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ABSTRACT Sorting algorithms usually generate strictly descending sequences. However, almost descend-
ing sequences may be sufficient to fulfill our needs in practice, and the number of movements needed for
generating such sequences can be greatly reduced.We call a sequence S almost descending if S[j]−S[i] < C
for any i < j and a positive number C , which depends on the practical circumstances. Unless the difference
between S[j] and S[i] exceeds the bound C , we deem them indistinguishable. For example, when people
are arranged in a line from tall to short, two people with heights of 1.751 meters and 1.752 meters can be
considered visually indistinguishable (we can set the bound to C = 0.005 meters in this case). Therefore,
we do not need to adjust their positions, which leads to fewer movements in sorting. In this paper, three
algorithms are provided to generate almost descending sequences, and their correctness is proven. The
experimental results of the proposed algorithms demonstrate that our technique can reduce the number of
movements in sorting. In addition, almost descending sequences are more stable than strictly descending
sequences in dynamic sorting, which is useful in online sorting and sorting in noisy environments.

INDEX TERMS Almost descending sequence, sorting, algorithm, dynamic sorting.

I. INTRODUCTION
Sorting is a method of rearranging items in ascending or
descending order; it is one of the fundamental operations
in computer science and is widely used in database man-
agement, searching, network communications, etc. Famous
sorting algorithms include bubble sort, selection sort, quick
sort, insertion sort, heap sort, merge sort, shell sort, and radix
sort [8], [9]. Bubble sort is typically included in textbooks
when discussing sorting algorithms, and scholars have found
interesting theoretical implications of it, such as bubble sort
graphs [3], [15], bubble entropy [18], and bubble sort net-
works [21]. Nevertheless, it is seldom used to sort random
sequences in practice due to its low efficiency. Selection sort
has the same time complexity, O(n2), as bubble sort, while
the number of movements is less than that of bubble sort.
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Compared with bubble sort and selection sort, quick
sort makes sorting more efficient, and thus scholars and
practitioners have given more attention to it. For exam-
ple, Kocamaz [14] implemented a faster variant of quick
sort by using an artificial neural network-based algorithm
selection approach. Aumuller et al. [4] studied the possible
advantages multipivot quick sort might offer in general.
Edelkamp et al. [10] mixed quick sort with another sorting
algorithm to obtain quickXsort as a general template for
transforming an external algorithm into an internal algorithm.
As mentioned, each sorting algorithm has its own charac-
teristics and advantages, and no one sorting algorithm is
best for every situation. Therefore, scholars usually modify
traditional algorithms or even design new algorithms to solve
problems in different situations.

In this paper, we present a new case, inspired by sorting
problems in real life, in which we usually do not distinguish
or reorder objects unless they have large enough differences
to be perceived by human eyes. We define such objects
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as ‘‘indistinguishable’’ and aim to sort effectively when
some elements in a sequence are indistinguishable. Some
scholars have considered almost ordered sequences [12],
roughly sorted sequences [1] and nearly sorted sequences
[6], [7]. However, their research situations vary remarkably.
For instance, Foster [12] presented an algorithm for sorting
a collection of items that are almost ordered; this means that
most of the records or sentences have been entered correctly,
and the replacement of an old record or the insertion of a new
one into already entered text occasionally occurs. Altman and
Chlebus [1] studied how to sort a roughly sorted sequence,
i.e., a sequence in which data that should be close to each
other after sorting are already not very far from each other.
Cook et al. [7] and Castro [6] proposed algorithms to sort a
nearly sorted sequence, in which only a few elements are out
of order.

In response to our specific research situation, we endeavor
to generate almost descending sequences by modifying bub-
ble sort, selection sort and quick sort. Unlike previous
research, the almost descending sequence is not strictly
decreasing due to indistinguishable elements, while the
almost ordered sequence, the roughly sorted sequence and the
nearly sorted sequence are completely ordered after sorting.
Additionally, previous sorting solutions focus on reducing the
number of data comparisons, but we aim at moving data as
little as possible to minimize the number of movements and
thus enhance the stability of the sequence. Our experimental
results show that the almost descending versions of bubble,
selection and quick sort perform better than their original
versions when the differences between some elements are
negligible.

This paper is organized as follows: In section 2, we give
some notation used in this paper, followed by a detailed
description of the new situation in section 3. Next, we intro-
duce three algorithms to perform almost descending sort and
prove their correctness. In section 5, we provide the exper-
imental results of the three algorithms and the stability test
of Algorithm 2. In section 6, we compare our algorithms
with other ‘‘almost’’ or ‘‘nearly’’ sorting algorithms and
illustrate how to use almost descending algorithms in online
sorting and in noisy environments. Finally, we conclude by
discussing the theoretical and practical contributions of our
work.

II. NOTATION
We use the following notation throughout this paper.

[i, j] denotes a sequence with j− i+1 continuous elements
i, i+ 1, i+ 2, · · · , j− 1, j. If i > j, then [i, j] is empty.
If S denotes a sequence with n elements, then S[i, j]

denotes a subarray of S consisting of j− i+ 1 elements S[i],
S[i+ 1], S[i+ 2], · · · , S[j]. If i > j, then S[i, j] is empty.
If S and R denote two sequences with n elements, then S+

R = [S[1]+ R[1], S[2]+ R[2], · · · , S[n]+ R[n]].
Repetition rate: Suppose T is a set with m different ele-

ments and S is a sequence with n elements. If each element

of S is randomly chosen from T , then we say the repetition
rate of S is n

m .

III. PROBLEM DESCRIPTION
A. BASIC IDEA
Generally, the efficiency of sorting algorithms is evaluated
by important parameters, such as the number of comparisons,
the number of movements, and the space requirements. In this
paper, we focus on the situation in which each element in a
sequence has a corresponding entity in real life, and the entity
moves synchronously in real life when sorting. The problem
is how tomake as fewmoves as possible to generate an almost
descending sequence. We use Problem 1 to explain our idea.
Problem 1: Five people with heights of 1.852 meters,

1.8 meters, 1.854 meters, 1.751 meters, and 1.752 meters are
in a line. How can we move as few as possible to make them
seem to be sorted in descending order?

Note the differences between ‘‘sorted in descending order’’
and ‘‘seem to be sorted in descending order’’. The former
means sorting in a strictly descending sequence, while the
latter implies an almost descending sequence. To give a
strict definition of the almost descending sequence, we intro-
duce the notion of ‘‘indistinguishable’’, which is similar to
poly-time indistinguishable [13] but simplified.
Definition 1: We call two elements a and b indistinguish-

able under parameter C if

|a− b| < C (1)

for a given positive number C.
Note that there always exists a positive number C , no mat-

ter how small, such that if the height difference between two
people is less than C , then we cannot distinguish their dif-
ferences by sight. Thus, we can ignore the height difference
between these two people and treat them as indistinguishable
when sorting. Based on this idea, almost descending can be
defined as follows:
Definition 2: Suppose S is a sequence of n numbers; we

call S almost descending with parameter C if

S[j]− S[i] < C (2)

for any 1 ≤ i < j ≤ n and a positive number C.
Similarly, we can define almost ascending with parameter

C if we change equation (2) to

S[i]− S[j] < C (3)

for any 1 ≤ i < j ≤ n and a positive number C.
The reverse of an almost descending sequence is an almost

ascending sequence, and vice versa. Thus, we only discuss
the almost descending situation in this paper.

The positive number C , which sets a ‘‘bound’’ in the
almost descending sequence, depends on the practical back-
ground. Regarding the height of two people, we can choose
0.005 meters as a bound. Suppose two people with a height
difference of less than 0.005 meters are indistinguishable;
then, Problem 1 can be solved as follows:
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Solution of Problem 1: The heights of five people are to be
listed as a sequence S.

The problem becomes how to make as few moves as pos-
sible to ensure that

S[j]− S[i] < 0.005 (4)

for any 1 ≤ i < j ≤ 5.
Obviously, we can obtain a new sequence by exchanging

the positions of the second and third person:

The new sequence can be regarded as an almost descending
sequence with parameter 0.005 meters. This sequence is not
strictly descending, but it seems to be descending. Compared
with generating a strictly descending sequence by at least
three adjustments involving the five people, it is more effi-
cient to exchange the positions of the second and third person
to generate an almost descending sequence. Since we cannot
visually distinguish people with tiny height differences in real
life, the best sorting strategy is to permute their positions in
a descending trend. Sporadic indistinguishable height differ-
ences that do not break the descending trend can be ignored
to reduce the number of movements in sorting.

B. OUR GOAL
We transform the above requirement into the following math-
ematical problem, which our paper aims to solve:
Problem 2: Given a sequence S of n numbers, reorder this

sequence to satisfy

S[j]− S[i] < C (5)

for any 1 ≤ i < j ≤ n and a positive number C.

IV. ALGORITHMS AND THEIR CORRECTNESS
In this section, we modify bubble sort, selection sort and
quick sort to provide three almost descending algorithms,
namely, almost descending bubble sort, almost descending
selection sort and almost descending quick sort, to solve
Problem 2. In addition, we prove their correctness and illus-
trate their advantages compared to the corresponding strictly
descending algorithms.

A. ALMOST DESCENDING BUBBLE SORT
In this subsection, we modify bubble sort to obtain almost
descending bubble sort (Algorithm 1).
Proposition 1: Algorithm 1 will terminate and produce an

almost descending sequence with parameter C.
Proof: 1) Let i = 1; compare S[i] with S[i + 1],

S[i + 2], · · · , S[n] one by one. If S[j] − S[i] ≥ C (j =
i+1, i+2, · · · , n), then exchange the values of S[j] and S[i].
After these operations, we state that

S[j]− S[i] < C for all j ∈ [i+ 1, n]. (6)

Next, we prove the correctness of this assertion.

Algorithm 1 Almost-Descending-Bubble(S,C)
Input: a sequence S of n numbers and a positive number C .
Output: a sequence S with S[j]− S[i] < C for any i < j.
1: for i = 1 to n− 1 do
2: for j = i+ 1 to n do
3: if S[j]− S[i] ≥ C then
4: Swap(S[i], S[j]);
5: end if
6: end for
7: end for

1.1) Let t ∈ [i+ 1, n] be the minimum index such that

S[t]− S[i] ≥ C; (7)

then, we have

S[k]− S[i] < C for all k ∈ [i+ 1, t − 1]. (8)

1.2) Let λ = S[i]; after exchanging the values of S[i] and
S[t], we have S[t] = λ and S[i] ≥ λ + C . Together with
equation (8), we can deduce that

S[k]− S[i] < C for all k ∈ [i+ 1, t]. (9)

1.3) Let t ′ ∈ [t + 1, n] be the minimum index such that
S[t ′] − S[i] ≥ C , similar to 1.1) and 1.2). After exchanging
the values S[i] and S[t ′], we can obtain

S[k]− S[i] < C for all k ∈ [i+ 1, t ′]. (10)

By performing similar operations, we can obtain a
sequence that satisfies equation (6). If we cannot find a t that
satisfies equation (7), then the original sequence S[i + 1, n]
must satisfy equation (6).

Note that S[i] = λ in the original sequence; after exchang-
ing the values of S[i] and S[t], we have S[i] ≥ λ+C , that is,
S[i] becomes larger. Thus, equation (8) is still true after the
exchange operation. This is the key point for understanding
our algorithm.

2) Let i = i+ 1; loop (1). Algorithm 1 will terminate after
running the last loop i = n− 1. �

B. ALMOST DESCENDING SELECTION SORT
In this subsection, we modify selection sort to obtain almost
descending selection sort (Algorithm 2).
Proposition 2: Algorithm 2 will terminate and produce an

almost descending sequence with parameter C.
Proof: This proof resembles the proof of Proposition

1. In Algorithm 1, if S[j] − S[i] ≥ C for some i < j, then
exchange the values of S[i] and S[j]. In Algorithm 2, if S[j]−
S[k] ≥ C for some k < j, then set k = j. We can find an
index k such that

S[j]− S[k] < C for all j ∈ [i, n]. (11)

Exchanging the values of S[i] and S[k], we have

S[j]− S[i] < C for all j ∈ [i+ 1, n]. (12)
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Algorithm 2 Almost-Descending-Selection (S,C)
Input: a sequence S of n numbers and a positive number C .
Output: a sequence S with S[j]− S[i] < C for any i < j.
1: for i = 1 to n− 1 do
2: j=i+1;
3: k=i;
4: while j ≤ n do
5: if S[j]− S[k] ≥ C then
6: k=j;
7: end if
8: j=j+1;
9: end while

10: if k 6= i then
11: Swap(S[i], S[j]);
12: end if
13: end for

The above explanation describes Lines 2-12; then, we set
i = i + 1 and loop Lines 2-12 again. Algorithm 2 will
terminate after running the last loop i = n− 1. �

C. ALMOST DESCENDING QUICK SORT
In this subsection, we modify quick sort to obtain almost
descending quick sort (Algorithm 3).

Algorithm 3 Almost-Descending-Quick (S,C,L,R)
Input: a sequence S of R − L + 1 numbers and a positive

number C .
Output: a sequence S with S[j]− S[i] < C for all L ≤ i <

j ≤ R.
1: if L < R then
2: p = S[R];
3: i = L;
4: j = R;
5: while i < j do
6: while i < j and p− S[i] < C

2 do
7: i = i+ 1;
8: end while
9: S[j] = S[i];

10: while i < j and S[j]− p < C
2 do

11: j = j− 1;
12: end while
13: S[i] = S[j];
14: end while
15: S[j] = p;
16: Almost-Descending-Quick(S,C,L, j− 1);
17: Almost-Descending-Quick(S,C, j+ 1,R);
18: end if

Proposition 3: Algorithm 3 will terminate and produce an
almost descending sequence with parameter C.

Proof: 1) Suppose S[j] = p. If

p− S[i1] <
C
2
for i1 ∈ [L, j− 1] (13)

and

S[i2]−p <
C
2
for i2 ∈ [j+ 1,R], (14)

then there must be

S[i2]− S[i1] < C for i1 ∈ [L, j− 1] and i2 ∈ [j+ 1,R].

(15)

Based on equations (13), (14), and (15), if S[L, j] and
S[j,R] are both almost descending sequences with parame-
ter C

2 , then S[L,R] is an almost descending sequence with
parameter C .
We assert that equations (13), (14), and (15) are true

after Line 15. Lines 6-9 can ensure the correctness of equa-
tion (13), and Lines 10-13 can ensure the correctness of
equation (14).

Equation (15) is true after Line 15, and the sequence has
been divided into three parts, S[L, j− 1], p, and S[j+ 1,R].

2) Loop (1) for S[L, j − 1]; then, S[L, j − 1] will become
almost descending after Line 16.

3) Loop (1) for S[j + 1,R]; then, S[j + 1,R] will become
almost descending after Line 17. �

V. PERFORMANCE ANALYSIS
In the previous section, we proposed three almost descending
algorithms and proved their correctness. In this section, we
investigate the performance of different algorithms followed
by a stability test to solve the following two problems:
Problem 3: Given a random sequence, are fewer move-

ments required to generate an almost descending sequence
than to generate a strictly descending sequence?

A sequence is dynamic if the values of the sequence vary
from time to time, and sorting such a sequence is called
dynamic sorting. Web page ranking can be considered a
dynamic sorting problem, since the ranks of pages change
from time to time. We investigate dynamic sequences in two
different conditions.
Condition 1: Suppose S is a descending sequence with n

integer elements; let S[i] = S[i] + ri for any 1 ≤ i ≤ n,
where each ri is randomly selected in [-M,M] (M > 0).
Condition 2: Suppose S is an almost descending sequence

with parameterC and n integer elements, and let S[i] = S[i]+
ri for any 1 ≤ i ≤ n, where each ri is randomly selected from
[-M,M] (M > 0).

On this basis, we propose the following problem:
Problem 4: Are fewer movements required to maintain an

almost descending sequence in condition 2 than to maintain
a strictly descending sequence in condition 1?

For simplicity, we only consider integer sequences and
integer parameters C in what follows. Other conditions are
similar to the integer condition.

A. COMPARISON OF DATA MOVEMENTS
To solve Problem 3, let us recall some fundamental concepts
about probability. P(A): The probability of event A. P(A|S):
The conditional probability of A relative to S.
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TABLE 1. Experimental results.

Proposition 4: Two integers k and t are randomly chosen
from [E,F] (E < F are two integers). C is an integer such
that 0 < C < F − E. Let D = F − E + 1. Then, we have

P(t > k) =
1
2
−

1
2D

(16)

and

P(t − k ≥ C) =
(D− C)(D− C + 1)

2D2 . (17)

Proof: 1) First, let us prove Equation (16).
Note that P(k > t) denotes the probability that k > t . k

and t are randomly chosen from [E,F], so we have
P(k < t)+ P(k > t)+ P(k = t) = 1,
P(k < t) = P(k > t),

P(k = t) =
1

F − E + 1
.

(18)

According to Equation (18), we can obtain

P(k > t) =
1
2
−

1
2(F − E + 1)

. (19)

2) We prove Equation (17) in this section. Note that k and
t are randomly chosen from [E,F], so we haveP(t − k ≥ C|k ∈ (F − C,F]) = 0,

P(t − k ≥ C|k ∈ [E,F − C]) =
F − k − C + 1
F − E + 1

.
(20)

According to Equation (20), we have

P(t − k ≥ C) =
F−C∑
k=E

F − k − C + 1
F − E + 1

·
1

F − E + 1

=
(D− C)(D− C + 1)

2D2 . (21)

�
Corollary 1: According to Proposition 4, we have

1) P(t > k) > P(t − k ≥ C),
2) P(t − k ≥ C) decreases as C increases.
Given a random sequence S, for any i < j, let k = S[i]

and t = S[j]; then, P(k > t) denotes the probability that we

need to exchange the values of S[i] and S[j] to make them
descending, while P(t − k ≥ C) denotes the probability that
we need to exchange the values of S[i] and S[j] to make them
almost descending.

Therefore, 1) in Corollary 1 implies that for any random
integers S[i] and S[j], fewer movements are needed to make
them almost descending than to make them descending.

2) in Corollary 1 implies that for any random integers S[i]
and S[j], fewer movements are needed to make them almost
descending with parameter C as C becomes larger.

Proposition 4 and Corollary 1 partly solve Problem 3.
In addition, we run some experiments to demonstrate our
view (see Table 1). For each parameter n, we generate a
random sequence S of n elements, and each S[i](1 ≤ i ≤ n)
is randomly chosen between 1 and 1000. Then, we run these
algorithms under different parameters. Table 1 illustrates the
number of data movements for these algorithms.

Take n = 100 and C = 200 (Column 4) as an example.
We randomly choose 100 elements from [1..1000] to obtain a
sequence S. When using bubble sort on S, the number of data
movements is 7197.When usingAlgorithm 1 (with parameter
C = 200) to sort the same S, the number of data movements
is 438. Accordingly, the advantage is 7197−438

7197 = 93.91%,
which means that Algorithm 1 (with parameter C = 200)
can save 93.91% of the data movements of bubble sort.

As we can see in Table 1, the number of data movements
depends greatly on two parameters: the repetition rate of S
and the bound C . An increase in C leads to a decrease in the
number of data movements of Algorithms 1, 2 and 3, which
accords with 2) in Corollary 1. Given the same bound C ,
Algorithms 1, 2 and 3 work more effectively when S has a
higher repetition rate. Regardless of which almost descending
algorithm is used, an increase in C generally brings about
fewer data movements and thus a greater advantage over the
corresponding algorithm, especially for sequences with high
repetition rates. In addition, Algorithm 1 improves bubble
sort to a great extent, although the number of data move-
ments remains the largest among the three almost descend-
ing algorithms. Moreover, Algorithm 2 results in the fewest
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data movements when generating an almost descending
sequence.

In addition to Algorithms 1, 2 and 3, we can follow the
same logic to modify other sorting algorithms, such as inser-
tion sort, merge sort and heap sort, as almost descending
versions to solve Problem 2. However, insertion sort requires
too many movements when inserting a new element into its
position. Merge sort requires linear extra space. Heap sort
with n levels has to generate almost descending subsequences
with parameter Cn . These algorithms may not perform as well
as Algorithms 1, 2 or 3; thus, we list only three algorithms to
explain our idea.

B. STABILITY TEST
In this section, we present the stability test of Algorithm 2 to
solve Problem 4.We first provide a simple example to explain
the problem.
Example 1: (i) Define{
S = [991, 990, 987, 745, 743, 742, 543, 534, 304],
R = [−5, 5, 4, 3,−4, 4, 2,−3, 1].

Note that S is a strictly descending sequence, and R is a
random sequence with each element selected from [−5, 5],
but

S + R = [986, 995, 991, 748, 739, 746, 545, 531, 305]

is no longer strictly descending. In this case, we have to
change the positions of five elements to make the sequence
S + R strictly descending again.
(ii) Define{
S = [987, 990, 991, 742, 745, 743, 543, 534, 304],
R = [−5, 5, 4, 3,−4, 4, 2,−3, 1].

Note that S is an almost descending sequence with param-
eter C = 20, and R is a random sequence with each element
selected from [−5, 5]; therefore,

S + R = [982, 995, 995, 745, 741, 747, 545, 531, 305]

is still an almost descending sequence with parameter
C = 20.
In Example 1, S + R simulates the dynamic condition that

the value of S varies slightly.
Anagnostopoulos et al. [2] investigated how to output an

approximate solution under dynamic conditions. In their case,
the approximate solution resembled Cook et al. [7] and Cas-
tro’s [6] ‘‘nearly sorted sequence’’, in which only a few
elements are out of order. However, we provide a different
solution based on the idea of almost descending algorithms,
in which many elements may be out of order, but the differ-
ences between these elements are rather small and negligible.

Example 1 illustrates that an almost descending sequence
may preserve the almost descending property if the values of
its elements vary slightly. Therefore, the cost of maintaining
an almost descending sequence is lower than that of main-
taining a strictly descending sequence in dynamic sorting.
However, slight variations may sometimes change the almost
descending property of a sequence. In this regard, is the cost
still lower to maintain the almost descending property than
to maintain the strictly descending property in the dynamic
condition? Proposition 5, Figure 1 and Figure 2 demonstrate
this problem. We need the following lemma to prove Propo-
sition 5:
Lemma 1: Suppose that M is a positive integer and ε1, ε2

are randomly chosen from [−M ,M ]. Then, we have

P(ε1 − ε2 = i) =
(2M + 1− |i|)
(2M + 1)2

(i ∈ [−2M , 2M ]). (22)

Proof: Note that ε1 and ε2 are randomly chosen from
[−M ,M ]. When i ∈ [0, 2M ], we haveP(ε1 − ε2 = i|ε2 ∈ (M − i,M ]) = 0

P(ε1 − ε2 = i|ε2 ∈ [−M ,M − i]) =
1

2M + 1
,

(23)

which implies that

P(ε1 − ε2 = i) =
M−i∑
ε2=−M

1
2M + 1

·
1

2M + 1

=
2M + 1− i
(2M + 1)2

. (24)

Similarly, when i ∈ [−2M , 0], we have

P(ε1 − ε2 = i) =
(2M + 1+ i)
(2M + 1)2

. (25)

Equation (24) and Equation (25) imply Equation 22. �
Proposition 5: Two integers k and t are randomly chosen

from [E,F] (E < F are two integers). C is an integer such
that 0 < C < F − E. Let D = F − E + 1. M is a positive
integer such that M < C

2 , and ε1, ε2 are randomly chosen
from [−M ,M ]. Then, we have

P(k + ε1 < t + ε2|k ≥ t)

=
M [−2M2

+ (4D− 1)M + 4D+ 1]
3D(D+ 1)(2M + 1)

(26)

and (27), as shown at the bottom of the page.
Proof: 1) For any i ∈ [0, 2M ], we have

P(t − k ≤ −i) =
F∑

k=E+i

1
D
·
k − i− E + 1

D

=
(D− i)(D− i+ 1)

2D2 . (28)

P(k + C + ε1 ≤ t + ε2|k + C > t) =
−3M2(2M + 1)+ 2(M + C − D)M (4M + 1)− 3(2M + 1)(2C − 2D− 1)M

3[D2 + (2C − 1)D− C(C − 1)](2M + 1)
. (27)
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According to Equation (16) and Equation (28), we have

P(k + ε1 < t + ε2|k ≥ t)

= P(ε1 − ε2 < t − k|t − k ≤ 0)

=
P(ε1 − ε2 < t − k ≤ 0)

P(t − k ≤ 0)

=

2M∑
i=1

P(−i < t − k ≤ 0)
P(t − k ≤ 0)

· P(ε1 − ε2 = −i)

=

2M∑
i=1

P(t − k ≤ 0)− P(t − k ≤ −i)
P(t − k ≤ 0)

· P(ε1 − ε2 = −i)

=

2M∑
i=1

1
2D2 · [(2D+ 1)i− i2]

D+1
2D

·
2M + 1− i
(2M + 1)2

=

2M∑
i=1

[i3 − (2M + 2D+ 2)i2 + (2D+ 1)(2M + 1)i]

(2M + 1)2D(D− 1)

=
M [−2M2

+ (4D− 1)M + 4D+ 1]
3D(D+ 1)(2M + 1)

.

2) For any i ∈ [0, 2M ], we have

P(t − k − C < −i)

=

F+i−C∑
k=E

1
D
·
k + C − i− E

D
+

F∑
k=F+i−C+1

1
D
· 1

=
−i2 + (2C − 2D− 1)i+ D2

− C2
+ 2DC + C − D

2D2 .

(29)

According to Equation (17) and Equation (29), we haveP(k+
C + ε1 ≤ t + ε2|k + C > t), as shown at the bottom of the
page. �
Corollary 2: According to Proposition 5, we have the

following:

1) When M increases, P(k + ε1 < t + ε2|k ≥ t) and P(k +
C + ε1 ≤ t + ε2|k + C > t) increase.
2)WhenC becomes larger, P(k+C+ε1 ≤ t+ε2|k+C > t)

decreases.
3) P(k + ε1 < t + ε2|k ≥ t) > P(k +C + ε1 ≤ t + ε2|k +

C > t).
Proof: 1) According to Equation (26), we have

P(k + ε1< t + ε2|k ≥ t) =
−2M2

+ (4D− 1)M + 4D+ 1

3D(D+ 1)(2+ 1
M )

.

(30)

Let f (M ) = −2M2
+(4D−1)M+4D+1; then, the derivative

f ′(M ) = −4M + (4D− 1) > 0. Thus, f (M ) is an increasing
function onM . Therefore, an increase inM leads to a decrease
in 3D(D+1)(2+ 1

M ) and an increase in−2M2
+(4D−1)M+

4D + 1. Thus, as M increases, P(k + ε1 < t + ε2|k ≥ t)
increases. Similarly, according to Equations (27), we find that
asM increases, P(k +C + ε1 ≤ t + ε2|k +C > t) increases.

2) Let u(C) = −3M2(2M + 1)+ 2(M + C −D)M (4M +
1)− 3(2M + 1)(2C − 2D− 1)M and v(C) = 3[D2

+ (2C −
1)D− C(C − 1)](2M + 1). Then, we have

u′(C) = 2M (4M + 1)− 6(2M + 1)M = −4M2
− 4M < 0

(31)

and

v′(C) = 3[2D− 2C + 1](2M + 1) > 0, (32)

which implies that u(C) is a monotonically decreasing func-
tion on C and v(C) is a monotonically increasing function
on C . Thus, P(k + C + ε1 ≤ t + ε2|k + C > t) is a
monotonically decreasing function on C .
3) Since we have proved that P(k+C+ε1 ≤ t+ε2|k+C >

t) is a monotonically decreasing function on C , we only need

P(k + C + ε1 ≤ t + ε2|k + C > t) = P(ε1 − ε2 ≤ t − k − C|t − k − C < 0)

=
P(ε1 − ε2 ≤ t − k − C < 0)

P(t − k − C < 0)

=

2M∑
i=1

P(−i ≤ t − k − C < 0)
P(t − k − C < 0)

· P(ε1 − ε2 = −i)

=

2M∑
i=1

P(t − k − C < 0)− P(t − k − C < −i)
P(t − k − C < 0)

· P(ε1 − ε2 = −i)

=

2M∑
i=1

i2−(2C−2D−1)i
2D2

D2+(2C−1)D−C(C−1)
2D2

·
2M + 1− i
(2M + 1)2

=

2M∑
i=1

[−i3 + (2M + 2C − 2D)i2 − (2M + 1)(2C − 2D− 1)i]

[D2 + (2C − 1)D− C(C − 1)](2M + 1)2

=
−3M2(2M + 1)+ 2(M + C − D)M (4M + 1)− 3(2M + 1)(2C − 2D− 1)M

3[D2 + (2C − 1)D− C(C − 1)](2M + 1)
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to prove that

P(k + ε1 < t + ε2|k ≥ t) >
u(2M )
v(2M )

=
M [−6M2

+ (4D− 3)M + 4D+ 3]
[D2 + (4M − 1)D− 2M (2M − 1)](2M + 1)

. (33)

According to Equation (26) and the analysis of v′(C) in
the proof of part 2), we can conclude that Equation (33)
is true, since u(2M )

v(2M ) has a smaller numerator and larger
denominator. �
Given a sequence S, for any i < j, let k = S[i] and t = S[j].

With the same notation as in Proposition 5, k > t denotes that
S[i] and S[j] satisfy the descending property, and k + ε1 <
t + ε2 denotes that S[i]+ ε1 and S[j]+ ε2 do not satisfy the
descending property after a small variation (note that we use
+ε1 and+ε2 to denote a small variation in dynamic sorting).
We have to exchange the values of S[i] + ε1 and S[j] + ε2
to preserve the descending property, which will lead to data
movements. Therefore, P(k + ε1 < t + ε2|k ≥ t) can be
interpreted as the probability that we need to exchange S[i]+
ε1 and S[j]+ ε2 to retain the descending property in dynamic
sorting. Similarly, P(k + C + ε1 ≤ t + ε2|k + C > t) can be
interpreted as the probability that we need to exchange S[i]+
ε1 and S[j] + ε2 to retain the almost descending property in
dynamic sorting.

Therefore, we can obtain the following properties:
Property 1) in Corollary 2 implies that for any S[i] > S[j]

or S[i] + C > S[j] (i < j), more movements are needed to
maintain the descending property or the almost descending
property in dynamic sorting whenM becomes larger.

Property 2) in Corollary 2 implies that for any S[i] +
C > S[j] (i < j), fewer movements are needed to maintain
the almost descending property in dynamic sorting when C
becomes larger.

Property 3) in Corollary 2 implies that for any S[i] > S[j]
or S[i] + C > S[j] (i < j), fewer movements are needed to
maintain the almost descending property than to maintain the
descending property in dynamic sorting.

Proposition 5 and Corollary 2 partly solve Problem 4.
In addition, we run some experiments to support our view (see
Figure 1 and Figure 2). Figure 1 and Figure 2 show the num-
bers of movements when generating descending and almost
descending sequences for different parameters. In Figure 1,
M = 5, and the integer C ∈ [10, 29]. In Figure 2, C = 40,
and the integer M ∈ [1, 20]. We run 300 random trials for
each M and C (count = 300) and calculate the mean of
the number of movements. In each experiment, we generate
a random almost descending sequence S with n(= 1000)
elements and S[i] ∈ [1, 1000] for 1 ≤ i ≤ 1000, then
generate a random sequence Rwith 1000 elements and R[i] ∈
[−M ,M ] for 1 ≤ i ≤ 1000. Suppose S ′ is the corresponding
strictly descending sequence after reordering sequence S with
Selection. Thus, the number of movements denotes the num-
ber of data movements when running Selection(S ′ + R,C)
and Almost-Descending-Selection(S + R,C).

FIGURE 1. n = 1000, count = 300, M = 5.

FIGURE 2. n = 1000, count = 300, C = 40.

Figure 1 and Figure 2 can demonstrate Properties 1),
2) and 3) in Corollary 2. We can see that the num-
ber of movements for Selection is far greater than that
for Almost-Descending-Selection in dynamic sorting. The
almost descending sequence remains almost descending
when the values of each element vary slightly, especially
when C is sufficiently large or M is sufficiently small.

In sum, almost descending sequences may preserve the
almost descending property if the values of their elements
vary slightly. Even if a slight variation changes the almost
descending property, these sequences need fewer adjustments
to become almost descending again than strictly descending
sequences need. Therefore, we believe that almost descend-
ing sequences are more stable than strictly descending
sequences in dynamic sorting.

VI. DISCUSSION AND APPLICATION
We investigated the properties of almost descending algo-
rithms in the above sections. In this section, we will com-
pare another algorithm for ‘‘almost’’ or ‘‘nearly’’ sorting.
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Additionally, we will provide situations in which almost
descending algorithms can be of help.

A. ALMOST ORDERED
Foster [12] introduced a way to sort almost ordered arrays
in the case of a time-sharing environment in which most
of the records or sentences have been entered correctly but
there may occasionally be a replacement of an old record or
an insertion of new records into already entered text. The
almost ordered algorithm first constructs a table with one
entry for each part of the source text that is internally ordered
and then performs an N -way merge of the parts. Similarly,
we can design anN -way merge almost descending algorithm.
However, this algorithm has at least two weaknesses. First,
the number of movements is larger than that of Algorithm 1.
Second, we have to choose the bound C

2 when merging two
sequences to obtain an almost descending sequence with
parameter C (similar to that in Algorithm 3). Therefore, it is
not a good choice to construct a merge sort version of the
almost descending algorithm.

B. ROUGHLY SORTED
A sequence a = (a1, a2, · · · , an) is k-sorted if and only
if j − i > k implies ai < aj for all 1 ≤ i, j ≤ n.
A sequence is sorted if and only if it is 0-sorted. Define
the radius of a as the smallest k such that a is k-sorted.
Then, a sequence with a radius k = O(n) is called a roughly
sorted sequence. Yoshihide and Derick [20] designed two
k-sorted algorithms, namely, k-Bubblesort and k-Quicksort,
which generalized bubble sort and quick sort. Altman and
Chlebus [1] studied sorting on a concurrent-read concurrent-
write parallel random access machine (CRCW PRAM) when
the input is roughly sorted. They proved that there is an
algorithm that can run on a CRCW PRAM using a linear
number of processors that sorts each sequence a in time
O(log k), where k is the radius of a.
k-sorted algorithms generalize sorting algorithms, and

almost descending algorithms also generalize sorting algo-
rithms. The difference is that they use different ways to
generalize sorting algorithms and have different properties.
k-sorted algorithms aim to speed up sorting with the roughly
sorted property. However, our aim is to reduce the number of
movements and remain stable in sorting; thus, we focus on
the indistinguishability property in some special conditions.
A common point is that both types of algorithms achieve their
aims through modifying sorting algorithms, such as bubble
sort and quick sort. In addition, all k-sorted sequences can
be included in almost ascending sequences (the reverse of
almost descending sequences; see Definition 2). For exam-
ple, [200, 300, 100, 500, 400] is not a sorted sequence but
a 3-sorted sequence, and it is also an almost ascending
sequencewith parameter 201. Nevertheless, we are only inter-
ested in almost ascending/descending sequences with small
parameters C , while most k-sorted sequences are almost
ascending sequences with large parameters C , which are too
large for the items to be indistinguishable. Therefore, almost

ascending/descending sequences with small parameters have
the same properties as k-sorted sequences.

C. NEARLY SORTED
A sequence is nearly sorted if it requires few operations
to sort it or it was created from a sorted sequence with
a few perturbations. Cook et al. [7] defined the sortedness
ratio as k

N for a nearly sorted sequence with N elements,
where k is the minimum number of elements that can be
removed to leave the remaining sequence sorted. They com-
pared five classic sorting algorithms on sequences of various
sizes (50, 100, 200, 500, 1000, 2000) with sortedness ratios
of 0.00, 0.02, 0.04, · · · , 0.20. The test results indicated that
straight insertion sort is the best sorting algorithm for small
or very nearly sorted sequences. Based on their experiments,
Cook et al. [7] developed a new sorting algorithm for nearly
sorted sequences. It is a novel combination of straight inser-
tion sort and quickersort with merging, which performs better
than straight insertion sort. Castro [6] studied how to generate
nearly sorted sequences, since such sequences are necessary
for generating benchmark test sets for a series of important
computational problems beyond sorting, for example, error-
correcting graph isomorphisms.

Similar to roughly sorted sequences, nearly sorted
sequences are included in almost ascending/descending
sequences if the parameter C is sufficiently large. Even
so, many nearly sorted sequences may be almost ascend-
ing/descending sequences with small parameters C . For
example, in Problem 1, the sequence [1.852, 1.854, 1.8,
1.751, 1.752] is a nearly sorted sequence with a sortedness
ratio of 0.4, and it is also an almost descending sequence
with parameter 0.005. Therefore, if a nearly sorted sequence
is an almost ascending/descending sequence with a small
parameter C , they have similar properties, which means
that such sequences are also useful in error-correcting graph
isomorphisms.

D. ONLINE SORTING
In classic sorting problems, we know all the inputs initially,
and the inputs are static. However, in online conditions, the
inputs are dynamic, and we may not know all the changes
at a certain time. Anagnostopoulos et al. [2] studied a new
computational model in which the data change gradually, and
the goal of their algorithm was to compute an approximate
solution. Their idea was inspired by the online voting website
Bix (owned by Yahoo), web search, recommendation sys-
tems, and online ad selection. They focused on fundamental
problems of sorting and selection: that a good ranking in
the past may not remain good and that ranking changes are
typically gradual over time. The ranking system aims to track
the changing perception of rankings by selecting feedback to
request from the user. Let π t be the true ordering at time t, and
let π̃ t be a sequence that is generated by an approximation
algorithm. This algorithm has only limited access to the
changes. Anagnostopoulos et al. used the Kendall tau dis-
tance to measure how close an estimate is to the true ordering.
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The Kendall tau distance KT (π1, π2) between permutations
π1 and π2 is defined as follows:

KT (π1, π2) = |{(x, y) : x <π1 y ∧ y <π2 x}|.

Anagnostopoulos et al. stated that no algorithm can guar-
antee that at every time step, the distance between π t and
π̃ t is less than O(n). They proposed an algorithm that can
guarantee with high probability that this distance is at most
O(nlnlnn).

Let S t be an almost descending sequence with parameter
C at time t , and let T = S t + R, where R is a random
sequence with R[i] ∈ [−M ,M ] for some small positive num-
berM . Suppose S t+1 is the corresponding almost descending
sequence of T . According to our test (see Figure 1 and
Figure 2), if C is sufficiently large or M is sufficiently
small, fewer than n movements are needed to modify T to
S t+1, which means that the Kendall tau distance between T
and S t+1 is quite small. Therefore, if the almost descend-
ing sequence is adequate in dynamic sorting, then we can
maintain a low Kendall tau distance during the sorting
process.

E. SORTING IN NOISY ENVIRONMENTS
Fault tolerance is an important consideration in large sys-
tems since noisy information always exists in some con-
ditions. Thus, it is necessary to devise algorithms that
work despite unreliable information. Feige et al. [11] stud-
ied noisy Boolean decision trees and noisy comparison
trees (such as are used in sorting, selection and searching).
Makarychev et al. [16] investigated how to sort noisy data
with partial information. According to our results, almost
descending algorithms have fault tolerance property, which
can counteract some noise. For example, almost descending
algorithms can be used in PageRank [5], since the PageRank
of pages changes from time to time and can be consid-
ered a dynamic almost descending sequence S with some
parameter C . Web spam [19], search engine optimization
(SEO) [17] and similar noisy information may also change
the values of PageRank, and this information can be regarded
as a noise sequence R. Then, the problem is how to make
S = S + R almost descending again in dynamic condi-
tions. Choosing the proper parameter C can avoid unneces-
sary movement when some elements are indistinguishable
in dynamic sorting. This is why almost descending algo-
rithms can reduce the number of movements and are more
stable.

VII. CONCLUSION
In this paper, we consider a realistic sorting problem, where
we do not or cannot distinguish two elements unless they
have large enough differences to be perceived. We deem
such elements indistinguishable and thus do not need to
adjust their positions in sorting. In this regard, we define the
notion of an almost descending sequence with parameter C,
which sets the bound for measuring whether two elements
are indistinguishable. Then, we provide three algorithms to

generate almost descending sequences based on bubble sort,
selection sort and quick sort. Compared to the three origi-
nal algorithms, our almost descending algorithms have two
advantages: a reduced number of movements and enhanced
stability. The number of movements for almost descending
sequences decreases, as demonstrated in Corollary 1 and
Table 1. In addition, almost descending sequences are more
stable, as demonstrated in Corollary 2, Figure 1 and Figure 2.
This means that they need fewer adjustments to become
almost descending again if the values of some elements
change slightly. Therefore, our algorithms can be used to
sort noisy data, and the parameter C is a bound that mea-
sures noise. Our algorithms, which have fault tolerance to
some extent, can maintain relatively steady sorting results in
dynamic conditions. If a nearly sorted sequence with a low
sortedness ratio is an almost ascending/descending sequence
with a small parameter C , it is also useful in error-correcting
graph isomorphisms.
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