP+Q is the learning parameter and tanh activation
function simulates the weights to the values passed (10).

dj = tanh (WaT [h}’jfl,si]) )
. exp (d! .

We then use spatial feature attention weights to calculate
spatial feature context vector fj, and it is distinct at each
time step. f; is further optimized and its dimension is reduced
using feed forward neural network with tanh activation to
produce ¢ ; which is further concatenated with the output
of previous time step O;—1. This produce an updated spatial
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FIGURE 3. SFA-LSTM working architecture to compute output O; at time step t.

feature context vector Arf, j which is input to LSTMy, the final
spatial feature attention LSTM layer.

tanh (Wefy) . 1f.j = [r7.» 0j1]
/ /

[ L hf,j]

The final step of SFA-LSTM is to concatenate the hidden

states of LSTM; and LSTMf([h;’ j,h}’ j]) which is the output
O; and append to the output list of predictions.

(1)
12)

rf 7j
0;

V. EXPERMIENTS

Fig. 4 describes the detailed workflow of modelling. We start
our implementation from the data collection and data prepro-
cessing phase which is described in detail in the next section.
Our next phase includes model setting, training, compari-
son and evaluation. The final step of our experimentation
is to compare the performance of trained models and verify
the obtained spatial feature attention weights with domain
knowledge.

A. DATASET DESCRIPTION AND DATA PREPROCESSING

In this study, we use real meteorological data of weather
station at Saskatoon John G. Diefenbaker Intl. Airport lat-
itude 52.14, longitude -106.69 collected from weatherstats
website. The datasets is an hourly time-series of 87672 data
points each from 2012-01-01 00:00:00 CST to 2021-12-31
23:00:00 containing weather variables as temperature, dew
point, windchill, relative humidity, station pressure, sea
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pressure and wind speed. Temperature is recorded in Cel-
sius scale. Dew point is also in Celsius scale which pro-
vides the average temperature below which water droplets
begin to condense. Relative humidity provides the fraction
of water vapour present in the air. Wind speed is measured in
m/s expressing the velocity of wind and surface pressure is
measured in Pascals (Pa). These meteorological features are
selected to forecast weather because these features explain the
state of weather for a given location and time. All the eight
meteorological features are used as input features to forecast
temperature [24,33,35,36,37].

The experiment was performed on real data and thus
included some necessary preprocessing steps to reflect true
model performance. The missing values in the data were
imputed using linear interpolation in forward direction. Lin-
ear interpolation estimates the missing values in the increas-
ing order from previous values. Smoothing of data using
simple moving average with an appropriate window length is
an effective technique in time series forecasting as it removes
noise and random variations from data without neglecting the
weather variations in time. For our study, we perform simple
moving average of window length = 5. Data smoothened
over a higher window length might not represent the actual
nature of weather. In the final stage of data preprocessing,
we normalize our data using MinMax Scaling Technique.
Since the proposed model is of multi-input and single-output
form and our multiple input time series are in different unit
and range, we normalize it in the range O to 1 using the
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FIGURE 4. Detailed workflow of modelling.

equation 13 where Xi represents the ith data point in time
series from [0, n] and Xmin and Xmax represent the minimum
and the maximum data point in the sequence respectively.

X;= Xi—Xmin (13)
Xmax—X min

The data is split into training set and testing set of propor-
tion 0.9 and 0.1 respectively. The training dataset contains
78877 rows and the testing data contains 8743 rows. Both
training and test sets are processed using moving window
algorithm to obtain the input and output sequences. The input
sequence contains seven features i.e. temperature, dew point,
windchill, relative humidity, station pressure, sea pressure
and wind speed and the output sequence contains temperature
values. We compare the performance of SFA-LSTM with
several baselines and derived models which will be discussed

in the next sections.

B. MODEL SETTING AND TRAINING

We applied the processed data containing seven weather
variables described above to predict temperature and used
tensorflow backend in our experiments. Input variables to
SFA-LSTM and other studies models are temperature, dew
point, windchill, relative humidity, station pressure, sea
pressure and wind speed and the output variable (target vari-
able) is temperature. LSTM is an artificial RNN with feed-
back connections which enables it to process long sequences.
Hyperparameters are the values which need to be chosen or
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predefined before the training of algorithm. These hyperpa-
rameters are the not the parameters of machine learning that
will be learned during the training of model. The hyperparam-
eters of LSTM include learning rate, hidden states, batch size,
epochs and optimizer. The working evaluation mechanism of
hyper parameter tuning is depicted in Fig. 5.

Meteorological Time Series Data

v v
Train Data Test Data
v v
Hyper- ’ Model N

parameters 3 Training =l
T

Train Evaluation
Metrics |

Test Evaluation
Metrics

FIGURE 5. Evaluation mechanism in hyperparameter tuning.

We chose Bayesian Optimizer model to tune the hyperpa-
rameters of SFA-LSTM. This is to keep a track of past evalu-
ation results which will be used in probabilistic algorithm of
Bayesian algorithm. Learning rate decides how fast the model
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will converge or diverge or in other words, it decides on how
quickly the learning parameters of the model are updated. If a
higher learning rate is set then the model may not converge
and produce biased results and if a lower learning rate is
set then it will drastically slow down the learning. We train
our model three times for learning rates 0.01, 0.001 and
0.0001 and learning rate 0.0001 results to the minimum loss
of 8.413637260673568e-06. Hidden states in deep learning
decide the capacity of the model to learn. It is the main
measure of learning capacity of the deep learning model.
A thumb rule is that the more the complex model is, the more
hidden units/states it requires to learn.

We train our model for 16, 32, 64 and 128 hidden states
using Bayesian optimizer and the choose 32 for final model
training. Batch size of model defines the number of resources
allocated for model training and the speed of model. Defining
a higher batch size for model training is computationally
expensive and a smaller batch size will induce noise in the
model. Thus, we train our model for batch size 128, 256 and
512. Bayesian optimizer produces the output in favor of batch
size of 128. The value of epoch decides on the number of
complete iterations of the data and model to be run. The value
can be anything until infinity and the optimal value decides on
how well the model fits the data. A smaller value for epochs
will result in higher error loss and a bigger value may result
to overfitting. We trained our model for 1 to 50 epochs and
the results produced are shown in fig. 6. The model results in
low MSE in range of e-05 after 15 epochs and we choose the
size of epochs to be 20.

Training curve

0.0020

0.0015

0.0010

Loss (MSE)

0.0005

_

0 10 20 0 40 50
Epoch

0.0000

FIGURE 6. Training curve for epochs vs loss for 50 epochs.

The hyperparameters of SFA-LSTM are determined using
Bayesian optimization technique i.e, learning rate of the
model is 0.001, number of epochs is 50, optimizer is Adam
and the activation function used is Tanh.

C. MODEL EVALUATION
We use three metrics i.e., Mean Sqaure Error (MSE), Mean
Absolute Error (MAE) and R to evaluate to the performance
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of SFA-LSTM and other state-of-the-art predictive models.
MSE is the squared error loss corresponding to expected
value and MAE is the average absolute error loss in a set
of predictions. R? describes the magnitude proportion of
variance explained by the predictive model. The performance
metrics are calculated as follows:

N (. _ /'2
MSE = Zl ();:[ yz) (14)
N, _ /
MAE — Zl |x yl| (15)
N (.. /_2
R2 — 1_ Zl (yl yl) (16)

S (3 = Yave)”

where y; is the actual temperature value at time step i, y; is
the predicted temperature value at i time step, Yavg 18 the
mean of actual temperature values and N is the sample size.
These error scores are used as common performance metrics
for regression models [50], [51], [52].

D. MODEL COMPARISON

The performance of the proposed model SFA-LSTM is
compared with several baseline and derived models with
state-of-the-art model results. We compared SFA-LSTM
with baseline models such as Support Vector Regres-
sion (SVR), Gated Recurrent Unit (GRU), Vanilla LSTM,
Stacked LSTM, Encoder-Decoder LSTM (Enc-Dec LSTM),
1D-convolutional LSTM (convLSTM), Bi-directional LSTM
(Bi-LSTM) and derived models which are - Sequence
to Sequence LSTM (Seq2seq-LSTM), Attention LSTM
(Att-LSTM), Sequence Self-Attention LSTM (SeqSelf Att-
LSTM), LSTM-BIiLSTM and Spatiotemporal Attention
LSTM (STAM LSTM) which has been widely applied to
predict temperature values.

The hyperparameters of the implemented models is
described in table 2. GRU is another variation of RNN
developed by in 2014 [41]. Its performance in learning
long sequences is similar to LSTM and is computationally
less expensive than LSTM because of fewer gates. GRU is
widely used in weather prediction modelling [43], [44], [45].
We also compare the performance of SFA-LSTM with the
original LSTM model (Vanilla LSTM). We implemented an
integrated LSTM-BiLSTM model which was proposed by
Maddu et al. [35] to forecast soil temperature with multivari-
ate input variables. Sequence to Sequence LSTM (seq2seq
LSTM) model was proposed by Zaytar et al. [29] to fore-
cast temperature with temperature, wind speed and relative
humidity as input features. STAM-LSTM is a novel state-
of-the-art spatiotemporal attention- based LSTM model pro-
posed by Gangopadhyay et al. [46] for multivariate time
series prediction. We use Keras Self-Attention package to
implement attention mechanism in LSTM model which con-
siders context of each time step. Additionally, we also build
a custom temporal attention-based LSTM model (att-LSTM)
to compare its performance with the proposed SFA-LSTM
model. The performance SFA-LSTM is also compared the
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TABLE 2. Proposed models hyperparameters details for comparative analysis.

Model Hidden States Activation Hidden Learning Dropout Optimizer Batch Epochs | Additional
Function layers Rate Size
GRU 16 ReLu - 0.01 - Adam 32 20 -
Vanilla LSTM | 16 ReLu - 0.01 - Adam 32 20 -
Stacked 16 ReLu 2 LSTM 0.01 - Adam 32 20 -
LSTM
Enc-Dec 16 ReLu - 0.01 - Adam 32 20 Output Layer:
LSTM Time Distributed
ConvLSTM 16 ReLu - 0.01 - Adam 32 20 Conv1DFilter: 64,
Kernel Size: 2
BiLSTM 16 ReLu - 0.01 - Adam 32 20 -
Seq2seq 100 ReLu 2 LSTM | 0.01 - RMSProp 32 20 -
LSTM &1 dense
Att-LSTM 16 ReLu 1LSTM | 0.01 - Adam 32 20 -
Seq Self-Att | 16 ReLu 1 LSTM 0.1 - Adam 32 20 Attention
LSTM Activation:
Sigmoid
LSTM- 14,14,14,14,6 ReLu 3 LSTM | 0.01 0.20 Adam - 10 -
BILSTM & 4 alt.
dropout
STAM-LSTM | 32 ReLu - 0.01 0.20 - 256 10 Temporal
Dimensionality
Reduction: 4
SFA-LSTM 32 Tanh 1 LSTM 0.0001 - Adam 128 25 Spatial Feature
Attention Module
TABLE 3. Feature comparisons between existing and the proposed SFA-LSTM model.
Method Com. | Co | Hi Sp. Hidden | Activatio Hidden | Learnin Dropout | Optimizer | Batch | Epochs | Additional
In. m. st. | Feat | States n layers g Rate Size
Sc. | De | wure Function
p. Int.
Transductive x x X X 32 Tanh 1 0.0001 - Adam 128 25 Transductive
LSTM [24] LSTM cosine
similarity
Integrated Bi- x v v x Tanh - - - Adam - - -
LSTM [35]
Multivariate x v v x 14,14,1 | ReLu 3 0.01 0.20 Adam - 10 -
convLSTM 4,14,6 LSTM
[36] & 4 alt.
dropou
t
ILSTM [33] x v v x Tanh 6 - - - - 1000 Multi-
convol feature
utional attention
Spatio- x v v X Tanh - 0.001 - - 64 30 -
Temporal
Stacked
LSTM [37]

Our v v v v 32 Tanh 3 0.0001 - Adam 128 225 Spatial
proposed LSTM Feature
SFA-LSTM Attention

Module

Com. In'.: Computationally Inexpensive, Com. Sc.2: Computationally Scalable, Hist. Dep.’ Historical Dependency, Sp. Feature Int*.: Spatial Feature Interpretability.

algorithms and their performances obtained in literature.
The information has been tabulated in table 3 with feature

comparison.

VI. RESULTS
A novel deep learning model, SFA-LSTM for short term
weather forecasting has been proposed in this research. The
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proposed model is evaluated using statistical error metrics i.e,
MAE, MSE and R? and its performance is compared with
baseline, derived and existing models surveyed in literature.
The results will also include an analysis on the spatial fea-
ture interpretability and the spatial feature attention weights
obtained during model learning with its verification using
domain knowledge.
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A. SHORT TERM TEMPERATURE PREDICTION AND
MODEL COMPARISON

Table 4 contains the quantitative findings and prediction
performance of our proposed algorithms listed in table 2.
These models are trained and developed by us using the
hyperparameters described in Table 2 with input sequence
of 24hr and output sequence of lhr. This means that lhr
temperature is predicted based on past 24hr meteorological
values. The performance of SFA-LSTM which outperforms
other proposed models is also compared with the results of
existing models from literature (feature comparison with our
proposed SFA-LSTM in Table 3) and the same has been
documented in Table 5 and visually depicted in fig 7.

TABLE 4. Empirical results for 1hr ahead prediction with input sequence
of past 24hr.

Model MSE MAE R2 Score
SVR 14.508 3.43560 0.85810
GRU 0.13154 0.2888 0.9994
Vanilla LSTM 0.15489 0.31904 0.99932
Stacked LSTM 0.1106 0.25516 0.99951
Enc-Dec LSTM 0.13978 0.29945 0.9993
ConvLSTM 0.51771 0.55076 0.99774
BiLSTM 0.13645 0.29561 0.99940
Seq2SeqLSTM 0.2015 0.37154 0.99912
Att-LSTM 0.17042 0.34381 0.99925
SeqSelfAtt-LSTM 0.17564 0.31601 0.99923
LSTM-BIiLSTM 0.91977 0.7070 0.99599
STAM-LSTM 1.3746 0.9028 0.9940
SFA-LSTM 0.0871 0.2317 0.9996

TABLE 5. Model performance comparison based on error scores listed in
literature.

Model MSE MAE
Our proposed (best of Table IV) 0.0871 0.2317
SFA-LSTM

Transductive LSTM [24] 3.74 1.50
Integrated Bi-LSTM [35] 3.01 1.33
Multivariate convLSTM [36] 0.1661 0.2797
ILSTM [33] 0.558 0.608
Spatio-Temporal Stacked LSTM [37] 3.64 1.43

Clearly, our proposed model SFA-LSTM out performs the
baseline and derived model as well as the existing models
with MSE of 0.0871 and MAE of 0.2317 explaining 99%
variance of our data. The prediction output is depicted in fig 8
for 48hr ahead data in testing phase, in fig 9 for 96hr ahead
data in testing phase and in fig 10 for the whole testing data.
The interactions of various correlated meteorological input
features help to predict temperature accurately when there is
a change in weather pattern over the sequence.
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FIGURE 7. Performance of proposed model compared with models listed
in literature based on MSE and MAE.

Spatial Feature Attention LSTM (SFA-LSTM) 48hr Ahead

2 g True value

— Predicted

0

(c)

Temperature

FIGURE 8. Temperature predicted vs temperature observed by SFA-LSTM
for 48hr ahead.

B. SHORT TERM TEMPERATURE PREDICTION FOR
DIFFERENT INPUT SEQUENCES AND OUTPUT SEQUENCES
The performance of SFA-LSTM for various input and output
sequence lengths is documented in Table 6. On comparison,
we can safely say that SFA-LSTM has better prediction
accuracy as compared to other models for different input and
output sequence lengths.

C. SPATIAL FEATURE INTERPRETABILITY

Table 7 provides the correlation between input features used
for temperature prediction. Correlation is a statistical value to
measure the amount of linear dependency between two vari-
ables. The use of this information in temperature prediction
will help us to understand the spatial feature interpretability
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TABLE 6. Temperature predicted with 24hr, 48hr and 72hr input sequence for 1hr, 2hr and 3hr ahead.

Seq Steps Mean Square Error (MSE) Mean Absolute Error (MAE)
Len ahead GRU LSTM Bi-LSTM SFA- GRU LSTM Bi-LSTM SFA-LSTM
LSTM
24 1 0.118 0.157 0.620 0.0640 0.262 0.315 0.656 0.1894
2 0.220 0.241 0.646 0.1824 0.334 0.355 0.630 0.3054
3 0.560 0.509 1.430 0.3867 0.525 0.499 0.930 0.4323
48 1 0.275 0.0738 0.330 0.0701 0.451 0.201 0.459 0.1975
2 0.291 0.363 0.764 0.2001 0.383 0.465 0.686 0.3175
3 0.767 0.5009 0.8417 0.683 0.628 0.5211 0.668 0.6790
72 1 0.127 0.098 0.625 0.0518 0.271 0.240 0.606 0.1682
2 0.495 0.333 0.640 0.1820 0.552 0.426 0.618 0.3104
3 0.672 0.541 0.9704 0.364 0.613 0.5271 0.7013 0.4174
TABLE 7. Correlation matrix of feature set.
Feature Temperature Dew point Wind chill Relative humidity Pressure Station Pressure sea Wind speed
Temperature 1 0.9291 0.8608 -0.4617 -0.2945 -0.4743 0.0987
Dew point 0.9291 1 0.8783 -0.1271 -0.3443 -0.5179 0.0271
Wind chill 0.8608 0.8783 1 -0.1980 -0.3353 -0.4896 0.0044
Relative humidity -0.4617 -0.1271 -0.1980 1 -0.0521 0.0168 -0.2280
Pressure station -0.2945 -0.3443 -0.3353 -0.0521 1 0.9775 -0.2156
Pressure sea -0.4743 -0.5179 -0.4896 0.0168 0.9775 1 -0.2086
Wind speed 0.0987 0.0271 0.0044 -0.2280 -0.2156 -0.2086 1

Spatial Feature Attention LSTM (SFA-LSTM) 96hr Ahead

— True value
- Predicted

Temperature (c)

0 20 40 60 &0
Hour

FIGURE 9. Temperature predicted vs temperature observed by SFA-LSTM
for 96hr Ahead.

between the input feature and the target feature. The spatial
feature attention weights obtained from learning the SFA-
LSTM model is depicted in fig. 11.

Clearly, temperature contributes maximum towards fore-
casting future temperature values i.e., upto 20% of total fea-
ture contribution. Dew point contributes upto 19% towards
temperature prediction and is linearly correlated to a great
extent. Wind speed is seen to contribute the least with only
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FIGURE 10. Temperature predicted vs temperature observed by SFA-LSTM
for entire test set (8743hr).

0.85% of total contribution and is also correlated to tempera-
ture to a very small extent.

We observe that the spatial feature attention weights
obtained from SFA-LSTM are verified using domain knowl-
edge. The spatial feature attention mechanism helps to fore-
cast weather accurately when there is a change in weather
values over the sequence.
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FIGURE 11. Spatial feature attention weights.

VIl. CONCLUSION

In this work, weather forecasting problem is addressed with
the vision to accurately forecast weather when a sudden
change in weather pattern is observed. To address this prob-
lem, we used the concept of mutual correlation between
meteorological features. In this paper, we proposed our novel
SFA-LSTM model with a built-in spatial feature attention
mechanism to capture long term dependencies and spatial
feature correlations of multivariate input time series to pre-
dict a single output feature. The spatial feature attention
mechanism grasps the quantitative mutual influence of input
features on target feature which leads to accurate predic-
tions including when sudden changes in input sequences are
observed.

The magnitude of shift in a weather feature can be learned
from simultaneous shifts observed in subsequent mutually
related weather variables. Using multivariate weather vari-
ables to forecast a single target weather feature can be used
to determine the weight of spatial feature influence of multi-
ple weather variable on the target variable. Capturing such
correlations during model learning helps to predict future
weather accurately over long sequences. The proposed model
was built using encoder-decoder architecture, where the tem-
poral dependencies in data are learnt using LSTM layers
in the encoder phase and spatial relations in the decoder
phase. SFA-LSTM is seen to outperform the state-of-the-art
model performance with providing accurate spatial feature
interpretability.
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