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ABSTRACT Collaborative and Federated Leaning are emerging approaches to manage cooperation between
a group of agents for the solution of Machine Learning tasks, with the goal of improving each agent’s
performance without disclosing any data. In this paper we present a novel algorithmic architecture that tackle
this problem in the particular case of Anomaly Detection (or classification of rare events), a setting where
typical applications often comprise data with sensible information, but where the scarcity of anomalous
examples encourages collaboration. We show how Random Forests can be used as a tool for the development
of accurate classifiers with an effective insight-sharing mechanism that does not break the data integrity.
Moreover, we explain how the new architecture can be readily integrated in a blockchain infrastructure to
ensure the verifiable and auditable execution of the algorithm. Furthermore, we discuss how this work may
set the basis for a more general approach for the design of collaborative ensemble-learning methods beyond
the specific task and architecture discussed in this paper.

INDEX TERMS Algorithm auditing, anomaly detection, blockchain, collaborative learning.

I. INTRODUCTION
In a data-driven world, Machine Learning (ML) has progres-
sively established itself as a fundamental tool that spreads
across multiple fields and permeates an increasing variety of
applications. After a decade of fast technological develop-
ments mainly driven by the exceptional new results achieved
by Deep Learning [17], [28], a new wave of reflection is
emerging about the scope, applicability, and technical limi-
tations of these techniques. In particular, an increasing new
attention is devoted to the issues of data ownership, data pri-
vacy, and data trading. In this setting, multiple related aspects
are being analyzed and systematized within the frameworks
of Federated Learning (FL) [23], [34], [53], [55] and Col-
laborative Learning (CL) [1], and several real-world prob-
lems have been approached with these techniques, e.g. in the
banking [32], [54] and health [12], [44] sectors, even beyond
classical domains [31], and considering privacy and fairness
constraints [26], [45]. This new fields deals with the study of
various scenarios where multiple agents own separate batches
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of data, and they are willing to cooperate for the construction
of some ML models. This collaboration leverages different
communication strategies to overcome the limitations of the
single agents, which can be due to scarcity of data or scarcity
of computational resources, but with the important constraint
that data should never leave the location where it resides.
This approach is in stark contrast with more traditional data-
centralizedmethods, and it paves theway for a number of new
algorithms that focus on various aspects of data ownership.
For a comprehensive analysis of the key goals, applications,
and challenges of FL we refer to the recent overviews [25],
[52], [53]. To put our approach into context, we just recall
that there is an important distinction between centralized and
decentralized FL, and we recall in the following some impor-
tant concepts discussed in [2], [25] and [14]. In the first case,
a central orchestrator coordinates a set of distributed agents
(or nodes) and their computational resources to improve
the fitting of a central model. In the second case, instead,
the entire process is collectively directed by the distributed
agents. Heterogeneous cases are also of interest, where the
central controller acts, or is queried, only when needed. In all
cases, the focus of current research are the issues related to
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communication efficiency, to the influence of the topology of
the connections in the agents’ network, and the quality of the
learned model. Additionally, in the decentralized approach
the absence of an omniscient orchestrator opens the way for
new possibilities for privacy preservation and flexibility, but it
poses new challenges for the security of the communications,
the integrity of the system, and the accuracy of the algorith-
mic procedure.

In this paper we present a fully decentralized distributed
and collaborative learning framework (see [25, Sec 2.1]).
In particular, these kinds of solutions relax one of the core
assumptions of FL systems, which is the presence of a cen-
tral orchestration that maintains a global state of the model.
Indeed, in a typical federated learning scenario a federation
server is expected which collects local models and federates
a generic model to be pushed back to all local agents, while in
our approach the role of federation is only centered on initial-
isation and on enabling the running of the blockchain (BC).
For this reason, wewill refer toCollaborative Learning rather
than Federated Learning in the following when discussing
our method.

We focus on Anomaly Detection (AD) [3], [9] as a use
case for CL. The scenario is motivated by AD systems that
are common in the financial industry, such as fraud detectors
or default predictors. The peculiar characteristic of these
applications is that a classifier has to be trained to identify
anomalous cases, i.e., events that are unusual compared to
the most frequent patterns observed in the data. In particular,
anomalous examples are scarce by definition. As a conse-
quence, different agents such as banks, financial institutions,
insurance companies may foresee a benefit in collaborating
with their peers in order to trade knowledge and improve their
individual models. On the other hand, the data that is used
to train these systems is usually shared with caution, since it
typically comprises sensitive personal information regarding
the financial position or the individual characteristics of the
clients. Moreover, the possession of these data is often an
important asset for the single agents, which are possibly not
willing to give them away once for all, but would rather like
to develop an on-purpose sharing. This option is inherently
difficult with easily copyable digital data.

With these constraints and goals in mind, we present in
this paper a fully decentralized CL system where multiple
agents collaborate for the training of onemodel per agent, and
which is privacy preserving by design, robust to changes in
the network topology and to asynchronous communications,
and resistant to malicious intrusions and adversarial attacks,
in terms that will be discussed inmore details in Section IV-C.
The system is designed so that each agent trains an ensem-

ble classifier [40], i.e., a ML model that is made of multi-
ple simple estimators that are combined as atomic building
blocks. This structure makes it easy to iteratively improve
local models as well as exchanging knowledge between
agents by sharing the top performing blocks. We use in
particular Random Forests (RFs) [7] as ensemble models,
as they are well-suited for anomaly detection problems and

robust to missing data, but we comment along the paper how
this is not a restrictive choice and other ensembles could be
adopted. Moreover, the chosen design of the ML algorithm
permits to integrate the system in a BC infrastructure that
guarantees trustable and verifiable execution of the algorithm,
and certifies the communication between the nodes.

Other works have proposed solutions for the integration
of FL and CL in a BC environment [29], [30], [33], [38],
[47], [48], [51]. In this work, we introduce two main nov-
elties over existing approaches: (i) The framework supports
collaborations where the agents are connected by means of
a time-varying network in a fully decentralized scenario.
This includes the case of single agents joining or leaving the
group at different times, or exploiting the collaboration in an
on-demand fashion. This permits to treat the participation in
the collaboration as a tradable utility (see Section III-B and
Section IV-C), and leverages the BC as a verification tool;
(ii) the solution is algorithm-agnostic in its main components,
meaning that it can be applied on top of a large class of ML
models, provided that some atomic operations can be defined
(see Section III-A). In particular, the algorithm is not bound
to specific architectures or optimization methods.

The paper is organized as follows. We start by recalling the
necessary background on RF and BC in Section II, and with
these tools we introduce the novel algorithm in Section III,
discuss the full BC solution in Section IV, and comment on
the overall computational cost in Section V. We validate our
new system through a number of experiments in Section VI,
and conclude by discussing some perspectives and open prob-
lems in Section VII.

II. BACKGROUND
We start by recalling some background details in order to
facilitate the reading of the paper by researchers from both
the ML and BC communities.

A. SETTING OF THE ML ALGORITHM
In the following we assume that each agent has a labeled
dataset of examples, where each data point (e.g., a trans-
action) is represented by a d-dimensional vector x :=
(x1, . . . , xd ) ∈ Rd , collecting d features xi (e.g., the ID of
the user performing the transaction, its timestamp, the amount
transferred, etc.). Each example is associated to a label yi ∈
{0, 1} indicating whether the i-th example is normal (yi = 0)
or anomalous (yi = 1). These examples are collected in a
dataset (X ,Y) of m ∈ N data points X := {x1, . . . , xm} with
labels Y := {y1, . . . , ym}. In this paper we work with tabular
data, but this is not required in general and other data types
may be supported, such as images or texts.

For the detection of anomalous examples each agent trains
its own classifier, i.e., a map8 : X → [0, 1] that is optimized
on the training set, and that can be used to approximately
predict the class of an unseen data point x, with the usual con-
vention that the example is classified as normal if8(x) ≤ 0.5
and as anomalous if 8(x) > 0.5. We consider ensemble
classifiers, which means that we actually train a set of n ∈ N
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simpler classifiers (or estimators) φi : X → [0, 1], 1 ≤
i ≤ n, each trained on the same classification task, and define
the global prediction of 8 either by averaging, i.e., 8(x) :=
1
n

∑n
i=1 φ

i(x), or by majority voting among the n predictions
{φi(x)}ni=1. To explicitly denote the transformation from the
estimators to the ensemble and vice-versa, we use the notation
8 := Ens

(
{φi}ni=1

)
and {φi}ni=1 := Estim(8). This kind

of classifiers will be instrumental for our construction, since
they are quite straightforward to improve by enlarging the
ensemble size n and adding new simple learners, and it is
possible to mix different classifiers8 and8′ by mixing their
simple learners.

As a prototype of ensemble classifiers, in this paper we
focus on RFs [22], which use decision trees as their simple
learners. Decision trees [8] are maps φi : X → [0, 1] that
compute their prediction according to a binary tree: Once the
tree is trained on the data, at prediction time an input enters
the tree from its root, and it follows a sequence of binary
tests until it reaches a leaf node. Each of these leaf nodes is
associated to a unique label, which is the prediction assigned
by the tree to each input that falls into this leaf. At each non-
leaf node, instead, the splitting is decided by the value of a
single feature of the input, and thus a decision tree can be
understood as a sequence of binary splits of the input space
according to a subset of features at given splitting values. The
training of this structure requires to select the sequence of
features and the threshold values to define the splitting, and
this is usually realized by guaranteeing that the examples in
the training set are distributed in a balanced manner among
the leaf nodes, and adopting criteria for the growth of the tree
in depth and width. We refer to [7] for a detailed treatment of
this topic.

In addition to their basic ensemble structure, RFs perform
two randomization operations to improve their accuracy and
robustness. Namely, RFs are trained by bootstrap aggrega-
tion, i.e., each tree in the ensemble is trained on a ran-
dom subset of the full dataset, extracted by a sampling with
replacement. Furthermore, the single trees are trained with
feature bagging, i.e., each splitting of each tree is constructed
by considering only a uniformly randomly selected subset of
the features of the data.

RFs are particularly suited for tabular data and they can
deal quite effectively with missing entries thanks to their
structure that do not require the knowledge of each single
feature. Moreover, their training is quite simple and thus
suitable to be performed repeatedly, as will be the case in our
algorithm.

B. SETTING OF THE BC SOLUTION
A BC is essentially a digital ledger of transactions that is
duplicated and distributed across the participants in the BC
network. Transactions are recorded in a final and immutable
manner by the BC, providing all network members with an
identical and trustworthy real-time view of the state. Due
to its inherent characteristics, BC is the natural platform
to support privacy and trust as well as a secure execution

environment [10], [18], [35]. Our proposed BC solution
ensures a secure, auditable, and verifiable framework for
execution of collaborative and federated learning algorithms.

The idea is that each learning node in the BC network
publishes intermediate results at the end of each iteration.
These results can be consumed by other learning nodes to
improve the accuracy of their next computations. Our solution
is generic and can support any ML algorithm having the
following properties: The algorithm can be represented as a
portable computation workload (e.g., a docker image which
can be instantiated to a container running the algorithm’s
computation); the algorithm can be iterative or single-step;
and it can either be centralized and require orchestration and
synchronization between iterations or be distributed and thus
self-orchestrating.

For our proposed framework, as underlying BC technology
we leverage Hyperledger Fabric (or simply Fabric) [4], [24],
which is one of the most promising BC platforms for enter-
prises (see e.g., [19] for a comprehensive and foundational
analysis of the BC solutions and services for enterprises).

III. COLLABORATIVE TRAINING OF ENSEMBLE
CLASSIFIERS
With these tools in hand we now introduce the collaborative
learning algorithm. We first formulate the algorithm under as
general assumptions as possible, and then we provide some
specifications in the case of RFs. We will anyhow comment
on how these can be generalized to different scenarios.

A. AGENTS AND ATOMIC OPERATIONS
We assume to have a number N ∈ N of agents (or nodes)
participating in the collaboration, and denote them as V :=
{v1, . . . , vN }. Each node vj has an own dataset (Xj,Yj) of
size mj of the form described in Section II-A, and its goal
is to obtain an ensemble classifier 8j for the detection of
anomalies, working possibly beyond its own data.

We consider three atomic operations to modify an ensem-
ble: one enlarges the ensemble, one keeps its size bounded,
and one selects the top performing estimators. Assuming that
8 is an existing ensemblewith n estimators, {φi}n

′

i=1 is another
set of estimators, and k ∈ N is an integer parameter, the three
operations are formally defined as follows:
• ADD(8, {φi}n

′

i=1) returns the enlarged ensemble 8′ :=

Ens
(
Estim(8) ∪ {φi}n

′

i=1

)
.

• GET_TOP(8, k) sorts the n estimators of 8 according
to some order that needs to be specified, and returns the
top k . If n ≤ k all the n estimators are returned.

• CROP(8, k) keeps only the k best estimators of an
ensemble 8, i.e., it sets 8 = Ens(GET_TOP(8, k)).

B. COLLABORATIVE LEARNING
The group of agents is partially connected according to a
network represented by an undirected graph G = (V ,E),
where there is an edge (vi, vj) ∈ E if and only if a connection
is active between the i-th and j-th node.
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The assumption that the connection graphG is fixed is only
made for simplicity of exposition, but it is straightforward to
deal with time-varying graphs that may represent e.g., agents
entering and leaving the collaboration, or temporary fail-
ures in the connection system, and in fact an example of a
time-varying graph will be tested in Section VI. Indeed, for
the algorithm to run it is sufficient to assume that each node vj,
whenever it is interested in a communication, is able to get
the list of its first order neighbors, i.e., the set of all agents vi
such that there is a link (vj, vi) ∈ E . Moreover, each node
in practice has no need to know the entire graph, and has
no option to modify it. More advanced scenarios could be
envisioned and investigated, for example by assigning to the
agents a certain budget that can be used to establish optimized
connections to certain nodes, or by using the knowledge of the
entire connection graph to take some decisions on the learning
mechanism. We leave these extensions for future work.

To manage the communication, each node vj has a registry
Rj with a slot Rj(vi) for each of the other nodes vi. We assume
that each node vi can write a message to the slot Rj(vi) in the
registry of the node vj if this is one of its first order neighbors.
Using the registry and the atomic operations on the ensem-

ble, we are in the position to define the three fundamental
operations that each agent vj can perform to change its status
at each iteration. They are controlled by three parameters
nnew, nmax, nshare ∈ N that we assume to be globally set,
even if local parameters (i.e., node-dependent) may be used
without significant modifications. The three operations are
the following:

1) FIT: A number nnew ∈ N of simple estimators {φi}nnewi=1
are trained by the agent on its own dataset (Xj,Yj), and
the ensemble8j is enlarged as8j :=ADD(8j, {φ

i
}
nnew
i=1 ).

If the resulting number of estimators is larger than nmax,
then the method CROP(8j, nmax) is used to keep only
the best ones.

2) SHARE: The agent identifies its top nshare estimators
with the GET_TOP method, and writes them to the
registry of each of its first order neighbors. If a registry
slot contains already some estimators from previous
communications, they are overwritten.

3) GET: The agent reads its registry slot to collect all the
estimators received in the previous iterations (if any),
and adds them to its current ensemble by using the ADD
method. If this operation makes the ensemble larger
than nmax, excess estimators are removed by a call to
the CROP method.

Finally, the algorithm requires initialization and termina-
tion conditions. For simplicity we assume that each agent
vj starts with an empty ensemble 8j := Ens(∅) and runs
FIT as its first operation. Moreover, each agent terminates
its execution when the prescribed iterations are executed.

C. PROPERTIES OF THE ALGORITHM
The entire algorithm is completely decentralized, since it only
requires the existence of a communication network and the

agreement on a set of initial parameters. The model supports
time-varying networks, and it allows for completely asyn-
chronous communication, including the option for different
nodes to join or leave the collaboration at different times.

Observe that all the operations except for GET_TOP are
well defined for any type of ensemble classifier, and do not
require further specification to be implementable. The only
method-specific operation is thus GET_TOP, that requires
to define a way to rank the estimators within an ensemble.
We discuss our solution in the case of RFs in the next section,
but we remark that this choice is not unique, and that similar
design principles could be adopted to work with more general
ensembles. In this sense, the present algorithmmay be under-
stood as a family of algorithms, parametrized by the method
that is used to promote some estimators with respect to other
ones.

The importance of this ranking system is reflected in the
fact that we are employing a registrywith slots that stores only
the last written information. In this way, when a node reads
its registry via the GETmethod, it only reads the result of the
most recent call of GET_TOP transmitted by its neighbors.
This solution is used also to guarantee that the registry has

bounded memory footprint, since in this way it needs to store
at most nshare · (N − 1) estimators at each time. Similarly, the
bound nmax on the number of estimators held by each single
node controls the size of each ensemble classifier. These
two requirements can be translated to memory bounds if we
assume that each estimator has a maximal memory size.

Moreover, the only operation that can create new estima-
tors is FIT. Whenever this method is called, the newly con-
structed estimators are labeled with identifiers (vj, i), where
vj is the identifier of the creator node, and i is a progressive
counter maintained by vj. In this way each estimator in the
collaboration is uniquely identified, and it is always possible
to know which nodes trained it. Moreover, communication
between different nodes amounts only at the exchange of
estimators via the SHARE and GET methods. Both the oper-
ations of creation and sharing are thus easily secured by
means of the BC integration that we are discussing in detail
in Section IV, so that the collaboration is protected against
anomalous agents and malicious injections of information.

D. RANKING OF THE ESTIMATORS FOR RF
To obtain a fully functioning algorithm, it remains to spec-
ify the mechanism used to rank the estimators within each
ensemble, i.e., to define the GET_TOP operation. We define
it for RFs, which are the method of choice of this paper.

As discussed before, the sorting of the estimators is the
most delicate operation and the one that have the largest
potential to affect the result of the algorithm. In general terms,
we aim at using unsupervised methods for this task, namely,
we do not use the labels of the data to sort the estimators. The
reason for this choice is that any supervised operation must
rely on the data available to each node, and using the same
local data that are used for training to rank the estimators is

VOLUME 10, 2022 82899



G. Santin et al.: Framework for Verifiable and Auditable Collaborative Anomaly Detection

very likely to lead to a downplay of the importance of the
estimators received from the other nodes. For this reason,
we decided to analyze only methods that rely on the structure
of the estimators.

Although different RF pruning schemes have been intro-
duced [16], [27], [36], we use here a mechanism that allows
us to obtain a full sorting of the set of trees, and not only
a reduction of its number. To this end, we recall that each
estimator is a decision tree, and thus it can be represented
by a tree where each non terminal node v is associated with
the index s(v) ∈ {1, . . . , d} of the splitting feature, and the
corresponding splitting value x(v) ∈ R (see section II-A).
We use the splitting index s(v) to identify the type of a node,
and we regard x(v) as node feature, so that each decision tree
can be identified as D := (T ,X ), where T is a tree with
labeled nodes, and X is a vector of node features associated
to the non-terminal nodes.

Given a pair of decision trees D := (T ,X ), D′ := (T ′,X ′),
we define a similarity measure that is used to compute the
estimators’ ranking in a structure-dependent way, i.e., one
that takes into account the definition of each single estimator.
To this end we define a positive definite and symmetric
kernel k(D,D′) over pairs of decision trees. The kernel is a
modification of the tree kernel of [21], and we provide its
explicit construction in Section VII. We refer to [43], [49]
for a detailed treatment of the topic of kernel methods, and
we recall here that k can be used to encode general data
(decision trees in this case) in a possibly high dimensional
Hilbert space where standard numerical techniques are avail-
able. Moreover, the same method can be extended to other
ensembles as soon as a kernel can be defined on its building
blocks, and thus the present method has the potential to be
applied in more general settings.

In particular, it is possible to define aGaussian Process [39]
with covariance function k over the space of decision trees.
Given the process, one may select a subset of the set of trees
so that, conditioning the process on the labels associated to
these trees, the maximal standard deviation of the posterior
process is minimized. In this sense, this subset of trees may
be regarded as the one that controls the maximal variation in
the ensemble. This problem may be efficiently approximated
by a greedy algorithm [13] that selects this set in an iterative
way, and this gives the ordering of the estimators that we
are looking after. It can be shown that this process is quasi-
optimal [41], [50], meaning that the greedy selection is as
effective as a global optimization, up to a constant. Running
this algorithm until it selects k elements, we obtain an ordered
sequence D1, . . . ,Dk representing the n most important esti-
mators, thus implementing the GET_TOP operation.

IV. A BC FRAMEWORK FOR SECURE AND
TRUSTWORTHY CL
We describe now in detail our proposed framework, after
recalling the necessary background. We refer to [24] and [6]
for more details on Hyperledger Fabric.

A. BLOCKCHAIN BACKGROUND
Blockchain (BC) is a peer-to-peer network and distributed
ledger technology that allows any participant in a business
network to see the system of record (ledger). At the heart of
any BC network is a distributed decentralized ledger, repli-
cated across many network participants, that records all the
transactions that take place on the network. A transaction is
essentially an asset transfer onto or off the ledger. In addi-
tion to being decentralized and collaborative, the ledger is
append-only, using cryptographic techniques that guarantee
that once a transaction has been added to the ledger it can-
not be modified. This property of ‘‘immutability’’ makes it
simple to determine the provenance of information, allowing
network participants to be sure information has not been
changed after the fact. Each peer on the network (a network
participant) keeps a copy of the transaction ledger and world
state database, which reflects the current state of all the assets
in the network. The process of keeping the ledger transac-
tions synchronized across the network is called consensus.
A BC network uses smart contracts to support the consistent
update and controlled access of information, and to enable
ledger functions such as transacting and querying. The main
goal of smart contracts is to automatically execute the terms
of an agreement once certain conditions are met. For each
transaction, the flow of value and transaction state must be
defined [15].

Hyperledger Fabric (or simple Fabric) is a collaborative
effort created to advance cross-industry BC technologies for
business [6], [24]. It provides an open source, industrial-
grade implementation of a private or permissioned BC under
the Linux Foundation umbrella. Fabric provides a modular
architecture with a delineation of roles between the nodes in
the BC network, execution of smart contracts, and config-
urable consensus and membership services. Chaincodes are
the mechanisms through which smart contracts are defined in
the Fabric BC implementation. At a high level, the system is
comprised of (i) peer servers, potentially belonging to differ-
ent organizations, which replicate and validate the blocks cre-
ating the transactions comprising the ledger; (ii) an ordering
service which determines the total order of the transactions
and publishes the corresponding blocks to be picked up by the
peer processes; and (iii) a client that interacts with the system
programmatically for invoking transactions or queries. A con-
figurable sub-set of the peers is involved also in endorsing
transactions submitted to the system, supporting consensus
for inserted transactions. All entities hold verifiable security
certificates issued by a Certification Authority (CA) com-
ponent. Transactions among members in a consortium is
performed in the context of a channel. A channel creates a
separate ledger visible only to the organizations included in
the channel. Once the chaincode is in place, users can start
invoking transactions and queries on the BC channel. Fabric
provides several mechanisms allowing for data sovereignty
and permissioned access to data, including the privacy mech-
anisms inherent in the network itself (permissioned access
only), the concept of channels, encryption of data, and user
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FIGURE 1. Verifiable and auditable collaborative machine learning
framework.

roles allowing partial access to data to different network
participants.

B. STRUCTURE OF THE BC SOLUTION
The framework consists of different conceptual elements (see
Figure 1): (i) a data scientist, responsible for creating and
pushing the CL algorithm image to the algorithm image
registry after the training phase of the algorithm is over;
(ii) the algorithm image registry, which is any kind of local or
hosted image registry for storage of docker images represent-
ing the ML algorithms; and (iii) the learning nodes, which
are the organizational nodes in the BC network participating
in the CL process. Here, production data is stored in premises
and only intermediate and final results of the algorithm exe-
cution are stored in the BC ledger.

Additionally, the system comprises a BC execution envi-
ronment, i.e., a secure execution environment that provides
a verifiable privacy-preserving computation environment for
CL scenarios. The environment comprises the following
modules:
• Identity Management: A built-in service in Hyperledger
Fabric that provides a membership identity that manages
user IDs and authenticates all participants in the network
including (i) the specification of Certification Author-
ity (CA) servers (defined as part of the BC network con-
figuration); (ii) the certification of users and applications
using these CA servers; and (iii) mechanisms to sign and
validate the signatures of all transactions and messages
submitted to the network.

• Collaborative Learning Artifacts Store: The chaincodes
implementing the business logic for storing, updat-
ing, retrieving, and querying business artifacts related
to CL, i.e., algorithm images’ metadata, metadata
of the learning process, and intermediate results and
models.

• Artifacts Usage Audit: The inherent functionalities in
chaincodes which allow to query the history of updates
for each artifact stored in the ledger, thus allowing to

present a clear and complete picture of the artifact’s
provenance.

• Secure Execution: This module securely runs the com-
putation tasks of the ML algorithm (we refer to com-
putation task or workload as the ML algorithm instance
or iteration), producing signed outputs (i.e., the insights
from the learning round), and storing these outputs in
the ledger. In the case of CL, it helps to establish the
auditability and verifiability of the execution of localML
models and to improve the trust among the participants.
Moreover, in the case of updates to the learning algo-
rithm, it is guaranteed that all the parties are aware of the
correct image version and are enforced to use the correct
one to participate in the learning process.

C. VERIFIABILITY OF THE EXECUTION
Our proposed approach allows delegating the computation
over sensitive data to the data owner, while establishing trust
of the rest of the stakeholders in the computation result.
This is achieved via implementation of the following core
characteristics:
• The computation workload is portable so that it is pos-
sible to deploy it in the data owner’s environment.

• The integrity of the computation workload is verifiable,
i.e., computation stakeholders have guarantees that the
actual computation was performed on the respective
data.

• The provenance over the input data, the output of the
computation, and the computation logic is tracked.

We implement the portability characteristic by packaging
the computation logic in a portable artifact. A docker image
is an example of such a portable artifact, which is suitable
for relatively simple computations that allow incorporating
the entire logic into a single image. In cases where the
computation involves multiple steps and components, it can
be packaged as a composite asset, consisting of a set of
images (each incorporating a relevant phase or function in the
computation) and an artifact (or a set of artifacts) that define
the orchestration and the choreography of the composite
computation.

To establish correctness and integrity guarantees over the
computation logic, we propose to manage computation work-
loads metadata in BC. Having the metadata record in a shared
distributed ledger ensures that all the parties have joint under-
standing of how to verify that a given portable deployable
artifact is of the correct version and its contents have not
been tampered with. For the algorithm images, we store a
SHA256 hash of the docker image on the ledger. At the time
of computation task creation from an image, when pulling
the image from the algorithm image registry, we can verify
image authenticity by calculating and comparing the image’s
hash to the one stored in the ledger. For the computation task
results we use public/private key verification. When creating
a computation task, we use a crypto library to generate pri-
vate/public key pairs. A public key of the pair is stored in
the ledger in the execution task record, while the private key
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FIGURE 2. BC solution building blocks and flows.

is passed to the computation task runtime. Once it finalizes,
the computation task updates its record in the chain with
the results of the execution signed with the private key. The
updating chaincode then verifies the signed result element
with the public key of the computation task to ensure that the
results are being updated by the entity with the correct private
key.

Trackability and provenance is gained by providing audit-
ing and verifiability capabilities for managing the ML algo-
rithm image lifecycle (e.g., publishing a new algorithm image
and usage of the algorithm image), for secure execution
(ensuring, for example, that the correct algorithm image is
used in each execution of computation task), and for record-
ing of intermediate results (allowing to answer questions,
such as which artifacts were published at the end of each
run for a particular learning process, or which artifacts a
particular organization published for a particular learning
task).

Figure 2 depicts the interactions between the chaincodes in
our BC network and the other building blocks comprising our
secure execution environment. The secure execution environ-
ment components are indicated as round yellow circles in the
diagram. They consist of the chaincodes, which are part of the
BC runtime and the external (to BC) secure execution envi-
ronment building blocks written in Python. The latter include
the Secure Container Executor script, which allows the user to
deploy an algorithm image, initialize the learning process and
instantiate the CL computational tasks on learning nodes; and
the Computational Task Runtime script which executes the
learning algorithm image. Additional artifacts appearing in

the diagram include the Algorithm Image Registry, where the
algorithm images are stored; the Learning Algorithm Image,
which is stored in the Algorithm Image Registry and is used
in the learning process; and the intermediate and complete
models (designated in the picture as Models for completed
models and Estimators for intermediate results) which are the
outcome of the learning tasks.

The following flow describes the interactions among the
different building blocks and relate to the cycle of creating
a ML algorithm image, executing this image securely on
learning nodes, and sharing the insights.

First of all, the image for the ML algorithm, intended to be
run as a particular instance of a CL process, is stored in the
algorithm image registry (which can be either a shared or a
private image repository). The metadata describing the ML
algorithm image, specifically an identifier of the respective
artifact in the external repository and a cryptographic finger-
print (i.e., a hash value) that can be used to verify the integrity
of the artifact, are stored in the BC ledger using the image
chaincode.

During the instantiation of the execution phase, learning
process metadata is created using the learning process orches-
tration chaincode. This metadata includes the unique ID for
the learning process, the algorithm image this process is
intended to execute, the consortium of organizational nodes
participating in the CL process, indicators of the current
state of the learning process (e.g., current iteration in case of
iterative learning process), and the current execution status.
After the learning process metadata record is created on the
chain, the ML algorithm image is pulled from the algorithm
image registry and instantiated as computation task runtime
on each learning node by the Secure Container Executor.
The task is instantiated with the ML algorithm runtime, the
parameters for the run, and the initial state model.

During the algorithm execution phase, the learning node
reads the relevant insights from previous rounds by the other
learning nodes, runs the algorithm image on the relevant
inputs (the insights from previous rounds, the input param-
eters, and the organizational datasets), and publishes the
resulting insights or completed model to the ledger using
the execution record and the model chaincodes. Once the
learning process is completed, the status of the learning task
on chain is updated to completed.

As shown in Figure 2, our BC solution comprises four
chaincodes: the image and execution record chaincodes
which form the secure execution module (Figure 1), and the
learning process orchestration and model chaincodes which
form the CL artifacts store module (Figure 1). The image
chaincode provides the functionality for storing and retriev-
ing the ML algorithm image metadata. This chaincode also
provides queries helpful in determining the provenance of
the image, e.g., who is the creating organization or when the
image was created. The learning process orchestration chain-
code records the information about the CL task, including the
definition of the algorithm image the learning task is about
to execute; the consortium of organizations participating in
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the learning process and the nodes which will run the com-
putation tasks; and the current status of the learning process
(current iteration, completion status). The execution record
chaincode stores the execution task metadata in the ledger.
Once the outcome of a single-step computation task, or of
the particular learning round task (for iterative learning algo-
rithms) is completed at a node, it publishes the insights to
the chain (the estimators in our case of a fraud detection
algorithm) updating the execution record. It also updates the
model chaincode in case the learning process is completed.
The model chaincode is responsible for publishing the com-
pleted model to the ledger once the learning task finishes.
The complete model record contains a list of organizations
allowed to access these models which initially equals the
consortium members.

As stressed before, one of the built-in core properties of
BC platforms is an immutable chain of blocks of transactions,
establishing verifiable and transparent history of updates for
each artifact stored in the chain. This is of fundamental
importance when striving for trust and transparency of the
execution of CL scenarios. Proven, verifiable, and immutable
audit trail of execution tasks producing CL models can help
establish without doubt, for example, that the models are
derived from the desired ML algorithm, the specific version
of the algorithm, and the executing organizations. To this
end, the artifacts usage audit logical module in Figure 1
supports provenance for algorithm images, computation tasks
executed, and model metadata.

We would further remark that the proposed BC solution
is resistant to malicious intrusion attempts. Indeed, the BC
network is composed only from the nodes participating in the
CL and belonging to a blockchain organization, meaning all
CL nodes have a digital identity encapsulated in a verifiable
X.509 digital certificate issued byHyperledger Fabric Certifi-
cate Authority (CA). In other words, a node that is not part of
the learning process and has no CA-issued X509 verifiable
certificate, cannot even read or write to the BC. Additionally,
although we do not explore this option in our work, it could
be possible to encrypt the results of the algorithm execution
and write on the BC only the encoded result, so that the
information will be available only to a node with a suitable
key.

V. COMPUTATIONAL COST OF THE CL ALGORITHM
When compared with a single-node execution of the ML
algorithm, the participation in the collaboration requires an
additional computational effort to the nodes. Even if this par-
ticipation is clearly beneficial, as we quantitatively demon-
strate in Section VI, it is important to assess the required
computational overhead.

The CL algorithm itself (Section III) includes the FIT
operation, which would be executed also in an isolated-nodes
setting, and it introduces the SHARE and GET operations.
Both require the execution of a GET_TOP atomic operation,
that in the current implementation defined in Section III-D
has a cost O(n0k2), where n0 is the number of parsed trees

and k is the number of selected trees [42]. When executing
the SHARE operation we have n0 ≤ nmax and k ≤ nshare,
and thus the cost is controlled by the algorithm parameters.
When executing a GET, instead, we have k ≤ nmax and
n0 ≤ deg ·nshare + nmax, where deg is the cumulative number
of neighbors of the node at the previous times, i.e., those who
wrote amessage in the node’s registry, and in particular deg ≤
N−1. This second operation has thus a cost which is strongly
dependent on the network’s connection pattern, where more
sparse networks provide a faster execution. Similarly, the
exchange of information required by both the SHARE and
GET operations may be assumed to scale linearly in the
number of connections.

The BC based secure execution environment provides
security, verifiable execution, and provenance of results. Nat-
urally, it comes with a performance cost (communication
and computation) as the results are stored in the shared
ledger after undergoing a round of endorsements to achieve
consensus between all BC nodes. The solution is intended
for algorithms for which security, transparency, and trust are
required, but where the number of transactions and iterations
are relatively small and latency is not a key factor, such as the
case with our fraud detection CL algorithm.

VI. EXPERIMENTS
The implementation of the algorithm and the code to replicate
the experiments presented in this section are available on
GitHub.1

A. EXPERIMENT SETUP
We test the algorithm on a benchmark dataset for fraud
detection.2 This dataset collects electronic credit card trans-
actions that have been executed in some European banks
during September 2013. Each transaction is represented by
28 numerical features which are obtained after applying a
Principal Component Analysis (PCA) on the original fea-
tures, in order to hide any sensitive information, and it is
labeled either as normal or as a fraud. The dataset contains
284807 transactions, of which 492 (the 0.17%) are frauds,
making the dataset highly unbalanced.

We simulate a scenario with N := 20 agents, each holding
its own private data. To create a suitable setup, we split the
given dataset into N disjoint subsets by random sampling.
To make the problem more challenging and interesting for
the testing of a collaborative scenario, we perform an unbal-
anced sampling: instead of splitting the positive and negative
examples into N groups of 284807/N agents, we allow for
each group to contain up to 70% more or less elements
than the average. Additionally, each of the resulting datasets
is split into a train dataset (90% of the samples) and test
dataset. The actual number of samples for each node and
the corresponding statistics are reported in Table 1. To sim-
plify the measurement of the performances of the algorithm,

1https://github.com/GabrieleSantin/federated_fraud_detection
2https://www.kaggle.com/mlg-ulb/creditcardfraud
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we artificially create a unique and centralized test set obtained
by joining the N test sets of the single nodes, so that all the
test metrics are computed on the same test set. This breaks
the absence of centralized orchestration in the design of the
algorithm, but it is only a convenience choice made for the
purpose of exposition.

TABLE 1. Size of the datasets for the 20-nodes simulation, and
corresponding numbers and ratio of frauds.

To analyze the effect of different configurations of the
collaboration, we analyze four different connection scenarios
(see Figure 3): (i) a fully disconnected setting, (ii) a pairwise
connected setting (i.e., each node is connected to exactly
two nodes), (iii) a random and time dependent setting, and
(iv) a fully connected setting. In more details, the setting
(iii) is a time-dependent network, where at each iteration
a link per node is drawn uniformly at random among the
19 possible ones. Observe in particular that this network has,
at each iteration, the same number of connections as the set-
ting (ii). The static network resulting from time aggregation
(Figure 3c) has an average degree 7, with minimal degree 6
and maximal degree 8. The disconnected case serves as a
baseline, since it represents the case where no collaboration

takes place and each node can only rely on its own dataset.
Moreover, we consider the fully centralized scenario where a
single agent has access to the entire dataset that is obtained
by merging the 20 datasets. This configuration is not repre-
sentative of the setting considered in this paper, where we
assume that the data ownership should not be broken, but it
offers a possibility to investigate the maximal payoff that the
agents would obtain in trading their data security for a larger
accuracy.

FIGURE 3. Connection configurations tested in the experiments:
disconnected (Figure 3a), pairwise connected (Figure 3b), random
time-varying (Figure 3c, which shows the aggregation of the networks
over time), fully connected (Figure 3d).

For each configuration, we train the CL algorithm by let-
ting each node executes the same sequence of operations (see
Section III-B). Namely, in the base case of the disconnected
topology we run four repetitions of FIT, i.e., each node
creates its own model and refines it three times. In the con-
nected cases, instead, we add a SHARE and a GET operation
after each fit. In this way, after each training on the local
dataset each node shares its insights to its neighbors, and
subsequently reads and incorporates the knowledge received
by the neighbors themselves. The algorithm is run with values
nnew := 10, nshare := 10, nmax := 50 for the parameters
defined in Section III-B.

Tomeasure the efficacy of themodels we use three metrics,
namely the balanced accuracy BAcc, the precision Prec, and
the recall Rec. Given the true test labels and the predicted test
labels, we may count the number of false positive FP, true
positive TP, false negative FN , false positive FP. With these
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TABLE 2. Minimal and maximal improvement with respect to the
disconnected case for the three collaborative scenarios (Fully connected,
Pairwise, Random), as measured by the three test metrics.

numbers, the three metrics are defined as

Prec :=
TP

TP+ FP
, Rec :=

TP
TP+ FN

,

BAcc :=
1
2

(
TP

TP+ FN
+

TN
TN + FP

)
.

It should be noted that all the metrics have value in [0, 1].

B. RESULTS AND DISCUSSION
We use these metrics to assess the improvement of the
collaborative models over the scenario where each node is
isolated.

To this end, for each node we compute on the test set the
metrics in the three collaborative cases (pairwise connected,
fully connected, and random) and their difference with the
corresponding value in the disconnected case. We report in
Table 2 the nodes for which these differences are maximal
andminimal, and the corresponding values. It should be noted
that for some nodes there is indeed a negative improvement,
which means that the participation in the collaboration has
a negative effect, but the corresponding values are of order
at most 10−2. This is expected since the algorithm has a
randomization component, and a change of this order of mag-
nitude may be considered as a reasonable fluctuation. On the
other hand, the maximal improvement is of order 10−1. In all
connection scenarios and for all metrics, the node of maximal
improvement is Node2: looking at Table 1, it appears that
this node has no frauds in the training set, and it is thus
not capable of learning any meaningful classifier when iso-
lated. On the other hand, participating in the collaboration it
receives insights from its neighbors, and it is able to improve
its model in a very significant way, up to an improvement of
0.9 for the Prec metric.

Apart from these extreme values, we compute the mean
and median of these differences over the 20 nodes. These
values are reported in Figure 4b, and the absolute value
used to compute these differences can be found in Table 3.
It can be observed that overall there is a significant increase

(0.1 − 0.2) both in the mean and the median, and for all
the three metrics. This confirms that, apart from the case of
single nodes, the collaboration is very effective to improve the
classifiers.

To offer an additional insight into the functioning of the
sharing mechanism, we visualize in Figure 4a the same met-
rics, but computed over the train sets of each single node.
In this case, it is remarkable to observe that both the mean and
median are negative, meaning that the accuracy is decreasing
on the train set when entering the collaboration. Since the test
metrics are instead increasing, this is a good sign that the
CL algorithm is able to equip each node with a model that
has an accuracy that goes far beyond the own dataset, and is
effectively able to share insights not present in each single
node.

Moreover, it is of interest to compare the performances
achieved by the collaborative algorithm with the hypothetical
case where the data are centralized in a single node. The
values obtained by running the algorithm in this scenario are
reported in boldface in Table 3. As it is reasonable to expect,
for all the three metrics this scenario provides by far the best
results, in particular obtaining on the test set an improvement
over the disconnected case of 0.08 in BAcc, 0.15 − 0.19 in
Prec, 0.16 − 0.19 in Rec. Nevertheless, in all these cases
the activation of a collaboration is able to significantly close
this gap, by reducing these values, in the case of the fully
connected configuration, to 0.03 in BAcc, 0.05 − 0.06 in
Prec, 0.05 in Rec. Similar values are obtained in the other
connection configurations.

All these results make it clear that the benefit of the
collaboration is increased for the fully connected sce-
nario, as one may reasonably expect. On the other hand,
the pairwise connected and random and time-varying set-
tings are almost as effective, and the random setting
is even the most accurate in terms of the Prec metric
when considering the mean improvement, and essentially
equivalent to the other two settings when considering the
median.

This fact is interesting in possible real applications since
one may foresee that establishing and utilizing a connection
may be expensive in different terms, and thus the nodes
should be interested in establishing the minimal set of con-
nections that are sufficient to obtain the desired improvement
in the model.

In more general terms, the effect of the topology of the
connections on the outcome of the algorithm is an interesting
aspect to explore. As a first element to explain the quite good
effectiveness of the pairwise interaction, we show in Figure 5
the distribution of the estimators over the N = 20 nodes
at the end of the iteration. Namely, since each estimator is
uniquely identified, it is possible at each moment to check
where the estimators of each node have been fitted. In the
figure, we show in each row the origin of the estimators
of each node. In the disconnected case (left panel) there is
no mix, and indeed each node owns only estimators that it
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FIGURE 4. Mean and median improvement in the three metrics over the disconnected case for the three collaborative scenarios (Fully
connected, Pairwise, and Random). The metrics are computed over the train set (Figure 4a) and the test set (Figure 4b).

fitted itself. In the fully connected case (right panel) a quite
uniform mixing can instead be observed, with the addition
that some nodes (Node0, Node2, Node5, Node6, Node8,
Node10) produce almost no estimators that are used by the
other ones. The fact that the mixing is quite stable among the
nodes is an indication of the effectiveness of the sharing and
ranking mechanism. In the intermediate case of the pairwise
connected nodes (second from left panel) the mixing reflects
the connection pattern, since each node holds estimators from
its direct neighbors. In this case it is worth remarking that the
estimators are effectively transmitted beyond the first order

neighbors of a node, and this suggests that even a not fully
connected network may be effective for the collaboration
to work. The random and time varying case (second from
right panel) is remarkable because it shows that changing the
network at each iteration, even if the number of links is still
as low as in the pairwise-connected setting, results in a sig-
nificantly larger mixing. Moreover, this level of connection
is sufficient to observe the emergence of the same mixing
pattern as in the fully-connected case, with the same set of
nodes (Node0, Node2, Node5, Node6, Node8, Node10) not
being trusted.
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FIGURE 5. Origin of the estimators selected by each node at the end of the iteration for the four connection settings. Each row represents a node,
and the columns indicate the origin of its estimators. The values of each row are normalized as percentages which sum to 100%.

TABLE 3. Mean and median absolute values of the three metrics for the
three collaborative scenarios (Fully connected, Pairwise, and Random),
and for the fully disconnected and fully centralized cases. The metrics are
computed over the train set (Figure 4a) and the test set (Figure 4b). Only
one value per metric is reported in the centralized scenario since in this
case there is only one agent.

VII. CONCLUSION
In this paper we developed and presented a collaborative
anomaly detection algorithm that can leverage the commu-
nication between collaborating nodes in order to improve the
models’ performances. The algorithm is designed according
to a fully decentralized structure, and it allows the shar-
ing of algorithmic insights without the movement of any
data. Although the classifiers are defined on top of Random
Forests, we discussed how the same structure can be adapted
to more general scenarios. Remarkably, the collaborative
learning algorithm is developed in order to be fully integrated
into a blockchain solution that ensures privacy-preserving
guarantees on the execution and on its results. This compo-
nent make it possible to verify the identity of the participating
nodes, and to audit the execution of the algorithms and the
correct functioning of the collaboration. Also in this case,
the BC solution is not bounded to the specific algorithm of

choice, and we discussed how more general ML models may
be secured within the same framework.

In this work we have focused on a single ML ensemble
method, namely RF, since it provides the necessary level of
complexity for the development of the algorithm, without
causing an excessive complication of the method. However,
this solution is rather elementary, and extensions of the basic
algorithmic structure will be analyzed in future work, where
more complex building blocks can be exploited in place of
Random Forests and Decision Trees. To this end, the algo-
rithm and its integration in the BC have been designed to be as
model-agnostic as possible, with the exception of the ranking
system of Section III-D. Moreover, the effect of the con-
nection topology on the behavior of the algorithm has been
only partially explored in this work, and interesting options
for its optimization remain open. In particular, we tested
only one time-varying setting, and this showed already some
promising features. A more in-depth analysis of the role of
the network and methods for its optimization will be the
focus of future research. Ultimately, we may foresee the
application of these techniques to leverage the models stored
in the BC for data sharing and trading in a data marketplace.
Data marketplaces for ML models are an emerging trend
[20], [37], [46], [56], which provide the opportunity to decen-
tralize model development and lower the entry barrier into
ML usage for companies which do not have either the skills,
the capacity, or the access to learning data to develop the
algorithms and train the models. Chaincodes in the BC net-
work could control the access and permissions to the different
models stored in chain applying governance rules defined by
the consortium organizations.

APPENDIX
CONSTRUCTION OF THE TREE KERNEL
We consider a set D := {Di}nDi=1 of nD ∈ N decision trees,
where Di := (Ti,Xi), Ti is a tree where each non-terminal
node v has a label s(v) ∈ {1, . . . , d}, d ∈ N, and a node
feature x(v) ∈ R.
We define a positive definite and symmetric kernel overD

by a modification of the convolutional kernel of [11], [21].
Namely, we first enumerate the set t1, . . . , tM of all subtrees
of the trees in D. We remark that the trees here are labeled,
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meaning that the trees are equal only if the corresponding
nodes have the same label. Given a tree T and any node v ∈ T ,
we then define a feature map

h(v) := [I1(v), . . . , IM (v)]T ∈ {0, 1}M ,

where Ii(v) = 1 if and only if the subtree ti is rooted in v. This
allow us to define the kernel knode of [11] between two nodes
v ∈ T , v′ ∈ T ′, as

knode(v, v′) := h(v)T h(v′) =
M∑
i=1

hi(v)hi(v′).

It can be proven that knode(v, v′) can be efficiently computed
in polynomial time, and it simply counts the number of com-
mon subtrees rooted at both v and v′ (see [11]). This kernel
can be used to define a tree kernel k between T ,T ′ simply by
aggregation over all pairs of nodes, i.e.,

ktree(T ,T ′) :=
∑

v∈T ,v′∈T ′
knode(v, v′).

We extend this definition to a kernel k on our Decision
Trees D := (T ,X ),D′ := (T ′,X ′) ∈ D simply by adding
a second kernel that takes into account the values of the node
features, namely we sets

k(T ,T ′) :=
∑

v∈T ,v′∈T ′
kfeat(x(v), x(v′))knode(v, v′),

where kfeat : R × R → R is any positive definite kernel.
Observe that k is positive definite because it is obtained by
sums and products of positive definite kernels [5]. Moreover,
for simplicity we use the linear kernel kfeat(x(v), x(v′)) :=
x(v)x(v′), and this make it possible to write also k as an
aggregation over node kernels via

k(T ,T ′) =
∑

v∈T ,v′∈T ′
kfeat(x(v), x(v′))knode(v, v′)

=

∑
v∈T ,v′∈T ′

x(v)x(v′)h(v)T h(v′)

=

∑
v∈T ,v′∈T ′

hx(v)T hx(v′),

where hx(v) := [x(v)I1(v), . . . , x(v)IM (v)]T ∈ RM .
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