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ABSTRACT In this paper, we study the problem of capturing a Dubins Car with a Differential Drive Robot
in minimum time. The two vehicles are represented like unitary discs moving in the plane without obstacles.
Both agents have the same maximum speed and a bounded turning ratio. We frame the problem as a pursuit-
evasion game. The Differential Drive Robot plays as a pursuer and aims to capture the Dubins Car as soon as
possible. The Dubins Car, on the contrary, takes the evader’s role and tries to avoid capture. Using differential
game theory, we compute the players’ time-optimal motion strategies to accomplish their tasks and provide
analytical expressions describing them. In particular, we reveal four singular surfaces in this game. Two
evader’s dispersal surfaces (EDS) where the evader can choose between two controls and the pursuer must
react accordingly, leading to trajectories with the same cost. One pursuer’s dispersal surface (PDS) where the
evader must select its control based on the pursuer’s choice. And a transition surface (TS), where the DDR
switches its controls. Some examples of the players’ time-optimal motion strategies are shown in numerical
simulations.

INDEX TERMS Differential games, optimal control, pursuit-evasion, robotics.

I. INTRODUCTION
This paper studies a pursuit-evasion problem [1]–[3] between
two antagonistic agents. In the literature, one can identify
different formulations of pursuit-evasion games [4]–[8]. The
main differences are usually the players’ goals, motion con-
straints, and sensing capabilities. There are different practical
applications of pursuit-evasion problems. Some examples are
1) a robotic system whose task is to capture or keep surveil-
lance of an independent malicious agent, 2) a convoy of
autonomous vehicles following a leader, 3) a group of robotic
routers moving in an environment to maintain connectivity
between a mobile user and a base station, and 4) a robotic
system helping a person as she moves in an environment, for
example, carrying luggage in an airport.

In particular, this work addresses the problem of capturing
a Dubins Car (DC) with a Differential Drive Robot (DDR)
in minimum time. Both players move in a plane without
obstacles and are modeled like unitary discs. The DDR plays
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the role of the pursuer, and the DC the role of the evader. The
DDR’s goal is to capture the DC as soon as possible. On the
contrary, the DC wants to delay capture as much as possible.

In this work, we model the above problem as a zero-sum
game and compute the players’ time-optimal motion strate-
gies [3]. Additionally, we characterize regions of the playing
space containing initial configurations that lead to cap-
ture. To the best of our knowledge, this is the first work
addressing a pursuit-evasion problem between a DDR and
DC and presents an analysis based on differential game
theory [1], [3].

One of the main contributions of this work is that it consid-
ers two of the most popular non-holonomic mobile vehicles
in robotics [9], a DDR and a DC. The time-optimal motion
primitives of a DDR and a DC moving in a plane without
obstacles were obtained in [10], and [11], respectively. In both
cases, the motion primitives are computed using optimal
control theory [3], [12]. However, different from our problem
in which we consider two players moving simultaneously and
interacting between them, the analysis made in [10], [11]
is focused on a single type of vehicle having the goal of
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reaching particular configurations in the plane. Considering
two non-holonomic vehicles in a pursuit-evasion gamemakes
the problem harder to model and analyze compared to exist-
ing works in pursuit-evasion games [13]–[16]. The game of
capture involving two DCs as players was studied in [17]
and the corresponding version involving two DDRs in [18].
However, different from those previous works, in our game,
the evader is a DC, and the pursuer is DDR, each with a
different kinematic model. That change has a consequence
that the time-optimal motion strategies of our players and
those in [17], [18] are distinct, motivating our study of the
proposed problem.

We compute the solution of our pursuit-evasion problem
following the approach developed by Isaacs [1], Lewin [19].
Isaacs’ methodology is based on partitioning the playing
space into regions, where the value function is differentiable.
Generally, the more difficult part of the process is finding
the boundaries of those regions, known as singular surfaces,
since there is no knowledge ahead of time if the optimal tra-
jectories have singular portions or not. Usually, one assumes
the existence of a singular surface and tributary trajecto-
ries joining it only when the regular backward construction
of candidate trajectories does not cover the entire playing
space [19].

To characterize a singular surface and the corresponding
outcome, one player must often base his choice of controls
based on the knowledge of his opponent’s control selection.
If a strategy is computed using this information is called a
non-admissible strategy in the context of differential game
theory. In contrast, an admissible strategy does not require
additional information on the players’ controls and is based
only on knowledge of the system’s state. We characterize the
singular surfaces appearing in the solution and the trajectories
filling the regions defined by them in our problem. The tra-
jectories inside a region correspond to admissible strategies
for the players.

For some specific game models, using the methodology
developed by Isaacs allows computing closed-form solutions
[1], [13]–[16]. In our work, we succeed in finding mathemat-
ical equations describing the players’ time-optimal motion
strategies.

II. RELATED WORK
Pursuit-evasion problems can be classified into three main
variants. In the first one, the pursuers have the task of finding
an evader in an environment [20]–[22]. In the second variant,
the goal consists in maintaining the visibility of a moving
evader [23]–[25]. Finally, in the third variant, like in this
work, the pursuer has the task of capturing a moving evader,
i.e., moving a to contact configuration or closer than a given
distance to the pursuer [1], [14], [18].

The problem studied in this work belongs to a class of
problems known as differential games [1]–[3], [19]. In the
literature, we can find many works that have studied differ-
ential games in the past [1], [4], [13]–[16], [18]. Probably, the
most widely recognized of them is the Homicidal Chauffeur

problem [13]. In that problem, a car wants to run over a
pedestrian as soon as possible. The pedestrian, on the other
side, wants to avoid it. The car is quicker than the pedestrian
but has a turning ratio constraint. The pedestrian is more agile
than the car since he can change its motion direction instan-
taneously. The players are located in a parking lot without
obstacles. The solution to this problem consists of finding
the players’ motion strategies to accomplish their goals and
deciding the winner of the game based on the system’s initial
configurations.

To the best of our knowledge, the most related prob-
lems to this work in the differential games’ literature
are the following: [14], [15], [17], [18]. In this section,
we present a comparison between the current work and
[14], [15], [17], [18].

The problem of capturing an Omnidirectional Agent (OA)
with a DDR was addressed in [14]. In that work, similar to
the Homicidal Chauffeur problem, the OA is slower than the
DDR but can instantaneously change its motion direction.
The goal of the DDR is to capture the OA as soon as pos-
sible. The OA wants to delay it. The authors computed the
players’ time-optimal motion strategies. Also, based on the
players’ initial configurations, they can decide the winner of
the game, i.e., if theDDR captures theOA in finite time or not.
In [15], the authors studied the analogous problem in which
the players switch roles, i.e., the OA’s goal is to capture the
DDR in minimum time. The DDR wants to avoid it.

In this work, similar to those two previous works, we also
consider a DDR. However, the evader in our case is a Dubins
car, which has non-holonomic constraints, that change has
as a consequence that the players’ motion strategies and
the nature of the solution differ from those in [14], [15].
Another fundamental difference is that our game requires a
representation in a higher-dimensional space which makes
the solution and its analysis harder to compute.

As in this paper, two related works considering
non-holonomic players are [17] and [18]. [17] studies a
game of capture in minimum time where the pursuer and
the evader are two identical Dubins cars. The authors found
the time-optimal motion strategies for both players. More
recently, [26] presents a comprehensive solution to that
problem, and [27] provides feedback-based solutions for
particular cases. Note that the pursuer has different kinematic
capabilities than in our case, where the pursuer is a DDR.
That implies that the players’ motion strategies found in [17],
[26], [27] differ from those in our work. [18] also analyzes a
pursuit-evasion problem between two identical DDRs. As in
our work, the pursuer is a DDR and wants to capture the
evader in minimum time; however, the evader is also a DDR,
which, as was mentioned earlier, has a different kinematic
model than a Dubins car. Thus, the players’ time-optimal
motion strategies and trajectories also differ from our work.

Finally, it is important to remark that to the best of our
knowledge, the setting addressed in our work, a pursuit-
evasion game of capture in minimum time between a Dubins
Car and a Differential Drive Robot, has not been reported
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before in the literature. Thus, our solution is entirely novel,
and we cannot make a direct comparison with other previous
works addressing the same problem. A significant feature
of our solution is that it was constructed using tools from
differential game theory, a widely used methodology having
well-established mathematical foundations.

A. CONTRIBUTIONS
The main contributions of our work are the following.
• We reveal four singular surfaces in this game, two
evader’s dispersal surfaces (EDS), one pursuer’s dis-
persal surface, and a transition surface where the DDR
switches its controls.

• We characterize regions of the playing space containing
initial configurations that lead to capture, and we indi-
cate the players’ time-optimal motion strategies at each
one.

• We provide some numerical simulations of the players’
time-optimal motion strategies in a local reference frame
attached to the DDR and in a global frame.

III. PROBLEM DEFINITION
A Differential Drive Robot (DDR) and a Dubins Car (DC)
move in a plane without obstacles. The DDR (pursuer) tries
to capture the DC (evader) as soon as possible. On the other
hand, the DC tries to avoid capture. We model both play-
ers like unitary discs, and we consider that they have the
same maximum speed of Vmax; thus, the game’s outcome
is determined by the specific non-holonomic constraints of
the players. The game is over when the players’ distance is
smaller than a value lc. Any effects due to dynamic constraints
(e.g., acceleration bounds) are neglected, and only a purely
kinematic problem is considered.We find regions of the play-
ing space (initial configurations) where the DDR captures
the DC when both players apply their time-optimal motion
strategies.

A. REALISTIC SPACE REPRESENTATION
Similar to previous works [14], our problem can be modeled
in the Euclidean plane (see Fig. 1a). Let (xp, yp, θp) denote the
DDR’s pose and (xe, ye, θe) represent the DC’s pose. The state
of the system can be expressed as (xp, yp, θp, xe, ye, θe) ∈
R2
× S1×R2

× S1. That representation is called the realistic
space. The time evolution of the system in the realistic space
is given by the following equations of motion

ẋp =
(
u1 + u2

2

)
cos θp, ẏp =

(
u1 + u2

2

)
sin θp,

θ̇p =

(
u2 − u1

2b

)
ẋe = Vmax cos θe, ẏe = Vmax sin θe,

θ̇e =
Vmax

re
v (1)

where v ∈ [−1, 1] is the control of the DC, and re is the
DC’s maximum turning radius. u1, u2 ∈ [−Vmax,Vmax]

FIGURE 1. The DDR (pursuer) is represented by the blue disc and the
DC (evader) by the red disc.

are the DDR’s controls, and they correspond to the left
and right wheel’s velocities, respectively. b denotes the dis-
tance between the DDR’s center and the wheels’ location.
We assume both wheels have an unitary radius, thus, the
rotational and traslational speeds are equivalent. The previous
equations can be expressed in the form ẋ = f (x, u, v) where
u = (u1, u2) ∈ [−Vmax,Vmax] × [−Vmax,Vmax] and v ∈
[−1, 1]. In this representation, all angles are measured in
counter-clockwise sense from the x-axis.

B. REDUCED SPACE REPRESENTATION
As customary in differential game theory, the problem anal-
ysis can be simplified using a coordinate system mounted
on the pursuer. The reference frame is fixed to the DDR’s
body (see Fig. 1b). The system’s state is described by x =
(x, y, θ), which corresponds to the DC’s pose relative to the
DDR’s body. That representation is called the reduced space.
All orientations are measured with respect to the positive
y-axis in a clockwise sense. Using the following coordinate
transformation between the reduced and realistic space

x = (xe − xp) sin θp − (ye − yp) cos θp
y = (xe − xp) cos θp + (ye − yp) sin θp
θ = θp − θe (2)

we obtain the motion equations in the DDR-fixed coordinate
system

ẋ =
(
u2 − u1

2b

)
y+ Vmax sin θ

ẏ = −
(
u2 − u1

2b

)
x −

(
u1 + u2

2

)
+ Vmax cos θ

θ̇ =

(
u2 − u1

2b

)
−
Vmax

re
v (3)

where again v ∈ [−1, 1] is the DC’s control. For the DDR,
we have that u1, u2 ∈ [−Vmax,Vmax]. We can express the
previous equations in the form ẋ = f (x,u, v), where x =
(x, y), u = (u1, u2) and v = (v).

IV. TERMINAL CONDITIONS
Following Isaacs’ methodology [1], we compute the set
of configurations where the DDR guarantees termination
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FIGURE 2. Representation of the Usable Part (UP) and its boundary (BUP). Four views have been included to illustrate the
general structure. The regions in blue correspond to configurations where the DDR ends the game (captures the DC) moving
forward. The dark blue curves indicate its boundaries. Similarly, the green regions correspond to configurations where the
capture occurs while the DDR moves backward. Analogous, the dark green curves show its boundaries. Note that some regions
of the surface of the cylinder are not colored. Despite having a distance lc between both players, capture in those regions is
impossible for the DDR since the DC could use a control to increase or at least keep a constant distance to the DDR.

(capture) regardless of the choice of controls of the DC.
This set is known as the usable part (UP). For this problem,
the DDR captures the DC when the distance between both
players is smaller than the capture distance lc despite any
DC’s opposition. In the reduced space, the terminal surface
ζ can be represented as a cylinder of radius lc centered at the
origin with height 2π . We can parametrize ζ by two angles
φ and ψ . φ is the angle between the DC’s position and the
DDR’s heading, and ψ is the angle between the headings of
both players. Let l denotes the distance between the DDR and
the DC. In the reduced space, the DDR guarantees capture
when l = lc and l̇ < 0 the UP is given by

x = lc sinφ, y = lc cosφ, θ = ψ, l2 = x2 + y2, (4)

We have that the game ends when

min
u1,u2

max
v
l̇ < 0 (5)

Computing the time derivative for l and substituting (3) into
the resulting expression, we have that

l̇ = Vmax (sinφ sinψ + cosφ cosψ)−
(
u1 + u2

2

)
cosφ

= Vmax cos(φ − ψ)−
(
u1 + u2

2

)
cosφ (6)

Applying the optimal controls for both players at the UP,
we obtain

min
u1,u2

max
v
l̇ = Vmax cos(φ − ψ)− Vmax

|cosφ| (7)

thus, from (5)

UP = {φ,ψ
∣∣ |cosφ| > cos(φ − ψ)} (8)

The boundary of the usable part (BUP) is defined by

min
u1,u2

max
v
l̇ = 0 (9)
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thus,

BUP = {φ,ψ
∣∣ |cosφ| = cos(φ − ψ)} (10)

From (7), we can observe that the DDR performs a transla-
tion at maximum speed when it captures the DC. The DDR
moves forward when cosφ > 0 and it moves backward
when cosφ < 0. Also, note that both the UP and BUP do
not depend on the DC’s control v. Fig. 2 shows a graphical
representation of the UP and its boundary in our problem.

V. OVERVIEW OF THE SOLUTION
The goal of this section is to provide a summary of the
problem’s solution that helps guide the reader during the iden-
tification and computation of the players’ motion strategies
later in the paper.

For this game, we found a characterization of the reduced
space containing initial configurations that lead to cap-
ture into two regions, each corresponding to particular
time-optimal motion strategies for the players. Those regions
are bounded by two types of singular surfaces: transition and
dispersal surfaces. In particular, we found four singular sur-
faces: two evader’s dispersal surfaces (EDS), one pursuer’s
dispersal surface (PDS), and a transition surface (TS) where
the DDR switches its controls. Fig. 3 shows the characteriza-
tion of the reduced space.

On a dispersal surface (DS), one of the players can choose
between two controls that end in two trajectories with the
same cost. According to [19], this player dominates the sin-
gular surface. The second player must react according to the
choice of the first one to avoid favoring that player. To do
that, it must implement a non-admissible strategy. In Fig. 3b,
Fig. 3d, Fig. 3e and Fig. 3f we can observe examples of the
three dispersal surfaces we have found in this work. The EDS
in Fig. 3b is formed by some primary trajectories intersecting
the y-axis in the x, y-plane. On that dispersal surface, the
evader has two choices for its optimal control; however, the
associated trajectories to each control have the same cost.
The upper trajectories correspond to a forward translation
for the DDR when it captures the DC and the lower ones to
a backward translation. Fig. 3d shows a PDS; in this case,
the DC position is perpendicular to the DDR’s heading. Note
that for those configurations, the DDR is forced to rotate and
align its heading with the DC’s position to achieve capture.
For the DDR, both trajectories have the same cost, i.e., either
forcing the DC to rotate clockwise or counterclockwise. The
evader must choose its control according to the DDR’s deci-
sion. Finally, a third EDS surface is shown in Fig. 3e and
Fig. 3f; similar to the first surface, this EDS is formed by
the intersection of the primary trajectories. In this case, the
intersections occur close to the yellow curve.

Fig. 3b and Fig. 3d also show that some of the trajectories
associated with the primary solution do not reach a DS, defin-
ing a TS (the boundary between red and yellow trajectories).
The DDR switches its controls on the TS and starts rotating
in place.

In the following paragraphs, we define the properties of
each region found in this work.
• Region I corresponds to the primary solution of the
game. The trajectories in this region (red curves) reach
the UP and correspond to a DDR’s translation in place
at maximum speed in the realistic space. The DC, on the
other side, translates and rotates at maximum speed.

• Region II contains the trajectories (yellow curves) leav-
ing the transition surface in retro-time. In all cases, the
trajectories correspond to a DDR’s rotation in place at
maximum speed in the realistic space.

VI. MOTION STRATEGIES
In this section, we compute the time-optimal motion strate-
gies of the players. To do that, we perform a retro-time
integration of the motion equations starting at the ending
configurations.

A. OPTIMAL CONTROLS
To integrate the motion equations, we first need to find the
players’ optimal controls used to accomplish their goals.
Following the approach in [1], we construct the Hamiltonian
of the system given by

H (x, λ,u, v) = λT · f (x,u, v)+ L(x,u, v) (11)

where λT are the costate variables and L(x,u, v) is the cost
function. For problems of minimum time, as the one studied
in this work, L(x,u, v) = 1. Thus, we have that

H (x, λ,u, v)

= λx

(
u2 − u1

2b

)
y+ λxVmax sin θ

− λy

(
u2 − u1

2b

)
x − λy

(
u1 + u2

2

)
+ λyVmax cos θ

+ λθ

(
u2 − u1

2b

)
− λθ

(
Vmax

re

)
v+ 1 (12)

where λT = (λx , λy, λθ ). For problems of minimum time [1]

min
u

max
v
H (x, λ,u, v) = 0

u∗ = argmin
u
H (x, λ,u, v)

v∗ = argmax
v
H (x, λ,u, v) (13)

where u∗ and v∗ denote the players’ optimal controls.
From (12) and (13), we have that theDDR’s controls are given
by

u∗1 = −sgn
(
−λxy
2b
+
λyx
2b
−
λy

2
−
λθ

2b

)
Vmax

u∗2 = −sgn
(
λxy
2b
−
λyx
2b
−
λy

2
+
λθ

2b

)
Vmax (14)

and the DC’s control is given by

v∗ = sgn (−λθ ) (15)
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FIGURE 3. Overview of the solution in the reduced space. The figures in the first row show an example of front and back trajectories appearing
in this game and a projection onto the x, y-plane. Similarly, the second row shows an example of the lateral trajectories appearing in the
game and the corresponding projection onto the x, y-plane. In the third row, we can observe an Evader’s Dispersal Surface (EDS) example.

B. COSTATE EQUATIONS
The players’ optimal controls, given by (14) and (15), depend
on the values of λT as time elapses. Those values can be
computed using the costate equations, which are found by

taking the Hamiltonian’s partial derivatives with respect to
the state variables. If tf is the time of termination of the game,
we define the retro-time as τ = tf −t . In this work, we denote
the retro-time derivative of a variable x as

◦
x. The costate
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equation in its retro-time form is

◦

λ =
∂

∂x
H (x, λ,u∗, v∗) (16)

For our problem, we have that

◦

λx = −λy

(
u∗2 − u

∗

1

2b

)
,
◦

λy = λx

(
u∗2 − u

∗

1

2b

)
◦

λθ = Vmax (
λx cos θ − λy sin θ

)
(17)

Note that the costate equations do not explicitly depend on
the DC’s control for this game.

C. PRIMARY SOLUTION
In this section, we compute the players’ retro-time trajec-
tories near the end of the game. First, we need to find the
initial conditions of the costate and motion equations in the
reduced space. From (4), we have that at the end of game,
xf = lc sinφ, yf = lc cosφ, and θ = ψ . Additionally,

∂x
∂φ
= lc cosφ,

∂y
∂φ
= −lc sinφ,

∂θ

∂φ
= 0

∂x
∂ψ
= 0,

∂y
∂ψ
= 0,

∂θ

∂ψ
= 1 (18)

Since λ(x) = 0 on the UP, then λφ and λψ are given by

λφ =
∂λ

∂φ
=
∂λ

∂x
∂x
∂φ
+
∂λ

∂y
∂y
∂φ
+
∂λ

∂θ

∂θ

∂φ

= λx cosφ − λy sinφ = 0

λψ =
∂λ

∂ψ
=
∂λ

∂x
∂x
∂ψ
+
∂λ

∂y
∂y
∂ψ
+
∂λ

∂θ

∂θ

∂ψ
= λθ = 0 (19)

From (19), we obtain that

λx cosφ = λy sinφ, λθ = 0 (20)

Therefore, on the UP

λx = sinφ, λy = cosφ, λθ = 0 (21)

From the analysis in Section IV, we know that near the end of
the game, the DDR performs a translation at maximum speed.
Therefore (17) takes the form
◦

λx = 0,
◦

λy = 0,
◦

λθ = Vmax(λx cos θ − λy sin θ ) (22)

The solution of the previous equations is given by

λx = sinφ, λy = cosφ

λθ =
re
v∗

(
− cos(φ − ψ)+ cos(φ − ψ −

Vmax

re
v∗τ )

)
(23)

Recall that re and v∗ are the DC’s maximum turning radius
and theDC’s control.φ is the angle between theDC’s position
and the DDR’s heading, and the ψ is the angle between the
headings of both players, both at the game end. That solution
will be valid at the UP and if the DDR’s controls do not
change. Later, we compute the retro-time instant when the
players switch their controls numerically.

Now we proceed to integrate the motion equations in the
reduced space. The retro-time version of (3) is given by

◦
x = −

(
u2 − u1

2b

)
y− Vmax sin θ

◦
y =

(
u2 − u1

2b

)
x +

(
u1 + u2

2

)
− Vmax cos θ

◦

θ = −

(
u2 − u1

2b

)
+
Vmax

re
v (24)

Solving (24) with the initial conditions xf = lc sinφ, yf =
lc cosφ and θ = ψ , and the optimal controls u∗1, u

∗

2 and v∗,
we get

x = lc sinφ +
re
v∗

(
− cosψ + cos(ψ +

Vmax

re
v∗τ )

)
y = lc cosφ +

re
v∗

(
sinψ − sin(ψ +

Vmax

re
v∗τ )

)
+

(
u∗1 + u

∗

2

2

)
τ

θ = ψ +
Vmax

re
v∗τ (25)

Recall that the values of u∗1, u
∗

2 are given by (14) and v∗ is
given by (15). Note that (25) provides the players’ trajectories
in the reduced space, thus, to find the corresponding trajec-
tories in the realistic space, we need to apply a coordinate
transformation. The trajectories given by (25) are known as
the primary solution.

D. TRANSITION SURFACE
After following some of the primary trajectories in this game,
the DDR switches its controls, starting to rotate in place
at maximum speed. Unfortunately, given that (25) contains
transcendental functions, we cannot find an analytic function
to compute the retro-time instant τs when that occurs, and we
are forced to apply numerical analysis to find its value.

Once τs is computed and the new optimal controls u∗1
and u∗2 are obtained using (14), we need to perform a new
integration of the costate and motion equations. Considering
that the DDR’s controls correspond to a rotation in place at
maximum speed, the solution of (17) is

λx = sin
(
φ −

(
u∗2 − u

∗

1

2b

)
(τ − τs)

)
λy = cos

(
φ −

(
u∗2 − u

∗

1

2b

)
(τ − τs)

)
λθ =

re
v∗

(
− cos(φ − θs)

+ cos(φ − θs −
Vmax

re
v∗(τ − τs))

)
+ λθs (26)

where λθs is computed substituting τs into the third expression
in (23), and θs is the value of θ at time τs obtained from the
third expression in (25).

Integrating (24) with xs, ys and θs (the values of x, y and
θ at τs), and considering that the DDR rotates in place at
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FIGURE 4. Results of the first simulation. The evader starts at the EDS in the reduced space.

maximum speed, we obtain

x =
(
xs −

re
v∗

cos θs
)
cos

((
u∗2 − u

∗

1

2b

)
(τ − τs)

)
−

(
ys +

re
v∗

sin θs
)
sin

((
u∗2 − u

∗

1

2b

)
(τ − τs)

)
+
re
v∗

cos
((

u∗2 − u
∗

1

2b

)
(τ − τs)−

Vmax

re
v∗(τ − τs)− θs

)
y =

(
xs −

re
v∗

cos θs
)
sin

((
u∗2 − u

∗

1

2b

)
(τ − τs)

)
+

(
ys +

re
v∗

sin θs
)
cos

((
u∗2 − u

∗

1

2b

)
(τ − τs)

)
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FIGURE 5. Results of the second simulation. The evader starts at the PDS in the reduced space.

+
re
v∗

sin
((

u∗2 − u
∗

1

2b

)
(τ − τs)−

Vmax

re
v∗(τ − τs)− θs

)
θ = θs +

Vmax

re
v∗(τ − τs)−

(
u∗2 − u

∗

1

2b

)
(τ − τs) (27)

The previous retro-time trajectories are valid until the system
reaches configurations where θ = k π2 where k ∈ Z+ or the
PDS dispersal surface.

VII. DECISION PROBLEM
Solving a pursuit-evasion game also involves finding the
initial conditions that make capture possible for the DDR
or escape for the DC. From [1], we have that the barrier
separates the set of starting configurations into two sets. One
with those that result in capture and another with those that
result in escape. The approach we have used to compute
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the time-optimal motion strategies and their corresponding
trajectories is also applied in constructing the barrier. The
answer to the capture-escape question relies on whether or
not the barrier divides the playing space into two parts.

To find the trajectories associated with the barrier, in this
game, we need to perform the backward integration of the
adjoint (17) and motion equations (24) considering as ini-
tial conditions the configurations belonging to the BUP,
described by (10). Unfortunately, performing a detailed anal-
ysis of the barrier trajectories in the reduced space and val-
idating if they define closed regions proved very difficult.
We have to deal with discontinuities in the angles involved in
the reduced model, and the solution entangles transcendental
functions that do not allow us to compute the intersections
between trajectories analytically; thus, we could not succeed
in such a task.

However, we observed that capture is only possible for
initial configurations near the UP in this game. It is not hard to
realize that given that both players have the same speed, the
DDR cannot reduce the distance to the DC once they have
reached an alignment condition.

VIII. SIMULATIONS
This section presents two simulations of the players’ motion
strategies. In the first one, the evader starts at the EDS shown
in Fig. 3b. In the second case, the evader begins at the PDS
shown in Fig. 3d.

The parameters for the first simulation were Vmax
=

1m/s, lc = 2m, b = 1m, re = 1m, φ = 0.5240 rad ,
and ψ = 1.2479 rad . The trajectory followed by the DC in
the reduced space is shown in Fig. 4a. In Fig. 4b, the same
trajectory is shown projected onto the x, y-plane. The DC is
initially located at Region I and travels a trajectory departing
from the EDS. The corresponding trajectories of the players
in the realistic space are shown in Fig. 4c. In that figure, the
DDR is represented like the blue circle, and the DC is shown
like the red circle. We can observe that the DDR translates at
maximum speed towards the DC (blue dashed line). The DC,
on the contrary, tries to escape by leaving the front region
of the DDR. Note that at the initial configuration, the DC
(see Fig. (4b)) may have selected a control associated with
the symmetric trajectory lying on the adjacent quadrant of the
x, y-plane; however, both trajectories have the same outcome.

In the second simulation, the parameters were Vmax
=

1m/s, lc = 2m, b = 1m, re = 1m, φ = 0.6708 rad ,
and ψ = 6.1832 rad . The trajectory followed by the DC
in the reduced space is shown in Fig. 5a. Fig. 5b shows the
trajectory’s projection onto the x, y-plane. In this case, the
DC is located at Region II initially, and it travels a trajectory
starting at the PDS. After some time, it reaches Region I, and
it follows the corresponding trajectory until the DC reaches
the UP. The trajectories of the players in the realistic space
are shown in Fig. 5c. In that figure, we can observe that the
DDR initially rotates in place, trying to align its heading with
the DC’s position. After some time, the DDR translates at
maximum speed towards the DC. The DC, on the contrary,

tries to escape by leaving the front region of the DDR. Note
that for this case, at the initial configuration, the DC needs to
select the appropriate rotation direction to avoid benefitting
the DDR. As in the first simulation, the DDR may have
selected a control associated with the symmetric trajectory
lying on the adjacent quadrant of the x, y-plane; however,
both trajectories have the same outcome as long as the DC
selects the correct rotation direction.

IX. CONCLUSION
In this work, we studied the problem of capturing a DC
with a DDR in minimum time. We found the time-optimal
motion strategies of the players to accomplish their tasks.
We exhibited the existence of four singular surfaces in this
game: two evader’s dispersal surfaces (EDS), one pursuer’s
dispersal surface (PDS), and a transition surface (TS) where
theDDR switches controls.We characterize the playing space
into two regions where the players’ optimal strategies are
well-established. We also presented simulation examples of
the players’ trajectories at each region in the reduced space
and the corresponding ones in the realistic space.

Unfortunately, performing a detailed analysis of the bar-
rier trajectories (decision problem) in the reduced space and
validating if they define closed regions proved very difficult.
However, we observed that capture is only possible for initial
configurations near the UP. One can quickly realize that since
both players have the same speed, the DDR cannot reduce
the distance to the DC once they have reached an alignment
condition.

For future work, we are interested in constructing motion
strategies for several DDRs that cooperate to capture one
or several DCs. Another interesting problem is computing
the time-optimal strategies when the players reverse roles,
i.e., the DC plays as a pursuer, and the DDR plays an evader.
From that analysis and the results of the current work, one
can define the better roles for the players, i.e., if it is more
convenient for each player to play as a pursuer or as an
evader. An additional problem is considering the case when
the players have visibility constraints, such as a bounded
range or field of view. Finally, considering environments
with obstacles is a very challenging and promising research
avenue. In that case, one has to abandon the idea of obtain-
ing an analytical solution characterizing the players’ motion
strategies in the playing space and employ heuristic methods
that are sufficient to reach an approximation, like the ones
in [28], [29].
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